

TEST REPORT

Report No	CHTEW21040116	Report Verification:	
Project No	SHT2103109801EW		
FCC ID:	2AABKSKYLIGHT2		Reportivo: CHTEW21040116
Applicant's name:	Shenzhen Chuangwei E	lectronic Appliance T	ech Co.,Ltd.
Address	4F & 6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen,China		
Test item description:	10 inch WIFI Digital Pho	to Frame	
Trade Mark	Skylight		
Model/Type reference	Skylight 2		
Listed Model(s)	D104S		
Standard:	FCC CFR Title 47 Part 1	5 Subpart C Section 1	5.247
Date of receipt of test sample	Apr. 01, 2021		
Date of testing	Apr. 02, 2021- Apr. 21, 20	021	
Date of issue	Apr. 22, 2021		
Result	PASS		
Compiled by (Position+Printed name+Signature):	File administrator Silvia Li	Si	via Li
Supervised by (Position+Printed name+Signature):	Project Engineer Aaron Fa	ang Aar	Via Li on.Fang ww.SH4
Approved by (Position+Printed name+Signature):	RF Manager Hans Hu	H	umsHy
Testing Laboratory Name: :	Shenzhen Huatongwei I	nternational Inspection	on Co., Ltd.
Address	1/F, Bldg 3, Hongfa Hi-teo Tianliao, Gongming, Sher		yu Road,
Shenzhen Huatongwei International Inspe	ection Co., Ltd. All rights res	erved.	
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.			
The test report merely correspond to the test	t sample.		

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1. 1.2.	Test Standards Report version	3 3
<u>2.</u>	TEST DESCRIPTION	4
<u></u>		<u> </u>
<u>3.</u>	SUMMARY	55_
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Radio Specification Description	5
3.4.	Testing Laboratory Information	6
<u>4.</u>	TEST CONFIGURATION	77
4.1.	Test frequency list	7
4.2.	Descriptions of Test mode	7
4.3.	Test mode	7
4.4.	Support unit used in test configuration and system	8
4.5.	Testing environmental condition	8
4.6.	Measurement uncertainty	8
4.7.	Equipment Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna Requirement	11
5.2.	AC Conducted Emission	12
5.3.	Peak Output Power	15
5.4.	Power Spectral Density	16
5.5.	6dB bandwidth	17
5.6.	99% Occupied Bandwidth	18
5.7.	Duty Cycle	19
5.8.	Conducted Band edge and Spurious Emission	20
5.9.	Radiated Band edge Emission	22
5.10.	Radiated Spurious Emission	26
<u>6.</u>	TEST SETUP PHOTOS	32
<u>7.</u>	EXTERANAL AND INTERNAL PHOTOS	34
<u>8.</u>	APPENDIX REPORT	38

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- <u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
- ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices
- KDB 558074 D01 15.247 Meas Guidance v05r02: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	2021-04-22	Original

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result
5.1	Antenna Requirement	15.203/15.247(c)	PASS
5.2	AC Conducted Emission	15.207	PASS
5.3	Peak Output Power	15.247(b)(3)	PASS
5.4	Power Spectral Density	15.247(e)	PASS
5.5	6dB Bandwidth	15.247(a)(2)	PASS
5.6	99% Occupied Bandwidth	-	PASS ^{*1}
5.7	Duty cycle	-	PASS ^{*1}
5.8	Conducted Band Edge and Spurious Emission	15.247(d)/15.205	PASS
5.9	Radiated Band Edge Emission	15.205/15.209	PASS
5.10	Radiated Spurious Emission	15.247(d)/15.205/15.209	PASS

Note:

- The measurement uncertainty is not included in the test result.
- *1: No requirement on standard, only report these test data.

