FCC Test Report

Report No.: AGC09674170301FE08

FCC ID	:	2AAE9CAPHG43
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	Smartphone-Miracle 6.0 S
BRAND NAME	:	CellAllure
MODEL NAME	:	Miracle 6.0 S, CAPHG43
CLIENT	:	GNJ Manufacturing Inc.
DATE OF ISSUE	:	Mar. 28, 2017
STANDARD(S) TEST PROCEDURE(S)	:	FCC Part 15.247 KDB 558074 v03r02
REPORT VERSION	:	V1.0

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes				
V1.0	/	Mar. 28, 2017	Valid	Original Report				

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE 2.GENERAL INFORMATION	6
2.2 RELATED SUBMITTAL(S)/GRANT(S)	
2.3TEST METHODOLOGY	
2.4 TEST FACILITY	6
2.5 SPECIAL ACCESSORIES	6
2.6 EQUIPMENT MODIFICATIONS	6
3. SYSTEM TEST CONFIGURATION	7
3.2 EQUIPMENT USED IN TESTED SYSTEM	
 4. SUMMARY OF TEST RESULTS	
6.2. TEST RESULT	
7. RADIATED EMISSION	11 11
7.2 TEST SETUP	
7.3 LIMITS AND MEASUREMENT RESULT	
7.4 TEST RESULT	
8. BAND EDGE EMISSION 8.1. MEASUREMENT PROCEDURE	
8.2. TEST SET-UP	
8.3. RADIATED TEST RESULT	
8.4. CONDUCTED TEST RESULT	
9. 6DB BANDWIDTH 9.1. TEST PROCEDURE	
9.2. SUMMARY OF TEST RESULTS/PLOTS	
10.1. MEASUREMENT PROCEDURE	
10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
10.3. LIMITS AND MEASUREMENT RESULT	
11. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY . 11.1 MEASUREMENT PROCEDURE	
11.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	

Report No.: AGC09674170301FE08 Page 4 of 31

	11.3 LIMITS AND MEASUREMENT RESULT	22
12.	FCC LINE CONDUCTED EMISSION TEST	
	12.2 TEST SETUP	23
	12.3 PRELIMINARY PROCEDURE	24
	12.4 FINAL TEST PROCEDURE	24
	12.5 TEST RESULT OF POWER LINE	25
13.	CONDUCTED SPURIOUS EMISSION	27
	13.1. MEASUREMENT PROCEDURE	27
	13.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	27
	13.3. MEASUREMENT EQUIPMENT USED	27
	13.4. LIMITS AND MEASUREMENT RESULT	27
AP	PENDIX A: PHOTOGRAPHS OF TEST SETUP	30

Applicant	GNJ Manufacturing Inc.
Applicant	
Address	5811 West Hallandale Beach Blvd. West Park , FL 33023
Manufacturer GNJ Manufacturing Inc.	
Address 4/F, Blk A,No.48 Industrial Park, ZhongKai HiTech Zone, Huizhou City, Guar Province.	
Product Designation	Smartphone-Miracle 6.0 S
Brand Name	CellAllure
Test Model	Miracle 6.0 S
Series Model	CAPHG43
Differences Description	All the same except the model name.
Date of test	Mar. 15, 2017~Mar. 28, 2017
Deviation	None
Condition of Test Sample	Normal
Report Template	AGCRT-US-BLE/RF

1. VERIFICATION OF COMPLIANCE

WE HEREBY CERTIFY THAT:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with requirement of FCC Part 15 Rules requirement.

Tested By	donjon . strang	
	Donjon Huang(Huang Dongyang)	Mar. 28, 2017
Reviewed By	Bong sie	
	Bart Xie(Xie Xiaobin)	Mar. 28, 2017
Approved By	Solya shong	
	Solger Zhang(Zhang Hongyi) Authorized Officer	Mar. 28, 2017

2.GENERAL INFORMATION 2.1PRODUCT DESCRIPTION

The EUT is designed as "Tablet". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz
Bluetooth Version	V4.0
Modulation	GFSK
Number of channels	40 Channel(37 Hopping Channel,3 advertising Channel)
Antenna Designation	Integrated Antenna
Antenna Gain	2.13dBi
Hardware Version	T828-W-V1.3
Software Version	T828W_V1_B_LJ_A9P_CELLALLUER60_v2-1_2017_03_23
Power Supply	DC3.7V by Built-in Li-ion Battery

2.2 RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for FCC ID: 2AAE9CAPHG43 filing to comply with Section 15.247of the FCC Part 15, Subpart C Rules.

