Report No: CCISE181214705

FCC REPORT

Applicant: GNJ Manufacturing Inc

Address of Applicant: 5811 West Hallandale Beach Blve. West Park, FL 33023

Equipment Under Test (EUT)

Product Name: Cool Extreme 2

Model No.: Cool Extreme 2

Trade mark: CellAllure

FCC ID: 2AAE9CAPHG55

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 28 Dec., 2018

Date of Test: 28 Dec., 2018 to 15 Mar., 2019

Date of report issued: 18 Mar., 2019

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	18 Mar., 2019	Original

Cavey (hen Test Engineer Tested by: Date: 18 Mar., 2019

Reviewed by: Date: 18 Mar., 2019

Project Engineer

3 Contents

			Page
1	C	OVER PAGE	1
2	V	ERSION	2
3	C	ONTENTS	3
4	T!	EST SUMMARY	4
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	Measurement Uncertainty	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	DESCRIPTION OF CABLE USED	
	5.8	LABORATORY FACILITY	6
	5.9	LABORATORY LOCATION	6
	5.10	TEST INSTRUMENTS LIST	7
6	TI	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	TI	EST SETUP PHOTO	17
Ω	E	LIT CONSTRUCTIONAL DETAILS	10

4 Test Summary

Test Item	Section in CFR 47	Result	
Conducted Emission	Part 15.107	Pass	
Radiated Emission	Part 15.109	Pass	

Remark:

Pass: The EUT complies with the essential requirements in the standard.

N/A: The EUT not applicable of the test item.

5 General Information

5.1 Client Information

Applicant:	GNJ Manufacturing Inc
Address:	5811 West Hallandale Beach Blve. West Park, FL 33023
Manufacturer:	TZOOM INTERNATIONAL HK CO., LIMITED
Address:	Room610, 6/F, Innovation Park Building, Wisdom Valley, No.1010 Bulong RD, Longhua District, Shenzhen City, China
Factory:	Shenzhen Hunfun JaYe Technology Corp., Ltd
Address:	Building A1,Side A, Jiahua industrial factory zone Dafu industrial zone Zhangge community Guanlan street, Baoan district Shenzhen City, Guangdong province, China

5.2 General Description of E.U.T.

Product Name:	Cool Extreme 2
Model No.:	Cool Extreme 2
Power supply:	Rechargeable Li-ion Battery DC3.8V-2200mAh
AC adapter :	Model: DCS10-0501000F Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode	erating mode Detail description	
PC mode	Keep the EUT in Downloading mode(Worst case)	
Charging+Recording mode	Keep the EUT in Charging+Recording mode	
Charging+Playing mode Keep the EUT in Charging+Playing mode		
FM mode	Keep the EUT in FM receiver mode	
GPS mode Keep the EUT in GPS receiver mode		

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
LENOVO	Laptop	SL510	2847A65	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.1m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.2m	EUT	Headset

5.8 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.9 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

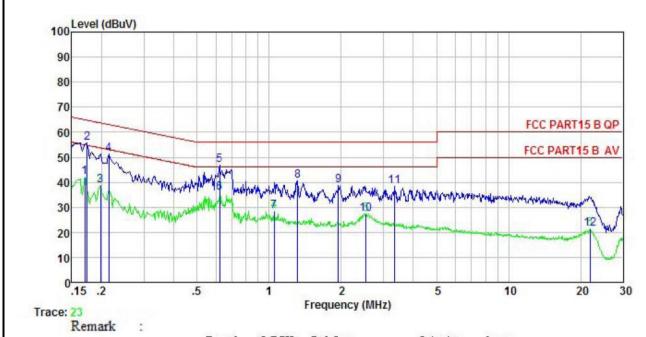
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

