

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14120108003

FCC REPORT (BLE)

Applicant: GNJ Manufacturing Inc.

Address of Applicant: 205 Ansin Blvd Hallandale Beach, FL 33009, USA

Equipment Under Test (EUT)

Product Name: Smart Phone-CHIC MINI Series

Model No.: CAPHG22-01, CAPHG22-02

Trade mark: CellAllure

FCC ID: 2AAE9CAPHG22-0X

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 Dec., 2014

Date of Test: 31 Dec., 2014 to 09 Jan., 2015

Date of report issued: 09 Jan., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	09 Jan., 2015	Original

Prepared by: Date: 09 Jan., 2015

Report Clerk

Reviewed by: One Man, 2015

Project Engineer

3 Contents

			Page							
1	COV	ER PAGE	1							
2	VERS	VERSION2								
3		TENTS								
4	TEST	SUMMARY	4							
5	GEN	ERAL INFORMATION	5							
	5.1	CLIENT INFORMATION	-							
		GENERAL DESCRIPTION OF E.U.T								
		TEST ENVIRONMENT AND MODE								
		DESCRIPTION OF SUPPORT UNITS								
		LABORATORY FACILITY								
		LABORATORY LOCATION								
		TEST INSTRUMENTS LIST								
6	TEST	Γ RESULTS AND MEASUREMENT DATA	0							
U										
	_	ANTENNA REQUIREMENT:	_							
		CONDUCTED EMISSION								
		CONDUCTED OUTPUT POWER								
		OCCUPY BANDWIDTH								
		POWER SPECTRAL DENSITY	_							
		BAND EDGE								
	6.6.1									
	6.6.2									
		Spurious Emission								
	6.7.1	Conducted Emission Method								
	6.7.2									
7	TEST	「 SETUP PHOTO	35							
8	FUT	CONSTRUCTIONAL DETAILS	36							

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Report No: CCIS14120108003

5 General Information

5.1 Client Information

Applicant:	GNJ Manufacturing Inc.
Address of Applicant:	205 Ansin Blvd Hallandale Beach, FL 33009, USA
Manufacturer/Factory:	GNJ Manufacturing Inc. china
Address of Manufacturer/Factory:	4/F, Blk A, No.48 Industrial Park, ZhongKai HiTech Zone, HuiZhou City, GuangDong Province

5.2 General Description of E.U.T.

Product Name:	Smart Phone-CHIC MINI Series
Model No.:	CAPHG22-01, CAPHG22-02
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-0.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1380mAh
AC adapter:	Model: ODL-018
	Input:110-240V AC, 50/60Hz 0.5A
	Output:5V DC, 1000mA

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

Report No: CCIS14120108003

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Amplifier (10kHz-1.3GHz)	· I HP		CCIS0003	04-01-2014	03-31-2015		
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-05-2015		
7	Pre-amplifier (18-26GHz) Rohde & Schwarz		AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015		
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015		
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
11	Spectrum analyzer 9k-30GHz Rohde & Schwarz		FSP	CCIS0023	04-19-2014	04-19-2015		
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015		
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015		
14	Universal radio Rhode & Schwarz		CMU200	CCIS0069	05-29-2014	05-28-2015		
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015		

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-09-2015			
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FC

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

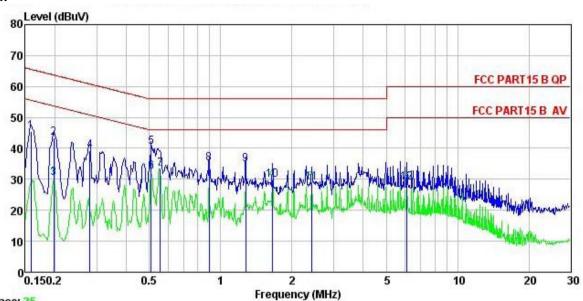
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -0.5 dBi.