2.3TEST METHODOLOGY

All measurements contained in this report were conducted with KDB 558074 D01 DTS Meas Guidance v03r02, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions. The EUT was tested in all three orthogonal planes and the worse case was showed.

2.4 TEST FACILITY

Site	Dongguan Precise Testing Service Co., Ltd.		
LocationBuilding D,Baoding Technology Park,Guangming Road2,Dongcheng District, Dongguan, Guangdong, China,			
FCC Registration No.	371540		
Description	The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.10:2013.		

2.5 SPECIAL ACCESSORIES

Refer to section 2.2.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

3. SYSTEM TEST CONFIGURATION

3.1 CONFIGURATION OF TESTED SYSTEM

Configuration:

3.2 EQUIPMENT USED IN TESTED SYSTEM

ltem	Equipment	Model No.	ID or Specification	Note
1	Smartphone-Miracle 6.0 S	Miracle 6.0 S	2AAE9CAPHG43	EUT
2	2 Adapter IFo		DC5V /1A	Accessory
3	Battery	CASPR43-06	DC3.7V/2500mAh	Accessory
4	Earphone	N/A	N/A	Accessory
5	USB Cable	N/A	N/A	Accessory

ALL TEST EQUIPMENT LIST

FOR RADIATED EMISSION TEST (BELOW 1GHZ)

Radiated Emission Test Site								
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration			
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017			
Trilog Broadband Antenna (25M-1GHz) SCHWARZBECK		VULB9160	9160-3355	July 3, 2016	July 2, 2017			
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016	July 2, 2017			
RF Cable SCHWARZBEC		AK9515E	96221	July 3, 2016	July 2, 2017			
3m Anechoic Chamber CHENGYU		966	PTS-001	June 5, 2016	June 4, 2017			
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A			
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 5, 2016	June 4, 2017			
Spectrum analyzer Agilent		E4407B	MY46185649	June 5, 2016	June 4, 2017			
Power Probe R&S		NRP-Z23	100323	July 24,2016	July 23,2017			
RF attenuator	N/A	RFA20db	68	N/A	N/A			

FOR RADIATED EMISSION TEST (1GHZ ABOVE)

Radiated Emission Test Site										
Name of Equipment Manufacturer		Model Numb	er	Serial Number		Last Calibration		Due Calibration		
EMI Test Receiver	r Rohde & Sch	warz	ESCI		101417		July 3, 2016		July 2, 2017	
Horn Antenna (1G-18GHz)	SCHWARZBI	ECK	BBHA9120	D	9120D-1246		July 10, 2	016	July 9, 2017	
Spectrum Analyze	r Agilent		E4411B		MY4511453	3	July 3, 20	016	July 2, 2017	
Signal Amplifier	SCHWARZBI	ECK	BBV 9718		9718-269		July 6, 20	016	July 5, 2017	
RF Cable	SCHWARZBI	ECK	AK9515H		96220		July 7, 20	016	July 6, 2017	
3m Anechoic Chamb	Der CHENGY	J	966		PTS-001		June 5, 2	016	June 4, 2017	
MULTI-DEVICE Positioning Controll	er Max-Full		MF-7802		MF78020833	39	N/A		N/A	
Horn Ant (18G-40GH	Hz) Schwarzbe	ck	BBHA 9170)	9170-181		June 5, 2	016	June 4, 2017	
Power Probe	R&S	NRP-Z			100323		July 24,2016		July 23,2017	
RF attenuator	RF attenuator N/A		RFA20db		68	68 N/A		N/A		
	C	ondu	cted Emission	<u>י Te</u>	est Site		•			
Name of Equipment	Manufacturer	Мо	del Number	Serial Number		Са	Last Due		e Calibration	
EMI Test Receiver	Rohde & Schwarz		ESCI		101417 July 3, 2016		J	uly 2, 2017		
Artificial Mains Network	Narda		L2-16B	00	00WX31025	025 July 7, 2016		July 6, 2017		
Artificial Mains Network (AUX)	Narda		L2-16B	00	00WX31026	Ju	ly 7, 2016	July 6, 2017		
RF Cable	SCHWARZBECK	A	AK9515E		96222	96222 July 3, 2016		July 2, 2017		
Shielded Room	CHENGYU		843		PTS-002	June 5,2016		June 4,2017		
	C	ondu	cted Emission	<u>ı</u> Te	est Site					
Name of Equipment	Manufacturer	Мо	del Number	Se	rial Number	Са	Last alibration	Du	e Calibration	
EMI Test Receiver	Rohde & Schwarz		ESCI		101417	Ju	ly 3, 2016	J	uly 2, 2017	
Artificial Mains Network	Narda		L2-16B	00	00WX31025	Ju	ly 7, 2016	J	uly 6, 2017	
Artificial Mains Network (AUX)	Narda		L2-16B	00	00WX31026	Ju	ly 7, 2016	J	uly 6, 2017	
RF Cable	SCHWARZBECK	ŀ	AK9515E		96222	Ju	ly 3, 2016	J	uly 2, 2017	
Shielded Room	CHENGYU		843		PTS-002	Ju	ne 5,2016	J	une 4,2017	

