

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.en

g

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ±1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.3 ±6 %	1.41 mho/m ±6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.3 W/kg ±18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.6 W/kg ± 18.7 % (k=2)

Certificate No: Z22-60335

Page 3 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.9Ω- 0.71jΩ
Return Loss	- 32.8dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.120 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

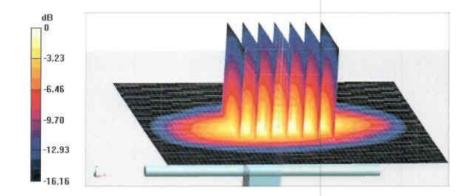
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Manufactured by		SPEAG	
ificate No: Z22-60335	Page 4 of 6		

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 2022-08-22


DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1152 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.408$ S/m; $\varepsilon_r = 41.28$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.52, 8.52, 8.52) @ 1750 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

```
Reference Value = 91.44 V/m; Power Drift = -0.05 dB
Peak SAR (extrapolated) = 16.5 W/kg
SAR(1 g) = 9.18 W/kg; SAR(10 g) = 4.94 W/kg
Smallest distance from peaks to all points 3 dB below = 10 mm
Ratio of SAR at M2 to SAR at M1 = 56.3%
Maximum value of SAR (measured) = 14.0 W/kg
```


0 dB = 14.0 W/kg = 11.46 dBW/kg

Certificate No: Z22-60335

Page 5 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Impedance Measurement Plot for Head TSL

Stat 1.55	CLP	THIW 100 Hz	5top 1.975 GHz 1
		×	
		1	
		7	
		1	
51 1.7	500000 GHz 47.869 d -708.39 mb	128.38 pF	
	Swith (Rejx) Scale 1,0000 [F1 D	#1]	
-30.00			
- 512-020		N.	
10.00	1		1
0,000)			4
10.00			
20.00			
40100	>1 1.7500000 GHz -32.785 de		

Certificate No: Z22-60335

Page 6 of 6

1900MHz Dipole (2021)

			中国认可国际互认
Add: No.52 HuaYu Tel: +86-10-623046 E-mail: ettl@chinat	633-2079 Fax: -	District, Beijing, 100191, Chi 86-10-02304633-2504 www.chinattl.cn	CALIBRATIO CNAS L0570
Client SAI	СТ	Certificate No: Z2	1-60357
CALIBRATION CI	ERTIFICAT	TE CONTRACTOR OF CONTRACTOR	
Object	D1900	V2 - SN: 5d088	
Calibration Procedure(s)	FE-711	-003-01	
		tion Procedures for dipole validation kits	
Calibration date:	Octobe	er 18, 2021	
All calibrations have been	conducted in t	the closed laboratory facility any ironment	temperature (maising and
numidity<70%.		the closed laboratory facility: environment to	temperature (22±3)°C and
uumidity<70%. Calibration Equipment used			temperature (22±3)°C and
umidity<70%. alibration Equipment used rimary Standards Power Meter NRP2	(M&TE critical fe ID # 106277	or calibration) Cal Date (Calibrated by. Certificate No.) 24-Sep-21 (CTTL, No.J21X08326)	
umidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	(M&TE critical fe ID # 106277 104291	Cal Date (Calibrated by. Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326)	Scheduled Calibration Sep-22 Sep-22
umidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	(M&TE critical fe ID # 106277 104291	or calibration) Cal Date (Calibrated by. Certificate No.) 24-Sep-21 (CTTL, No.J21X08326)	Scheduled Calibration Sep-22
oumidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	(M&TE critical fo ID # 106277 104291 SN 7517	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-60001)	Scheduled Calibration Sep-22 Sep-22 Feb-22
oumidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	(M&TE critical fo ID # 106277 104291 SN 7517 SN 1556	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22
aumidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical fe ID # 106277 104291 SN 7517 SN 1556 ID #	or calibration) Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fe ID # 106277 104291 SN 7517 SN 1556 ID # MY49071430	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG.No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22
aumidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical fe ID # 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673	or calibration) Cal Date (Calibrated by. Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical fe 10 # 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673 Name	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fe 10 # 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function SAR Test Engineer	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C Calibrated by: Reviewed by:	(M&TE critical fe 10 # 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG.No.Z21-60001) 15-Jan-21(SPEAG.No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function SAR Test Engineer SAR Test Engineer	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22 Jan-22

Certificate No: Z21-60357

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian Distriet, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl a chinattl.com http://www.chinattl.en

lossary: TSL

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60357

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9±6%	1.39 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.5 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60357

Page 3 of 6

Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl.achinattl.com http://www.chinattl.en

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7Ω+ 6.80jΩ	
Return Loss	- 22.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.110 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG

Certificate No: Z21-60357

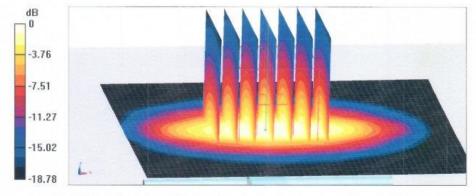
Page 4 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 10.18.2021

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1


Medium parameters used: f = 1900 MHz; σ = 1.387 S/m; ϵ_r = 39.88; ρ = 1000 kg/m³ Phantom section: Right Section

DASY5 Configuration:

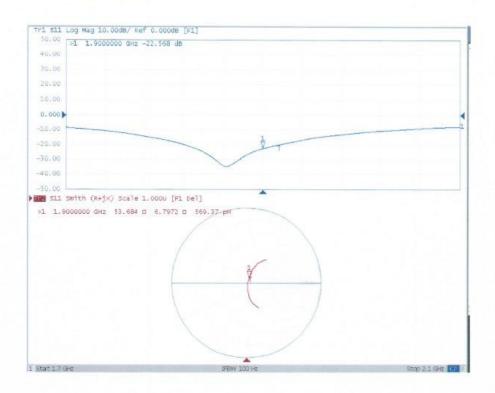
- Probe: EX3DV4 SN7517; ConvF(7.81, 7.81, 7.81) @ 1900 MHz; Calibrated: 2021-02-03
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.6 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 19.2 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.1 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 52.1% Maximum value of SAR (measured) = 15.8 W/kg

0 dB = 15.8 W/kg = 11.99 dBW/kg

Certificate No: Z21-60357


Page 5 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z21-60357

Page 6 of 6

2300MHz Dipole (2021)

			NAS校准
Tel; +86-10-623046	533-2079 Fax: +	District, Beijing, 100191, Chi 86-10-62304633-2504	CALIBRATIO CNAS L0570
E-mail: ettl@chinat	tLcom http://	www.chinattl.cn ch) Certificate No: Z2	1-60343
			1-00343
CALIBRATION CI	ERTIFICAT	E	and the second
Object	D2300	V2 - SN: 1059	
Calibration Procedure(s)			
		-003-01	
	Calibra	tion Procedures for dipole validation kits	
Calibration date:	Septen	nber 22, 2021	
pages and are part of the ce	easurements and ertificate. conducted in t (M&TE critical for ID # 106277 104291	I the uncertainties with confidence probability a the closed laboratory facility: environment to or calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	emperature (22±3)°C an
measurements (SI). The me bages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	easurements and ertificate. conducted in t (M&TE critical for ID # 106277 104291 SN 7517 SN 1556	the closed laboratory facility: environment t or calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	emperature (22±3)℃ and Scheduled Calibration Sep-21 Sep-21 Feb-22 Jan-22
neasurements (SI). The me bages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	easurements and ertificate. conducted in t (M&TE critical for ID # 106277 104291 SN 7517 SN 1556 ID #	the closed laboratory facility: environment to or calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.)	emperature (22±3)℃ an Scheduled Calibration Sep-21 Sep-21 Feb-22 Jan-22 Scheduled Calibration
neasurements (SI). The me bages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	easurements and ertificate. conducted in t (M&TE critical for ID # 106277 104291 SN 7517 SN 1556	the closed laboratory facility: environment t or calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	emperature (22±3)℃ an Scheduled Calibration Sep-21 Sep-21 Feb-22 Jan-22
neasurements (SI). The me bages and are part of the ce All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	easurements and ertificate. conducted in t (M&TE critical for 10# 106277 104291 SN 7517 SN 1556 ID # MY49071430	he closed laboratory facility: environment t or calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593)	emperature (22±3)°C an Scheduled Calibration Sep-21 Sep-21 Feb-22 Jan-22 Scheduled Calibration Jan-22
neasurements (SI). The me bages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	easurements and ertificate. conducted in t (M&TE critical for 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673	he closed laboratory facility: environment t or calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	emperature (22±3)℃ an Scheduled Calibration Sep-21 Sep-21 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
measurements (SI). The me bages and are part of the ce All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	easurements and ertificate. conducted in t (M&TE critical for ID # 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673 Name	he closed laboratory facility: environment t or calibration) Cal Date (Calibrated by. Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 03-Feb-21 (CTTL-SPEAG,No.Z21-60001) 15-Jan-21 (SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by. Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function	emperature (22±3)℃ an Scheduled Calibration Sep-21 Sep-21 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22 Signature

Certificate No: Z21-60343

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60343

Page 2 of 6

Conductivity 1.67 mho/m

1.68 mho/m ± 6 %

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.en

Measurement Conditions

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations v	were applied.		11-
	Temperature	Permittivity	
Nominal Head TSL parameters	22.0 °C	39.5	

SAR result with Head TSL

Measured Head TSL parameters

Head TSL temperature change during test

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	48.3 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 18.7 % (k=2)

(22.0 ± 0.2) °C

<1.0 °C

39.9±6%

......