6.2 Conducted Emission


Toot Descripement	FCC Dark 45 C Caption 45 203	7				
Test Requirement:	FCC Part 15 C Section 15.207					
Test Method:	ANSI C63.4: 2003					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	Frequency range (MHz)	Limit (c Quasi-peak	BuV) Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	of the frequency.				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 					
Test setup:	Refere	nce Plane				
	AUX Equipment E.U.T EMI Receiver					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
	<u> </u>					

Measurement Data

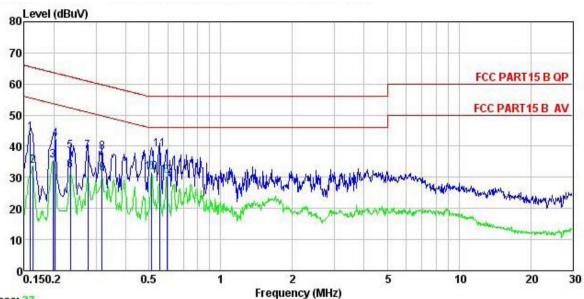
Neutral:

Trace: 25

Site Condition

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL

: Smart Phone : CAPHG22-01/02 EUT Model Test Mode : BLE mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa


Test Engineer: MT

Remark

Freq	Read Level	LISN Factor			Limit Line	Over Limit	Remark
MHz	dBu∇	dB	₫B	dBu∀	dBu∜	<u>dB</u>	
0.158	34.40	0.25	10.78	45.43	65.56	-20.13	QP
0.198	32.43	0.25	10.76	43.44	63.71	-20.27	QP
0.198	19.34	0.25	10.76	30.35	53.71	-23.36	Average
0.280	28.26	0.26	10.74	39.26	60.81	-21.55	QP
0.510	29.27	0.28	10.76	40.31	56.00	-15.69	QP
0.510	21.36	0.28	10.76	32.40	46.00	-13.60	Average
0.555	22.41	0.26	10.77	33.44	46.00	-12.56	Average
0.894	24.12	0.21	10.84	35.17	56.00	-20.83	QP
1.276	23.82	0.24	10.90	34.96	56.00	-21.04	QP
1.654	18.67	0.27	10.94	29.88	46.00	-16.12	Average
2.422	17.75	0.29	10.94	28.98	46.00	-17.02	Average
6.121	17.69	0.27	10.82	28.78	50.00	-21.22	Average
	MHz 0. 158 0. 198 0. 198 0. 280 0. 510 0. 550 0. 555 0. 894 1. 276 1. 654 2. 422	Freq Level MHz dBuV 0.158 34.40 0.198 32.43 0.198 19.34 0.280 28.26 0.510 29.27 0.510 21.36 0.555 22.41 0.894 24.12 1.276 23.82 1.654 18.67 2.422 17.75	MHz dBuV dB 0.158 34.40 0.25 0.198 32.43 0.25 0.198 19.34 0.25 0.280 28.26 0.26 0.510 29.27 0.28 0.510 21.36 0.28 0.555 22.41 0.26 0.894 24.12 0.21 1.276 23.82 0.24 1.654 18.67 0.27 2.422 17.75 0.29	MHz dBuV dB dB 0.158 34.40 0.25 10.78 0.198 32.43 0.25 10.76 0.198 19.34 0.25 10.76 0.280 28.26 0.26 10.74 0.510 29.27 0.28 10.76 0.510 21.36 0.28 10.76 0.555 22.41 0.26 10.77 0.894 24.12 0.21 10.84 1.276 23.82 0.24 10.90 1.654 18.67 0.27 10.94 2.422 17.75 0.29 10.94	MHz dBuV dB dB dBuV 0.158 34.40 0.25 10.78 45.43 0.198 32.43 0.25 10.76 43.44 0.198 19.34 0.25 10.76 30.35 0.280 28.26 0.26 10.74 39.26 0.510 29.27 0.28 10.76 40.31 0.555 22.41 0.26 10.77 33.44 0.894 24.12 0.21 10.84 35.17 1.276 23.82 0.24 10.90 34.96 1.654 18.67 0.27 10.94 29.88 2.422 17.75 0.29 10.94 28.98	MHz dBuV dB dB dBuV dBuV 0.158 34.40 0.25 10.78 45.43 65.56 0.198 32.43 0.25 10.76 43.44 63.71 0.198 19.34 0.25 10.76 30.35 53.71 0.280 28.26 0.26 10.74 39.26 60.81 0.510 29.27 0.28 10.76 40.31 56.00 0.510 21.36 0.28 10.76 32.40 46.00 0.555 22.41 0.26 10.77 33.44 46.00 0.894 24.12 0.21 10.84 35.17 56.00 1.276 23.82 0.24 10.90 34.96 56.00 1.654 18.67 0.27 10.94 29.88 46.00 2.422 17.75 0.29 10.94 28.98 46.00	MHz dBuV dB dB dBuV dBuV dB dB

