SAR evaluation FCC ID:2AACS-TAD321-A

MPE Calculation Method

 $E (V/m) = (30*P*G)^{0.5}/d$

Power Density: Pd $(W/m2) = E^2/377$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

 $Pd = (30*P*G) / (377*d^2)$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well

as the gain of the used antenna, the RF power density can be obtained.

Calculated WIFI Result and Limit (WORSE CASE IS AS BELOW)

Antenna	Peak Output	Power Density	Limit of Power	Test
Gain	Power (mW)	(S) (mW/cm2)	Density (S)	Result
(Numeric)			(mW/cm2)	
3.319	100	0.0660	1	Compiles
(5.21dBi)	(20.00dBm)			

Note:

Antenna Gain: 2.20dBi (2.4G Band)

Assembly Antenna Gain: 5.21dBi

Assembly Antenna Gain (Numeric): 3.319dBi

ERP=20.00+5.21-2.15=23.06dBm(202.302mW)

WIFI 2.4G band and 5G band cannot transmit Simultaneously

Calculated Bluetooth Result and Limit (WORSE CASE IS AS BELOW)

Antenna Gain	Peak Output	Power Density	Limit of Power	Test
(Numeric)	Power (mW)	(S) (mW/cm2)	Density (S) (mW/cm2)	Result
1.660 (2.2dBi)	5.741	0.0019	1	Compiles
	(7.59dBm)			

Note:

Antenna Gain: 2.20dBi (2.4G Band)

Assembly Antenna Gain (Numeric): 1.660dBi

ERP=7.59+2.2-2.15=7.64dBm(5.808mW)

BT BDR/EDR and BLE cannot transmit Simultaneously

$$\sum_{i=1}^{a} \frac{P_i}{P_{\text{th},i}}$$
=100/3060 +5.741/3060=0.0346

$$\sum_{j=1}^{b} \frac{ERP_{j}}{ERP_{\text{th},j}}$$
= (202.302+5.808)/3060 =0.0680

$$\sum_{k=1}^{c} \frac{Evaluated_k}{Exposure \ Limit_k} = (0.0660+0.0019) /1=0.0679$$

$$\sum_{i=1}^{a} \frac{P_i}{P_{\text{th},i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{\text{th},j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \leq 1$$

0.0346+0.0680+0.0679=0.1705<1