1. MAXIMUM PERMISSIBLE EXPOSURE (MPE)

1.1 General Information

Client Information

Applicant:
Address of applicant:

Manufacturer:
Address of manufacturer:

Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd. 4F \& 6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen, China

Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd. $4 \mathrm{~F} \& 6 \mathrm{~F}$, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen, China

10 inch WIFI Digital Photo Frame
Skylight
SKYV3
/
DC 5V
MODEL: S85A02
INPUT: AC100-240V, $50 / 60 \mathrm{~Hz}, 0.5 \mathrm{~A}$; OUTPUT: DC5V, 2.0A
2AABK-SKYV3
Fixed device

Technical Characteristics of EUT:

Wi-Fi (2.4G)

Support Standards:
Frequency Range:
RF Output Power:
Type of Modulation:
Quantity of Channels:
Channel Separation:
Type of Antenna:
Antenna Gain:
Wi-Fi (5G)
Support Standards:
Frequency Range:
RF Output Power:
Type of Modulation:
Quantity of Channels:
Type of Antenna:
Antenna Gain:
802.11b, 802.11g, 802.11n
$2412-2462 \mathrm{MHz}$ for $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}$ (HT20)
$2422-2452 \mathrm{MHz}$ for 802.11 n (HT40)
13.89 dBm (Conducted)

DBPSK,BPSK,DQPSK,QPSK,16QAM,64QAM
11 for $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}$ (HT20); 7 for $802.11 \mathrm{n}(\mathrm{HT} 40)$
5 MHz
Integral Antenna
2.51 dBi
802.11a, 802.11n(HT20), 802.11n-HT40, $5150-5250 \mathrm{MHz}, 5250-5350 \mathrm{MHz}$,
$5470-5725 \mathrm{MHz}, 5725-5850 \mathrm{MHz}$
9.63 dBm (Conducted)

BPSK, QPSK,16QAM,64QAM
15
Integral Antenna
3.58 dBi

1.2 Standard Applicable

According to $\S 1.1307(\mathrm{~b})(1)$ and KDB 447498 D01 General RF Exposure Guidance v06, system operating under the provisions of this section shall be operating in a manner that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure.
(a) Limits for Occupational / Controlled Exposure

Frequency range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S (minutes)
$0.3-3.0$	614	1.63	$(100)^{*}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$(900 / \mathrm{f})^{*}$	6
$30-300$	61.4	0.163	1.0	6
$300-1500$	$/$	$/$	$\mathrm{F} / 300$	6
$1500-100000$	$/$	$/$	5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S (minutes)
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$(180 / \mathrm{f})^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	$/$	$/$	$\mathrm{F} / 1500$	30
$1500-100000$	$/$	$/$	1	30

Note: $\mathrm{f}=$ frequency in $\mathrm{MHz}: *=$ Plane-wave equivalents power density

1.3 MPE Calculation Method

$\mathrm{S}=(30 * \mathrm{P} * \mathrm{G}) /\left(377 * \mathrm{R}^{2}\right)$
$\mathrm{S}=$ power density (in appropriate units, e.g., $\mathrm{mw} / \mathrm{cm}^{2}$)
$\mathrm{P}=$ power input to the antenna (in appropriate units, e.g., mw)
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor is normally numeric gain.
$\mathrm{R}=$ distance to the center of radiation of the antenna (in appropriate units, e.g., cm)

1.4 MPE Calculation Result

For Wi-Fi (2.4G)
Maximum Tune-Up output power: $\underline{14(\mathrm{dBm})}$
Maximum peak output power at antenna input terminal: $\underline{25.12(\mathrm{~mW})}$
Prediction distance: $>20(\mathrm{~cm})$
Prediction frequency: $2462(\mathrm{MHz})$
Antenna gain: 2.51 (dBi)
Directional gain (numeric gain): 1.78
The worst case is power density at prediction frequency at $20 \mathrm{~cm}: \underline{0.0089\left(\mathrm{mw} / \mathrm{cm}^{2}\right)}$
MPE limit for general population exposure at prediction frequency: $1\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$

For Wi-Fi (5G)
Maximum Tune-Up output power: $10(\mathrm{dBm})$
Maximum peak output power at antenna input terminal: $\underline{10.00(\mathrm{~mW})}$
Prediction distance: $>20(\mathrm{~cm})$
Prediction frequency: $5260(\mathrm{MHz})$
Antenna gain: 3.58 (dBi)
Directional gain (numeric gain): 2.28
The worst case is power density at prediction frequency at $20 \mathrm{~cm}: \underline{0.0045\left(\mathrm{mw} / \mathrm{cm}^{2}\right)}$
MPE limit for general population exposure at prediction frequency: $1\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$

Result: Pass