Line:

Trace: 27

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

: Smart Phone : CAPHG22-01/02 EUT Model Test Mode : BLE mode Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: MT

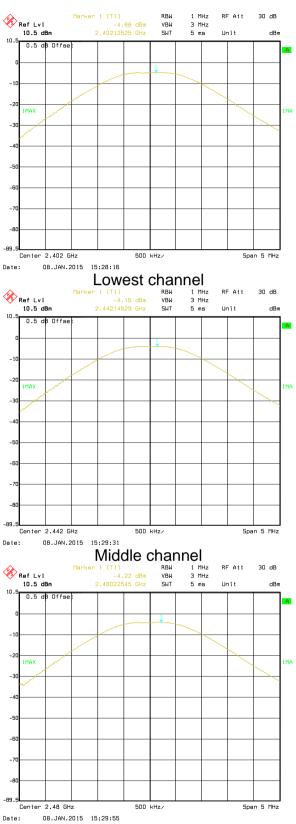
Remark

. tomarn	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	₫B	₫B	dBu₹	−−dBuV	<u>ab</u>	
1	0.159	33.26	0.27	10.78	44.31	65.52	-21.21	QP
2	0.162	22.61	0.27	10.77	33.65	55.34	-21.69	Average
3	0.198	24.53	0.28	10.76	35.57	53.71	-18.14	Average
4	0.202	31.24	0.28	10.76	42.28	63.54	-21.26	QP
1 2 3 4 5 6 7 8 9	0.234	27.34	0.27	10.75	38.36	62.30	-23.94	QP
6	0.234	21.11	0.27	10.75	32.13	52.30	-20.17	Average
7	0.277	27.33	0.26	10.74	38.33	60.90	-22.57	QP
8	0.318	27.03	0.26	10.74	38.03	59.75	-21.72	QP
9	0.318	20.39	0.26	10.74	31.39	49.75	-18.36	Average
10	0.513	20.42	0.28	10.76	31.46	46.00	-14.54	Average
11	0.555	27.98	0.27	10.77	39.02	56.00	-16.98	QP
12	0.595	19.52	0.25	10.77	30.54	46.00	-15.46	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power


Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2				

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-4.88		
Middle	-4.16	30.00	Pass
Highest	-4.22		

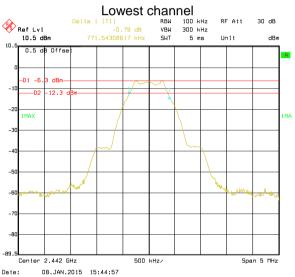
Test plot as follows:

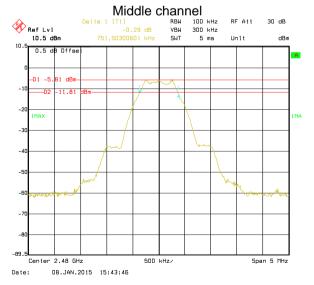
Highest channel

6.4 Occupy Bandwidth

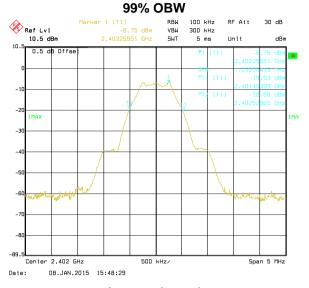
Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

