

Shenzhen Huaxia Testing Technology Co., Ltd

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755-26648640

 Fax:
 +86-755-26648637

 Website:
 www.cqa-cert.com

Report Template Version: V04 Report Template Revision Date: 2018-07-06

Test Report

Report No.:	CQASZ20201201466E-01
Applicant:	TECH-AUDIO CO., LTD
Address of Applicant:	NO.3, TungShih li, Ping Cheng Tao Yuan, Taiwan.
Equipment Under Test (EUT)):
Product:	Weather Speakers
Model No.:	AW-WS100, AW-WS200, AW-WS300
Test Model No.:	AW-WS100, AW-WS200, AW-WS300
Brand Name:	N/A
FCC ID:	2AABM-AWWS
Standards:	47 CFR Part 15, Subpart C
Date of Receipt:	2020-12-09
Date of Test:	2020-12-09 to 2020-12-28
Date of Issue:	2020-12-28
Test Result:	PASS*
*In the configuration tested,	the EUT complied with the standards specified above

Tested By:

prarein bee

(Martin Lee)

Reviewed By: _

(Ares Liu) Sheek, Luo

Approved By:

COA 华夏准测 *APPROVED*

(Sheek Luo)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20201201466E-01	Rev.01	Initial report	2020-12-28

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

3 Contents

Page

1	I VERSION	2
2	2 TEST SUMMARY	
3	3 CONTENTS	4
4	4 GENERAL INFORMATION	5
	 4.1 CLIENT INFORMATION	
5	4.11 EQUIPMENT LIST	
	 5.1 ANTENNA REQUIREMENT	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
6	6 PHOTOGRAPHS - EUT TEST SETUP	
_	 6.1 RADIATED EMISSION 6.2 CONDUCTED EMISSION 	
7	PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

4 General Information

4.1 Client Information

Applicant:	TECH-AUDIO CO., LTD	
Address of Applicant:	NO.3, TungShih li, Ping Cheng Tao Yuan, Taiwan.	
Manufacturer:	Atlantic Technology	
Address of Manufacturer:	343 Vanderbilt Avenue, Norwood, MA 02062-5060	
Factory:	Xiamen Tech-Sound CO.,Ltd	
Address of Factory:	NO.170,Ji Yin Road, Tong An District , Xiamen , China.	

4.2 General Description of EUT

Product Name:	Weather Speakers
Model No.:	AW-WS100, AW-WS200, AW-WS300
Test Model No.:	AW-WS100, AW-WS200, AW-WS300
Trade Mark:	N/A
Hardware Version:	REV1.0
Software Version:	skaa-rx-Tech_Audio_JE0685/JE0686/JE0687-develop-v2.5.0-74-gb9c45343- untested.tcf
Test sample No:	CQASZ20201201466E#1, CQASZ20201201466E#2, CQASZ20201201466E#3
Operation Frequency:	2403.5MHz~2477.3MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	FSK
Transfer Rate:	1Mbps
BW:	2.5MHz
Number of Channel:	49
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Mobile Portable Fix Location
Test Software of EUT:	SKAA (manufacturer declare)
Antenna Type:	PCB antenna
Antenna Gain:	3.3dBi
Power Supply:	Adapter: 15VDC For AW-WS100, 19VDC For AW-WS200, 24VDC For AW-WS300.

Channel #	Center Frequency (GHz)	Channel #	Center Frequency (GHz)		
Center Frequencies (Channel Table)					
1	2.4035	26	2.4420		
2	2.4051	27	2.4435		
3	2.4066	28	2.4450		
4	2.4081	29	2.4466		
5	2.4097	30	2.4481		
6	2.4112	31	2.4496		
7	2.4128	32	2.4512		
8	2.4143	33	2.4527		
9	2.4158	34	2.4543		
10	2.4174	35	2.4558		
11	2.4189	36	2.4573		
12	2.4204	37	2.4589		
13	2.4220	38	2.4604		
14	2.4235	39	2.4619		
15	2.4251	40	2.4635		
16	2.4266	41	2.4650		
17	2.4281	42	2.4666		
18	2.4297	43	2.4681		
19	2.4312	44	2.4696		
20	2.4327	45	2.4712		
21	2.4343	46	2.4727		
22	2.4358	47	2.4742		
23	2.4374	48	2.4758		
24	2.4389	49	2.4773		
25	2.4404				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2403.5MHz
The Middle channel	2440.4MHz
The Highest channel	2477.3MHz

4.3 Additional Instructions

Mode:	Special software is used. Through engineering command into the engineering mode. engineering command: *#*#3646633#*#*
EUT Power level:	Class2 (Power level is built-in set parameters and cannot be changed and selected)

transmitting of the EUT.

Run Software:

4.4 Test Environment

Operating Environment			
Radiated Emissions:			
Temperature:	25.3 °C		
Humidity:	55 % RH		
Atmospheric Pressure:	1009mbar		
Conducted Emissions:			
Temperature:	23.2 °C		
Humidity:	51 % RH		
Atmospheric Pressure:	1009mbar		
Radio conducted item te	Radio conducted item test (RF Conducted test room):		
Temperature:	25.4 °C		
Humidity:	52 % RH		
Atmospheric Pressure:	1009mbar		
Test mode:			
Test Mode:	Use test software (SKAA) to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.		

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	lel No. Certification	
PC	Lenovo	ThinkPad E450c	FCC ID	CQA
2) Cable				
Cable No.	e No. Description Manufacturer Cable Type/Length		Supplied by	
/	/	/	/	/

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
/	/	/	/	/

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	5.12dB	(1)
2	Radiated Emission (Above 1GHz)	4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	3.34dB	(1)
4	Radio Frequency	3×10 ⁻⁸	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8°C	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	Frequency Error	5.5 Hz	(1)

Hereafter the best measurement capability for CQA laboratory is reported:

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.7 Test Location

Shenzhen Huaxia Testing Technology Co., Ltd,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Abnormalities from Standard Conditions

None.

4.10Other Information Requested by the Customer

None.

4.11 Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2019/10/25	2020/10/24
Spectrum analyzer	R&S	FSU26	CQA-038	2019/10/25	2020/10/24
		AFS4-00010300-18-			
Preamplifier	MITEQ	10P-4	CQA-035	2019/10/25	2020/10/24
		AMF-6D-02001800-			
Preamplifier	MITEQ	29-20P	CQA-036	2019/10/25	2020/10/24
Preamplifier	EMCI	EMC184055SE	CQA-089	2020/9/25	2021/9/24
			004.000	2019/10/21	2020/10/20
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2020/10/21	2021/10/20
Bilog Antenna	R&S	HL562	CQA-011	2020/9/26	2021/9/25
Horn Antenna	R&S	HF906	CQA-012	2020/9/26	2021/9/25
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2020/9/25	2021/9/24
Coaxial Cable					
(Above 1GHz)	CQA	N/A	C007	2020/9/26	2021/9/25
Coaxial Cable					
(Below 1GHz)	CQA	N/A	C013	2020/9/26	2021/9/25
Antenna Connector	CQA	RFC-01	CQA-080	2020/9/26	2021/9/25
RF					
cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2020/9/26	2021/9/25
		PWD-2533-02-SMA-			
Power divider	MIDWEST	79	CQA-067	2020/9/26	2021/9/25
EMI Test Receiver	R&S	ESR7	CQA-005	2019/10/25	2020/10/24
				2019/10/23	2020/10/22
LISN	R&S	ENV216	CQA-003	2020/10/23	2021/10/22
Coaxial cable	CQA	N/A	CQA-C009	2020/9/26	2021/9/25
DC power	KEYSIGHT	E3631A	CQA-028	2020/9/26	2021/9/25

Test software:

	Manufacturer	Software brand
Radiated Emissions test software	Tonscend	JS1120-3
Conducted Emissions test software	Audix	e3
RF Conducted test software	Audix	e3

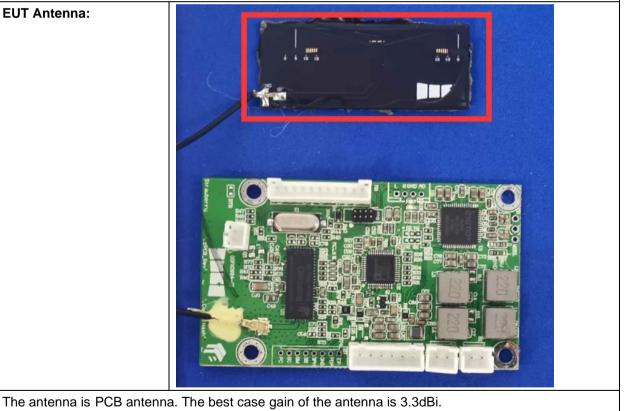
Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 **Test results and Measurement Data**

5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
-----------------------	--


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

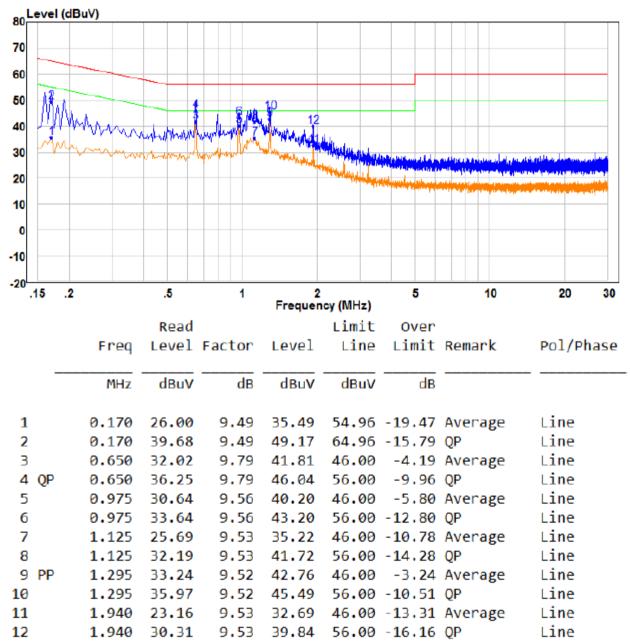
5.2 Conducted Emissions

 Conducted Emissio				
Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
Limit:		Limit (c	lBuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm	n of the frequency.		
Test Procedure:	 5-30 60 50 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shield room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 		bugh a LISN 1 (Line a $50\Omega/50\mu$ H + 5Ω linear if the EUT were d to the ground or the unit being d to connect multiple of the LISN was not c table 0.8m above the rangement, the EUT was erence plane. The rear d reference plane. The e horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2.	
Test Setup:	Shielding Room	AE UISN2 + AC Ma Ground Reference Plane	Test Receiver	

Shenzhen Huaxia Testing Technology Co., Ltd

Report No.: CQASZ20201201466E-01

Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of		
	data type at the lowest, middle, high channel.		
Final Test Mode: Through Pre-scan, find FSK modulation at the highest channel is th case. Only the worst case is recorded in the report.			
Test Voltage:	AC 120V/60Hz		
Test Results: Pass			