5.10 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antonno	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
Loop Antenna	SCHWARZBECK	FINIZD 1319D	00044	03-16-2019	03-15-2020
RiConil og Antonna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
BiConiLog Antenna	SURWARZBEUK	VULD9103	497	03-16-2019	03-15-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Hom Antenna	SCHWARZBECK	DDI IA9 120D	910	03-16-2019	03-15-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	Version: 6.110919b	
Due emplifier	LID	0447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	HP	8447D		03-07-2019	03-06-2020
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Fre-ampliller	CD	PAP-1G10	11004	03-07-2019	03-06-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Nonde & Schwarz	1 31 30	101434	03-07-2019	03-06-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Took Doooiiyan	Dahda 9 Cahwara	ECDD7	404070	03-07-2018	03-06-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2019	03-06-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	ZDECL	∠100-INJ-INJ-81	1000400	03-07-2019	03-06-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Capie	WIICKU-COAX	IVIF NO4039	N10/42-3	03-07-2019	03-06-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
Cable	SULINER	30COFLEX 100	30133/4FE	03-07-2019	03-06-2020

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
FMI Toot Dogoiyor	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
EMI Test Receiver	Ronde & Schwarz	ESCI	101169	03-07-2019	03-06-2020	
Dulas Limitar	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	USKAWI 2306		03-07-2019	03-06-2020	
LICN	CHACE	MNIOOFOD	4.447	03-19-2018	03-18-2019	
LISN	CHASE	MN2050D	1447	03-19-2019	03-18-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cabla	LID	405024	NI/A	03-07-2018	03-06-2019	
Cable	HP	10503A	N/A	03-07-2019	03-06-2020	
EMI Test Software	AUDIX	E3	\	Version: 6.110919	b	

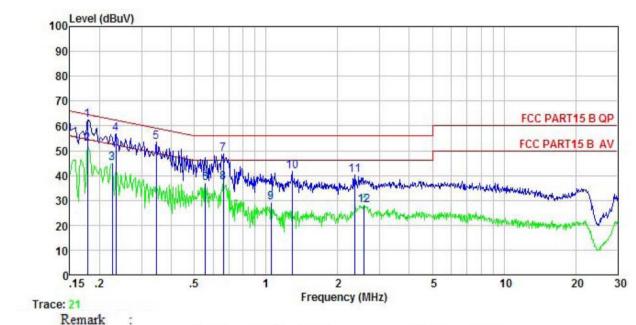
6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.10	07		
Test Method:	ANSI C63.4:2014			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	_	Limit	(dBµV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	0.5-30	60	50	
	* Decreases with the logarith	nm of the frequency.		
Test setup:	Reference Plan	ne		
	AUX Filter AC power Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test environment:	Temp.: 22.5 °C Humid.: 55% Press.: 101kPa			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Measurement data:

Product name:	Cool Extreme 2	Product model:	Cool Extreme 2
Test by:	Yaro	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	dB	₫B	dBu₹	dBu∀	<u>dB</u>	
1	0.170	31.27	0.17	10.77	42.21	54.94	-12.73	Average
2	0.174	44.86	0.16	10.77	55.79	64.77	-8.98	QP
3	0.198	28.02	0.15	10.76	38.93	53.71	-14.78	Average
4	0.214	40.46	0.15	10.76	51.37	63.05	-11.68	QP
5	0.621	36.00	0.13	10.77	46.90	56.00	-9.10	QP
1 2 3 4 5 6 7 8	0.621	25.00	0.13	10.77	35.90	46.00	-10.10	Average
7	1.049	17.55	0.13	10.88	28.56	46.00	-17.44	Average
8	1.317	29.73	0.13	10.91	40.77		-15.23	
9	1.949	27.68	0.14	10.96	38.78	56.00	-17.22	QP
10	2.540	16.31	0.15	10.94	27.40	46.00	-18.60	Average
11	3.346	27.35	0.17	10.91	38.43		-17.57	
12	21.830	10.02	0.30	10.91	21.23			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Cool Extreme 2	Product model:	Cool Extreme 2
Test by:	Yaro	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