3. SUMMARY

3.1. Client Information

Applicant:	Shenzhen Chuangwei Electronic Appliance Tech Co.,Ltd.	
Address:	4F & 6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen,China	
Manufacturer:	Shenzhen Chuangwei Electronic Appliance Tech Co.,Ltd.	
Address:	4F & 6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen,China	

3.2. Product Description

Name of EUT:	10 inch WIFI Digital Photo Frame
Trade Mark:	Skylight
Model No.:	Skylight 2
Listed Model(s):	D104S
Power supply:	DC 5.0V
Battery Information:	-
Adapter Information:	Model:S85A22 Input: AC100-240V, 50/60Hz, 0.5A Output: 5.0Vdc, 2.0A
Hardware version:	D104SC-MB-D4-V01
Software version:	D104S.V2.20.2

3.3. Radio Specification Description

Support type ^{*2} :	802.11b, 802.11g, 802.11n(HT20)	
Modulation: DSSS for 802.11b OFDM for 802.11g/802.11n(HT20)		
Operation frequency:	2412MHz~2462MHz for 802.11b/802.11g/802.11n(HT20)	
Channel number:	11 for 802.11b/802.11g/802.11n(HT20)	
Channel separation:	5MHz	
Antenna type:	FPC Antenna	
Antenna gain:	4.74dBi	

Note:

*2: only show the RF function associated with this report.

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Phone: 86-755-26715499 E-mail: <u>cs@szhtw.com.cn</u> <u>http://www.szhtw.com.cn</u>		
Qualifications	Туре	Accreditation Number	
Qualifications	FCC	762235	

4. TEST CONFIGURATION

4.1. Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below blue front.

802.11b/802.11g/802.11n(HT20)		
Channel Frequency (MHz)		
01	2412	
02	2417	
• :	· :	
06	2437	
• :	· :	
10	2457	
11	2462	

4.2. Descriptions of Test mode

Preliminary tests were performed in different data rates, final test modes are considering the modulation and worse data rates as below table.

Modulation	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(HT20)	MCS0	

4.3. Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

4.4. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Wheth	Whether support unit is used?				
~	No				
Item	Equipement	Trade Name	Model No.	FCC ID	Power cord
1					
2					

4.5. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

4.6. Measurement uncertainty

Test Item	Measurement Uncertainty
AC Conducted Emission (150kHz~30MHz)	3.02 dB
Radiated Emission (30MHz~1000MHz	4.90 dB
Radiated Emissions (1GHz~25GHz)	4.96 dB
Peak Output Power	0.51 dB
Power Spectral Density	0.51 dB
Conducted Spurious Emission	0.51 dB
6dB Bandwidth	70 Hz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.7. Equipment Used during the Test

•	Conducted E	mission					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2020/10/19	2021/10/18
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2020/10/15	2021/10/14
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2020/10/15	2021/10/14
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2020/10/15	2021/10/14
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated emi	ssion-6th test sit	te				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2021/09/29
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2020/10/19	2021/10/18
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/04/06	2022/04/05
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/04/06	2022/04/05
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2020/11/13	2021/11/12
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2020/05/27	2021/05/26
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2020/05/27	2021/05/26
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated em	ission-7th test s	ite				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2021/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2020/10/20	2021/10/19
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2018/10/11	2021/10/11
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2020/11/13	2021/11/12
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2020/05/23	2021/05/22
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2020/05/10	2021/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2020/05/10	202105/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-03	6m 3GHz RG Serisa	N/A	2020/05/10	2021/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2020/05/10	2021/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	2020/05/10	2021/05/09
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A

•	RF Conducted Method					
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum Analyzer	R&S	FSV40	100048	2020/10/19	2021/10/18
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2020/10/19	2021/10/18
•	Power Meter	Anritsu	ML249A	N/A	2020/10/19	2021/10/18
0	Radio communication tester	R&S	CMW500	137688-Lv	2020/10/19	2021/10/18