FCC RULES	DESCRIPTION OF TEST	RESULT
§ 15.203	Antenna Requirement	Compliant
§15.209 §15.247(d)	Radiated Emission	Compliant
§15.247(d)	Band Edges	Compliant
§15.247	6 dB Bandwidth	Compliant
§15.247(b)	Conducted Power	Compliant
§15.247(e)	Maximum Conducted Output Power SPECTRAL Density	Compliant
§15.207	Line Conduction Emission	Compliant
§15.207	Conduction Emission	Compliant

4. SUMMARY OF TEST RESULTS

5. DESCRIPTION OF TEST MODES

The EUT has been operated in three modulations: GFSK independently.

NO.	TEST MODE DESCRIPTION
1	Low channel TX
2	Middle channel TX
3	High channel TX
4	Normal Operating (BT)
Note:	

1. All the test modes can be supply by Built-in Li-ion battery, only the result of the worst case was recorded in the report if no any records.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

3. Eut is operating at its maximum duty cycle>or equal 98%

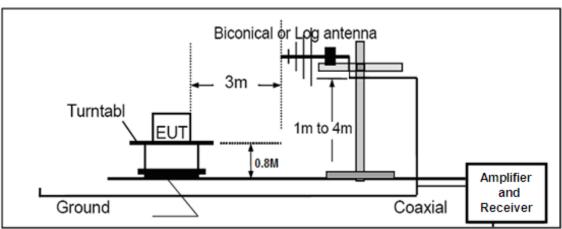
6. ANTENNA REQUIREMENT

6.1. STANDARD APPLICABLE

According to FCC 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

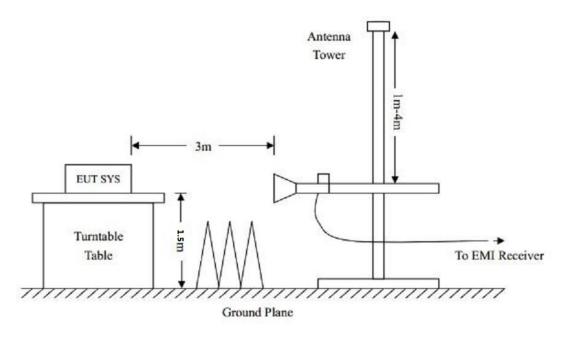
6.2. TEST RESULT

This product has a permanent antenna, fulfill the requirement of this section.


7. RADIATED EMISSION

7.1 MEASUREMENT PROCEDURE

- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.

7.2 TEST SETUP

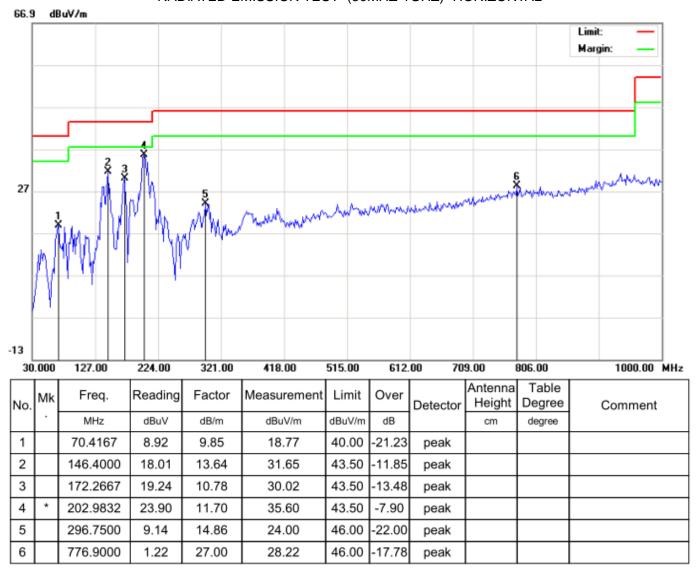
RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