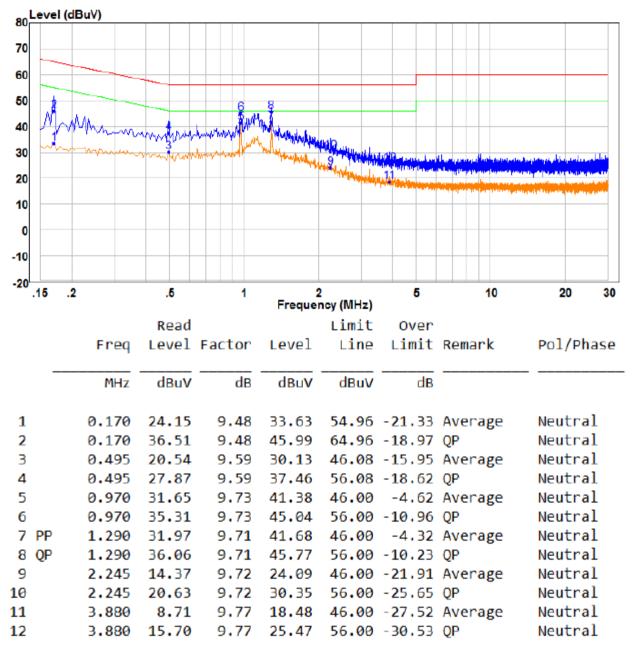

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Model No.: AW-WS100

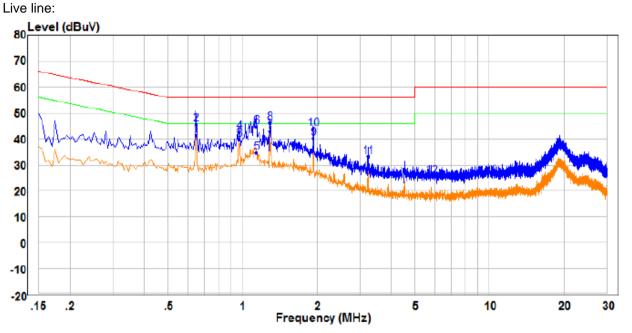
Live line:


Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

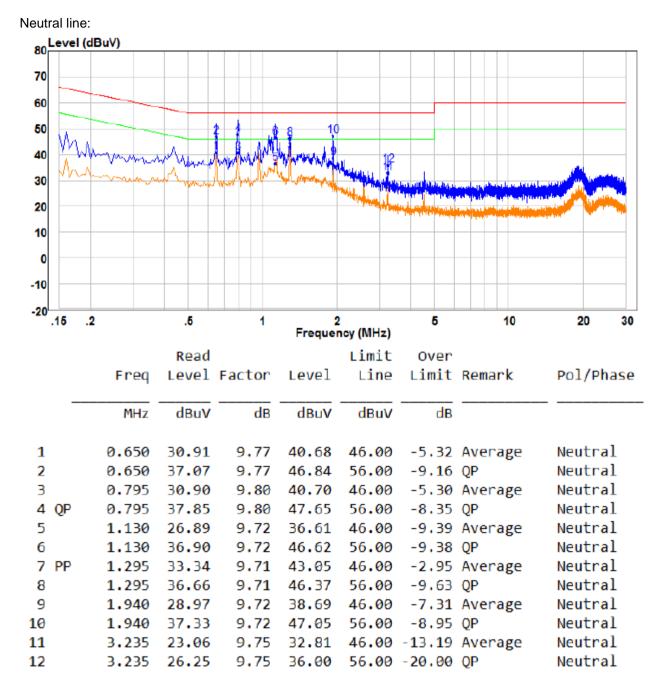
Neutral line:


Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

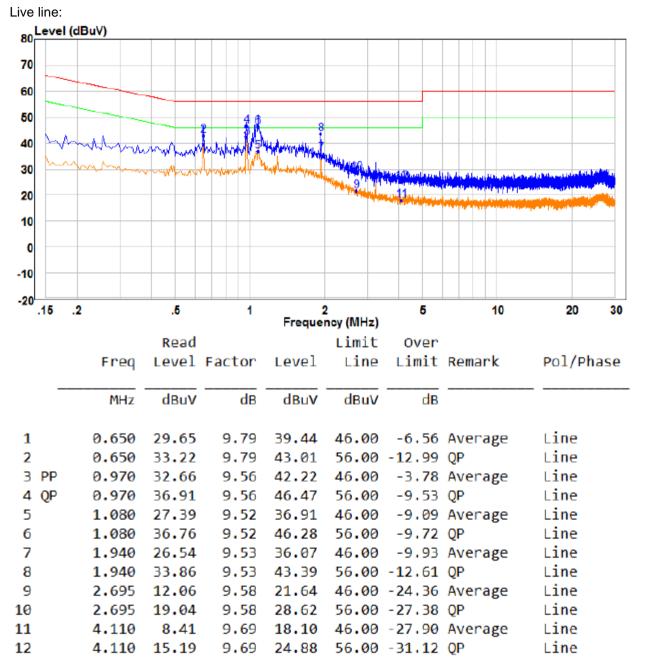
Model No.: AW-WS200


	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB		
1	0.650	31.56	9.79	41.35	46.00	-4.65	Average	Line
2	0.650	35.86	9.79	45.65	56.00	-10.35	QP	Line
3	0.970	30.19	9.56	39.75	46.00	-6.25	Average	Line
4	0.970	33.19	9.56	42.75	56.00	-13.25	QP	Line
5	1.140	25.22	9.53	34.75	46.00	-11,25	Average	Line
6	1.140	35.16	9.53	44.69	56.00	-11.31	QP	Line
7 PP	1.295	33.26	9.52	42.78	46.00	-3,22	Average	Line
8 QP	1.295	36.63	9.52	46.15	56.00	-9.85	QP	Line
9	1.940	30.61	9.53	40.14	46.00	-5.86	Average	Line
10	1.940	34.26	9.53	43.79	56.00	-12.21	QP	Line
11	3.235	23.70	9.62	33.32	46.00	-12.68	Average	Line
12	5.820	15.82	9.73	25.55	60.00	-34,45	QP	Line

Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

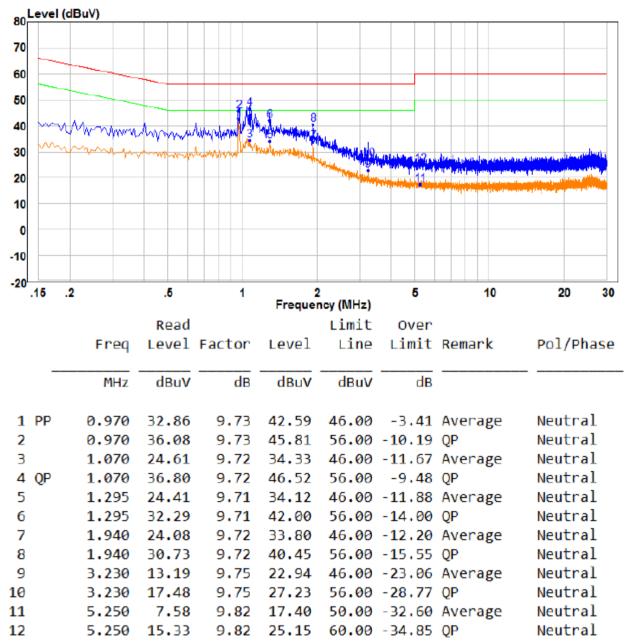
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.


Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Model No.: AW-WS300


Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

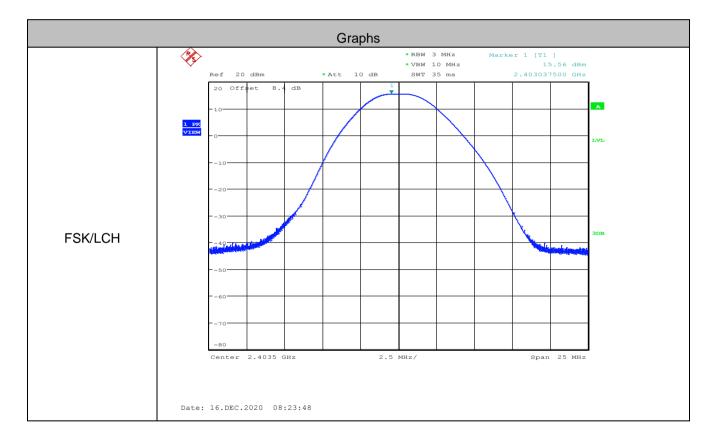
Neutral line:

Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

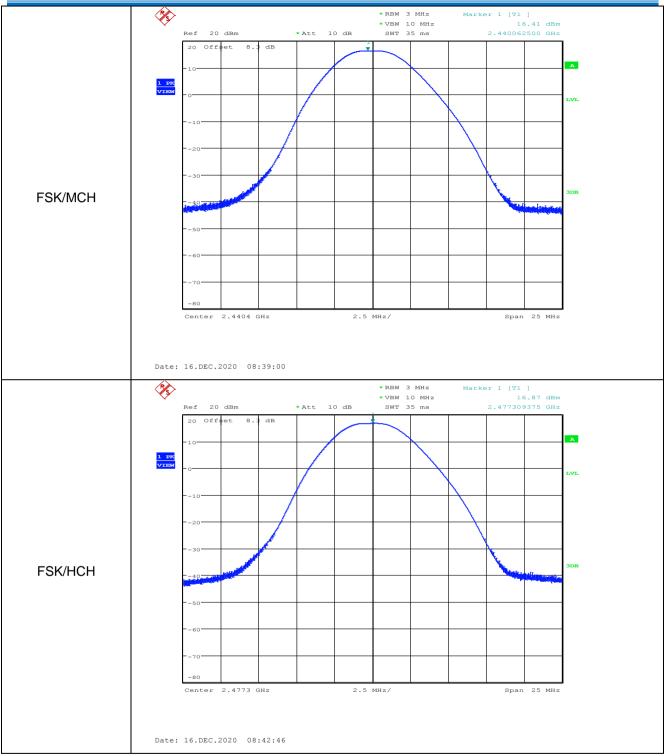
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

5.3 Conducted Peak Output Power


Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
	Remark: Offset=Cable loss+ attenuation factor.		
Limit:	21dBm		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Non-hopping transmitting mode with FSK modulation at the lowest, middle, highest channel.		
Test Results:	Pass		

Measurement Data

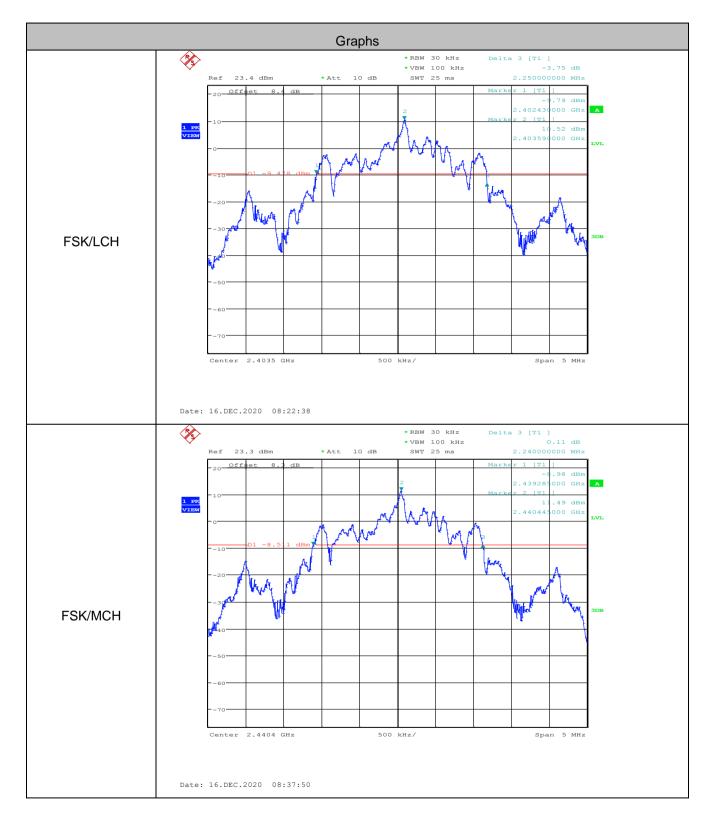
Test Model No.: AW-WS300							
	FSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	15.560	21.00	Pass				
Middle	16.410	21.00	Pass				
Highest	16.870	21.00	Pass				