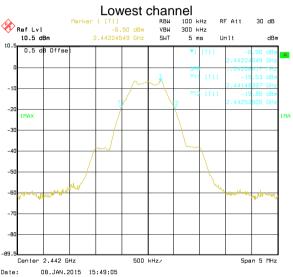
Measurement Data

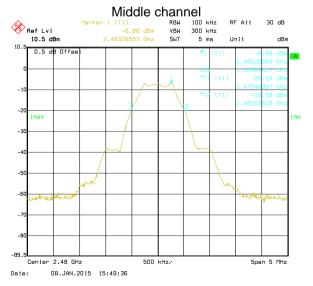

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.772		
Middle	0.772	>500	Pass
Highest	0.752		


Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.032			
Middle	1.042	N/A	N/A	
Highest	1.042			

Test plot as follows:



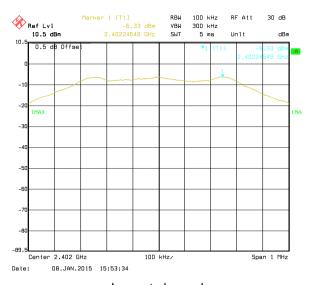




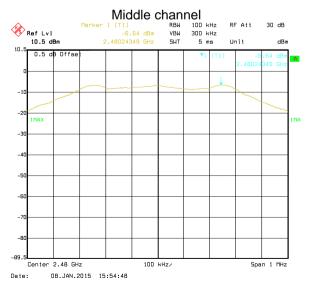
Highest channel

Highest channel

6.5 Power Spectral Density

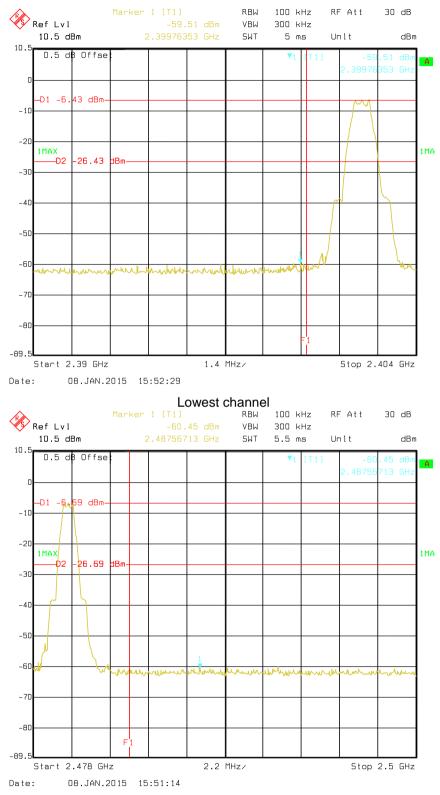

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	8 dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data


Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-6.33		
Middle	-6.05	8.00	Pass
Highest	-6.64		

Test plots as follow:

Highest channel


6.6 Band Edge

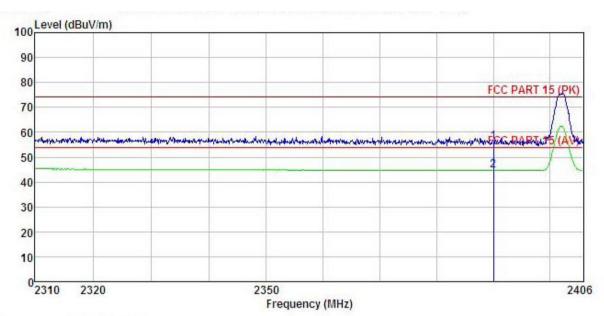
6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
	Spectrum Analyzer				
	E.U.T				
	Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

Highest channel

6.6.2 Radiated Emission Method


Toot Paguiroment	Test Requirement: FCC Part 15 C Section 15.209 and 15.205						
Test Requirement:			and 15.205				
Test Method:	ANSI C63.4: 20						
Test Frequency Range:	2.3GHz to 2.5G						
Test site:	Measurement D	istance: 3m					
Receiver setup:	Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value Peak 1MHz 10Hz Average Value						
Limit:							
					Remark		
	Above 1		54.0 74.0	0	Average Value Peak Value		
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi- 						
Test setup:	Sheet. Antenna Tower Horn Antenna Spectrum Analyzer Amplifier Amplifier						
Test Instruments:	Refer to section						
Test mode:	Refer to section	5.3 for details					
Test results:	Passed						