7.3 LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3


Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

7.4 TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ RADIATED EMISSION TEST- (30MHZ-1GHZ) -HORIZONTAL

RESULT: PASS

RADIATED EMISSION TEST- (30MHZ-1GHZ) -VERTICAL

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

3. All test modes had been pre-tested. The GFSK mode at low channel is the worst case and recorded in the report.

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
			Low Channel (2402	MHz)			
4804	40.45	10.44	50.89	74	-23.11	Pk	Horizontal
4804	28.97	10.44	39.41	54	-14.59	AV	Horizontal
7206	42.38	12.39	54.77	74	-19.23	pk	Horizontal
7206	28.56	12.39	40.95	54	-13.05	AV	Horizontal
4804	43.21	10.4	53.61	74	-20.39	Pk	Vertical
4804	28.28	10.4	38.68	54	-15.32	AV	Vertical
7206	33.00	12.75	45.75	74	-28.25	Pk	Vertical
7206	28.39	12.75	41.14	54	-12.86	AV	Vertical
			Mid Channel (2440	MHz)			
4880	38.67	10.4	49.07	74	-24.93	Pk	Horizontal
4880	30.33	10.4	40.73	54	-13.27	AV	Horizontal
7320	40.32	12.75	53.07	74	-20.93	Pk	Horizontal
7320	30.79	12.75	43.54	54	-10.46	AV	Horizontal
4880	43.63	10.39	54.02	74	-19.98	Pk	Vertical
4880	27.83	10.44	38.27	54	-15.73	AV	Vertical
7320	40.47	12.68	53.15	74	-20.85	Pk	Vertical
7320	31.01	12.68	43.69	54	-10.31	AV	Vertical
			High Channel (2480	MHz)			
4960	43.33	10.39	53.72	74	-20.28	pk	Horizontal
4960	26.38	10.39	36.77	54	-17.23	AV	Horizontal
7440	39.98	12.68	52.66	74	-21.34	pk	Horizontal
7440	30.42	12.68	43.10	54	-10.90	AV	Horizontal
4960	36.95	10.39	47.34	74	-26.66	pk	Vertical
4960	27.43	10.39	37.82	54	-16.18	AV	Vertical
7440	40.53	12.68	53.21	74	-20.79	pk	Vertical
7440	30.77	12.68	43.45	54	-10.55	AV	Vertical

RESULT: PASS

Note: 1~25GHz scan with GFSK. No recording in the test report at least have 20dB margin. Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission Level = Meter Reading + Factor Margin = Emission - Leve Limit