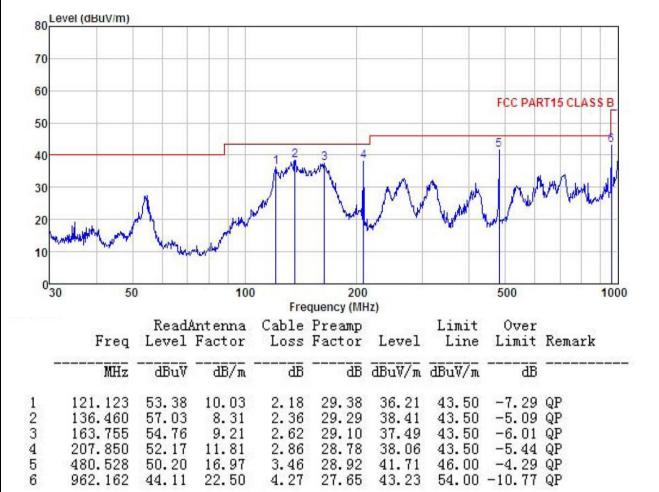
Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	₫₿u₹	₫B	₫B	dBu₹	dBu∀	<u>d</u> B	
0.178	50.81	0.95	10.77	62.53	64.59	-2.06	QP
0.178	40.90	0.95	10.77	52.62	54.59	-1.97	Average
0.226	33.20	0.94	10.75	44.89	52.61		Average
0.234	44.99	0.94	10.75	56.68	62.30	-5.62	QP
0.346	41.70	0.97	10.73	53.40	59.05	-5.65	QP
0.555	25.34	0.97	10.76	37.07	46.00	-8.93	Average
0.661	37.10	0.97	10.77	48.84	56.00	-7.16	QP
0.661	25.49	0.97	10.77	37.23	46.00		
1.049	17.29	0.97	10.88	29.14			
1.289	29.97	0.97	10.90	41.84			
2.358	28.23	0.98	10.94	40.15	56.00	-15.85	QP
2.581	15.96	0.99	10.93	27.88			
	MHz 0.178 0.178 0.226 0.234 0.346 0.555 0.661 0.661 1.049 1.289 2.358	MHz dBuV 0.178 50.81 0.178 40.90 0.226 33.20 0.234 44.99 0.346 41.70 0.555 25.34 0.661 37.10 0.661 25.49 1.049 17.29 1.289 29.97 2.358 28.23	MHz dBuV dB 0.178 50.81 0.95 0.178 40.90 0.95 0.226 33.20 0.94 0.234 44.99 0.94 0.346 41.70 0.97 0.555 25.34 0.97 0.661 37.10 0.97 0.661 25.49 0.97 1.049 17.29 0.97 1.289 29.97 0.97 2.358 28.23 0.98	MHz dBuV dB dB 0.178 50.81 0.95 10.77 0.178 40.90 0.95 10.77 0.226 33.20 0.94 10.75 0.234 44.99 0.94 10.75 0.346 41.70 0.97 10.73 0.555 25.34 0.97 10.76 0.661 37.10 0.97 10.77 0.661 25.49 0.97 10.77 1.049 17.29 0.97 10.88 1.289 29.97 0.97 10.90 2.358 28.23 0.98 10.94	MHz dBuV dB dB dBuV 0.178 50.81 0.95 10.77 62.53 0.178 40.90 0.95 10.77 52.62 0.226 33.20 0.94 10.75 44.89 0.234 44.99 0.94 10.75 56.68 0.346 41.70 0.97 10.73 53.40 0.555 25.34 0.97 10.76 37.07 0.661 37.10 0.97 10.77 48.84 0.661 25.49 0.97 10.77 37.23 1.049 17.29 0.97 10.88 29.14 1.289 29.97 0.97 10.90 41.84 2.358 28.23 0.98 10.94 40.15	MHz dBuV dB dB dBuV dBuV 0.178 50.81 0.95 10.77 62.53 64.59 0.178 40.90 0.95 10.77 52.62 54.59 0.226 33.20 0.94 10.75 44.89 52.61 0.234 44.99 0.94 10.75 56.68 62.30 0.346 41.70 0.97 10.73 53.40 59.05 0.555 25.34 0.97 10.76 37.07 46.00 0.661 37.10 0.97 10.77 37.23 46.00 0.661 25.49 0.97 10.77 37.23 46.00 1.049 17.29 0.97 10.88 29.14 46.00 1.289 29.97 0.97 10.90 41.84 56.00 2.358 28.23 0.98 10.94 40.15 56.00	MHz dBuV dB dB dBuV dBuV dB 0.178 50.81 0.95 10.77 62.53 64.59 -2.06 0.178 40.90 0.95 10.77 52.62 54.59 -1.97 0.226 33.20 0.94 10.75 44.89 52.61 -7.72 0.234 44.99 0.94 10.75 56.68 62.30 -5.62 0.346 41.70 0.97 10.73 53.40 59.05 -5.65 0.555 25.34 0.97 10.76 37.07 46.00 -8.93 0.661 37.10 0.97 10.77 37.23 46.00 -8.77 1.049 17.29 0.97 10.77 37.23 46.00 -8.77 1.049 17.29 0.97 10.88 29.14 46.00 -16.86 1.289 29.97 0.97 10.90 41.84 56.00 -14.16 2.358 28.23 0.98 <