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart phone : CAPHG22-01 Model

MHz

Test mode : BLE TX - L Power Rating : AC120V/60Hz MODE

Huni:55% : Temp: 25.5°C

Environment

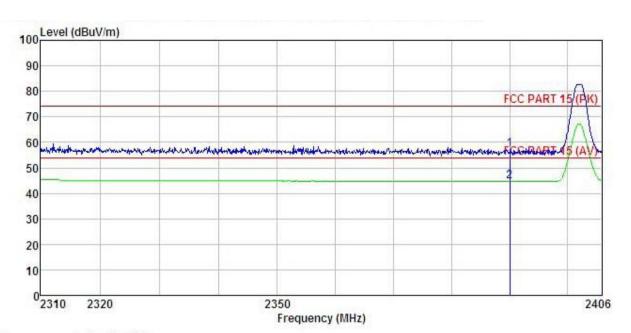
Test Engineer: Garen REMARK

ReadAntenna Cable Preamp Freq Level Factor

dBuV dB/m

Limit Over Loss Factor Level Line Limit Remark dB dBuV/m dBuV/m dB

0.00 56.09 74.00 -17.91 Peak 0.00 44.60 54.00 -9.40 Average 5.67 2390.000 22.84 27.58 2390.000 11.35 27.58 5.67


dB -

Test channel: Lowest

Vertical:

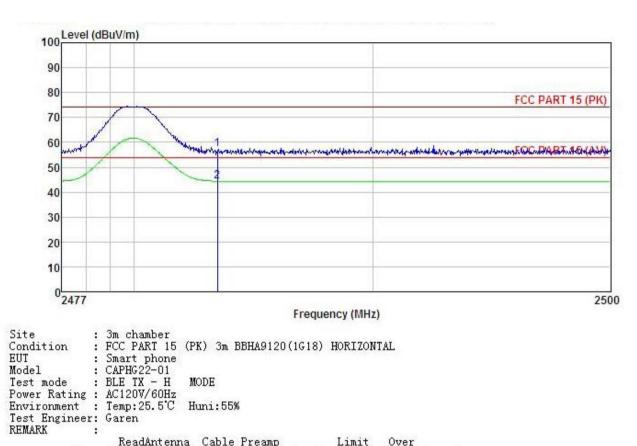
Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart phone
Model : CAPHG22-01
Test mode : BLE TX - L
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C MODE

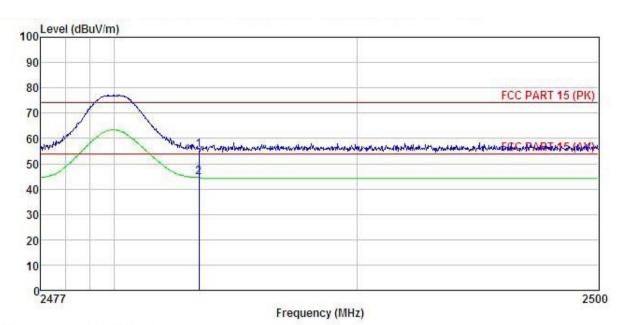
Huni:55%

Test Engineer: Garen REMARK :


			Antenna Factor						
-	MHz	dBu∀		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	 _
	2390.000 2390.000								

Test channel: Highest

Horizontal:


EMAK	v :	Read.	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor				T-0.00000000000000000000000000000000000		Remark
	MHz	dBu∜	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500			1 THE STATE OF THE	 O(17373) (5)(7) 	1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T			THE SECRETARY SECTION AS A SECOND PROPERTY OF THE PARTY O

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

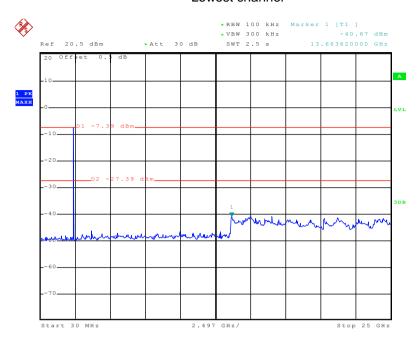
EUT : Smart phone
Model : CAPHG22-01
Test mode : BLE TX - H
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C MODE