8. BAND EDGE EMISSION

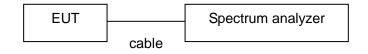
8.1. MEASUREMENT PROCEDURE

1)Radiated restricted band edge measurements

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting

2)Conducted Emissions at the bang edge

a)The transmitter output was connected to the spectrum analyzer


b)Set RBW=100kHz,VBW=300kHz

c)Suitable frequency span including 100kHz bandwidth from band edge

8.2. TEST SET-UP

Radiated same as 6.2

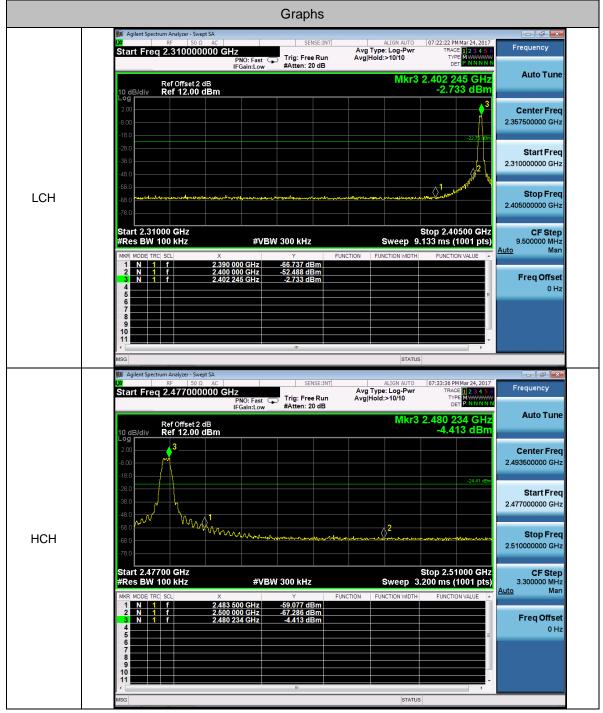
Conducted set up

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Common		
			Low Channe	l (2402 MHz)					
2399.9 69.85 -13 56.85 74 -17.15 peak									
2399.9	55.13	-13	42.13	54	-11.87	AVG	Horizontal		
2400	65.72	-12.99	52.73	74	-21.27	peak	Horizontal		
2400	51.59	-12.99	38.60	54	-15.40	AVG	Horizontal		
2399.9	64.18	-12.97	51.21	74	-22.79	peak	Vertical		
2399.9	52.51	-12.97	39.54	54	-14.46	AVG	Vertical		
2400	66.21	-12.94	53.27	74	-20.73	peak	Vertical		
2400	53.98	-12.94	41.04	54	-12.96	AVG	Vertical		
			High Channe	l (2480 MHz)					
2483.5	69.17	-12.78	56.39	74	-17.61	peak	Horizontal		
2483.5	57.41	-12.78	44.63	54	-9.37	AVG	Horizontal		
2483.6	67.48	-12.77	54.71	74	-19.29	peak	Horizontal		
2483.6	53.93	-12.77	41.16	54	-12.84	AVG	Horizontal		
2483.5	70.96	-12.76	58.20	74	-15.80	peak	Vertical		
2483.5	53.42	-12.76	40.66	54	-13.34	AVG	Vertical		
2483.6	65.95	-12.72	53.23	74	-20.77	peak	Vertical		
2483.6	56.05	-12.72	43.33	54	-10.67	AVG	Vertical		

8.3. Radiated Test Result

RESULT: PASS

Note: Factor=Antenna Factor + Cable loss - Amplifier gain,


Emission Level = Meter Reading + Factor

Margin= Emission Level -Limit.

The "Factor" value can be calculated automatically by software of measurement system.

8.4. Conducted Test Result

Test Graph

9. 6DB BANDWIDTH


9.1. TEST PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW≥RBW.
- 4. Set SPA Trace 1 Max hold, then View.

9.2. SUMMARY OF TEST RESULTS/PLOTS

Mode	Channel	6dB Bandwidth [KHz]	Verdict
BLE	LCH	708.9	PASS
BLE	MCH	707.8	PASS
BLE	HCH	710.1	PASS

Test Graph

10. CONDUCTED OUTPUT POWER

10.1. MEASUREMENT PROCEDURE

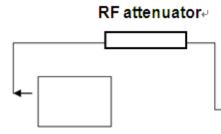
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. Use the following spectrum analyzer settings:

Set the RBW $\,\geqslant\,$ DTS bandwidth

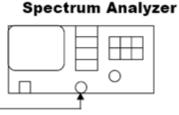
Set the VBW \geq 3 x RBW

Set the span \ge 3 x RBW

Detector = peak


Sweep time = auto couple

Trace mode = max hold


- 4. Allow the trace to stabilize. Use peak marker function to determine the peak amplitude level
- 5. Record the result form the Spectrum Analyzer.

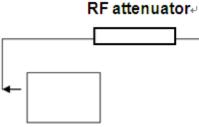
Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

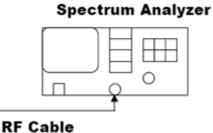
10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

EUT

RF Cable

10.3. LIMITS AND MEASUREMENT RESULT


Channel	Peak Power (dBm)	Applicable Limits (dBm)	Pass/Fail
Low Channel	-2.044	20	Pass
Middle Channel	-2.464	20	Pass
High Channel	-3.663	20	Pass


11. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY 11.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

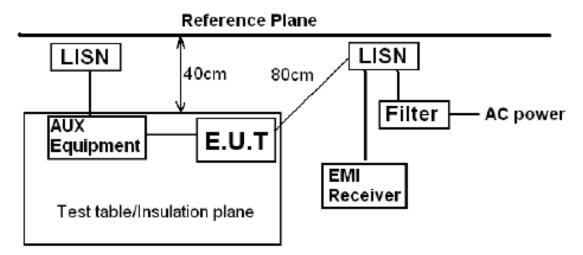
11.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

EUT

11.3 LIMITS AND MEASUREMENT RESULT

Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	LCH	-17.489	8	PASS
BLE	MCH	-17.956	8	PASS
BLE	HCH	-19.152	8	PASS

12. FCC LINE CONDUCTED EMISSION TEST


12.1 LIMITS

Eroquopoy	Maximum RF Line Voltage					
Frequency	Q.P.(dBuV)	Average(dBuV)				
150kHz~500kHz	66-56	56-46				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