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

= :	 					1
Test Requirement:	FCC Part 15 B S	ection 15.1	09			
Test Method:	ANSI C63.4:2014	1				
Test Frequency Range:	30MHz to 6000M	lHz				
Test site:	Measurement Dis	stance: 3m	(Sen	ni-Anechoic	Chamber)	
Receiver setup:	Frequency			RBW	VBW	Remark
	30MHz-1GHz			120kHz	300kHz	Quasi-peak Value
	Above 1GHz	Peak		1MHz	3MHz	Peak Value
		RMS		1MHz	3MHz	Average Value
Limit:	Frequenc		Lim	nit (dBuV/m	@3m)	Remark
	30MHz-88N			40.0		Quasi-peak Value
	88MHz-216I			43.5 46.0		Quasi-peak Value
	216MHz-960 960MHz-10			54.0		Quasi-peak Value
	90010172-10	סחב		54.0 54.0		Quasi-peak Value Average Value
	Above 1G	Hz		74.0		Peak Value
Test setup:	Below 1GHz Tum Table Ground Plane Above 1GHz	4m 4m - 1			Antenna Tower Search Antenna Test eiver	
	AE (Turn	W V		erence Plane	Antenna Towe	er

	_						
Test Procedure:	the grou	ınd at a 3 me	on the top o ter semi-ane mine the pos	choic cambe	r. The table	was rotated	
			neters away f mounted on t				
	ground	to determine al and vertica	the maximun	n value of the	field stren	rs above the gth. Both t to make the	
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.						
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	limit spe the EUT 10dB m	ecified, then to would be re argin would be	esting could be ported. Other	oe stopped a wise the emine by one us	nd the peal issions that sing peak, o	did not have quasi-peak or	
Test environment:	Temp.:	24 °C	Humid.:	57%	Press.:	1 01kPa	
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						
Remark: All of the observed value above 6GHz ware the niose floor no recorded						r, which were	



Measurement Data:

Below 1GHz:

Product Name:	Cool Extreme 2	Product model:	Cool Extreme 2
Test By:	Yaro	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

46.00 -10.24 QP

54.00 -10.19 QP

Product Name	Name: Cool Extreme 2		P	roduct mo	Cool Extreme 2						
Гest By:	By: Yaro				Т	est mode:		PC mo	PC mode Horizontal		
Test Frequenc	cy:	30 MHz ~ 1	GHz		Р	Polarization:					
Гest Voltage:		AC 120/60H	Нz		E	nvironme	nt:	Temp:	24 ℃	Huni: 57%	
Lovel	(dBuV/m)										
80	(dDdv/iii)										
70											
60											
50								FCC PA	RT15 CL	ASS B	
50								4			
40					1 1	2	3		5		
30				الر	1/1/1/	June .	M 1	A.	Market		
		1		Market Market	1	hoppy the	No. of the last	I I W	4	N'AMA	
20		N I	4	WINNE	V		4	Val de			
10	and an included the day	Mark Market	- North Market								
030	50		100		200 quency (Mi			500		1000	
		ReadA	nt enna		Preamp		Limit	Over			
	Freq	Level	Factor			Level	Line	Limit	Remark		
	MHz	dBu₹			<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>			
1	162.611	54.06	9.18	2.61	29.11			-6.76			
1 2 3 4	207.850 323.320		11.81 14.09	2.86 3.02	28.78 28.50			-3.74 -9.04			
4	480.528	52.39	16.97	3.46	28.92			-2.10			
	MIA 000	00 00	00 00	4 00	00 50	05 50	40 00	10 01	0.70		