Certificate No: Z21-60343

Page 3 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.6Ω- 4.46jΩ	
Return Loss	- 26.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.077 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

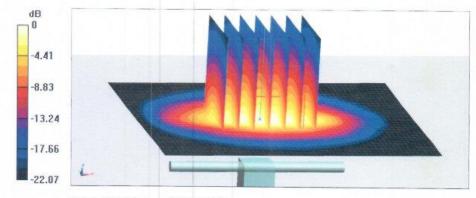
Manufactured by	SPEAG	
icate No: Z21-60343		
icate No. 2.21-00343	Page 4 of 6	

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 09.22.2021

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1059 Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2300 MHz; $\sigma = 1.683$ S/m; $\varepsilon_r = 39.91$; $\rho = 1000$ kg/m³ Phantom section: Right Section

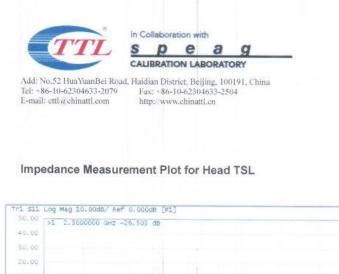

DASY5 Configuration:

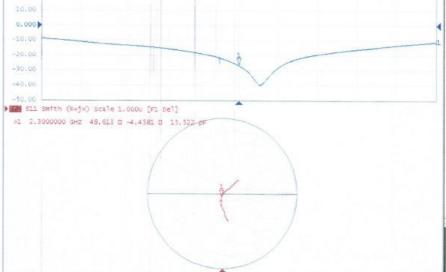
- Probe: EX3DV4 SN7517; ConvF(7.58, 7.58, 7.58) @ 2300 MHz; Calibrated: 2021-02-03
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4): SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 25.1 W/kg

SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.67 W/kg Smallest distance from peaks to all points 3 dB below = 9.5 mmRatio of SAR at M2 to SAR at M1 = 48.1%Maximum value of SAR (measured) = 20.3 W/kg




0 dB = 20.3 W/kg = 13.07 dBW/kg

Certificate No: Z21-60343

Page 5 of 6

FBW 100 Hz

Certificate No: Z21-60343

1 Start 2.1 G-2

Page 6 of 6

Stop 2.5 GHz CP

2450MHz Dipole (2021)

and the second sec	CALIBRA	TION LABORATORY	NAS核准
Add: No.52 HuaYu Tel: +86-10-623046 E-mail: ettl.@chinat	633-2079 Fax: +	District, Beijing, 100191, Chi 86-10-62304633-2504 www.chinattl.en	CALIBRATION CNAS L0570
Client SAIC	Т	Certificate No: Z2	1-60358
CALIBRATION CI	ERTIFICAT	E	
Object	D2450	V2 - SN: 873	
Calibration Procedure(s)	FF-Z11	-003-01	
	Calibra	tion Procedures for dipole validation kits	
Calibration date:	Octobe	r 21, 2021	
same and are part of the sec	easurements and		
bages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used	ertificate. conducted in t	the closed laboratory facility; environment to	emperature (22±3)°C and
All calibrations have been numidity<70%, Calibration Equipment used	ertificate. conducted in t	or calibration)	
All calibrations have been numidity<70%, Calibration Equipment used	ertificate. conducted in t I (M&TE critical fi	253 - 127 - 16	emperature (22±3)°C and Scheduled Calibration Sep-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	ertificate. conducted in t I (M&TE critical fi ID #	or calibration) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards	I (M&TE critical find) I (M&TE critical find) ID # 106277 104291	or calibration) Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326)	Scheduled Calibration Sep-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	I (M&TE critical find) I (M&TE critical find) ID # 106277 104291	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326)	Scheduled Calibration Sep-22 Sep-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	ertificate. conducted in t (M&TE critical for ID # 106277 104291 SN 7517	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG.No.Z21-60001)	Scheduled Calibration Sep-22 Sep-22 Feb-22
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	ertificate. conducted in t (M&TE critical for ID # 106277 104291 SN 7517 SN 1556	or calibration) Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	ertificate. conducted in t (M&TE critical for ID # 106277 104291 SN 7517 SN 1556 ID #	or calibration) Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. conducted in t I (M&TE critical for ID # 106277 104291 SN 7517 SN 1556 ID # ID # MY49071430	or calibration) Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. conducted in t I (M&TE critical fi ID # 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ertificate. conducted in t (M&TE critical fi 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673 Name	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG.No.Z21-60001) 15-Jan-21 (SPEAG.No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22

Certificate No: Z21-60358

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60358

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.en

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY52	V52.10.4
Advanced Extrapolation	
Triple Flat Phantom 5.1C	
10 mm	with Spacer
dx, dy, dz = 5 mm	
2450 MHz ± 1 MHz	
	Advanced Extrapolation Triple Flat Phantom 5.1C 10 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5±6%	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.2 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60358

Page 3 of 6

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.6Ω+ 1.26jΩ
Return Loss	- 28.8dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.066 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

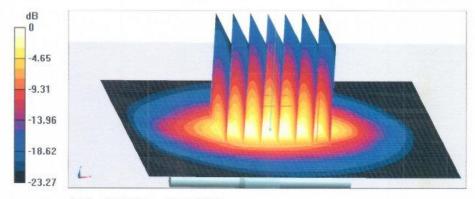
Manufactured by	SPEAG
-----------------	-------

Certificate No: Z21-60358

Page 4 of 6

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 10.21.2021


DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.809$ S/m; $\varepsilon_r = 39.51$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7517; ConvF(7.34, 7.34, 7.34) @ 2450 MHz; Calibrated: 2021-02-03
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.05 W/kg Smallest distance from peaks to all points 3 dB below = 9.2 mm Ratio of SAR at M2 to SAR at M1 = 46.9% Maximum value of SAR (measured) = 22.6 W/kg

0 dB = 22.6 W/kg = 13.54 dBW/kg

Certificate No: Z21-60358

Page 5 of 6

Impedance Measurement Plot for Head TSL

	0g Mag 10.00d8/ Ref 0.000d8 [F1]	
	1 2.4500000 GH2 ~28.754 dB	
40.00		
30,00		
20,00		
10.00		
0.000		4
-10.00		
-20.00		- La Sector
-30.00		
-40,00	<u> </u>	
-50,00		
>1 2,43	20000 GHZ 53.565 D 1.2584 D 81.744 pH	
1 Start 2.25 (42 IFEW 100 HB	Stop 2,35 GHz 💌 1

Certificate No: Z21-60358

Page 6 of 6

2550MHz Dipole (2021)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

S

C

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2550V2-1010_May21 Client TMC-SZ (Auden) CALIBRATION CERTIFICATE D2550V2 - SN:1010 Object QA CAL-05.v11 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz May 21, 2021 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the conflicate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Certificate No.) Primary Standards 10 # SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power meter NRP 09-Apr-21 (No. 217-03291) SN: 103244 Apr-22 Power sensor NRP-Z91 Apr-22 SN: 103245 09-Apr-21 (No. 217-03292) Power sensor NRP-291 Apr-22 09-Apr-21 (No. 217-03343) SN: BH9394 (20k) Reference 20 dB Attenuator SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Type-N mismatch combination Dec-21 Reference Probe EX3DV4 SN: 7349 28-Dec-20 (No. EX3-7349_Dec20) DAE4 SN: 601 02-Nov-20 (No. DAE4-601_Nov20) Nov-21 10.# Scheduled Check Check Date (in house) Secondary Standards In house check: Oct-22 SN: GB39512475 30-Oct-14 (in house check Oct-20) Power meter E4419B Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 Network Analyzar Agilant E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Ckt-21 Function Signature Name Laboratory Technician Calibrated by: Jettrey Katzman Katja Pokovic Technical Manager Approved by: Issued: May 21, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2550V2-1010_May21

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst Service suisse d'étalonnage
- Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2550V2-1010_May21

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2550 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.1	1.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	$37.4\pm6~\%$	1.99 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ^a (10 g) of Head TSL SAR measured	condition 250 mW input power	6.42 W/kg

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.6	2.09 mho/m
Measured Body TSL parameters	(22,0 ± 0.2) "C	$50.8\pm6~\%$	2.16 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		1

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.04 W/kg

Certificate No: D2550V2-1010_May21

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8 Ω - 3.8 jΩ	
Return Loss	- 26,8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.3 Ω - 1.8 jΩ
Return Loss	- 34,3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Gertificate No: D2550V2-1010_May21

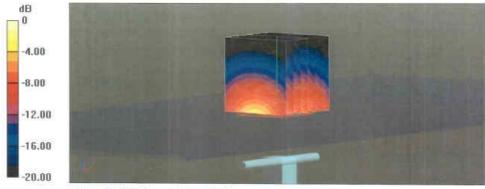
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 21.05.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

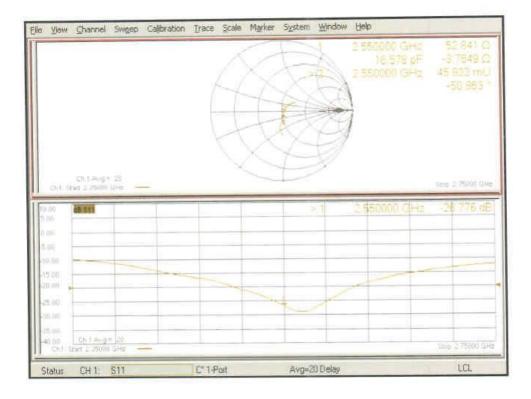

Communication System: UID 0 - CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; σ = 1.99 S/m; ϵ_r = 37.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.85, 7.85, 7.85) @ 2550 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 119.0 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.42 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 48.2% Maximum value of SAR (measured) = 24.3 W/kg


0 dB = 24.3 W/kg = 13.86 dBW/kg

Certificate No: D2550V2-1010_May21

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2550V2-1010_May21

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 21.05.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

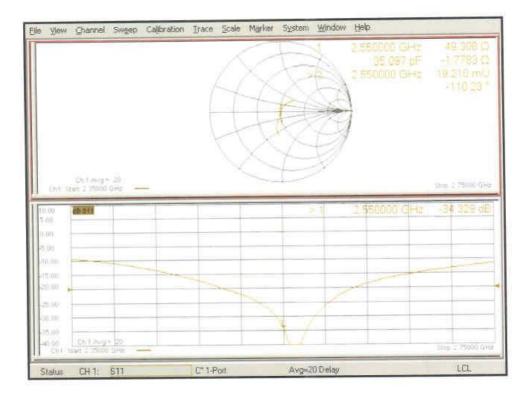
Communication System: UID 0 - CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; $\sigma = 2.16$ S/m; $\epsilon_r = 50.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.98, 7.98, 7.98) @ 2550 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.2 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.1 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.04 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 51.9% Maximum value of SAR (measured) = 22.1 W/kg


0 dB = 22.1 W/kg = 13.44 dBW/kg

Certificate No: D2550V2-1010_May21

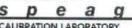
Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2550V2-1010_May21

Page 8 of 8

5GHz Dipole (2022)