**Note: 1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

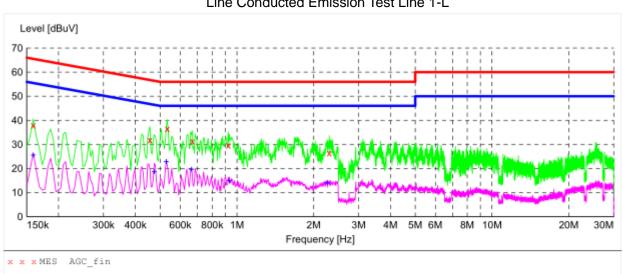
12.2 TEST SETUP

Remark

E.U.T: Equipment Under Test

LISN: Line Impedence Stabilization Network Test table height=0.8m

12.3 PRELIMINARY PROCEDURE

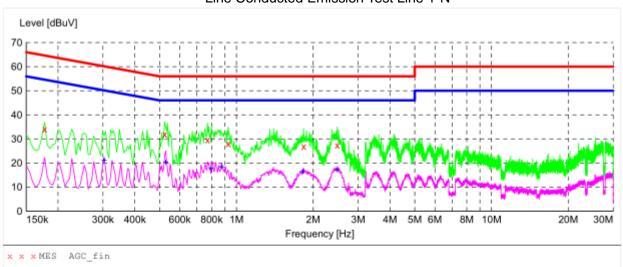

- 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per ANSI C63.10.
- 3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4) All support equipments received AC120V/60Hz power from a LISN, if any.
- 5) The EUT received power by adapter which received power by a LISN.
- 6) The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7) Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8) During the above scans, the emissions were maximized by cable manipulation.
- 9) The following test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

12.4 FINAL TEST PROCEDURE

- 10) EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 11) 2) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less -2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 12) 3) The test data of the worst case condition(s) was reported on the Summary Data page.

12.5 TEST RESULT OF POWER LINE


Line Conducted Emission Test Line 1-L

MEASUREMENT RESULT: "AGC_fin"

2017/3/27 10:	08							
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
								STATE
MHz	dBuV	dB	dBuV	dB				
0.159000	38.00	10.3	66	27.5	QP	L1	GND	ON
0.456000	31.90	10.3	57	24.9	QP	L1	GND	ON
0.532500	36.50	10.3	56	19.5	QP	L1	GND	ON
0.667500	31.30	10.3	56	24.7	QP	L1	GND	ON
0.924000	29.70	10.4	56	26.3	QP	L1	GND	ON
2.301000	26.40	10.5	56	29.6	QP	L1	GND	ON

MEASUREMENT RESULT: "AGC_fin2"

201	7/3/27 10:	08							
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
									STATE
	MHz	dBuV	dB	dBuV	dB				
	0.159000	25.50	10.3	56	30.0	AV	L1	GND	ON
	0.474000	18.60	10.3	46	27.8	AV	L1	GND	ON
	0.528000	22.80	10.3	46	23.2	AV	L1	GND	ON
	0.663000	19.60	10.3	46	26.4	AV	L1	GND	ON
	0.933000	14.80	10.4	46	31.2	AV	L1	GND	ON
	2.260500	14.00	10.5	46	32.0	AV	L1	GND	ON

Line Conducted Emission Test Line 1-N

MEASUREMENT RESULT: "AGC_fin"

2017/3/27 10:	19							
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
								STATE
MHz	dBuV	dB	dBuV	dB				
0.177000	34.10	10.3	65	30.5	QP	N	GND	ON
0.523500	32.00	10.3	56	24.0	QP	N	GND	ON
0.771000	29.60	10.3	56	26.4	QP	N	GND	ON
0.928500	28.00	10.4	56	28.0	QP	N	GND	ON
1.833000	26.90	10.4	56	29.1	QP	N	GND	ON
2.485500	27.40	10.5	56	28.6	QP	N	GND	ON

MEASUREMENT RESULT: "AGC_fin2"

2017/3/27	10:19							
Frequenc	y Level	Transd	Limit	Margin	Detector	Line	PE	AUX STATE
MH	z dBuV	dB	dBuV	dB				
0.30300	0 21.10	10.3	50	29.1	AV	N	GND	ON
0.52800	0 20.30	10.3	46	25.7	AV	N	GND	ON
0.79800	0 17.70	10.3	46	28.3	AV	N	GND	ON
0.87450	0 18.40	10.4	46	27.6	AV	N	GND	ON
1.82400	0 16.40	10.4	46	29.6	AV	N	GND	ON
2.48550	0 17.10	10.5	46	28.9	AV	N	GND	ON

13. CONDUCTED SPURIOUS EMISSION

13.1. MEASUREMENT PROCEDURE

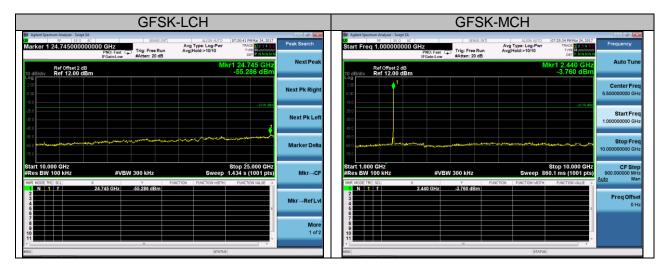
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- 3. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic. RBW = 100 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to DA000705 for compliance to FCC 47CFR 15.247 requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW>RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW>RBW) are conform to the requirement.