Test plot as follows:

Shenzhen Huaxia Testing Technology Co., Ltd

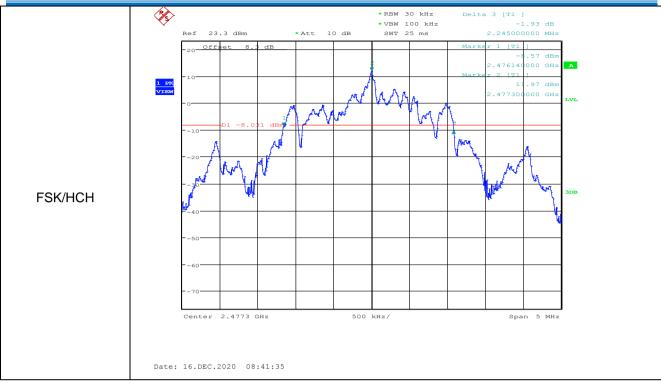
Report No.: CQASZ20201201466E-01

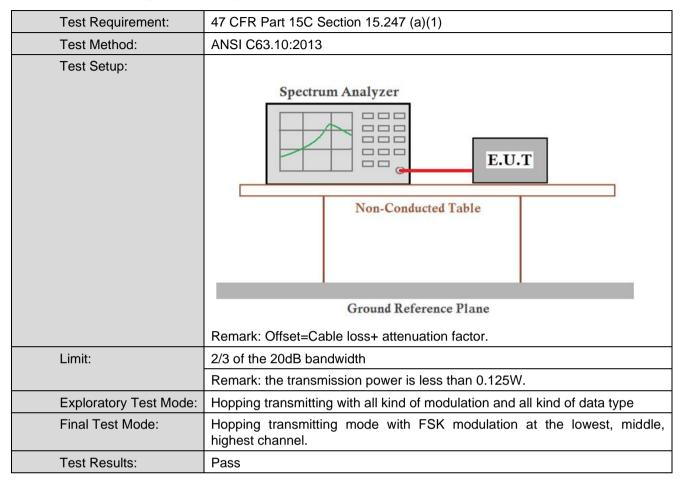
5.4 20dB Occupy Bandwidth


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Remark: Offset=Cable loss+ attenuation factor.		
Limit:	NA		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Non-hopping transmitting mode with FSK modulation at the lowest, middle, highest channel.		
Test Results:	Pass		

Measurement Data

Test Model No.: AW-WS300				
Test shannel	20dB Occupy Bandwidth (MHz)			
Test channel	FSK			
Lowest	2.250			
Middle	2.240			
Highest	2.245			

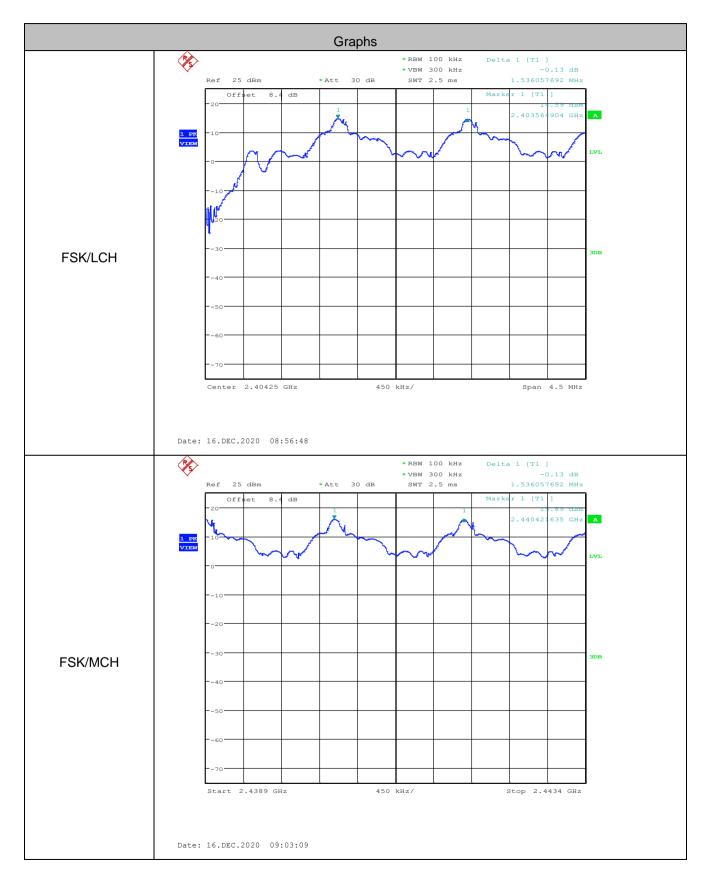

Test plot as follows:


Shenzhen Huaxia Testing Technology Co., Ltd

Report No.: CQASZ20201201466E-01

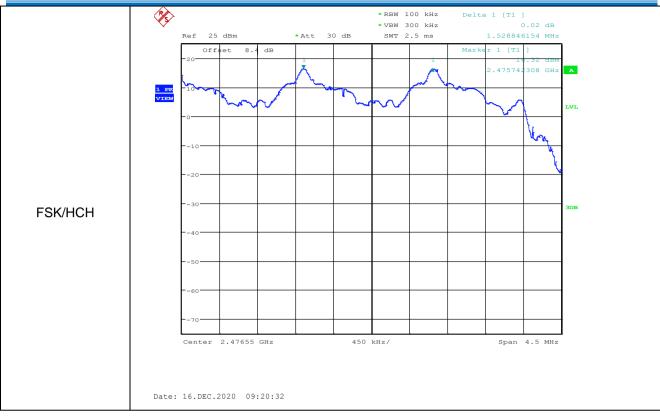
5.5 Carrier Frequencies Separation

Measurement Data


Test Model No.: AW-WS300							
	FSK mode						
Test channel Carrier Frequencies Separation (MHz) Limit (MHz) Result							
Lowest	1.536	≥1.500	Pass				
Middle	1.536	≥1.500	Pass				
Highest	1.529	≥1.500	Pass				

Note: According to section 5.4,

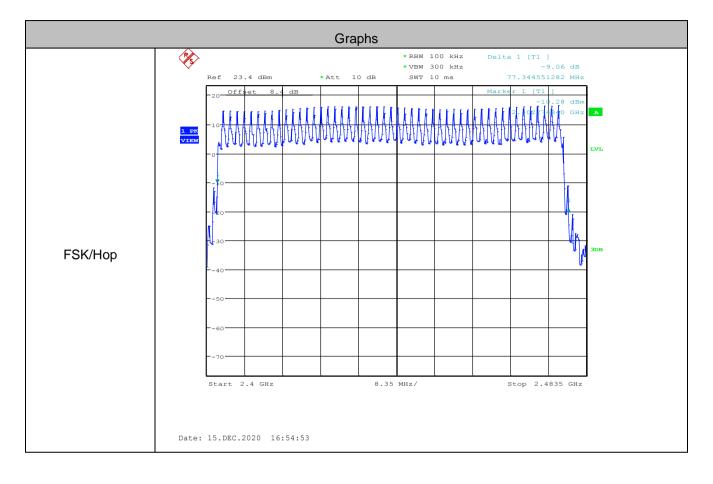
Mode	20dB bandwidth (MHz)	Limit (MHz)
WOUE	(worse case)	(Carrier Frequencies Separation)
FSK	2.250	1.500


Test plot as follows:

Shenzhen Huaxia Testing Technology Co., Ltd

Report No.: CQASZ20201201466E-01

5.6 Hopping Channel Number


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Test Setup:	ANSI C63.10:2013 Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.	
Limit:	At least 15 channels	
Exploratory Test Mode:	hopping transmitting with all kind of modulation and all kind of data type.	
Test Results:	Pass	

Measurement Data

Test Model No.: AW-WS300					
Mode	Hopping channel numbers	Limit			
FSK	49	≥15			

Test plot as follows:

5.7 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Test Setup:	ANSI C63.10:2013		
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.		
Limit:	0.4 Second		
Test Results:	Pass		

Measurement Data

Test Model No.: AW-WS300				
Mode	channel	Dwell time (second)	Limit (second)	
FSK	Lowest	0.30924	0.4	
	Middle	0.30924	0.4	
	Highest	0.311544	0.4	

Remark:

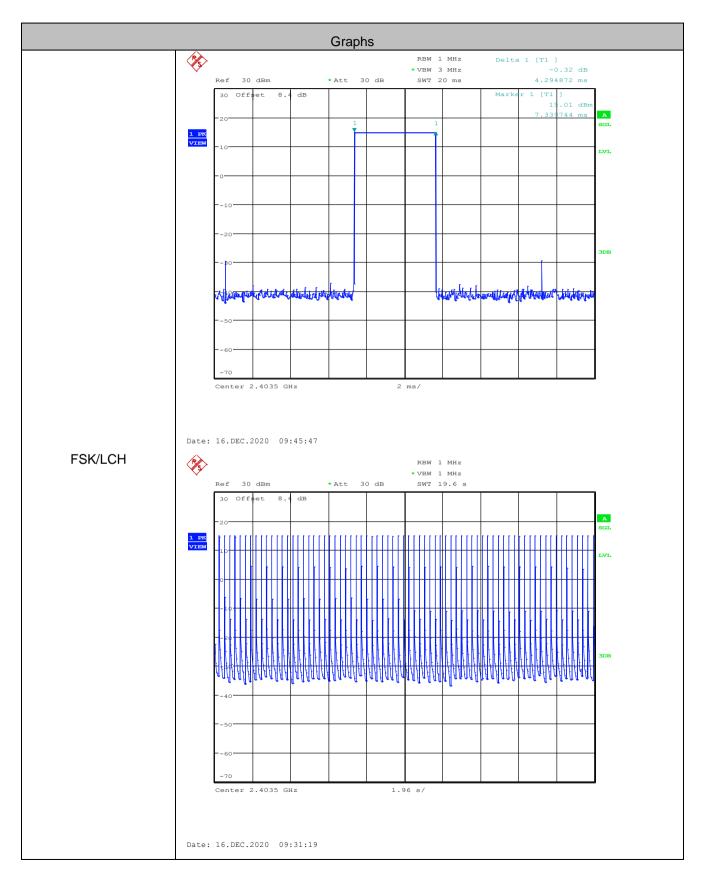
The test period: T= 0.4 Second/Channel x 49 Channel = 19.6s

On (ms)*total number=dwell time (ms)

The lowest channel, as below:

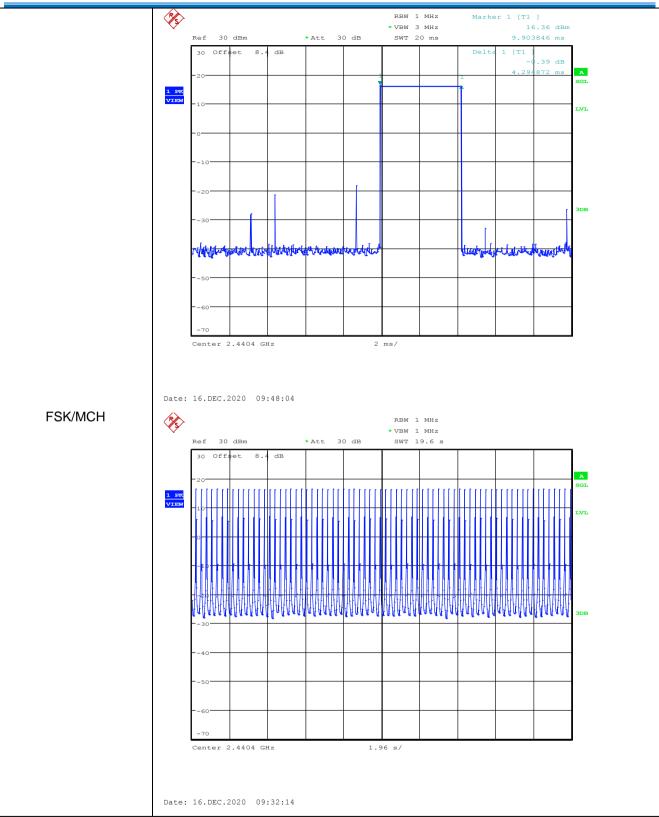
dwell time (ms)=4.295 (ms)*72 =309.24 (ms)

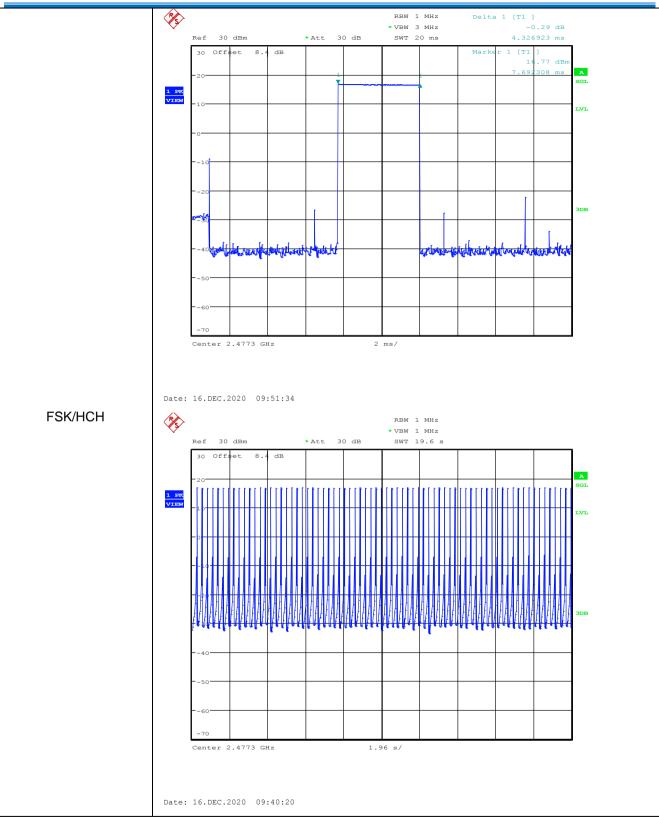
The middle channel, as below:


dwell time (ms)=4.295 (ms)*72=309.24 (ms)

The highest channel, as below:

dwell time (ms)=4.327 (ms)*72=311.544 (ms)

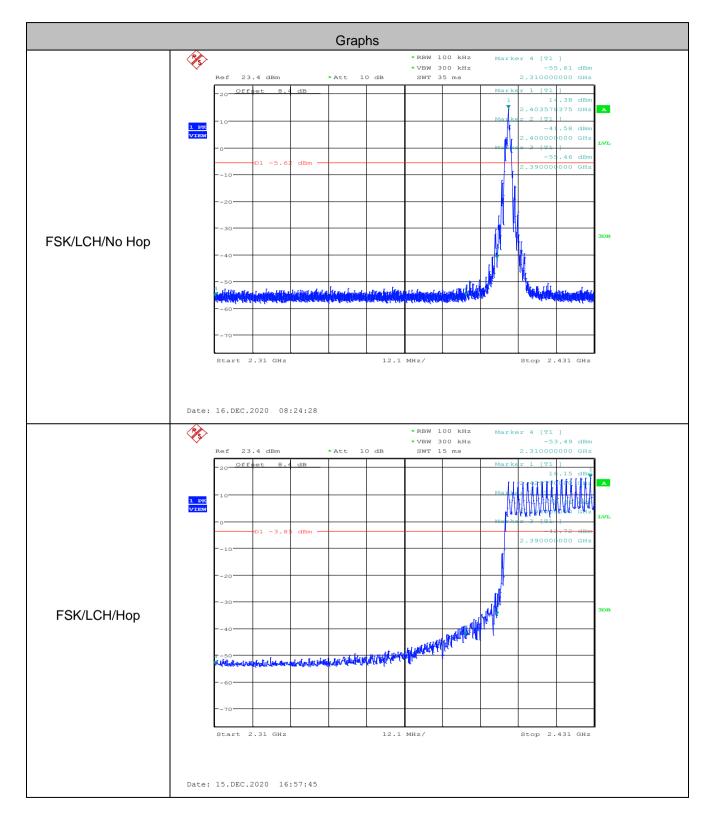

Test plot as follows:


Shenzhen Huaxia Testing Technology Co., Ltd

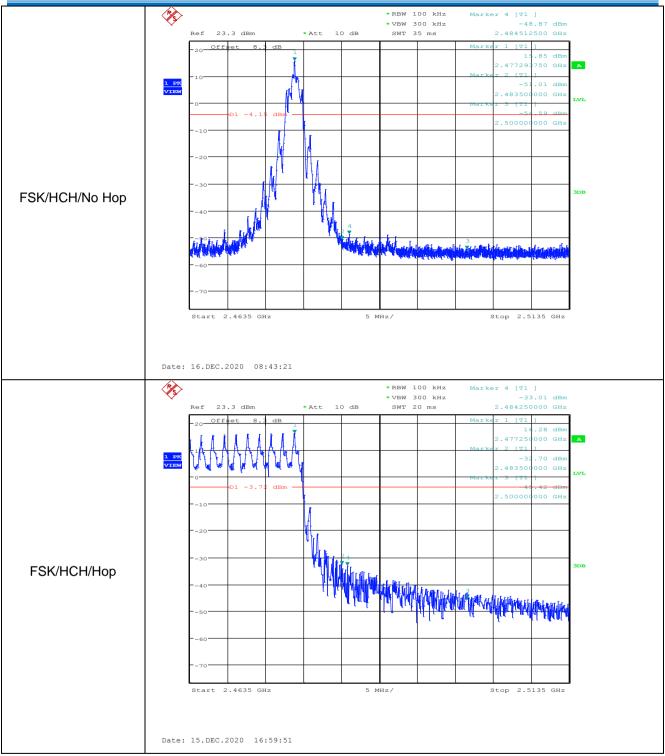
Report No.: CQASZ20201201466E-01

Shenzhen Huaxia Testing Technology Co., Ltd

5.8 Band-edge for RF Conducted Emissions

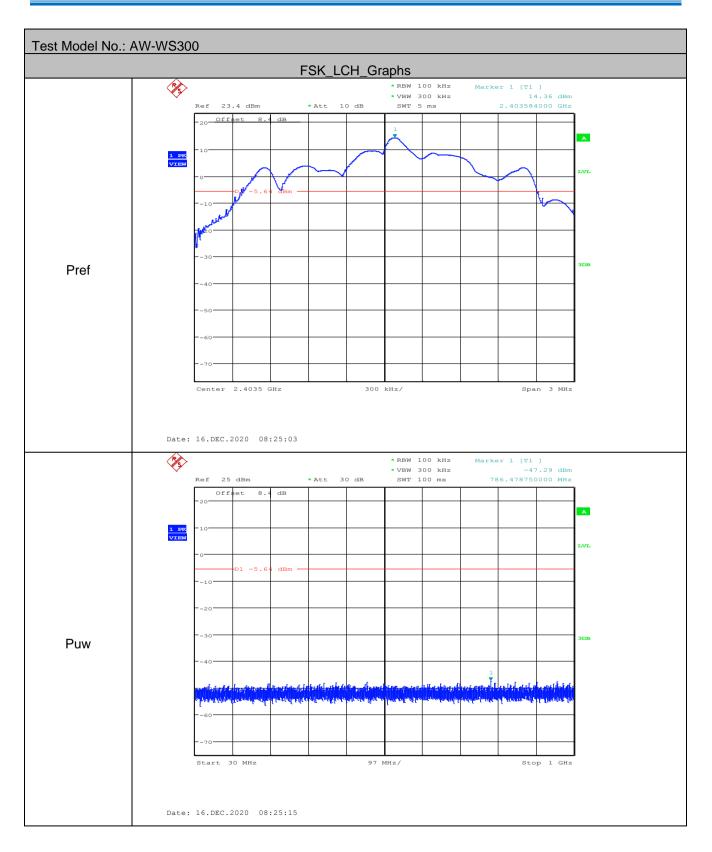

Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=cable loss+ attenuation factor.					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.					
Test Results:	Pass					

Test Model No.: AW-WS300											
Mode	Test Channel	Frequency [MHz]	Frequency Hopping	Emission Level [dBm]	Limit [dBm]	Result					
			Off	-41.580	-5.62	PASS					
FSK	LCH	H 2400	On	-35.060	-3.85	PASS					
			Off	-51.010	-4.15	PASS					
FSK	HCH 2483.5		On	-32.700	-3.72	PASS					