Tel: +86-10-62304633-2117		ac cn	
E-mail: emf@caict.ac.cn	http://www.caic		
Client SAIC	T	Certificate No: Z2	22-60336
CALIBRATION CI	ERTIFICAT	E	
Object	D5GHz	2V2 - SN: 1238	
Calibration Procedure(s)	CE 711	-003-01	
		tion Procedures for dipole validation kits	
Calibration date:		17, 2022	
An	August	17, 2022	
pages and are part of the ce	eruncate.		
All calibrations have been numidity<70%.	conducted in t	he closed laboratory facility: environment or calibration)	temperature (22±3)℃ and
All calibrations have been humidity<70%. Calibration Equipment used	conducted in t		temperature (22±3)℃ and Scheduled Calibration
All calibrations have been numidity<70%. Calibration Equipment used	conducted in t (M&TE critical fe	or calibration)	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	CONDUCTED IN T	or calibration) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	conducted in t (M&TE critical fe ID # 106277 104291 SN 7464	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22)	Scheduled Calibration Sep-22 Sep-22 Jan-23
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	conducted in t (M&TE critical fo ID # 106277 104291	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326)	Scheduled Calibration Sep-22 Sep-22
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	conducted in t (M&TE critical fe ID # 106277 104291 SN 7464	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22)	Scheduled Calibration Sep-22 Sep-22 Jan-23
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	conducted in t (M&TE critical fo ID # 106277 104291 SN 7464 SN 1556	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22) 12-Jan-22(CTTL-SPEAG,No.Z22-60007)	Scheduled Calibration Sep-22 Sep-22 Jan-23 Jan-23
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	conducted in t (M&TE critical fo ID # 106277 104291 SN 7464 SN 1556 ID #	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22) 12-Jan-22(CTTL-SPEAG,No.Z22-60007) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Sep-22 Sep-22 Jan-23 Jan-23 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	conducted in t (M&TE critical fe 106277 104291 SN 7464 SN 1556 ID # MY49071430 MY46110673	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22) 12-Jan-22(CTTL-SPEAG,No.Z22-60007) Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No.J22X00409) 14-Jan-22 (CTTL, No.J22X00406)	Scheduled Calibration Sep-22 Jan-23 Jan-23 Scheduled Calibration Jan-23 Jan-23
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	conducted in t (M&TE critical fo ID # 106277 104291 SN 7464 SN 1556 ID # MY49071430 MY46110673 Name	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22) 12-Jan-22(CTTL-SPEAG,No.Z22-60007) Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No.J22X00409) 14-Jan-22 (CTTL, No.J22X00406) Function	Scheduled Calibration Sep-22 Sep-22 Jan-23 Jan-23 Scheduled Calibration Jan-23
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	conducted in t (M&TE critical fe 106277 104291 SN 7464 SN 1556 ID # MY49071430 MY46110673	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22) 12-Jan-22(CTTL-SPEAG,No.Z22-60007) Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No.J22X00409) 14-Jan-22 (CTTL, No.J22X00406)	Scheduled Calibration Sep-22 Jan-23 Jan-23 Scheduled Calibration Jan-23 Jan-23
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	conducted in t (M&TE critical fo ID # 106277 104291 SN 7464 SN 1556 ID # MY49071430 MY46110673 Name	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22) 12-Jan-22(CTTL-SPEAG,No.Z22-60007) Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No.J22X00409) 14-Jan-22 (CTTL, No.J22X00406) Function	Scheduled Calibration Sep-22 Jan-23 Jan-23 Scheduled Calibration Jan-23 Jan-23

Certificate No: Z22-60336

Page 1 of 8

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.en http://www.caic.ac.cn

Glossary:

TSL	tissue simulating liquid		
ConvF	sensitivity in TSL / NORMx,y,z		
N/A	not applicable or not measured		

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z22-60336

Page 2 of 8

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.sc.cn http://www.caic.ac.cn

g

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ±0.2) °C	36.3 ±6 %	4.64 mho/m ±6 %
Head TSL temperature change during test	<1.0 °C		-

SAR result with Head TSL at 5250MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.7 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ±24.2 % (k=2)

Certificate No: Z22-60336

Page 3 of 8

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caiet.ac.cn http://www.eaie.ac.cn

Head TSL parameters at 5600MHz The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ±0.2) °C	35.2 ±6 %	5.01 mho/m ±6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.6 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ±24.2 % (k=2)

Head TSL parameters at 5750MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ±0.2) 'C	35.0 ±6 %	5.18 mho/m ±6 %
Head TSL temperature change during test	<1.0 °C	-	

SAR result with Head TSL at 5750MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.87 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.5 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.1 W/kg ±24.2 % (k=2)

Certificate No: Z22-60336

Page 4 of 8

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250MHz

Impedance, transformed to feed point	48.4Ω- 3.36jΩ	
Return Loss	- 28.5dB	

Antenna Parameters with Head TSL at 5600MHz

Impedance, transformed to feed point	50.8Ω+ 2.69jΩ	
Return Loss	- 31.1dB	

Antenna Parameters with Head TSL at 5750MHz

Impedance, transformed to feed point	53.5Ω+ 2.34jΩ	
Return Loss	- 27.9dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.098 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data Manufactured by SPEAG Certificate No: Z22-60336 Page 5 of 8

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 2022-08-17

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1238 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ = 4.643 S/m; ϵ_r = 36.34; ρ = 1000 kg/m³ Medium parameters used: f = 5600 MHz; σ = 5.006 S/m; ϵ_r = 35.17; ρ = 1000 kg/m³ Medium parameters used: f = 5750 MHz; σ = 5.18 S/m; ϵ_r = 34.96; ρ = 1000 kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(5.43, 5.43, 5.43) @ 5250 MHz; ConvF(4.91, 4.91, 4.91) @ 5600 MHz; ConvF(4.85, 4.85, 4.85) @ 5750 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

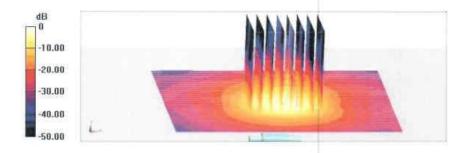
Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.66 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.27 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.1%

Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.44 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 35.2 W/kg SAR(1 g) = 8.28 W/kg; SAR(10 g) = 2.37 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.5% Maximum value of SAR (measured) = 20.1 W/kg

Certificate No: Z22-60336

Page 6 of 8



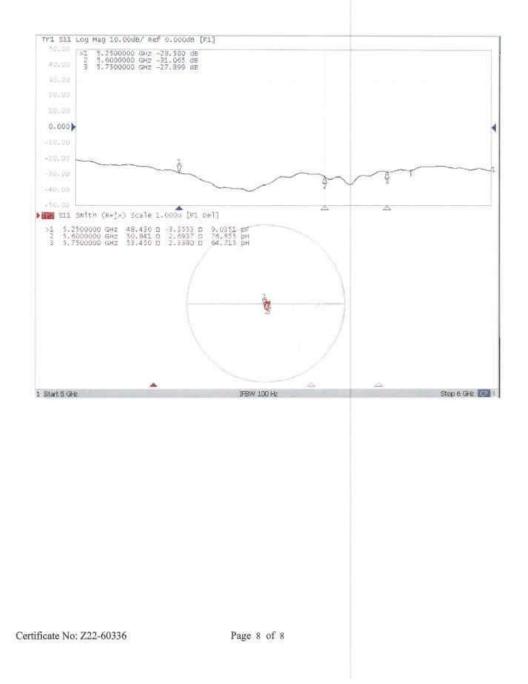
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.17 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 35.8 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 61.3% Maximum value of SAR (measured) = 19.4 W/kg

0 dB = 19.4 W/kg = 12.88 dBW/kg

Certificate No: Z22-60336

Page 7 of 8



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.en http://www.caic.ac.en

Impedance Measurement Plot for Head TSL

ANNEX J: Extended Calibration SAR Dipole

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of Extended Calibration SAR Dipole D2550V2– serial no.1010 (2021)

			Head			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2021-05-21	-26.8	/	52.8	/	-3.80	/
2022-05-20	-26.3	1.9	53.6	0.8	-3.64	0.16

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended cabration.

ANNEX K: Spot Check Test

As the test lab for M53A01 from i.safe MOBILE GmbH, we, Shenzhen Academy of Information and Communications Technology, declare on our sole responsibility that, according to "Justification Letter" provided by applicant, only the Spot check test should be performed. The test results are as below.

K.1. Internal Identification of EUT used during the spot check test

EUT ID*	IMEI	HW Version	SW Version	Receipt Date
UT02aa	358121105509015	V1.00	IS530_EEA_1.0.0.0.0_1_20200331	2022-09-01

K.2. Measurement results

GSM850 SAR Values

Freq	quency			Conducted	Max.	SA	R(1g) (W/kg)
	Test Position	Power	tune-up	Spot check data		Original		
Ch.	MHz	16	Test Position	(dBm)	Power (dBm)	Measured	Reported	data
						SAR	SAR	uala
251	848.8	Head	Right Cheek	31.17	31.5	0.588	0.63	0.79
251	848.8	Body	Front	31.17	31.5	0.686	0.74	0.60

GSM1900 SAR Values

Freq	quency			Conducted	Max.	SA)	
	Test Position	Power	tune-up	Spot check data		Original		
Ch.	MHz	16	Test Position	(dBm)	Power	Measured	Reported	data
					(dBm)	SAR	SAR	uala
810	1909.8	Head	Right Cheek	26.44	27.0	0.285	0.32	0.57
810	1909.8	Body	Front	26.44	27.0	0.181	0.21	0.38

WCDMA Band 2 SAR Values

Freq	luency			Conducted	Max.	SA	R(1g) (W/kg)
	Test Position	Power	tune-up	Spot check data		Original		
Ch.	MHz	Ie:	Test Position	(dBm)	Power (dBm)	Measured	Reported	data
						SAR	SAR	uala
9538	1908.0	Head	Right Cheek	22.91	23.5	0.608	0.70	0.77
9538	1908.0	Body	Front	22.91	23.5	0.283	0.32	0.67

WCDMA Band 4 SAR Values

Freq	quency			Conducted	Max.	SA	R(1g) (W/kg)
		Test Position	Power	tune-up	Spot check data		Original	
Ch.	MHz	16	Test Position	(dBm)	Power (dBm)	Measured	Reported	data
						SAR	SAR	uala
1312	1712.4	Head	Right Cheek	22.37	23.0	0.489	0.57	0.60
1312	1712.4	Body	Front	22.37	23.0	0.427	0.49	0.75

WCDMA Band 5 SAR Values

Freq	luency			Conducted	Max.	SA	R(1g) (W/kg)
	Test Position	Power	tune-up	Spot check data		Original		
Ch.	MHz	Ie.	Test Position	(dBm)	Power (dBm)	Measured	Reported	data
						SAR	SAR	uala
4233	846.6	Head	Right Cheek	22.98	23.5	0.413	0.47	0.48
4233	846.6	Body	Front	22.98	23.5	0.333	0.38	0.40

LTE Band 5 SAR Values

Freq	uency			Conducted	Max.	SA	R(1g) (W/kg)
	Test Position		Power	tune-up	Spot check data		Original	
Ch.	MHz	Ie:	SUFUSILION	(dBm)	Power (dBm)	Measured	Reported	data
						SAR	SAR	uala
20525	836.5	Head	Right Cheek	23.31	24.0	0.452	0.53	0.60
20525	836.5	Body	Rear	23.31	24.0	0.184	0.22	0.36

LTE Band 7 SAR Values

Freq	uency			Conducted	Max.	SA	R(1g) (W/kg)
	Test Position	Power	tune-up	Spot check data		Original		
Ch.	MHz	16.	Test Position	(dBm)	Power (dBm)	Measured	Reported	data
						SAR	SAR	uala
21100	2535.0	Head	Left Cheek	22.75	23.5	0.487	0.58	0.49
21100	2535.0	Body	Rear	22.75	23.5	0.510	0.61	0.57

LTE Band 12 SAR Values

Frequ	uency			Conducted	Max.	SA	R(1g) (W/kg)
		Test Position		Power	tune-up	Spot check data		Original
Ch.	MHz	16	SUPOSICION	(dBm)	Power (dBm)	Measured	Reported	data
						SAR	SAR	uala
23095	707.5	Head	Right Cheek	23.34	24.0	0.258	0.30	0.30
23095	707.5	Body	Front	23.34	24.0	0.279	0.32	0.30