Huni:55%

Test Engineer: Garen REMARK :

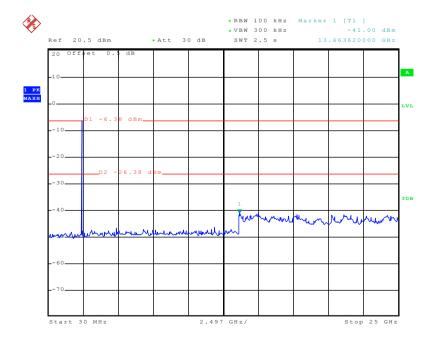
	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
2	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B		100
	2483.500 2483.500									

6.7 Spurious Emission


6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

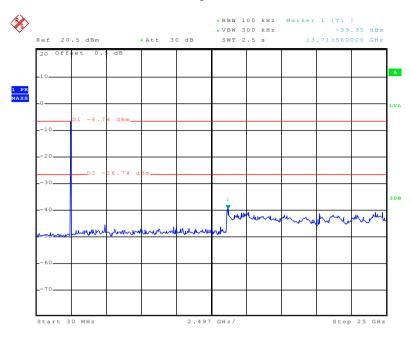
Test plot as follows:


Lowest channel

Date: 8.JAN.2015 15:10:05

30MHz~25GHz

Middle channel



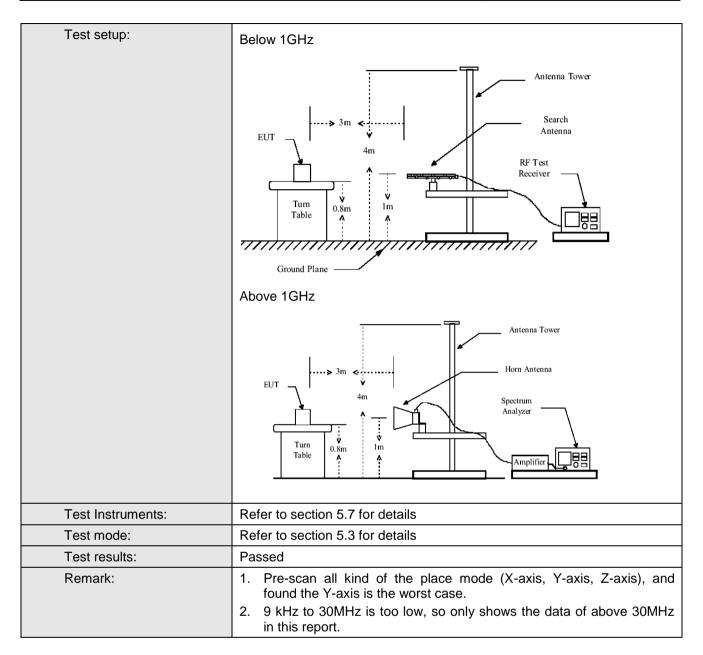
Date: 8.JAN.2015 15:10:59

30MHz~25GHz

Highest channel

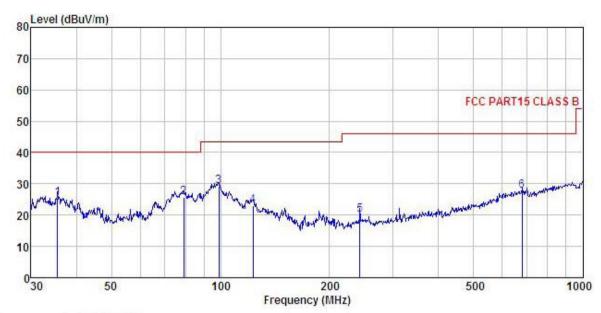
Date: 8.JAN.2015 15:12:13

30MHz~25GHz



6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4:200)3						
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:								
, , , , , , , , , , , , , , , , , , ,	Frequency Detector RBW VBW Remark							
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1CUz	Peak	1MHz	3MHz	Peak Value			
	Above 1GHz	Peak	1MHz	10Hz	Average Value			
Limit:								
	Frequency		Limit (dBuV/m	@3m)	Remark			
	30MHz-88MHz		40.0		Quasi-peak Value			
	88MHz-216MHz		43.5		Quasi-peak Value			
	216MHz-960MH		46.0		Quasi-peak Value			
	960MHz-1GHz		54.0		Quasi-peak Value			
	Above 1GHz		54.0		Average Value			
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							