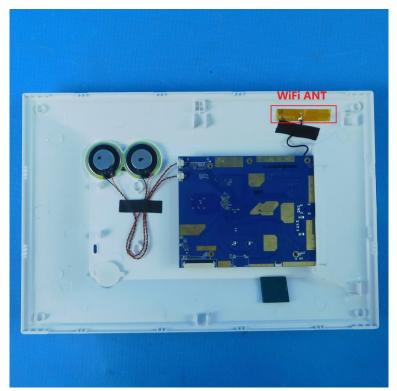
5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

<u>Requirement</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

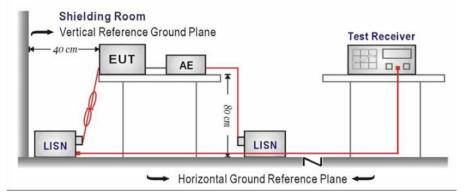
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULT

☑ Passed □ Not Applicable

The antenna type is a FPC antenna, the directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. AC Conducted Emission


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

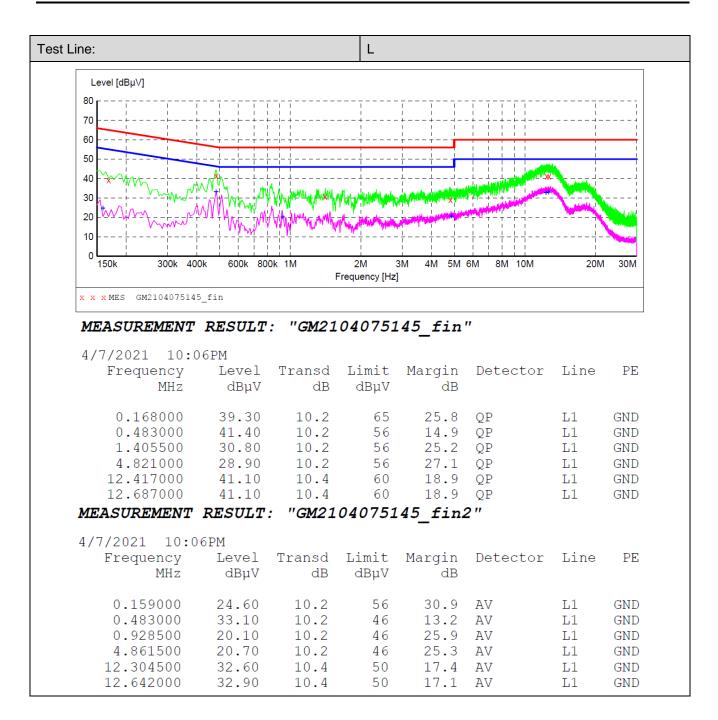
	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

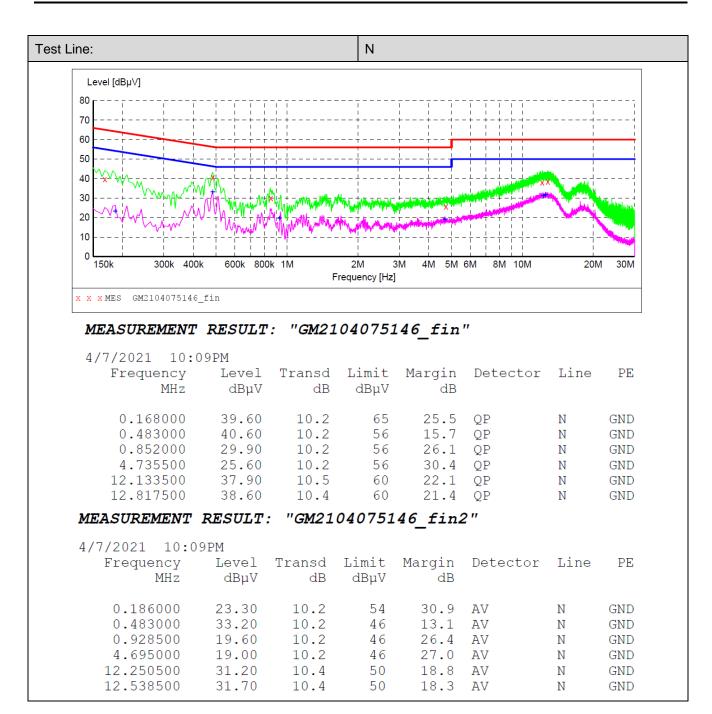
* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