LTE Band 13 SAR Values

Frequ	uency			Conducted	Max.	SA	R(1g) (W/kg)
		То	st Position	Power	tune-up	Spot che	eck data	Original
Ch.	MHz	16.	51 F 051001	(dBm)	Power (dBm)	Measured	Reported	data
						SAR	SAR	uala
23230	782.0	Head	Left Cheek	23.16	24.0	0.308	0.37	0.47
23230	782.0	Body	Front	23.16	24.0	0.342	0.41	0.42

LTE Band 14 SAR Values

Frequ	uency			Conducted	Max.	SA	R(1g) (W/kg)
		Test Position	Power	tune-up	Spot check data		Original	
Ch.	MHz			(dBm)	Power (dBm)	Measured	Reported	data
		(,	(0211)	(ubiii)	SAR	SAR	dulu	
23330	793.0	Head	Left Cheek	23.13	24.0	0.495	0.60	0.50
23330	793.0	Body	Front	23.13	24.0	0.337	0.41	0.50

LTE Band 25 SAR Values

Frequency				Conducted Max.		SAR(1g) (W/kg)		
Ch.		Test Position	ct Position	Power	tune-up	Spot check data		Original
	MHz	Ie.	SUPOSICION	(dBm)	Power	Measured Reported	Reported	Original data
				(ubiii)	(dBm)	SAR	SAR	uala
26365	1882.5	Head	Right Cheek	22.66	23.5	0.590	0.72	0.79
26365	1882.5	Body	Rear	22.66	23.5	0.339	0.41	0.34

LTE Band 26 SAR Values

Frequency				Conducted Max.	SAR(1g) (W/kg)			
Ch.		Test Position	et Position	Power	tune-up	Spot check data		Original
	MHz	16.	SUPOSITION	(dBm)	Power	Measured	Reported	data
	l .			(ubiii)	(dBm)	SAR	SAR	uala
26965	841.5	Head	Right Cheek	23.24	24.0	0.460	0.55	0.55
26965	841.5	Body	Front	23.24	24.0	0.379	0.45	0.46

LTE Band 30 SAR Values

Frequency				Conducted M	Max.	SA	AR(1g) (W/kg)	
Ch.		Test Position	Power	tune-up	Spot check data		Original	
	MHz	16.	SUPOSITION	(dBm)	Power		Reported	ted data
			(ubiii)	(dBm)	SAR	SAR	Gald	
27710	2310.0	Head	Left Cheek	22.76	23.5	0.166	0.20	0.49
27710	2310.0	Body	Bottom	22.76	23.5	0.553	0.66	0.74

LTE Band 41 SAR Values

Frequency				Conducted Max	Max.	SAR(1g) (W/kg)		
Ch.		Test Position	Conducted	tune-up	Spot check data		Original	
	MHz	16.	SUPOSITION	Power Measured Re	Measured Repor	Reported	data	
			(dbiii)	(dBm)	SAR	SAR		
41490	2680.0	Head	Right Cheek	22.89	23.5	0.179	0.21	0.60
41490	2680.0	Body	Rear	20.36	21.0	0.285	0.33	0.57

LTE Band 66 SAR Values

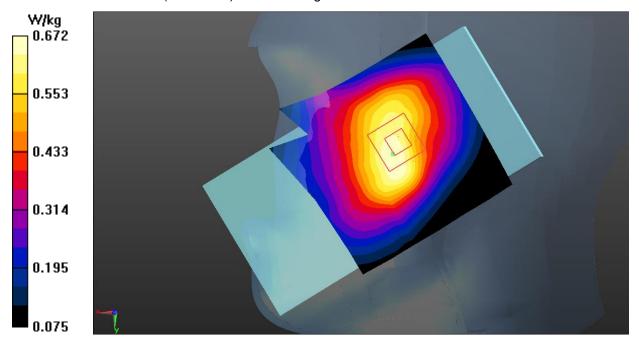
Frequency				Conducted	Conducted Max.		SAR(1g) (W/kg)		
Ch.		Test Position		Power	tune-up	Spot check data		Original	
	MHz	Ie.		(dBm)	Power	Measured	Reported	data	
	l			(ubiii)	(dBm)	SAR	SAR	uala	
132072	1720.0	Head	Right Cheek	22.32	23.0	0.460	0.54	0.76	
132072	1720.0	Body	Front	22.32	23.0	0.370	0.43	0.63	

WLAN 2.4GHz SAR Values

Frequency				Conducted	Max.	SA	NR(1g) (W/kg)	
		Test Po	at Desition	Power (dBm)	tune-up	Spot check data		Original
Ch.	Ch. MHz		SUFUSILION		Power	Measured	Reported	Original data
				(ubiii)	(dBm)	SAR	SAR	uala
11	2462.0	Head	Left Cheek	16.11	16.5	0.502	0.55	1.08
1	2412.0	Body	Front	16.14	16.5	0.125	0.14	0.29

WLAN 5GHz SAR Values

Frequency				Conducted	Max.	SA	R(1g) (W/kg)	
Ch. MHz		Test Position	Power (dBm)	tune-up Power (dBm)	Spot check data		Original	
	MHz				Measured	Reported	data	
					SAR	SAR	uala	
151	5755.0	Head	Left Tilt	14.50	15.0	0.535	0.60	0.61
102	5510.0	Body	Right	15.22	16.0	0.288	0.34	0.34

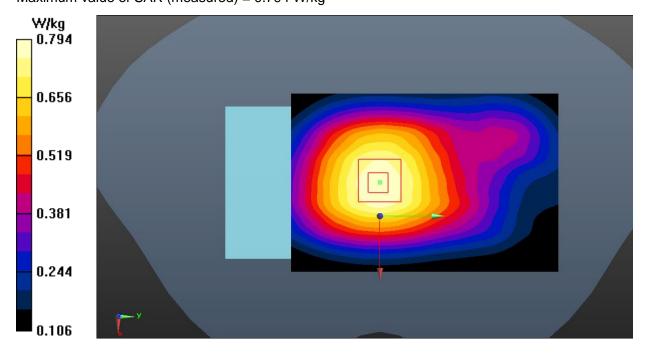

K.3. Graph Results for Spot Check

GSM850 Head

Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used (interpolated): f = 848.8 MHz; σ = 0.93 S/m; ϵ_r = 40.985; ρ = 1000 kg/m³ Communication System: UID 0, GPRS 2Txslot (0) Frequency: 848.8 MHz Duty Cycle: 1:4 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Right Cheek High/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.677 W/kg

Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.785 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.738 W/kg SAR(1 g) = 0.588 W/kg; SAR(10 g) = 0.440 W/kg Maximum value of SAR (measured) = 0.672 W/kg

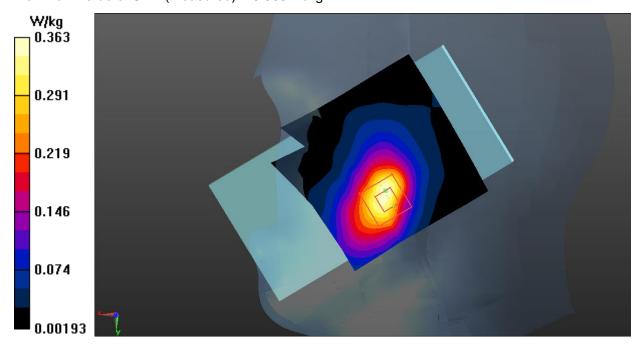

GSM850 Body

Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 835MHz

Medium parameters used (interpolated): f = 848.8 MHz; σ = 0.93 S/m; ϵ_r = 40.985; ρ = 1000 kg/m³ Communication System: UID 0, GPRS 2Txslot (0) Frequency: 848.8 MHz Duty Cycle: 1:4 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Front Side High/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.797 W/kg

Front Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.46 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.871 W/kg SAR(1 g) = 0.686 W/kg; SAR(10 g) = 0.512 W/kg Maximum value of SAR (measured) = 0.794 W/kg

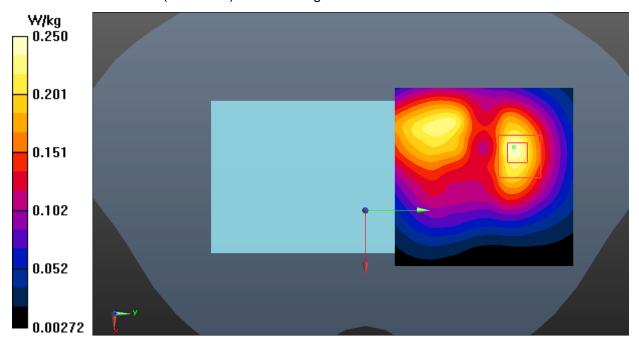


GSM1900 Head

Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1910 MHz; σ = 1.423 S/m; ϵ_r = 39.019; ρ = 1000 kg/m³ Communication System: UID 0, GPRS 3Txslot (0) Frequency: 1909.8 MHz Duty Cycle: 1:2.67 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)

Right Cheek High/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.358 W/kg

Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.940 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.471 W/kg SAR(1 g) = 0.285 W/kg; SAR(10 g) = 0.163 W/kg Maximum value of SAR (measured) = 0.363 W/kg

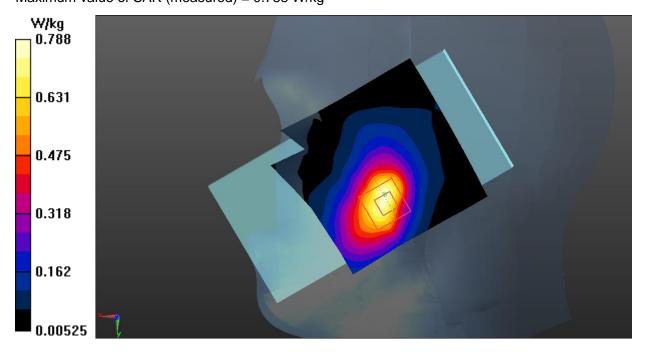


GSM1900 Body

Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1910 MHz; σ = 1.423 S/m; ϵ_r = 39.019; ρ = 1000 kg/m³ Communication System: UID 0, GPRS 3Txslot (0) Frequency: 1909.8 MHz Duty Cycle: 1:2.67 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)

Front Side High/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.250 W/kg

Front Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.371 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.317 W/kg SAR(1 g) = 0.181 W/kg; SAR(10 g) = 0.102 W/kg Maximum value of SAR (measured) = 0.250 W/kg

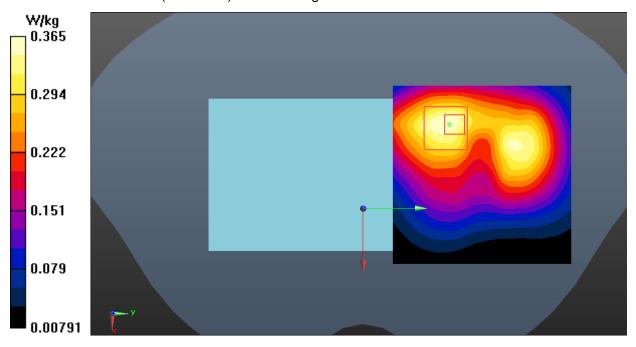


WCDMA Band 2 Head

Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1908 MHz; σ = 1.421 S/m; ϵ_r = 39.027; ρ = 1000 kg/m³ Communication System: UID 0, WCDMA (0) Frequency: 1907.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)