13.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2

13.3. MEASUREMENT EQUIPMENT USED


The same as described in section 6

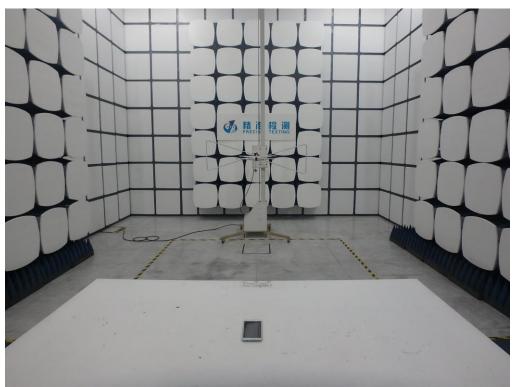
13.4. LIMITS AND MEASUREMENT RESULT

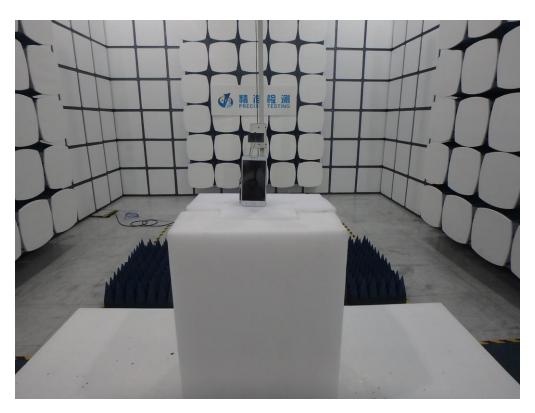
LIMITS AND MEA	ASUREMENT RESULT	
Appliachta Limita	Measurement Re	sult
Applicable Limits	Test Data	Criteria
In any 100 KHz Bandwidth Outside the	At least -20dBc than the limit	PASS
frequency band in which the spread spectrum	Specified on the BOTTOM Channel	PASS
intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit Specified on the TOP Channel	PASS

Test Graph

GFSK-LCH	GFSK-LCH
Bit Agent Spectra Molgars: Specific All Strick 2ntl All On AurtO OP218141 PMMar 24, 2017 Start Freq 1.0000000000 GHz Strick 2ntl Arg Type: Log-Pwr Thock Type: Log-Pwr Thock Type: Log-Pwr Bit Align AurtO Proce Type: Log-Pwr Thock Type: Log-Pwr Thock Type: Log-Pwr Thock Type: Log-Pwr Ref Offnet2 dB Mkr1 2.4004 GH2 Auto Tur Auto Tur	Markor 1 876.810000000 MHz Stretching August 2002 Stretching August
10 dBM/v Ref 12.00 dBm	tz 800 Next Pk Right
300 300 Start Fr 300 300 300 300 300 300 300 300 300 300	
60 Stop Fr 70 Stop Fr Start 1.000 GHz Stop 10.000 GHz	Marker Deta
#Res BW 100 kHz #VBW 300 kHz Sweep 860.1 ms (1001 pts) 990.000000 M MMR MODE TRD Ski X Y Function Parction MDTH Par	n www.recet.mc.scc. x Punctow.rectow.
	More 10 More 11 dr2
MSG STATUS	MSG STATUS