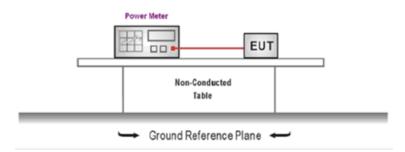

TEST MODE:


Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

Shenzhen Huatongwei International Inspection Co., Ltd.



5.3. Peak Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10 and KDB 558074 D01 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.
- 4. Record the measurement data.

TEST MODE:

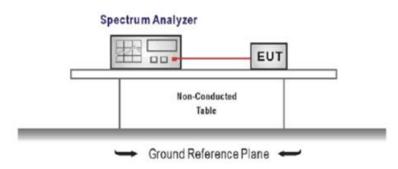
Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST Data

Please refer to appendix A on the appendix report


5.4. Power Spectral Density

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

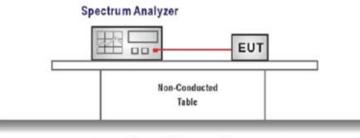
Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST Data

Please refer to appendix B on the appendix report


5.5. 6dB bandwidth

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

➡ Ground Reference Plane

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency

Span=2 x DTS bandwidth

RBW = 100 kHz, VBW \ge 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

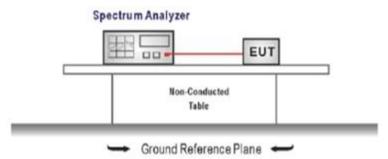
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT

TEST Data


Please refer to appendix C on the appendix report

5.6. 99% Occupied Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =channel center frequency Span≥1.5 x OBW RBW = 1%~5%OBW VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

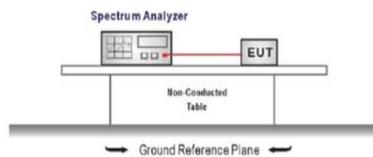
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable


TEST Data

Please refer to appendix D on the appendix report

5.7. Duty Cycle

N/A

TEST CONFIGURATION

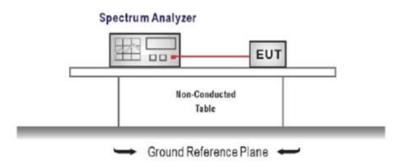
TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span=zero span, Frequency=centered channel, RBW= 1 MHz, VBW ≥ RBW Sweep=as necessary to capture the entire dwell time, Detector function = peak, Trigger mode
- 4. Measure and record the duty cycle data

TEST MODE:

Please refer to the clause 4.2

TEST Data


Please refer to appendix E on the appendix report

5.8. Conducted Band edge and Spurious Emission

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Establish a reference level by using the following procedure Center frequency=DTS channel center frequency The span = 1.5 times the DTS bandwidth. RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold
 - Allow trace to fully stabilize

Use the peak marker function to determine the maximum PSD level

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

3. Emission level measurement

Set the center frequency and span to encompass frequency range to be measured

RBW = 100 kHz, VBW \ge 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum amplitude level.

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE:

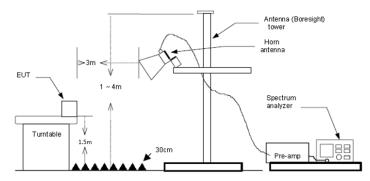
Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST Data

Please refer to appendix F on the appendix report


5.9. Radiated Band edge Emission

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement.
- 5. Use the following spectrum analyzer settings:
 - a) Span shall wide enough to fully capture the emission being measured
 - b) Set RBW=100kHz for <1GHz, VBW=3*RBW, Sweep time=auto, Detector=peak, Trace=max hold
 - c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- − VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- 3) Average measurement was not performed if peak level is lower than average limit(54 dBuV/m).