Right Cheek High/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.768 W/kg

Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.288 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.608 W/kg; SAR(10 g) = 0.348 W/kg Maximum value of SAR (measured) = 0.788 W/kg

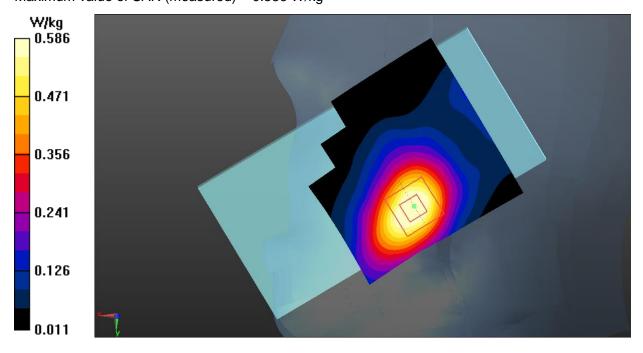


WCDMA Band 2 Body

Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1908 MHz; σ = 1.421 S/m; ϵ_r = 39.027; ρ = 1000 kg/m³ Communication System: UID 0, WCDMA (0) Frequency: 1907.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)

Front Side High/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.362 W/kg

Front Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.202 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.452 W/kg SAR(1 g) = 0.283 W/kg; SAR(10 g) = 0.174 W/kg Maximum value of SAR (measured) = 0.365 W/kg

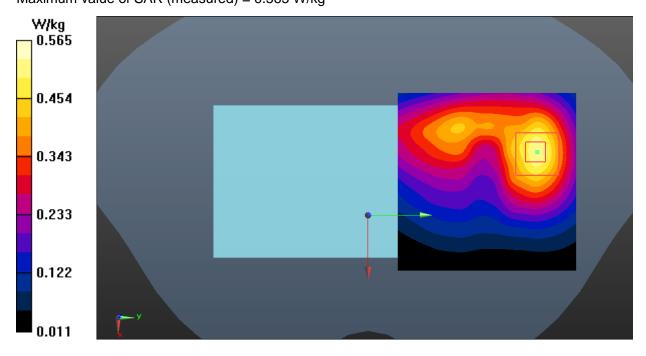

WCDMA Band 4 Head

Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 1750MHz Medium parameters used (in

Medium parameters used (interpolated): f = 1712.4 MHz; σ = 1.355 S/m; ϵ_r = 39.57; ρ = 1000 kg/m³ Communication System: UID 0, WCDMA (0) Frequency: 1712.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (9.22, 9.22, 9.22)

Right Cheek Low/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.652 W/kg

Right Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.600 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.755 W/kg SAR(1 g) = 0.489 W/kg; SAR(10 g) = 0.304 W/kg Maximum value of SAR (measured) = 0.586 W/kg

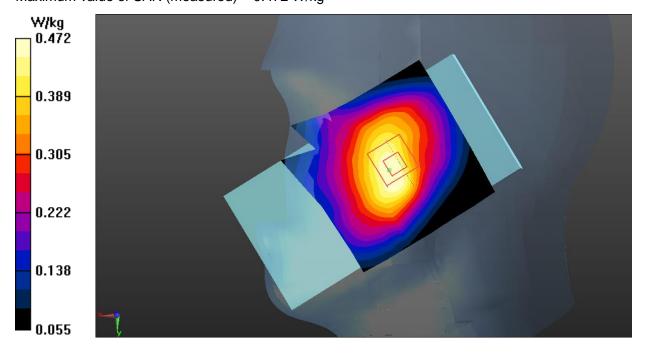

WCDMA Band 4 Body

Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 1750MHz Medium parameters used (interpolated): f = 1712.4 MHz; σ = 1.355 S/m; ϵ_r = 39.57; ρ = 1000 kg/m³

Communication System: UID 0, WCDMA (0) Frequency: 1712.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (9.22, 9.22, 9.22)

Front Side Low/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.532 W/kg

Front Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.032 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.717 W/kg SAR(1 g) = 0.427 W/kg; SAR(10 g) = 0.248 W/kg Maximum value of SAR (measured) = 0.565 W/kg

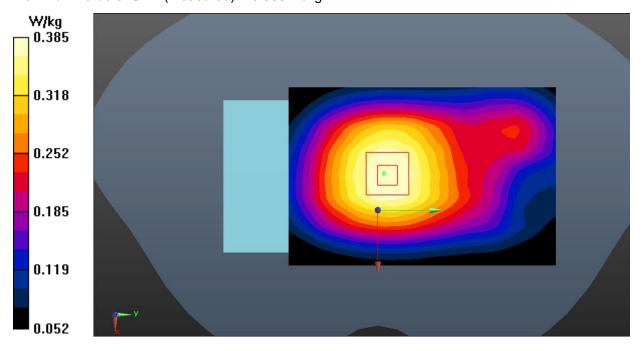


WCDMA Band 5 Head

Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used (interpolated): f = 846.6 MHz; σ = 0.928 S/m; ϵ_r = 41.012; ρ = 1000 kg/m³ Communication System: UID 0, WCDMA (0) Frequency: 846.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Right Cheek High/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.477 W/kg

Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.536 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.525 W/kg SAR(1 g) = 0.413 W/kg; SAR(10 g) = 0.308 W/kg Maximum value of SAR (measured) = 0.472 W/kg

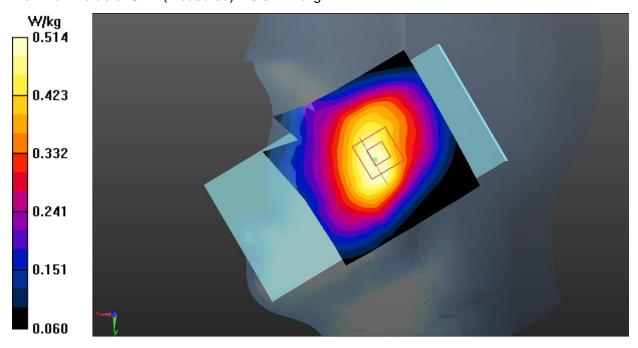


WCDMA Band 5 Body

Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used (interpolated): f = 846.6 MHz; σ = 0.928 S/m; ϵ_r = 41.012; ρ = 1000 kg/m³ Communication System: UID 0, WCDMA (0) Frequency: 846.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Front Side High/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.385 W/kg

Front Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.84 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.427 W/kg SAR(1 g) = 0.333 W/kg; SAR(10 g) = 0.250 W/kg Maximum value of SAR (measured) = 0.385 W/kg


LTE Band 5 Head

Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.918 S/m; ϵ_r = 41.133; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 836.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

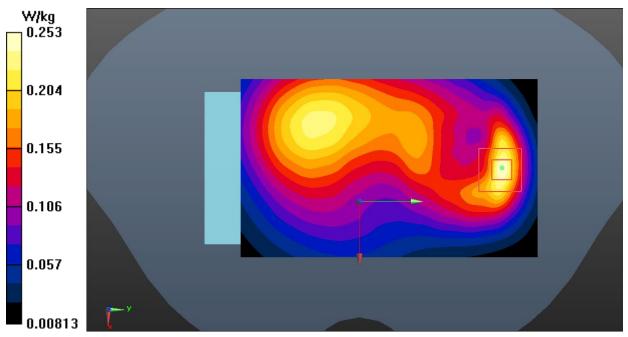
Right Cheek Middle 1RB49/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.527 W/kg

Right Cheek Middle 1RB49/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.276 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.569 W/kg SAR(1 g) = 0.452 W/kg; SAR(10 g) = 0.338 W/kg Maximum value of SAR (measured) = 0.514 W/kg

LTE Band 5 Body

Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 835MHz


Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.918 S/m; ϵ_r = 41.133; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 836.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Rear Side Middle 1RB49/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.259 W/kg

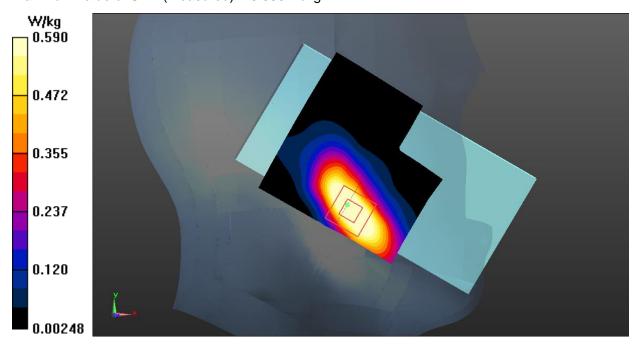
Rear Side Middle 1RB49/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.44 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.314 W/kg SAR(1 g) = 0.184 W/kg; SAR(10 g) = 0.105 W/kg

Maximum value of SAR (measured) = 0.253 W/kg

LTE Band 7 Head

Date: 2022-9-15 Electronics: DAE4 Sn1527


Medium: Head 2550MHz

Medium parameters used (interpolated): f = 2535 MHz; σ = 1.919 S/m; ϵ_r = 38.199; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 2535 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

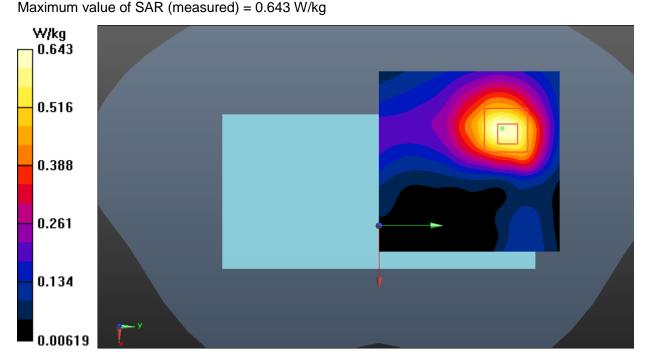
Left Cheek Middle 1RB50/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.723 W/kg

Left Cheek Middle 1RB50/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.273 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.894 W/kg SAR(1 g) = 0.487 W/kg; SAR(10 g) = 0.262 W/kg Maximum value of SAR (measured) = 0.590 W/kg

LTE Band 7 Body

Date: 2022-9-15 Electronics: DAE4 Sn1527

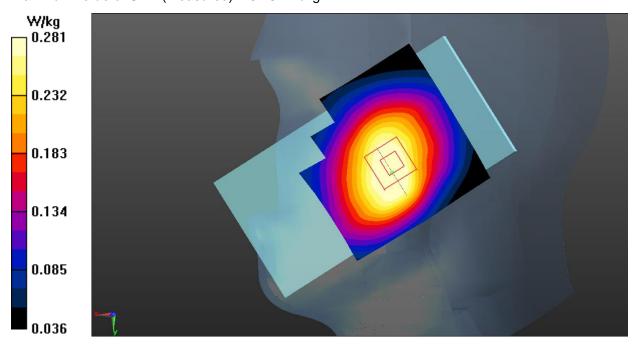

Medium: Head 2550MHz

Medium parameters used (interpolated): f = 2535 MHz; σ = 1.919 S/m; ϵ_r = 38.199; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 2535 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