Remark:

5

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

20.27

22.50

39.83

44.69

719.200

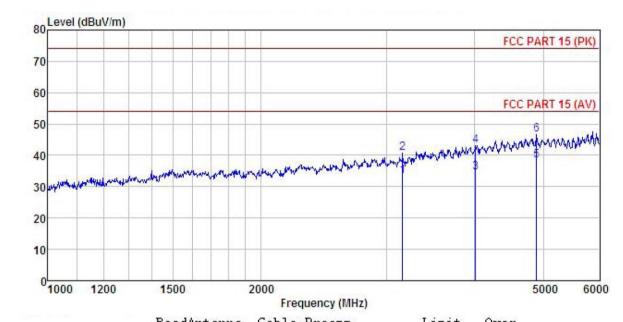
962.162

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

4.25

4.27

28.59


27.65 43.81

35.76

Above 1GHz:

Product Name:	Cool Extreme 2	Product model:	Cool Extreme 2
Test By:	Yaro	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Factor				Limit	Limit	Remark
	MHz	dBu∇		<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	3164.836	40.54	28.70	5.41	41.42	33.23	54.00	-20.77	Average
2	3164.836	48.06	28.70	5.41	41.42	40.75	74.00	-33.25	AND THE PROPERTY OF THE PROPER
3	4009.288	40.15	30.22	6.11	41.81	34.67	54.00	-19.33	Average
4	4009.288	48.62	30.22	6.11	41.81			-30.86	
5	4891.500	41.64	31.73	6.86	41.84	38.39	54.00	-15.61	Average
6	4891.500	49.78	31.73	6.86	41.84	46.53	74.00	-27.47	7

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Cool E	xtreme 2		Product m	nodel:	Cool Extreme 2		
est By:	Yaro	Test mode: PC mode				PC mode		
est Frequency:	1 GHz	~ 6 GHz		Polarizatio	on:	Horizontal		
est Voltage:	AC 120)/60Hz		Environme	ent:	Temp: 24℃	Huni: 579	
Level (dBuV	/m)							
80 Level (dbdv	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					FCC PART	15 (PK)	
70								
60						FCC PART	15 (AV)	
50								
40			pe for high discount of the function of the	municipa	www.h	man	muhan	
30 Maria maria	HALL-ANDERSON CONTRACTOR	hely entre may really the	Whillipped and the property					
20								
10								
0 1000 120	0 150	00	2000 Frequence	y (MHz)		5000	6000	
F		adAntenna el Factor	a Cable Pre Loss Fac		Limit Line	Over Limit Rema	ark	
	WHz dBu	ī⊽ — dB/ī	n dB	dB dBu√/π	n dBuV/m	dB		

Remark:

2

3

4

5

3153.515

3153.515

4111.131

4111.131

4813.252

4813.252

44.72

38.61

46.18

37.83

47.24

39.44

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

28.70

28.70

30.41

30.41

31.61

31.61

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

5.40

5.40

6.27

6.27

6.81

6.81

41.43

41.43

41.81

41.81

41.82

41.82

37.39

31.28

41.05

32.70

43.84

36.04

74.00 -36.61 Peak

74.00 -32.95 Peak

74.00 -30.16 Peak

54.00 -22.72 Average

54.00 -21.30 Average

54.00 -17.96 Average