Туре		802.11b		Test channel	(CH01		Polarity		Horizontal
	Mark	Frequency MHz	Readin dBuV/	•	Cable dB	Preamp dB	Leve dBuV/		Over lim:	
	1 2	2310.00 2390.01	31.93 36.80	27.96 27.72	7.30 7.72	37.56 37.45	49.63 54.79			37 Peak 21 Peak
	Mark	MHz	dBuV/	m dB	Cable dB	dB	Level dBuV/m	n dBuV/m	Over limit	t
	1 2	2310.00 2390.01	27.08 26.04	27.96 27.72	7.30 7.72	37.56 37.45		78 54.00 03 54.00	-9.22 -9.97	2 Average 7 Average
Туре		802.11b		Test channel	0	CH01		Polarity		Vertical
	Mark	Frequency MHz	Readir dBuV/	<u> </u>	Cable dB		Leve dBuV/		Over limi	
	1 2	2310.00 2390.01		27.96 27.72	7.30 7.72		49.54 49.43	74.00		6 Peak 7 Peak
	Mark	Frequency MHz	Readin dBuV/r		Cable dB	Preamp dB	Level dBuV/m		Over limit	
	1 2	2310.00 2390.01	26.66 26.26	27.96 27.72	7.30 7.72	37.56 37.45	44. 44.			4 Average 5 Average

Туре		802.11b		Test channel		CH11	Po	olarity	Horizontal
	Mark	Frequency MHz	Readin dBuV/	•	Cable dB	e Preamp dB	Level dBuV/m		ver Remark imit
	1 2	2483.49 2500.00	37.23 32.33	27.43 27.40	7.80 7.81	37.26	55.20 50.28	74.00 -18	8.80 Peak 3.72 Peak
	Mark	Frequency MHz	Readin dBuV/	•	Cable dB	Preamp dB	Level dBuV/m	Limit Ov dBuV/m li	er Remark mit
	1 2	2483.49 2500.00	26.82 25.87	27.43 27.40	7.80 7.81	37.26 37.26	44.79 43.82		.21 Average .18 Average
Туре		802.11b		Test channel		CH11	Po	olarity	Vertical
	Mark	Frequency MHz	Readin dBuV/	•	Cable dB	e Preamp dB	Level dBuV/m		ver Remark imit
	1 2	2483.49 2500.00	32.35 31.38	27.43 27.40	7.80 7.81	37.26 37.26	50.32 49.33		3.68 Peak 4.67 Peak
	Mark	Frequency MHz	Reading dBuV/m		Cable dB	Preamp dB	Level dBuV/m	Limit Ove dBuV/m lim	
	1 2	2483.49 2500.00	26.64 25.79		7.80 7.81	37.26 37.26	44.61 43.74	54.00 -9. 54.00 -10.	•

Туре		802.11g		Test channel	C	CH01	F	Polarity		Horizontal
	Mark	Frequency MHz	Reading dBuV/n	·	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limi	
	1 2	2310.00 2390.01	33.14 33.25	27.96 27.72	7.30 7.72	37.56 37.45	50.84 51.24		-23.1 -22.7	.6 Peak '6 Peak
	Mark	Frequency MHz	Reading dBuV/m	·	Cable dB	Preamp dB	Level dBuV/m		Over limit	Remark
	1	2310.00	26.84		7.30	37.56	44.54			Average
	2 3	2387.85 2390.01	34.56 33.55		7.71 7.72	37.45 37.45	52.54 51.54			Average Average
Туре		802.11g		Test channel	C	CH01	F	Polarity		Vertical
	Mark	Frequency MHz	Readin dBuV/	•	Cable dB	Preamp dB	Level dBuV/m		Over limi	
	1	2310.00	32.44	27.96	7.30	37.56	50.14		-23.8	
	2	2390.01	32.46	27.72	7.72	37.45	50.45	74.00	-23.5	i5 Peak
	Mark	Frequency MHz	Readin dBuV/		Cable dB	Preamp dB	Level dBuV/m		Over limit	Remark
	1	2310.00	26.44		7.30	37.56	44.14			Average
	2	2390.01	26.23	27.72	7.72	37.45	44.2	2 54.00	-9.78	Average