Rear Side Middle 50RB0/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.701 W/kg

Rear Side Middle 50RB0/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.005 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.992 W/kg SAR(1 g) = 0.510 W/kg; SAR(10 g) = 0.262 W/kg


LTE Band 12 Head

Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 750MHz Medium parameters used: f = 708 MHz; σ = 0.852 S/m; ϵ_r = 43.186; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 707.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Right Cheek Middle 1RB24/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.310 W/kg

Right Cheek Middle 1RB24/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.706 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.332 W/kg SAR(1 g) = 0.258 W/kg; SAR(10 g) = 0.193 W/kg Maximum value of SAR (measured) = 0.281 W/kg

LTE Band 12 Body

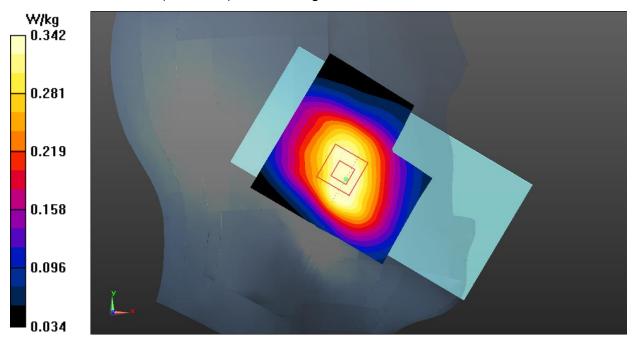
Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 750MHz Medium parameters used: f = 708 MHz; σ = 0.852 S/m; ϵ_r = 43.186; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 707.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Front Side Middle 1RB24/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.322 W/kg

Front Side Middle 1RB24/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.62 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.357 W/kg SAR(1 g) = 0.279 W/kg; SAR(10 g) = 0.210 W/kg Maximum value of SAR (measured) = 0.323 W/kg

0.323 0.268 0.213 0.158 0.103 0.048

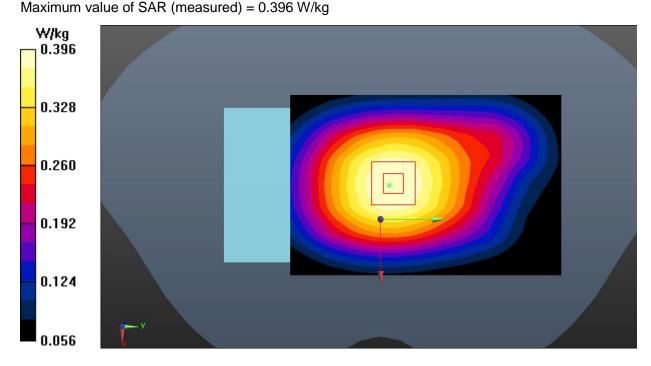

LTE Band 13 Head

Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 750MHz Medium parameters used: f = 782 MHz; σ = 0.899 S/m; ϵ_r =42.298; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 782 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Left Cheek Middle 1RB49/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.371 W/kg

Left Cheek Middle 1RB49/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.855 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.395 W/kg SAR(1 g) = 0.308 W/kg; SAR(10 g) = 0.227 W/kg Maximum value of SAR (measured) = 0.342 W/kg

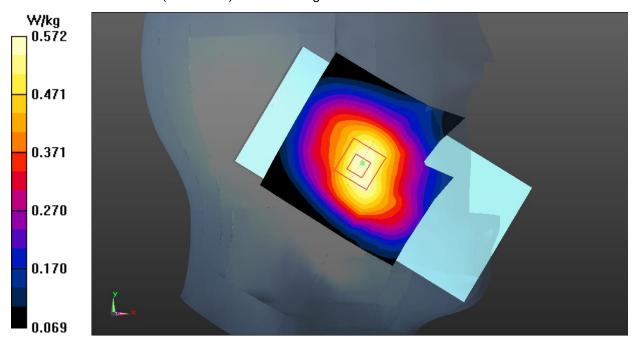

LTE Band 13 Body

Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 750MHz Medium parameters used: f = 782 MHz; σ = 0.899 S/m; ϵ_r =42.298; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 782 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Front Side Middle 1RB49/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.401 W/kg

Front Side Middle 1RB49/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.79 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.439 W/kg SAR(1 g) = 0.342 W/kg; SAR(10 g) = 0.256 W/kg


LTE Band 14 Head

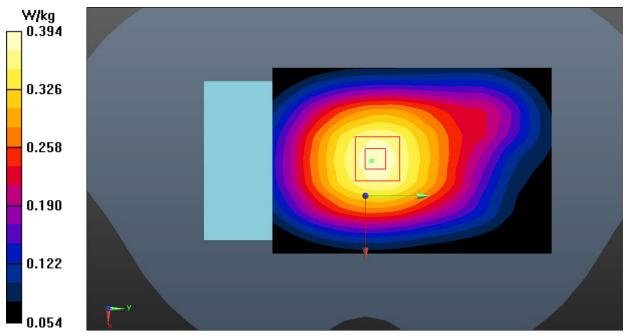
Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 750MHz Medium parameters used (interpolated): f = 793 MHz; σ = 0.906 S/m; ϵ_r =42.166; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 793 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Left Cheek Middle 1RB24/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.574 W/kg

Left Cheek Middle 1RB24/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.217 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.629 W/kg SAR(1 g) = 0.495 W/kg; SAR(10 g) = 0.370 W/kg Maximum value of SAR (measured) = 0.572 W/kg

LTE Band 14 Body


Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 750MHz Medium parameters used (interpolated): f = 793 MHz; σ = 0.906 S/m; ϵ_r =42.166; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 793 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

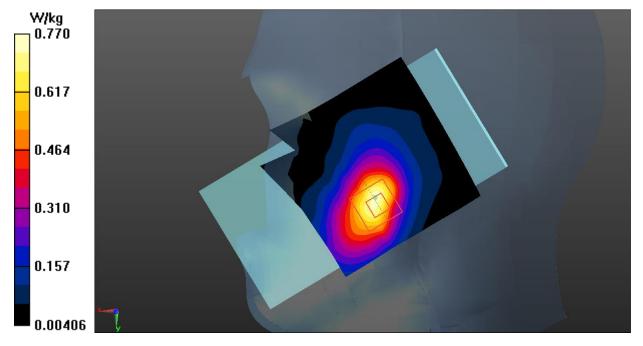
Front Side Middle 1RB24/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.384 W/kg

Front Side Middle 1RB24/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.06 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.438 W/kg SAR(1 g) = 0.337 W/kg; SAR(10 g) = 0.251 W/kg

Maximum value of SAR (measured) = 0.394 W/kg

LTE Band 25 Head


Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used (interpolated): f = 1882.5 MHz; σ = 1.399 S/m; ϵ_r = 39.125; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 1882.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)

Right Cheek Middle 1RB0/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.742 W/kg

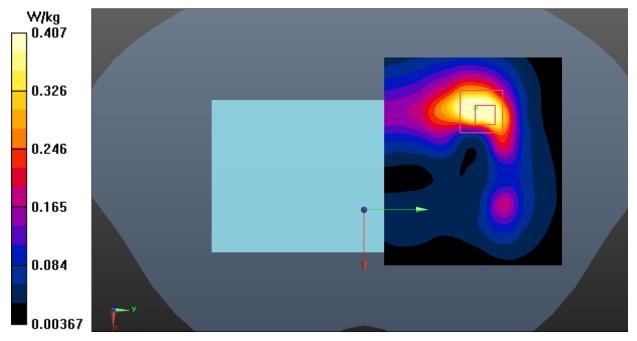
Right Cheek Middle 1RB0/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.233 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.980 W/kg SAR(1 g) = 0.590 W/kg; SAR(10 g) = 0.338 W/kg

Maximum value of SAR (measured) = 0.770 W/kg

LTE Band 25 Body

Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used (interpolated): f = 1882.5 MHz; σ = 1.399 S/m; ϵ_r = 39.125; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 1882.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)

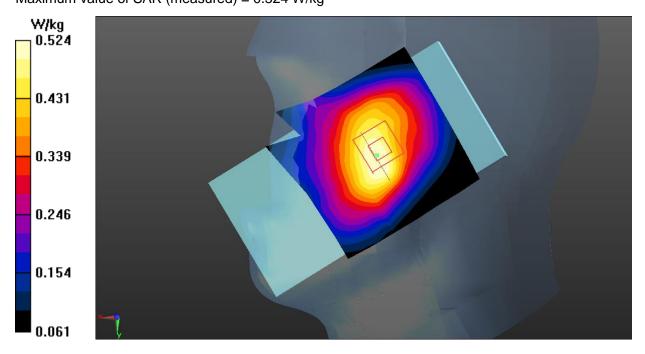

Rear Side Middle 1RB0/Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.484 W/kg

Rear Side Middle 1RB0/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.302 V/m; Power Drift = 0.08 dBPeak SAR (extrapolated) = 0.670 W/kg

SAR(1 g) = 0.339 W/kg; SAR(10 g) = 0.167 W/kg

Maximum value of SAR (measured) = 0.407 W/kg


LTE Band 26 Head

Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used (interpolated): f = 841.5 MHz; σ = 0.923 S/m; ϵ_r = 41.073; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 841.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Right Cheek High 1RB74/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.534 W/kg

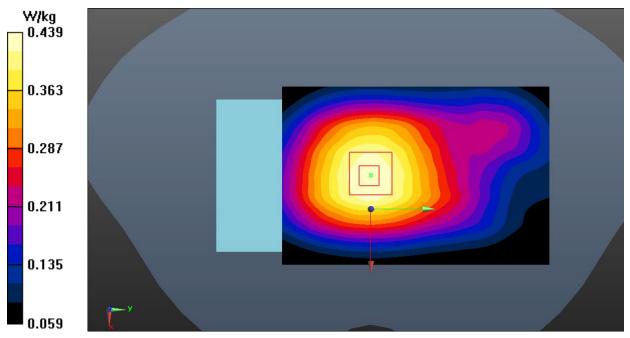
Right Cheek High 1RB74/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.348 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.579 W/kg SAR(1 g) = 0.460 W/kg; SAR(10 g) = 0.345 W/kg Maximum value of SAR (measured) = 0.524 W/kg

LTE Band 26 Body

Date: 2022-9-10 Electronics: DAE4 Sn1527

Medium: Head 835MHz

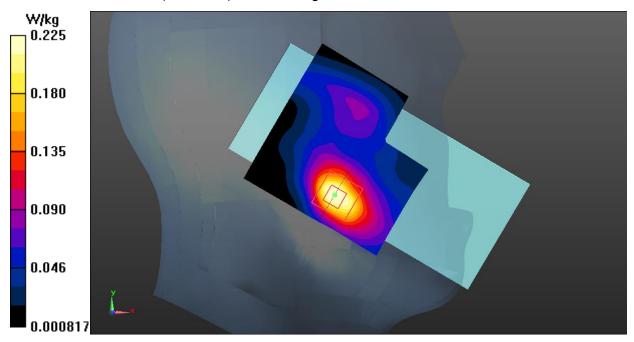

Medium parameters used (interpolated): f = 841.5 MHz; σ = 0.923 S/m; ϵ_r = 41.073; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 841.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Front Side High 1RB74/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.437 W/kg