GFSK	-MCH			GFSK-	MCH	
Agitent Spectrum Analyzer - Singet 5A RF 50 G AC arkor 1 989.330000000 MHz PNO: Fast IFGain.tow #Attent: 20 dB	ALIGN AUTO 07:26:06 PM Mar 24, 2017 Avg Type: Log-Pwr TRACE 72.8 4 50 Avg[Hold:>10/10 Det NYME	Peak Search	Agilent Spectrum Analyzer - Swept SA RF 50 Ω AC Marker 1 24.730000000000 PA PA	HZ SENSE:INT Trig: Free Run #Atten: 20 dB	ALIGN AUTO 07:26:33 PM Mar 24, 2017 Avg Type: Log-Pwr TrACE 12:34 K Avg Hold:>10/10 TVPE DET 2NNNNN	Peak Search
dB/div Ref 0ffset 2 dB dB/div Ref 12.00 dBm g	Mkr1 989.33 MHz -65.820 dBm	Next Peak	Ref Offset 2 dB 10 dB/div Ref 12.00 dBm 2 00 2 00		Mkr1 24.730 GHz -55.824 dBm	Next Peak
	-23.76.695	Next Pk Right Next Pk Left	-15 0 -25 0 -38 0			Next Pk Righ Next Pk Lei
		Marker Delta	-48 0 -68 0 -78 0 -78 0		and the second	Marker Del
	Stop 1.0000 GHz Sweep 92.73 ms (1001 pts)	Mkr→CF	Start 10.000 GHz #Res BW 100 kHz		Stop 25.000 GHz Sweep 1.434 s (1001 pts)	Mkr→C
N 1 f 989.33 MHz -66.820 dBm		Mkr→RefLvl	1 N 1 f 24.730 2 3 4 4 5 6) GHz -55.824 dBm		Mkr→RefL
		More 1 of 2	7 8 9 10 11			Moi 1 of
	STATUS			"	STATUS	


	GFSK-H	СН		GFSK-HCH	
Image: Agilent Spectrum Analyzer - Swept SA RF S0 Q AC Start Freq 1.000000000 GHz F F F	NO: Fast Trig: Free Run Av Gain:Low #Atten: 20 dB	ALIGN AUTO 07:32:14 PM Mar 24, 2017 g Type: Log-Pwr TRACE 2:34 - 0 g Hold:>10/10 Type: Der P NN1111	Frequency	Bit Agenet Spectrum Analyser - Swept SA SERVE2NIT ALIGN AUTO 67:2232 PMKar 24, 2817 Value IF SSRVE2NIT ALIGN AUTO 67:2232 PMKar 24, 2817 Markker 1 589, 590000000 MHz Free Run Avg Type: Log-Pwr Trace Type 20, 2817 PRO: Fast Trig: Free Run Avg Type: Log-Pwr Trace Type 20, 2817 #Atten: 20 48 Avg Type: Log-Pwr Trace Type 20, 2817	Peak Search
Ref Offset 2 dB 10 dB/div Ref 12.00 dBm		Mkr1 2.476 GHz -4.681 dBm	Auto Tune	Ref Offset 2 dB Mkr1 589.69 MHz 10 dB/div Ref 12.00 dBm -66.918 dBm	Next Peak
200 180			Center Freq 5.50000000 GHz		Next Pk Right
-28.0		-24 68 484	Start Freq 1.000000000 GHz	3.0 300 400	Next Pk Left
-68.0 -68.0 -78.0		المحرب المرياض بالمراجع والمراجع والمراجع	Stop Freq 10.000000000 GHz	600 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Marker Delta
Start 1.000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 10.000 GHz Sweep 860.1 ms (1001 pts)	CF Step 900.000000 MHz Auto Man	Start 30.0 MHz Stop 1.0000 GHz #Res BW 100 kHz #VBW 300 kHz Stop 1.0101 pts) Mer Most Cristi x Platford Platford	Mkr→CF
	76 GHz 4.681 dBm		Freq Offset 0 Hz	IN I I I I S89.69 MHz 66.918 dBm Following Followin	Mkr→RefLvi
7 9 10 11					More 1 of 2
MSG	"	STATUS		MSG STATUS	


	GFSK-H	СН	
Image: Agilent Spectrum Analyzer - Swept SA Image: So 0, AC Marker 1 24.760000000000 GHz PNO: Fan IFGaint.o	SENSE:INT Avg Trig: Free Run #Atten: 20 dB	ALIGN AUTO 07:32:59 PM Mar 24, 2 Type: Log-Pwr TRACE 124 Hold:>10/10 Type Det 211	NIN Peak Search
Ref Offset 2 dB		Mkr1 24.760 Gi -55.104 dB	Sm .
-18.0 -28.0			
-88.0 -88.0	and the second		Next Pk Left
88 0 78 0 Start 10.000 GHz		Stop 25.000 G	Marker Delta
#Res BW 100 kHz #//		Sweep 1.434 s (1001 p FUNCTION WIDTH FUNCTION VALUE	í ———
4 5 6 7 8			Mkr→RefLvl F More
9 10 11 11 •	n	STATUS	1 of 2

APPENDIX A: PHOTOGRAPHS OF TEST SETUP FCC LINE CONDUCTED EMISSION TEST SETUP

FCC RADIATED EMISSION TEST SETUP

----END OF REPORT----