FCC ID: 2AACS-NEB101

MPE Calculation Method $E \ (V/m) = (30*P*G)^{-0.5}/d$ Power Density: Pd $(W/m2) = E^2/377$ $E = Electric Field \ (V/m)$ P = Peak RF output Power (W) G = EUT Antenna numeric gain (numeric) $d = Separation \ distance \ between \ radiator \ and \ human \ body \ (m)$ The formula can be changed to $Pd = (30*P*G) \ / \ (377*d^2)$ From the peak EUT RF output power, the minimum mobile separation distance, $d=0.2m, \ as \ well$ as the gain of the used antenna, the RF power density can be obtained.

Calculated WIFI Result and Limit (WORSE CASE IS AS BELOW)

Antenna	Peak Output	Power Density	Limit of Power	Test
Gain	Power (mW)	(S) (mW/cm2)	Density (S)	Result
(Numeric)			(mW/cm2)	
3.251	162.55	0.1051	1	Compiles
(5.12dBi)	(22.11dBm)			

Note:

Antenna Gain: 2.11dBi (2.4G Band) Assembly Antenna Gain: 5.12dBi

Assembly Antenna Gain (Numeric): 3.251dBi

ERP=22.11+5.12-2.15=25.08dBm(322.11mW)

WIFI 2.4G band and 5G band cannot transmit Simultaneously

Calculated Bluetooth Result and Limit (WORSE CASE IS AS BELOW)

```
eirp = pt x gt = (EXd)^2/30 where:

pt = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unitless),

E = electric field strength in V/m, --- 10^{((dBuV/m)/20)}/10^6

d = measurement distance in meters (m)---3m

Sopt = (EXd)^2/30 x gt
```

Ant gain =2.11dBi so Ant numeric gain= 1.626

Field strength =92.58dB μ V/m @3m@2480MHz

So $Pt=\{[10^{(92.58/20)}/10^6 x3]^2/30x1.626\}x1000 mW = 0.884mW$

Antenna Gain	Peak Output	Power Density	Limit of Power	Test
(Numeric)	Power (mW)	(S) (mW/cm2)	Density (S)	Result
			(mW/cm2)	
1.626 (2.11dBi)	0.884	0.0002	1	Compiles
	(-0.535dBm)			

Note:

Antenna Gain: 2.11dBi (2.4G Band)

Assembly Antenna Gain (Numeric): 1.626dBi

ERP=-0.535-2.15=-2.685dBm(0.539mW)

BT BDR/EDR and BLE cannot transmit Simultaneously

$$\sum_{i=1}^{a} \frac{P_i}{P_{\text{th},i}}$$
=162.55/3060 +0.884/3060=0.0534

$$\sum_{j=1}^{b} \frac{ERP_{j}}{ERP_{\text{th},j}}$$
= (322.11+0.539)/3060 = 0.1054

$$\sum_{k=1}^{c} \frac{Evaluated_k}{Exposure \ Limit_k} = (0.1051+0.0002) \ /1=0.1053$$

$$\sum_{i=1}^{a} \frac{P_i}{P_{\text{th},i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{\text{th},j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \leq 1$$

0.0534+0.1054+0.1053=0.2641<1