Front Side High 1RB74/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.34 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.482 W/kg SAR(1 g) = 0.379 W/kg; SAR(10 g) = 0.284 W/kg

Maximum value of SAR (measured) = 0.439 W/kg


LTE Band 30 Head

Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 2300MHz Medium parameters used: f = 2310 MHz; σ = 1.661 S/m; ϵ_r = 38.82; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 2310 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.60, 8.60, 8.60)

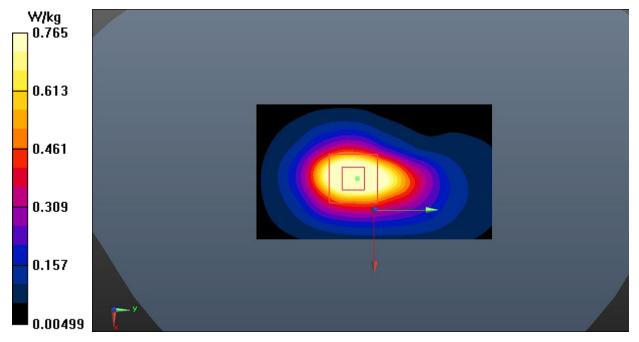
Left Cheek Middle 1RB24/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.274 W/kg

Left Cheek Middle 1RB24/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.971 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.289 W/kg SAR(1 g) = 0.166 W/kg; SAR(10 g) = 0.094 W/kg Maximum value of SAR (measured) = 0.225 W/kg

LTE Band 30 Body

Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 2300MHz Medium parameters used: f = 2310 MHz; σ = 1.661 S/m; ϵ_r = 38.82; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 2310 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.60, 8.60, 8.60)

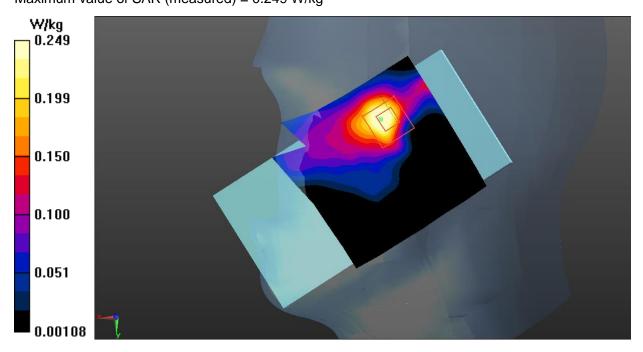

Bottom Side Middle 1RB24/Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.807 W/kg

Bottom Side Middle 1RB24/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.782 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.969 W/kg SAR(1 g) = 0.553 W/kg; SAR(10 g) = 0.306 W/kg

Maximum value of SAR (measured) = 0.765 W/kg

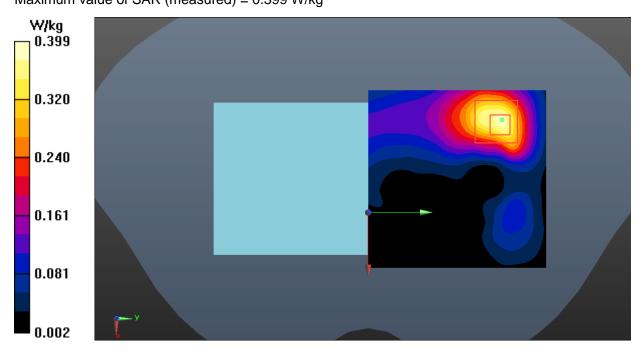

LTE Band 41 Head

Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 2550MHz Medium parameters used: f = 2680 MHz; σ = 2.089 S/m; ϵ_r = 37.72; ρ = 1000 kg/m³ Communication System: UID 0, LTE_TDD (0) Frequency: 2680 MHz Duty Cycle: 1:1.58 Probe: EX3DV4 - SN7621 ConvF (7.93, 7.93, 7.93)

Right Cheek High 1RB99/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.277 W/kg

Right Cheek High 1RB99/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.048 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.338 W/kg SAR(1 g) = 0.179 W/kg; SAR(10 g) = 0.092 W/kg Maximum value of SAR (measured) = 0.249 W/kg

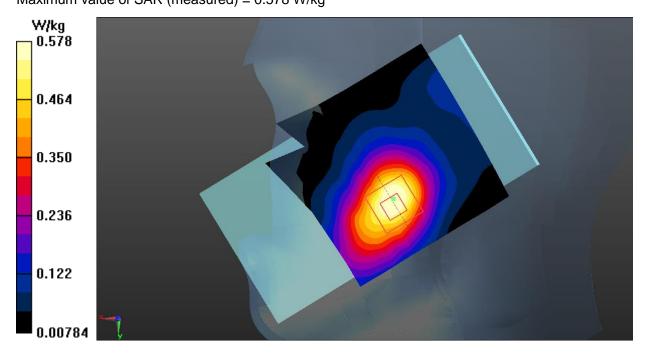

LTE Band 41 Body

Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 2550MHz Medium parameters used: f = 2680 MHz; σ = 2.089 S/m; ϵ_r = 37.72; ρ = 1000 kg/m³ Communication System: UID 0, LTE_TDD (0) Frequency: 2680 MHz Duty Cycle: 1:1.58 Probe: EX3DV4 - SN7621 ConvF (7.93, 7.93, 7.93)

Rear Side Middle 1RB99/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.383 W/kg

Rear Side Middle 1RB99/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.241 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.552 W/kg SAR(1 g) = 0.285 W/kg; SAR(10 g) = 0.144 W/kg Maximum value of SAR (measured) = 0.399 W/kg


LTE Band 66 Head

Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 1750MHz Medium parameters used: f = 1720 MHz; σ = 1.362 S/m; ϵ_r = 39.541; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 1720 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (9.22, 9.22, 9.22)

Right Cheek Low 1RB99/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.614 W/kg

Right Cheek Low 1RB99/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.638 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.719 W/kg SAR(1 g) = 0.460 W/kg; SAR(10 g) = 0.284 W/kg Maximum value of SAR (measured) = 0.578 W/kg

LTE Band 66 Body

Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 1750MHz Medium parameters used: f = 1720 MHz; σ = 1.362 S/m; ϵ_r = 39.541; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 1720 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (9.22, 9.22, 9.22)

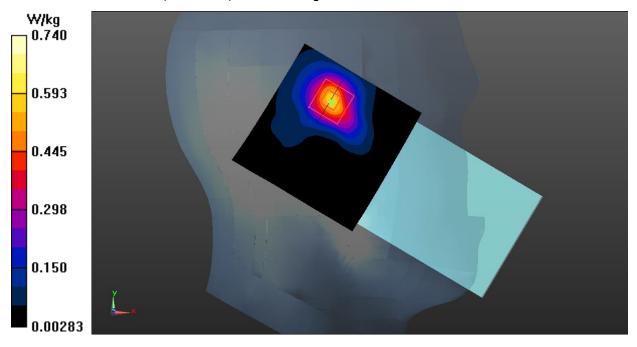
Rear Side Low 1RB0/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.496 W/kg

Rear Side Low 1RB0/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.114 V/m; Power Drift = -0.03 dBPeak SAR (extrapolated) = 0.591 W/kg

SAR(1 g) = 0.370 W/kg; SAR(10 g) = 0.219 W/kg

Maximum value of SAR (measured) = 0.487 W/kg

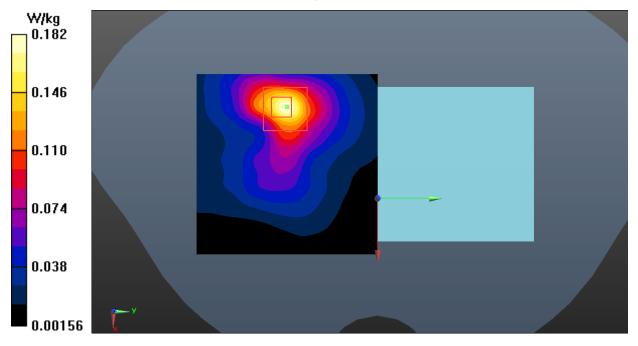


WLAN 2.4GHz Head

Date: 2022-9-13 Electronics: DAE4 Sn1527 Medium: Head 2450MHz Medium parameters used: f = 2462 MHz; σ = 1.853 S/m; ϵ_r = 38.401; ρ = 1000 kg/m³ Communication System: UID 0, WiFi (0) Frequency: 2462 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

Left Cheek Ch.11/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.586 W/kg

Left Cheek Ch.11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.363 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.04 W/kg SAR(1 g) = 0.502 W/kg; SAR(10 g) = 0.217 W/kg Maximum value of SAR (measured) = 0.740 W/kg

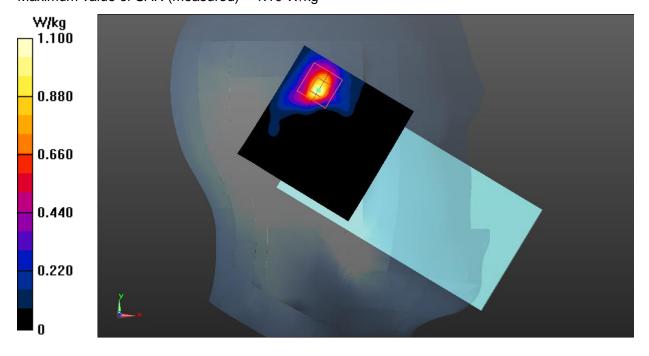


WLAN 2.4GHz Body

Date: 2022-9-13 Electronics: DAE4 Sn1527 Medium: Head 2450MHz Medium parameters used: f = 2412 MHz; σ = 1.794 S/m; ϵ_r = 38.566; ρ = 1000 kg/m³ Communication System: UID 0, WiFi (0) Frequency: 2412 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

Front Side Ch.1/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.183 W/kg

Front Side Ch.1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.916 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.245 W/kg SAR(1 g) = 0.125 W/kg; SAR(10 g) = 0.062 W/kg Maximum value of SAR (measured) = 0.182 W/kg


WLAN 5GHz Head

Date: 2022-9-13 Electronics: DAE4 Sn1527 Medium: Head 5750MHz

Medium parameters used (interpolated): f = 5755 MHz; σ = 5.352 S/m; ϵ_r = 34.398; ρ = 1000 kg/m³ Communication System: UID 0, WiFi 5G (0) Frequency: 5755 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (5.40, 5.40, 5.40)