Туре		802.11g		Test channel	С	:H11	P	olarity	ł	Horizontal
	Mark	Frequency MHz	Reading dBuV/m		Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2	2483.49 2500.00	42.00 33.44	27.43 27.40	7.80 7.81	37.26 37.26	59.97 51.39	74.00 74.00		3 Peak L Peak
	Mark	Frequency MHz	Readin dBuV/		Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2	2483.49 2500.00	33.44 26.18	27.43 27.40	7.80 7.81	37.26 37.26	51.41 44.13		-2.59 -9.87	
Туре		802.11g		Test channel	С	:H11	P	olarity	١	Vertical
	Mark	Frequency MHz	Readin dBuV/	•	Cable dB	Preamp dB	Level dBuV/m		Over limi	
	1 2	2483.49 2500.00	33.04 32.16	27.43 27.40	7.80 7.81	37.26 37.26	51.01 50.11	74.00 74.00	-22.9 -23.8	9 Peak 9 Peak
	Mark	Frequency MHz	Readin dBuV/	•	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2	2483.49 2500.00	26.46 25.22	27.43 27.40	7.80 7.81	37.26 37.26	44.43 43.17		-9.57 -10.83	Average Average

Туре		802.11n(H	HT20)	Test channel	(CH01		Polarity		Horizontal
	Mark	Frequency MHz	Readin dBuV/	•	Cable dB	Preamp dB	Leve dBuV/		nit Ove V/m lin	
	1 2	2310.00 2390.01	33.28 42.13	27.96 27.72	7.30 7.72	37.56 37.45	50.98 60.12			.02 Peak .88 Peak
	Mark	Frequency MHz	Readin dBuV/	•	Cable dB	Preamp dB	Leve dBuV/r			
	1	2310.00	26.53	27.96	7.30	37.56		.23 54.0		7 Average
	2 3	2389.47 2390.01	34.87 32.58	27.72 27.72	7.72 7.72	37.45 37.45		.86 54.0 .57 54.0		14 Average 13 Average
Туре		802.11n(H	HT20)	Test channel	(CH01		Polarity		Vertical
	Mark	Frequency MHz	Reading dBuV/r		Cable dB	Preamp dB	Leve dBuV/r			
	1 2	2310.00 2390.01	32.01 31.82	27.96	7.30 7.72	37.56 37.45	49.71 49.81	74.0 74.0	-24.	29 Peak 19 Peak
	Mark	Frequency MHz	Readin dBuV/	•	Cable dB	Preamp dB	Leve dBuV/r			
	1 2	2310.00 2390.01	26.49 26.00	27.96 27.72	7.30 7.72	37.56 37.45		.19 54.0 .99 54.0		31 Average 31 Average