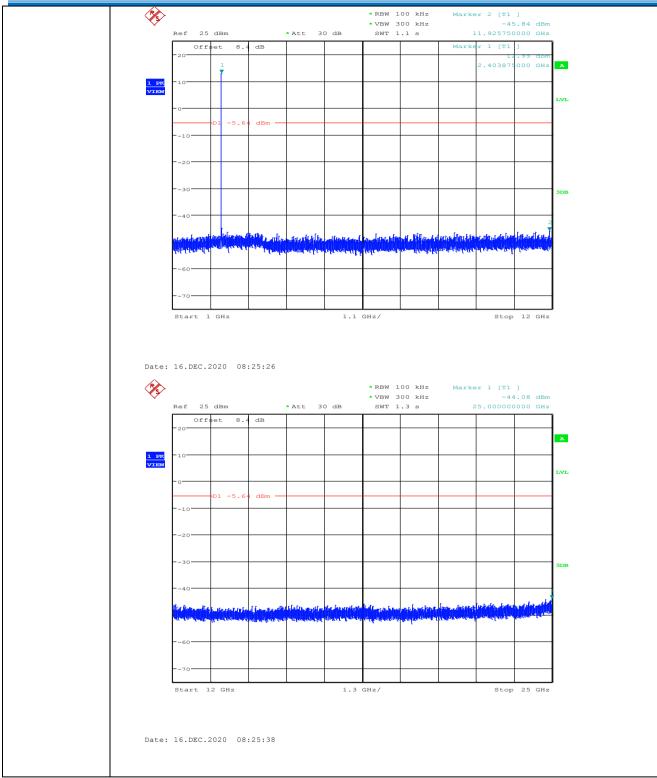


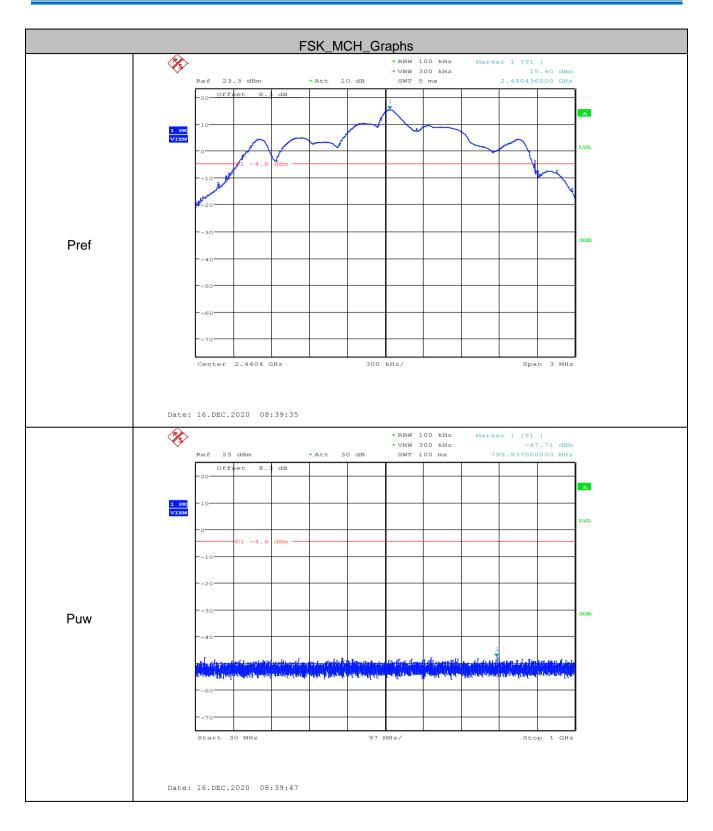
Test plot as follows:

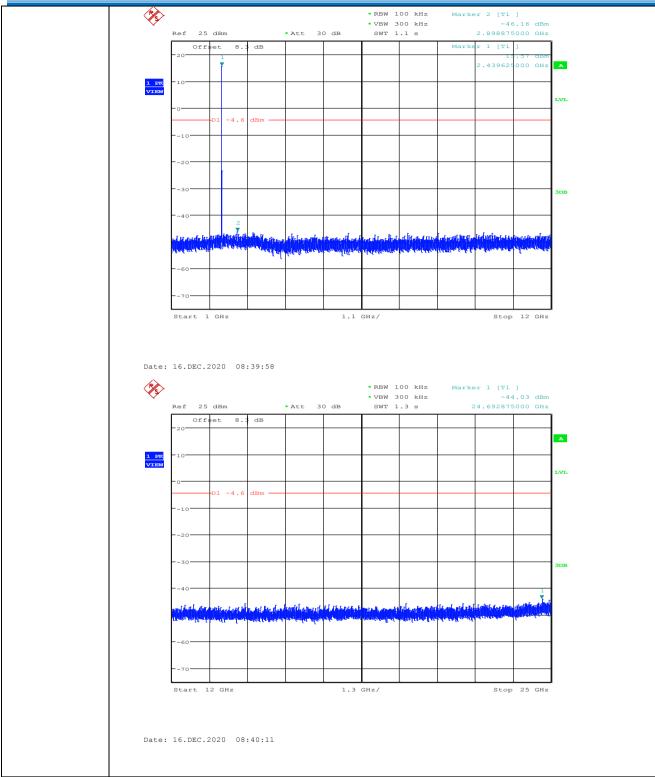
Shenzhen Huaxia Testing Technology Co., Ltd

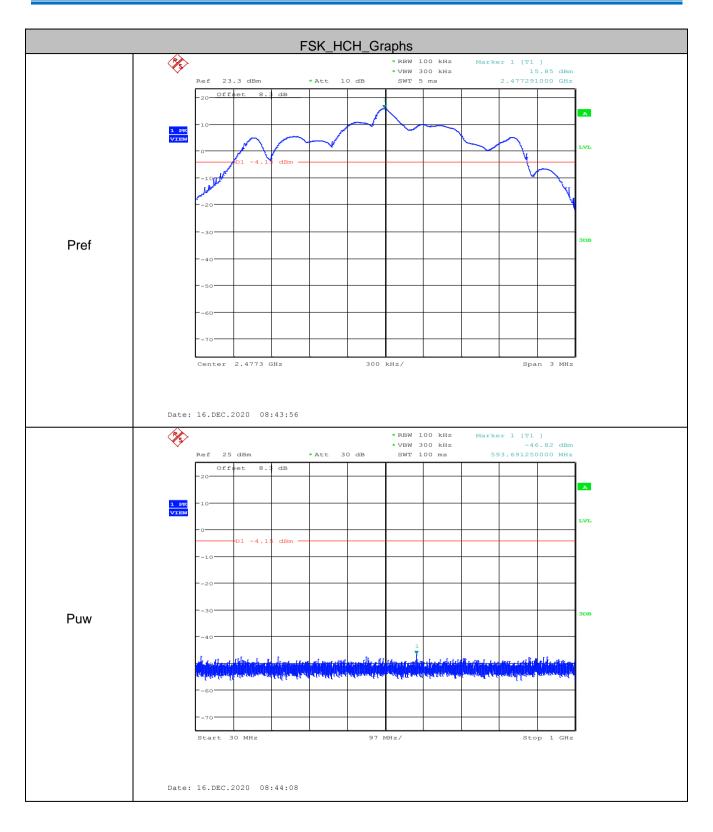


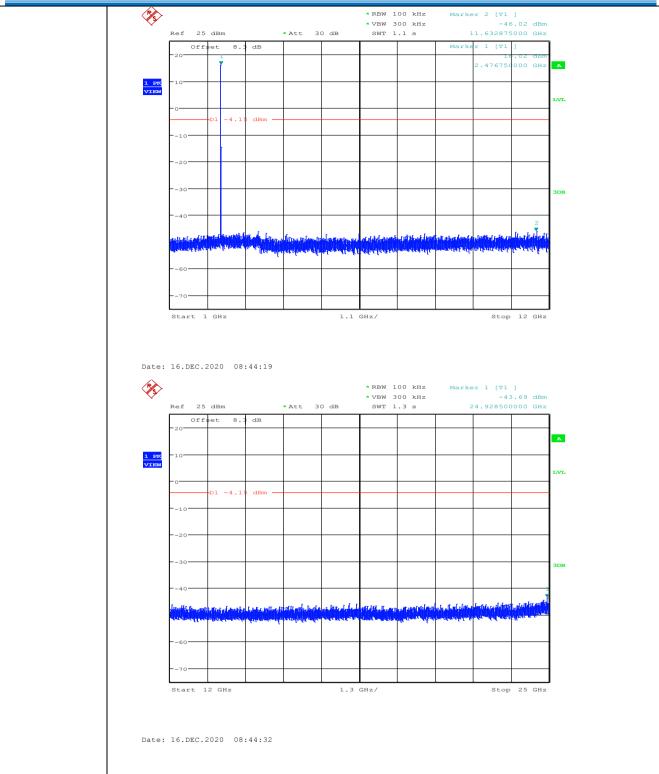
5.9 Spurious RF Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Test Setup:	Spectrum Analyzer E-U-T Non-Conducted Table Ground Reference Plane					
	Remark: Offset=cable loss+ attenuation factor.					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.					
Test Results:	Pass					









Remark:

Pre test 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

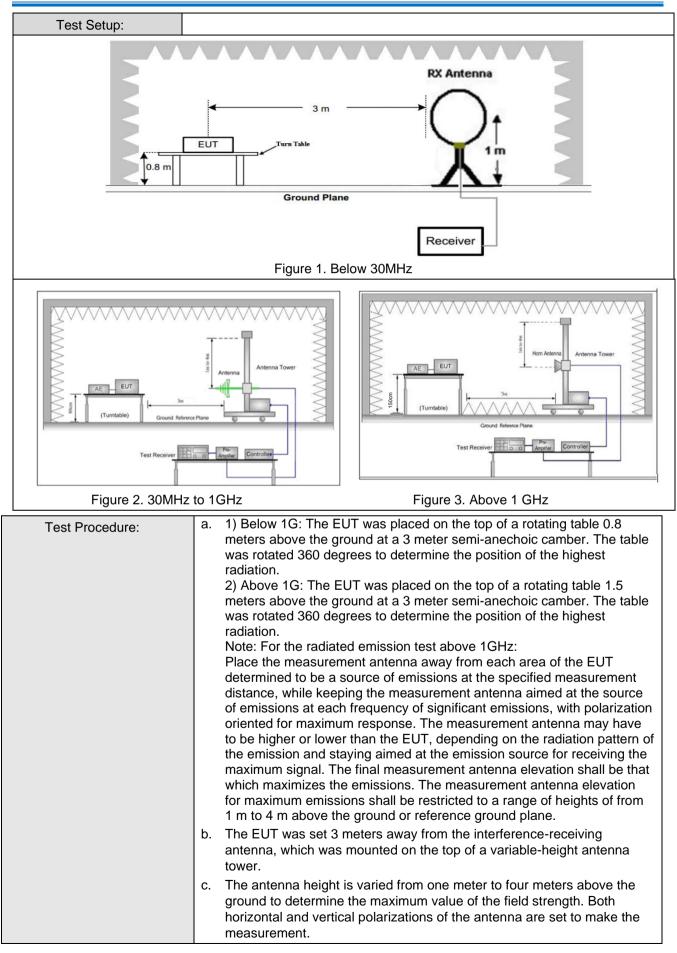
5.10Other requirements Frequency Hopping Spread Spectrum System