Left Tilt Ch.151/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.12 W/kg

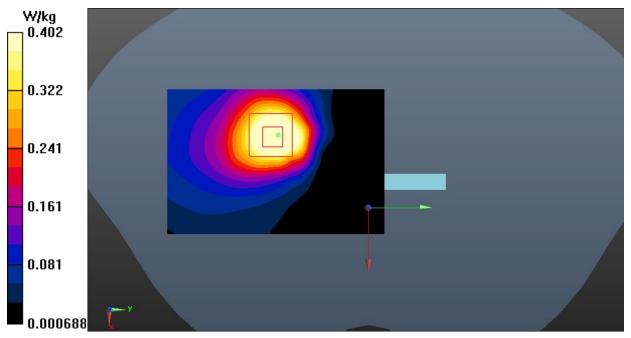
Left Tilt Ch.151/Zoom Scan (8x8x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.058 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 2.39 W/kg SAR(1 g) = 0.535 W/kg; SAR(10 g) = 0.168 W/kg Maximum value of SAR (measured) = 1.10 W/kg

WLAN 5GHz Body

Date: 2022-9-13 Electronics: DAE4 Sn1527

Medium: Head 5600MHz

Medium parameters used (interpolated): f = 5510 MHz; σ = 5.032 S/m; ϵ_r = 35.108; ρ = 1000 kg/m³ Communication System: UID 0, WiFi 5G (0) Frequency: 5510 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (5.47, 5.47, 5.47)

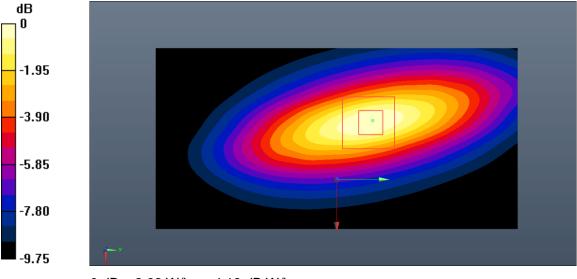

Right Side Ch.102/Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.549 W/kg

Right Side Ch.102/Zoom Scan (8x8x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 1.844 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.288 W/kg; SAR(10 g) = 0.133 W/kg

Maximum value of SAR (measured) = 0.402 W/kg


K.4. System Verification Results for Spot Check

750MHz

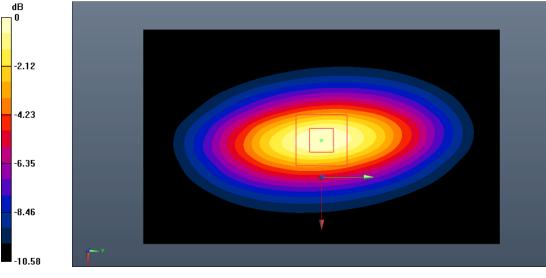
Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 750MHz Medium parameters used: f = 750 MHz; σ = 0.879 S/m; ϵ_r = 42.682; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

System Validation/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 59.123 V/m; Power Drift = -0.07 dB SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (interpolated) = 2.66 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.123 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 3.08 W/kg SAR(1 g) = 2.02 W/kg; SAR(10 g) = 1.36 W/kg Maximum value of SAR (measured) = 2.62 W/kg

0 dB = 2.62 W/kg = 4.18 dB W/kg

835MHz Date: 2022-9-10 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used: f = 835 MHz; σ = 0.917 S/m; ϵ r = 41.151; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)


System Validation/Area Scan (91x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 63.837 V/m; Power Drift = 0.05 dB SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (interpolated) = 3.63 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.837 V/m; Power Drift = 0.05 dB

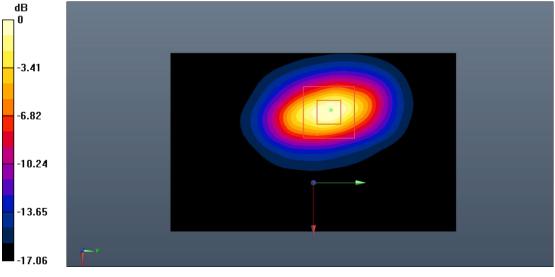
Peak SAR (extrapolated) = 4.30 W/kg

SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.60 W/kg

Maximum value of SAR (measured) = 3.65 W/kg

0 dB = 3.65 W/kg = 5.62 dB W/kg

1750MHz Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 1750MHz Medium parameters used: f = 1750 MHz; σ = 1.388 S/m; ϵ_r = 39.424; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (9.22, 9.22, 9.22)


System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 78.752 V/m; Power Drift = 0.08 dB SAR(1 g) = 9.20 W/kg; SAR(10 g) = 4.88 W/kg Maximum value of SAR (interpolated) = 11.1 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 78.752 V/m; Power Drift = 0.08 dB

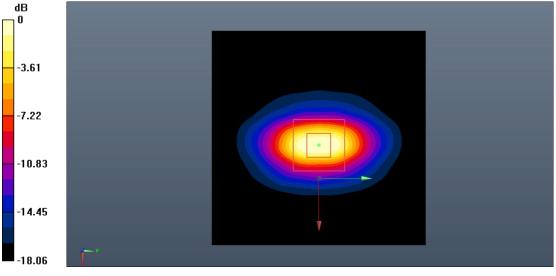
Peak SAR (extrapolated) = 20.4 W/kg

SAR(1 g) = 9.46 W/kg; SAR(10 g) = 5.01 W/kg

Maximum value of SAR (measured) = 11.3 W/kg

0 dB = 11.3 W/kg = 10.53 dB W/kg

1900MHz Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1900 MHz; σ = 1.414 S/m; ϵ_r = 39.058; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)


System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 81.542 V/m; Power Drift = 0.02 dB SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.15 W/kg Maximum value of SAR (interpolated) = 12.0 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 81.542 V/m; Power Drift = 0.02 dB

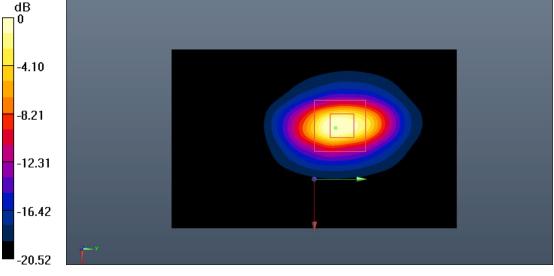
Peak SAR (extrapolated) = 25.1 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.24 W/kg

Maximum value of SAR (measured) = 12.3 W/kg

0 dB = 12.3 W/kg = 10.90 dB W/kg

2300MHz Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 2300MHz Medium parameters used: f = 2300 MHz; σ = 1.649 S/m; ϵ_r = 38.853; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 2300 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.60, 8.60, 8.60)


System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 83.562 V/m; Power Drift = -0.11 dB SAR(1 g) = 12.0 W/kg; SAR(10 g) = 5.75 W/kg Maximum value of SAR (interpolated) = 14.0 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 83.562 V/m; Power Drift = -0.11 dB

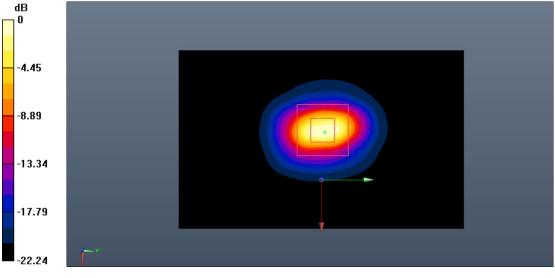
Peak SAR (extrapolated) = 25.6 W/kg

SAR(1 g) = 11.7 W/kg; SAR(10 g) = 5.59 W/kg

Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dB W/kg

2450MHz Date: 2022-9-13 Electronics: DAE4 Sn1527 Medium: Head 2450MHz Medium parameters used: f = 2450 MHz; σ = 1.839 S/m; ϵ_r = 38.442; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)


System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 92.495 V/m; Power Drift = 0.12 dB SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.09 W/kg Maximum value of SAR (interpolated) = 15.4 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.495 V/m; Power Drift = 0.12 dB

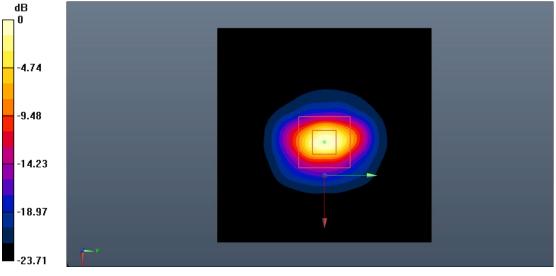
Peak SAR (extrapolated) = 34.7 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.18 W/kg

Maximum value of SAR (measured) = 15.7 W/kg

0 dB = 15.7 W/kg = 11.96 dB W/kg

2550MHz Date: 2022-9-15 Electronics: DAE4 Sn1527 Medium: Head 2550MHz Medium parameters used: f = 2550 MHz; σ = 1.937 S/m; ϵ_r = 38.149; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 2550 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (8.17, 8.17, 8.17)


System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 94.008 V/m; Power Drift = 0.09 dB SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.31 W/kg Maximum value of SAR (interpolated) = 16.1 W/kg

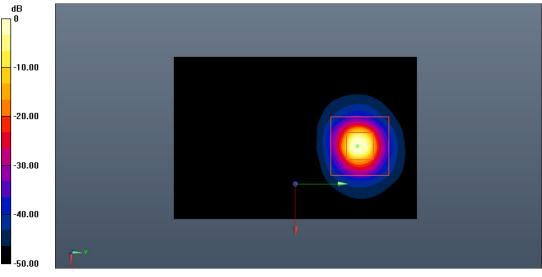
System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.008 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 37.7 W/kg

SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.42 W/kg

Maximum value of SAR (measured) = 16.4 W/kg

0 dB = 16.4 W/kg = 12.15 dB W/kg



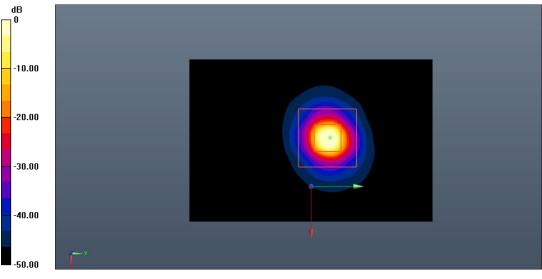
5600MHz Date: 2022-9-13 Electronics: DAE4 Sn1527 Medium: Head 5600MHz Medium parameters used: f = 5600 MHz; σ = 5.153 S/m; ε_r = 34.865; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 5600 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (5.47, 5.47, 5.47)

System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 67.559 V/m; Power Drift = 0.08 dB SAR(1 g) = 8.29 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (interpolated) = 10.2 W/kg

System Validation/Zoom Scan (8x8x21)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.559 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.39 W/kg Maximum value of SAR (measured) = 10.5 W/kg

0 dB = 10.5 W/kg = 10.21 dB W/kg



5750MHz Date: 2022-9-13 Electronics: DAE4 Sn1527 Medium: Head 5750MHz Medium parameters used: f = 5750 MHz; σ = 5.345 S/m; $ε_r$ = 34.411; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (5.40, 5.40, 5.40)

System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 65.983 V/m; Power Drift = 0.05 dB SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (interpolated) = 9.97 W/kg

System Validation/Zoom Scan (8x8x21)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.983 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 26.2 W/kg SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 10.2 W/kg

0 dB = 10.2 W/kg = 10.09 dB W/kg

END OF REPORT