Below 1GHz

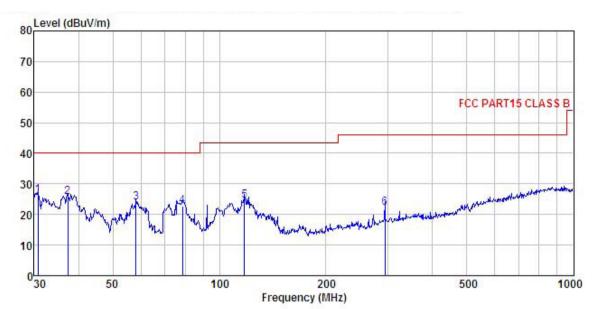
Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: Smart phone : CAPHG22-01 FIIT Model Test mode : BLE Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%


Test Engineer: REMARK

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark dB dBuV/m dBuV/m MHz dBuV dB/m 碅 ďΒ 40.00 -14.49 QP 40.00 -14.31 QP 43.50 -14.19 QP 29.94 29.65 35.499 42.53 12.44 0.4825.51 1 2 3 79.243 46.06 8.43 0.85 25.69 98.833 13.10 0.95 29.53 29.31 44.79 4 10.00 1.14 29.37 23.16 43.50 -20.34 QP 46.00 -25.91 QP 122.834 41.39 28.58 28.71 20.09 27.78 56 242.525 35.00 12.08 1.59 679.960 34.89 18.74 2.86 46.00 -18.22 QP

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

: FCC PART15 CLASS B 3m

EUT : Smart phone

Model : CAPHG22-01

Test mode : BLE Mode

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer:

REMARK : Site Condition EUT

	Freq		Antenna Factor						
-	MHz	dBu∜	<u>dB</u> /π	<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	30.745	43.48	12.32	0.44	29.98	26.26	40.00	-13.74	QP
2	37.285	42.05	12.92	0.50	29.93	25.54	40.00	-14.46	QP
3	58.203	40.06	12.81	0.68	29.78	23.77	40.00	-16.23	QP
4	78.689	43.10	8.37	0.84	29.65	22.66	40.00	-17.34	QP
5	117.773	41.98	10.90	1.11	29.40	24.59	43.50	-18.91	QP
6	293.084	36.07	12.92	1.75	28.46	22, 28	46,00	-23.72	ΩP

Above 1GHz

Т	:	Lowest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	48.88	31.53	8.90	40.24	49.07	74.00	-24.93	Vertical
4804.00	47.64	31.53	8.90	40.24	47.83	74.00	-26.17	Horizontal
Т	est channel	•	Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	38.79	31.53	8.90	40.24	38.98	54.00	-15.02	Vertical
4804.00	36.63	31.53	8.90	40.24	36.82	54.00	-17.18	Horizontal

Т	est channel	:	Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	48.14	31.58	8.98	40.15	48.55	74.00	-25.45	Vertical	
4884.00	48.26	31.58	8.98	40.15	48.67	74.00	-25.33	Horizontal	
Т	est channel	:	Middle		Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	37.65	31.58	8.98	40.15	38.06	54.00	-15.94	Vertical	
4884.00	38.81	31.58	8.98	40.15	39.22	54.00	-14.78	Horizontal	

Т	est channel	:	Highest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	46.44	31.69	9.08	40.03	47.18	74.00	-26.82	Vertical	
4960.00	48.52	31.69	9.08	40.03	49.26	74.00	-24.74	Horizontal	
Т	est channel	•	Highest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	36.64	31.69	9.08	40.03	37.38	54.00	-16.62	Vertical	
4960.00	38.13	31.69	9.08	40.03	38.87	54.00	-15.13	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366