Test Requirement: 14 7 CFR Part 15C Section 15.247 (a)(1), (b) requirement: The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitter corresponding transmitters and shall shift frequencies in synchronization with the transmitter corresponding transmitters and shall shift frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the requilations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system and must distribute its transmission over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. Compliance for section 15.247(a)(1) According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialize with nine ones. • Number of shif	•	requency Hopping Spread Spectrum System
rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulation should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hoppets to avoid hopping on occupied channels is permitted. Compliance for section 15.247(a)(1) According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine stage shift register whose 6th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initializ with nine ones. Number of shift register stages: 9 Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom sequency Hopping Sequence as follow: 20 62 46 77 7 6 9 73 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and If bardwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shif frequ	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:
channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Compliance for section 15.247(a)(1) According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initializ with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2 ⁹ - 1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal) <i>Linear Feedback Shift Register for Generation of the PRBS sequence</i> An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 7 64 8 73 16 75 1 According to Bluetooth Core Specification, Bluetooth rearsmitter. According to Bluetooth Core Specification, Bluetooth rearsmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and Br bandwidths that match the hoppi	rate from a Pseudorandom on the average by each trar hopping channel bandwidth	ordered list of hopping frequencies. Each frequency must be used equally nsmitter. The system receivers shall have input bandwidths that match the s of their corresponding transmitters and shall shift frequencies in
the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Compliance for section 15.247(a)(1) According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initializ with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73 16 75 1 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and If bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.	channels during each trans receiver, must be designed transmitter be presented wi employing short transmission and must distribute its trans	mission. However, the system, consisting of both the transmitter and the to comply with all of the regulations in this section should the th a continuous data (or information) stream. In addition, a system on bursts must comply with the definition of a frequency hopping system
According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initializ with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73 16 75 1 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and If bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmited under the frequency hopping system with the pseudorandom for the prevence of	the system to recognize of independently chooses and The coordination of frequer avoiding the simultaneous of	ner users within the spectrum band so that it individually and I adapts its hopsets to avoid hopping on occupied channels is permitted. Incy hopping systems in any other manner for the express purpose of
<pre>stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initializ with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73 16 75 1 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and If bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shif frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom</pre>	Compliance for section 15	5.247(a)(1)
An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73 16 75 1 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom	outputs are added in a mod stage. The sequence begins with nine ones. • Number of shift register sta • Length of pseudo-random	ulo-two addition stage. And the result is fed back to the input of the first s with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ages: 9 sequence: 2 ⁹ -1 = 511 bits
An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73 16 75 1 Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom		
20 62 46 77 7 64 8 73 16 75 1 Image: Construction of the structure	Linear Feedback S	Shift Register for Generation of the PRBS sequence
 According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shif frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom 		
 According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shif frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g) According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom 		
According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom	According to Bluetooth Co bandwidths that match the	re Specification, Bluetooth receivers are designed to have input and IF e hopping channel bandwidths of any Bluetooth transmitters and shift
pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom	Compliance for section 15	5.247(g)
	pseudorandom hopping fre Bluetooth system is also tr	quency with a continuous data and the short burst transmission from the

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

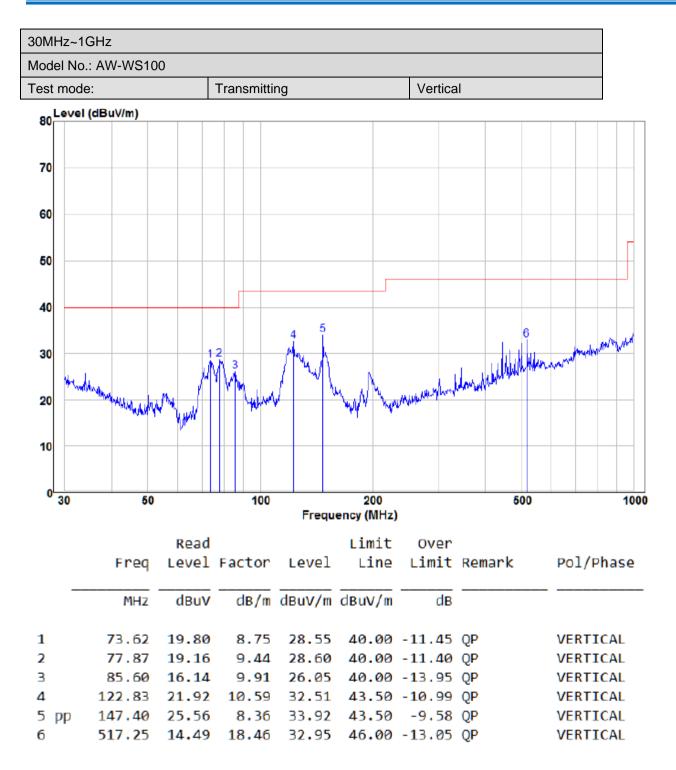
According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.



5.11 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark		
	0.009MHz-0.090MH	z	Peak	10kHz	z 30kHz	Peak		
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average		
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak		
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak		
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak		
	30MHz-1GHz		Peak	100 kH	lz 300kHz	Peak		
	Above 1GHz		Peak	1MHz	: 3MHz	Peak		
	Above TGH2		Peak	1MHz	10Hz ¹⁾	Average		
	1): VBW = 10 Hz or 1/T	1): VBW = 10 Hz or 1/T for average levels,						
	Mode		On Time (msec)		1/ T Minimum VBW (kHz			
	FSK		4.32	7 0.		.23		
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m		
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300		
	0.490MHz-1.705MHz	24	4000/F(kHz)	-	-	30		
	1.705MHz-30MHz		30	-	-	30		
	30MHz-88MHz		100	40.0	Quasi-peak	3		
	88MHz-216MHz		150	43.5	Quasi-peak	3		
	216MHz-960MHz 960MHz-1GHz		200	46.0	Quasi-peak	3		
			500	54.0	Quasi-peak	3		
	Above 1GHz 500 54.0 Average 3							
	Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	3 ab equi	ove the maxin pment under t	num perm æst. This p	itted average	emission limit		

	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified
	Bandwidth with Maximum Hold Mode.
	 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (241MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the FSK modulation is the worst case.
	Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass

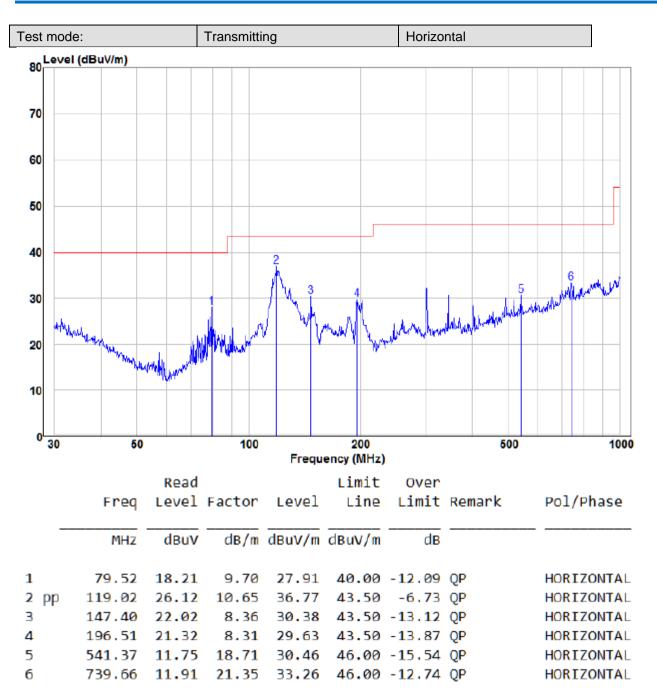

5.11.1 Radiated Emission below 1GHz

9KHz~30MHz

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement.

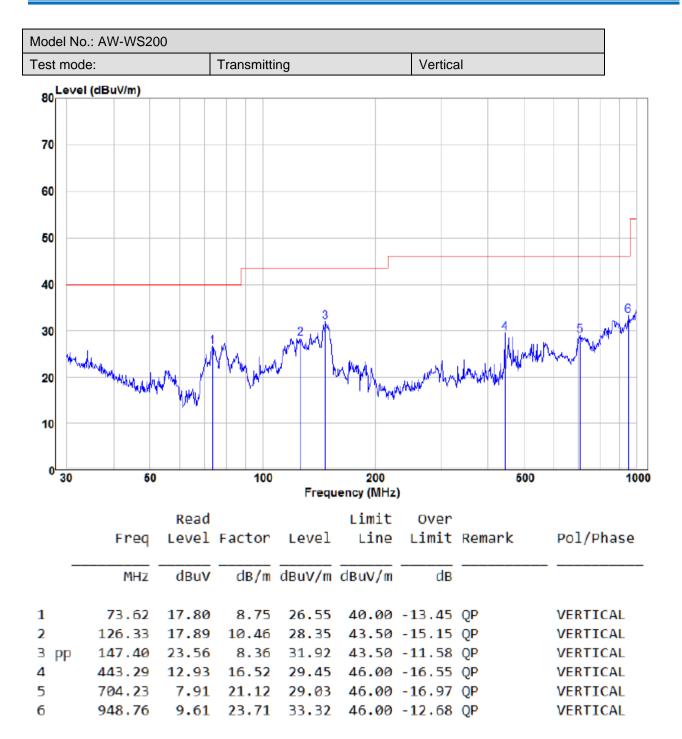
The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.

Remark:


The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

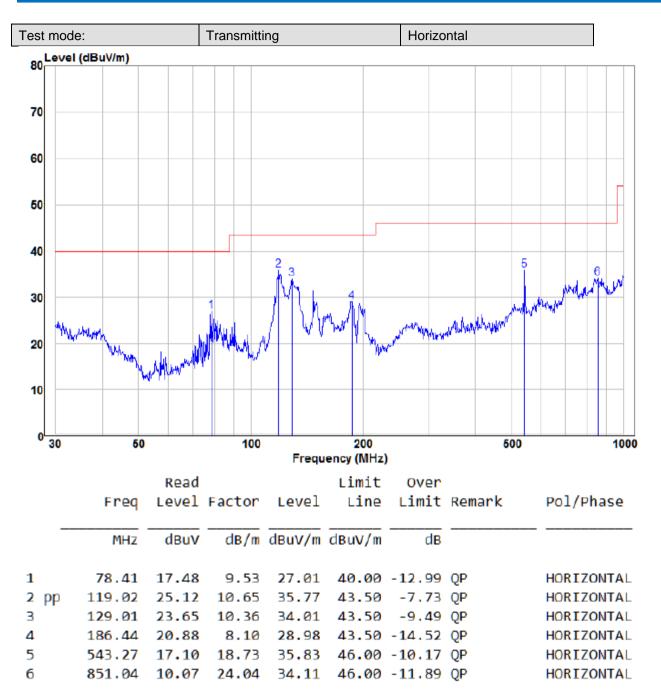

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

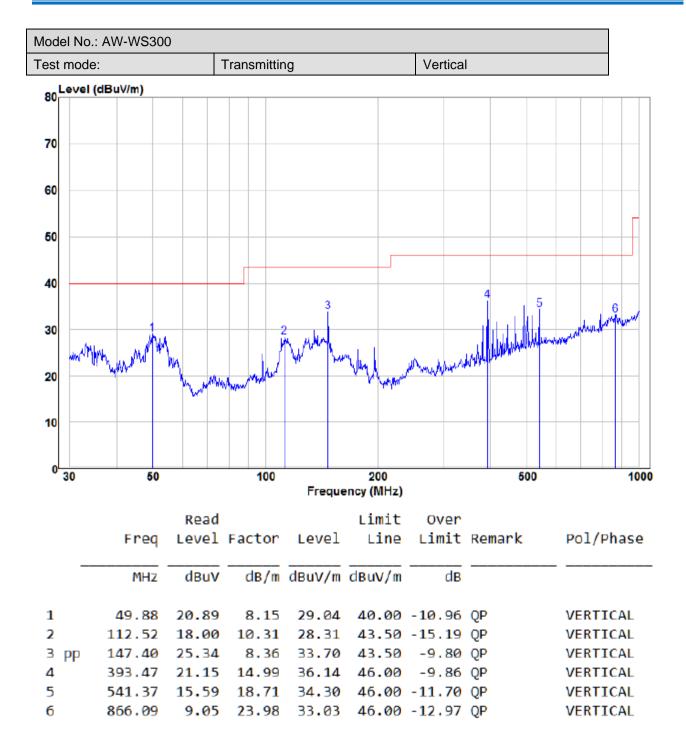
Level = Read Level + Factor,

Remark:


The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

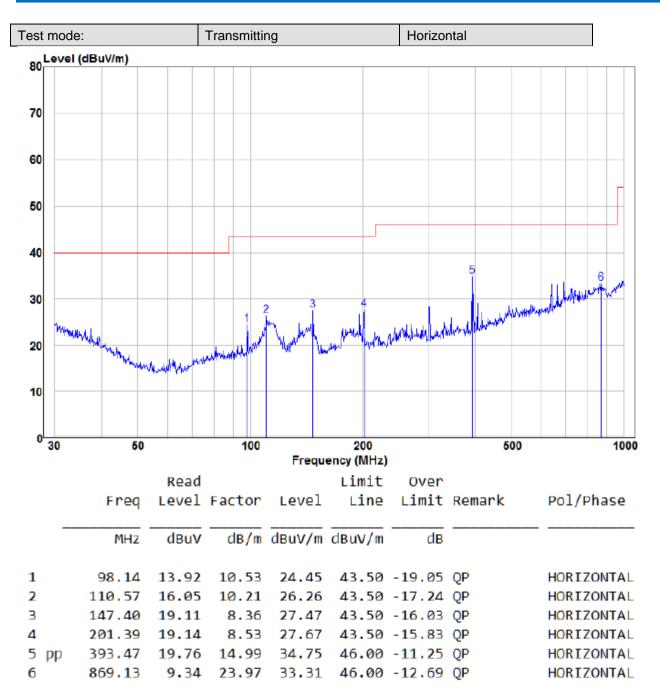

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Remark:


The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

5.11.2 Transmitter Emission above 1GHz

Model No.:	Model No.: AW-WS100										
Worse case	mode:	F	SK	Test chann	el:	Lowest					
Frequency (MHz)	Meter Reading	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Over (dB)	Detector Type	Ant. Pol. H/V				
2390	(dBµV) 55.55	- 9.2	46.35	(ubµv/iii) 74	-27.65	Peak	н				
		Ţ									
2400	54.53	-9.39	45.14	74	-28.86	Peak	Н				
4807	52.71	-4.32	48.39	74	-25.61	Peak	Н				
7210.5	48.78	1.02	49.80	74	-24.20	Peak	Н				
2390	54.52	-9.2	45.32	74	-28.68	Peak	v				
2400	56.04	-9.39	46.65	74	-27.35	Peak	V				
4807	53.78	-4.32	49.46	74	-24.54	Peak	V				
7210.5	48.89	1.02	49.91	74	-24.09	Peak	V				

Worse case	Worse case mode:		FSK		Test channel:		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880.8	50.81	-4.1	46.71	74	-27.29	peak	н
7321.2	49.09	1.52	50.61	74	-23.39	peak	н
4880.8	51.43	-4.1	47.33	74	-26.67	peak	V
7321.2	49.11	1.52	50.63	74	-23.37	peak	V

Worse case	mode:	F	SK	Test chann	el:	Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	55.18	-9.29	45.89	74	-28.11	Peak	н
4954.6	51.21	-4.03	47.18	74	-26.82	Peak	н
7431.9	48.77	1.58	50.35	74	-23.65	Peak	н
2483.5	53.89	-9.29	44.60	74	-29.40	Peak	v
4954.6	50.41	-4.03	46.38	74	-27.62	Peak	V
7431.9	49.68	1.58	51.26	74	-22.74	Peak	V

Model No.: AW-WS200										
Worse case	mode:	F	SK	Test chann	el:	Lowest				
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V			
2390	53.28	-9.2	44.08	74	-29.92	Peak	н			
2400	54.99	-9.39	45.60	74	-28.40	Peak	н			
4807	51.50	-4.32	47.18	74	-26.82	Peak	Н			
7210.5	49.38	1.02	50.40	74	-23.60	Peak	Н			
2390	56.11	-9.2	46.91	74	-27.09	Peak	v			
2400	55.74	-9.39	46.35	74	-27.65	Peak	V			
4807	53.97	-4.32	49.65	74	-24.35	Peak	V			
7210.5	49.59	1.02	50.61	74	-23.39	Peak	V			

Worse case	Worse case mode:		FSK		Test channel:		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880.8	50.93	-4.1	46.83	74	-27.17	peak	н
7321.2	51.11	1.52	52.63	74	-21.37	peak	н
4880.8	53.89	-4.1	49.79	74	-24.21	peak	V
7321.2	49.26	1.52	50.78	74	-23.22	peak	V

Worse case	mode:	FSK		Test chann	el:	Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	57.21	-9.29	47.92	74	-26.08	Peak	н
4954.6	52.82	-4.03	48.79	74	-25.21	Peak	н
7431.9	51.15	1.58	52.73	74	-21.27	Peak	н
2483.5	54.56	-9.29	45.27	74	-28.73	Peak	v
4954.6	49.11	-4.03	45.08	74	-28.92	Peak	V
7431.9	51.12	1.58	52.70	74	-21.30	Peak	V

Model No.: AW-WS300							
Worse case mode:		FSK		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	55.56	-9.2	46.36	74	-27.64	Peak	н
2400	56.01	-9.39	46.62	74	-27.38	Peak	н
4807	52.31	-4.32	47.99	74	-26.01	Peak	н
7210.5	49.19	1.02	50.21	74	-23.79	Peak	н
2390	54.71	-9.2	45.51	74	-28.49	Peak	v
2400	55.17	-9.39	45.78	74	-28.22	Peak	V
4807	53.43	-4.32	49.11	74	-24.89	Peak	V
7210.5	50.74	1.02	51.76	74	-22.24	Peak	V

Worse case mode:		FSK		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880.8	50.70	-4.1	46.60	74	-27.40	peak	н
7321.2	49.10	1.52	50.62	74	-23.38	peak	н
4880.8	53.28	-4.1	49.18	74	-24.82	peak	V
7321.2	50.42	1.52	51.94	74	-22.06	peak	V

Worse case mode:		FSK		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	56.10	-9.29	46.81	74	-27.19	Peak	н
4954.6	50.31	-4.03	46.28	74	-27.72	Peak	н
7431.9	49.05	1.58	50.63	74	-23.37	Peak	н
2483.5	54.70	-9.29	45.41	74	-28.59	Peak	v
4954.6	51.19	-4.03	47.16	74	-26.84	Peak	V
7431.9	48.56	1.58	50.14	74	-23.86	Peak	V

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

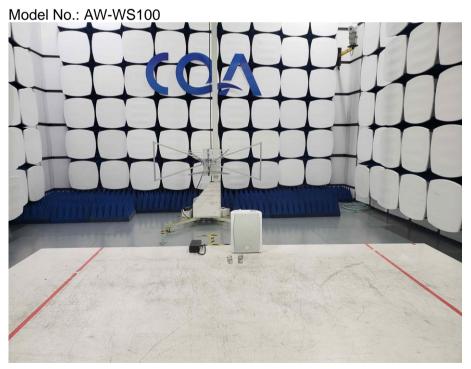
Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

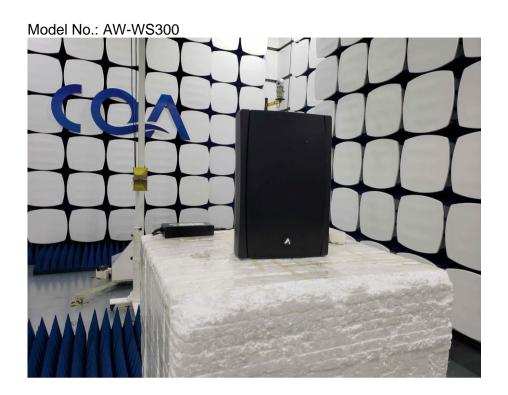
6 Photographs - EUT Test Setup

6.1 Radiated Emission

9kHz~30MHz:



30MHz~1GHz:



<image>

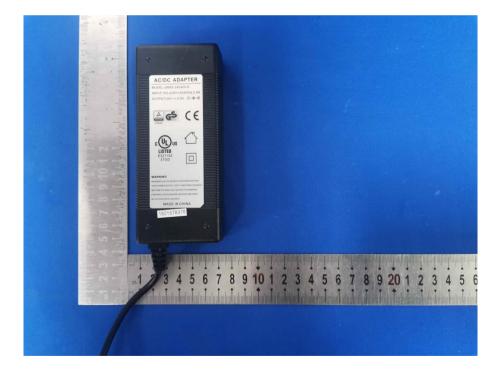
6.2 Conducted Emission

Model No.: AW-WS100

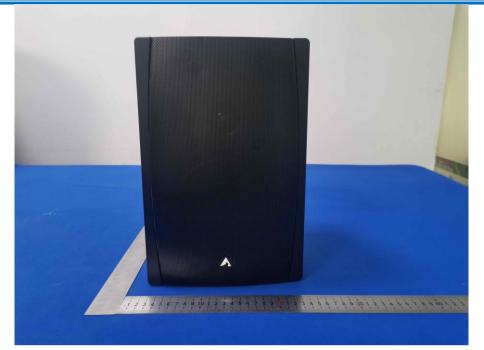


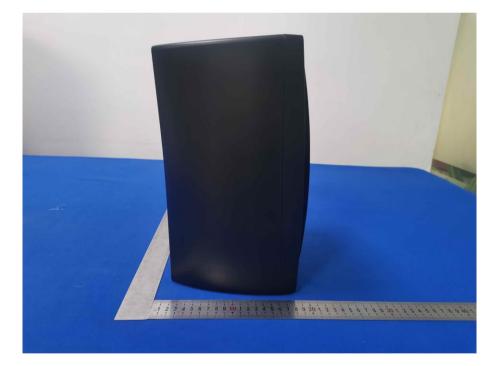
Model No.: AW-WS200

Model No.: AW-WS300

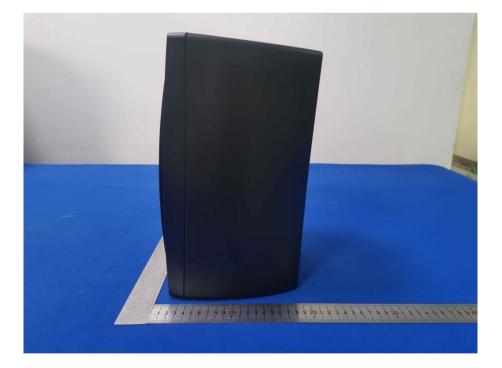


7 Photographs - EUT Constructional Details

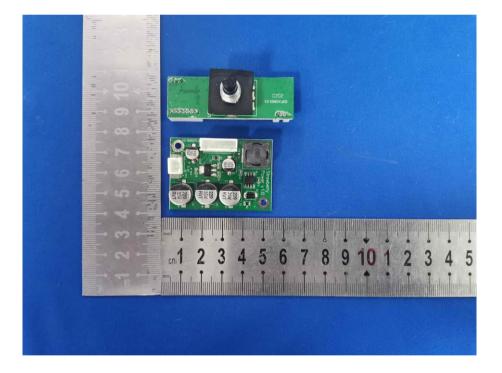

Model No.: AW-WS300

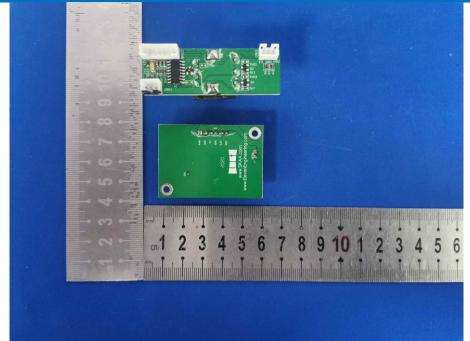


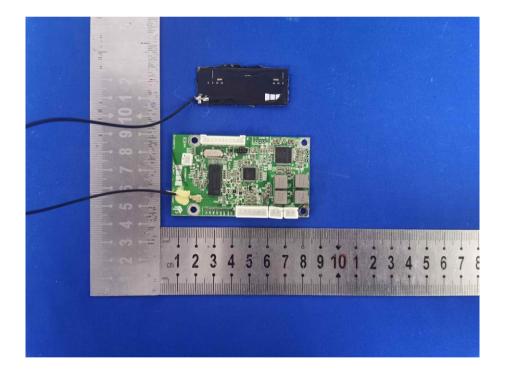
Shenzhen Huaxia Testing Technology Co., Ltd

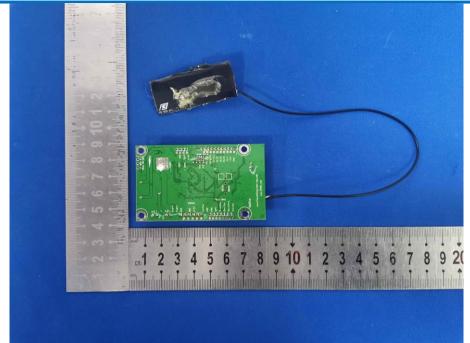


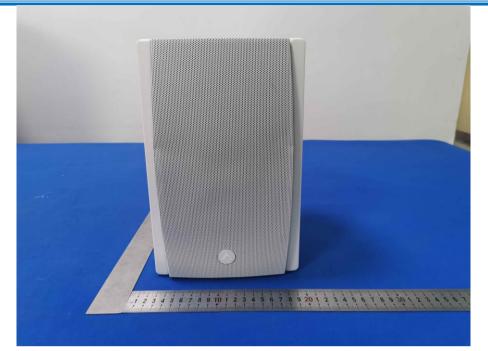
Shenzhen Huaxia Testing Technology Co., Ltd

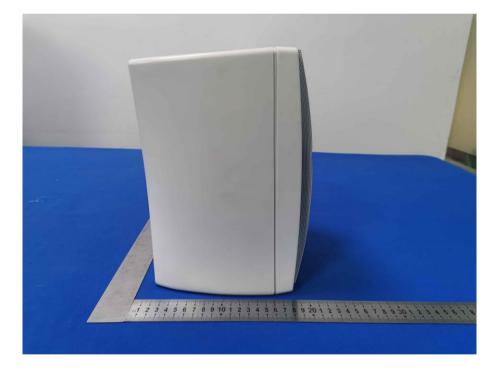


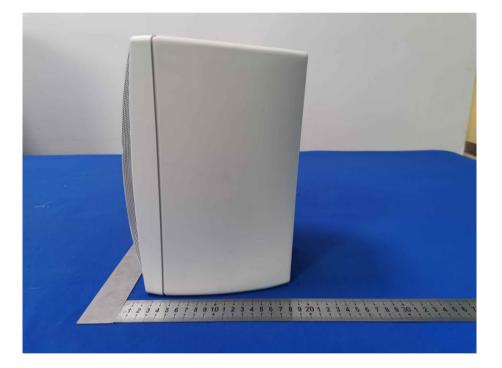


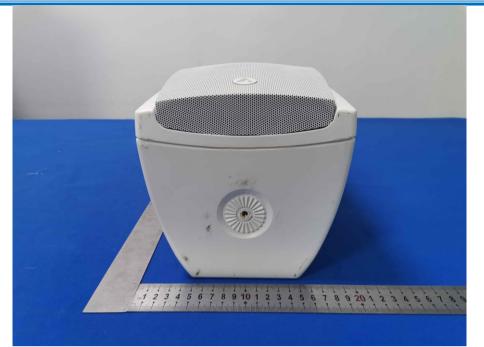




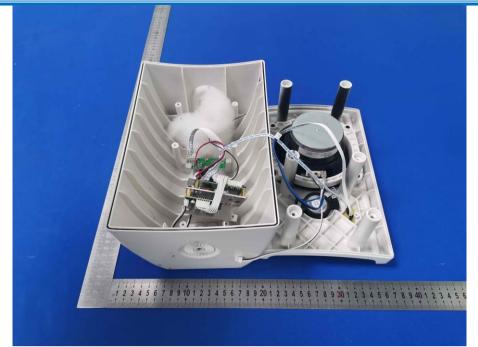


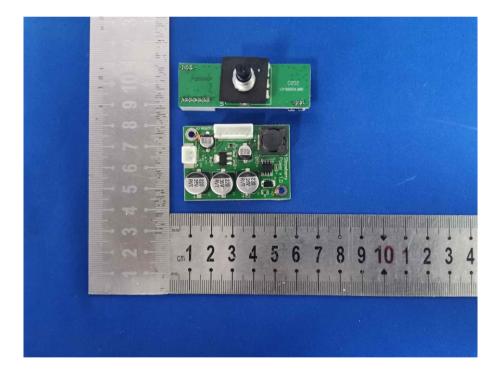

Model No.: AW-WS200

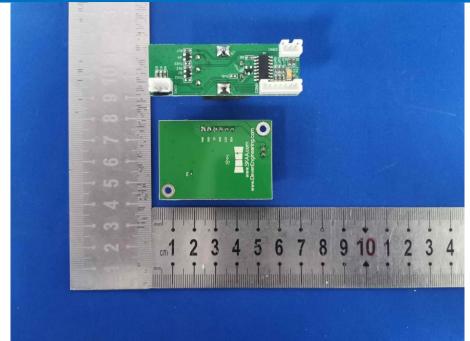


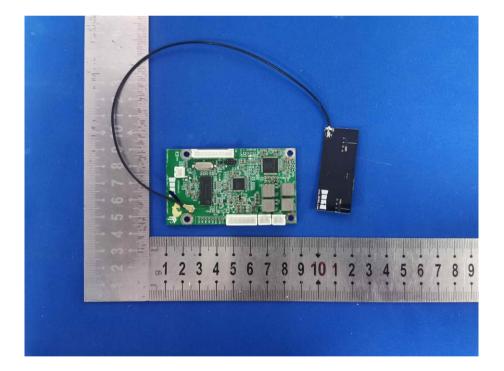


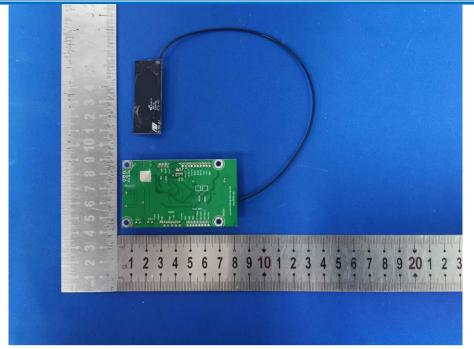


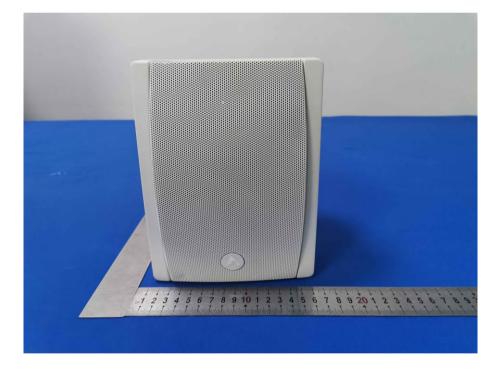




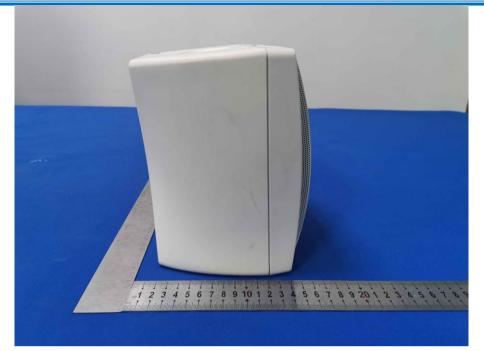


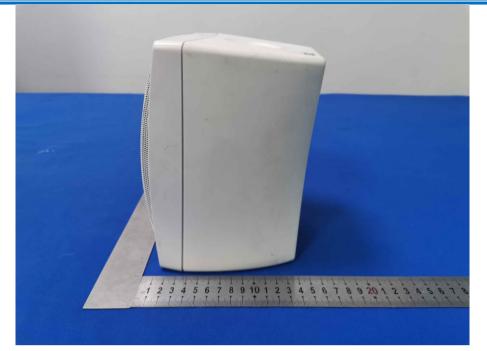


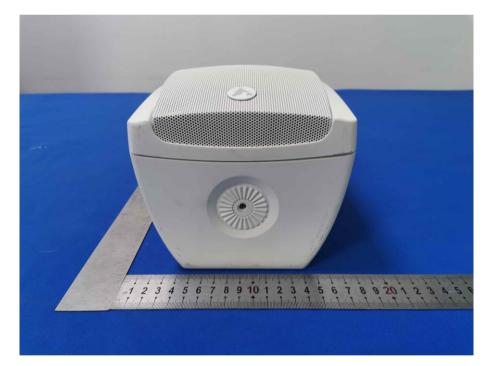




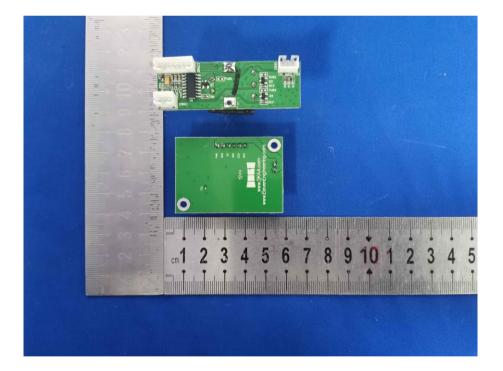
Model No.: AW-WS100

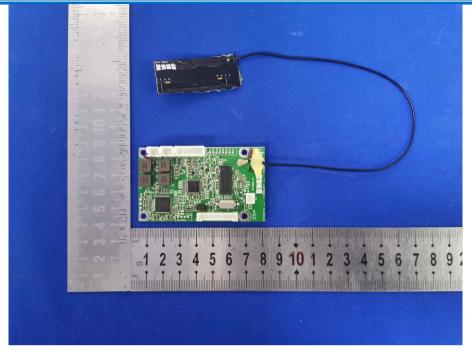


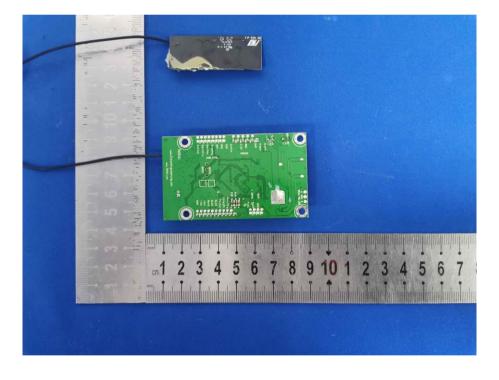












The End