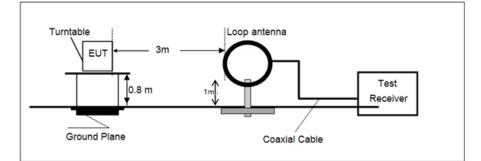
Туре		802.11n(H	HT20)	Test channe		CH11		Polarity		Horizontal
	Mark	Frequency MHz	Readin dBuV/		Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	
	1 2	2483.49	30.64 33.30	27.43	7.80	37.26		61 54.00	-5.39	9 Average
	3		26.70		7.81	37.26	44.			5 Average
	Mark	Frequency MHz	Readin dBuV/		Cable dB	e Preamp dB	Leve dBuV/		Ove lim	
	1	2483.49	38.77	27.43	7.80	37.26	56.74	74.00	-17.	26 Peak
	2	2485.34	44.02	27.43	7.80	37.26	61.99	74.00	-12.	01 Peak
	3	2500.00	33.14	27.40	7.81	37.26	51.09	74.00	-22.	91 Peak
Туре		802.11n(H	HT20)	Test channe	I	CH11		Polarity		Vertical
	Mark	Frequency MHz	Reading dBuV/n		Cable dB	Preamp dB	Level dBuV/m		Over limit	
	1	2483.49	26.27		7.80	37.26	44.			- 6 Average
	2	2500.00	26.57	27.40	7.81	37.26	44.			8 Average
	Mark	Frequency MHz	Readin dBuV/		Cable dB		Leve dBuV/		Ove lim	
	1	2483.49	33.17	27.43	7.80	37.26	51.14	74.00	-22.	86 Peak
	2	2500.00	32.86	27.40	7.81	37.26	50.81	74.00	-23.	19 Peak

5.10. Radiated Spurious Emission

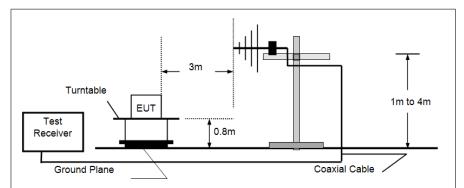
<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak

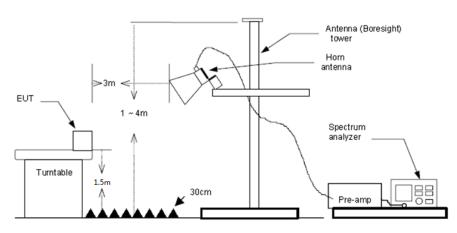

Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80,

Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.


Frequency	Limit (dBuV/m @3m)	Value		
30MHz~88MHz	40.00	Quasi-peak		
88MHz~216MHz	43.50	Quasi-peak		
216MHz~960MHz	46.00	Quasi-peak Quasi-peak		
960MHz~1GHz	54.00			
Above 1GHz	54.00	Average		
	74.00	Peak		

TEST CONFIGURATION

➢ 9 kHz ~ 30 MHz



> 30 MHz ~ 1 GHz

Above 1 GHz

Page: 27 of 38

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10 .
- The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) Below 1 GHz:
 - RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- − VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

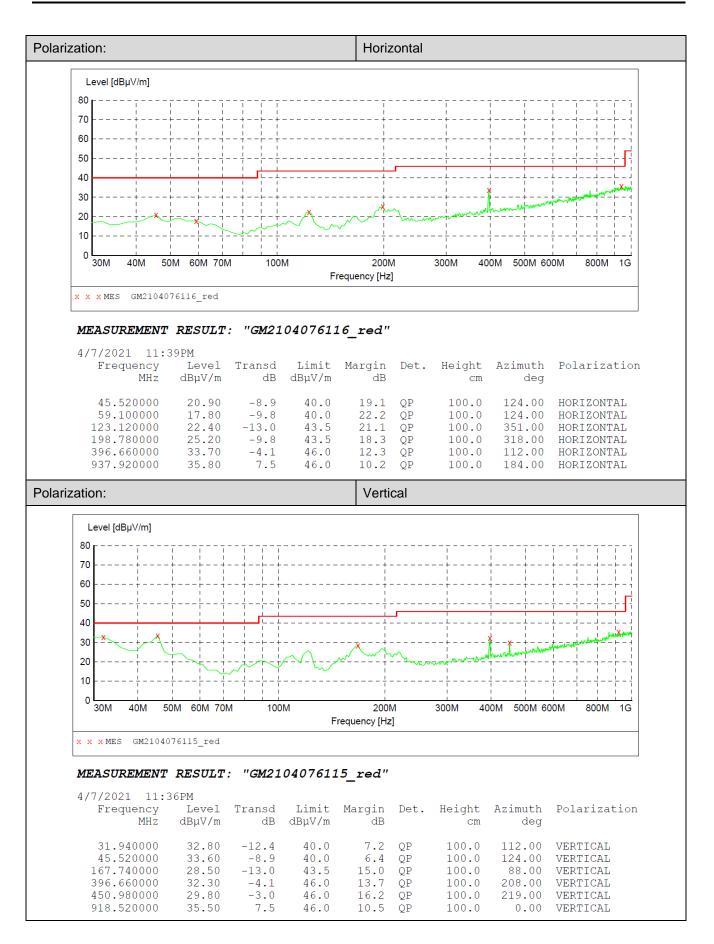
TEST MODE:

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

Note:


- 1) Level= Reading + Factor/Transd; Factor/Transd = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.

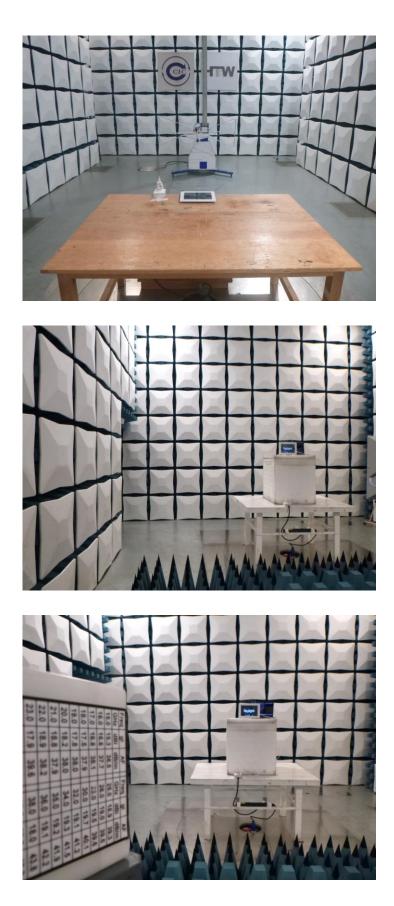
<u> TEST DATA FOR 9 kHz ~ 30 MHz</u>

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

TEST DATA FOR 30 MHz ~ 1000 MHz

Have pre-scan all test channel, found CH06 of 802.11B which it was worst case, so only show the worst case's data on this report.

<u> TEST DATA FOR 1 GHz ~ 25 GHz</u>

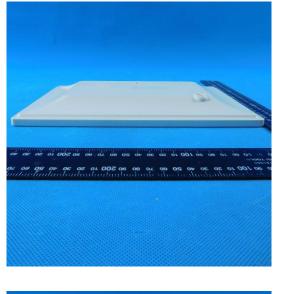

Туре			802.11	lb	Test c	hannel	C	CH01		Polarity	Horizontal		
	MHz		dBuV/m	dB	dB	dB	. dB	Leve dBuV,	/m dBuV/m	Over limi	t		
	1 2			43.28	29.32 30.51	9.87 10.69	36.83				28.36 33.36		
	3			35.44				32.46					
	4					34.06							
Туре	802.11b			lb	Test c	hannel	C	CH01		Polarity		Vertical	
	Mark Frequency MHz			Reading dBuV/m	Antenna Cable dB dB		Prea dB	mp Aux dB	Level dBuV/		Over limi	Remark t	
	1	1267		35.01	25.93	5.31	36.43				4.18		
	2	3561		44.09	29.32	9.87	36.83				27.55		
	3 4	4983 8002		38.07 30.07	31.77 37.10		35.22 33.31	0.00 0.00			27.82		
	-	0002							40.15				
Туре			802.11	lb	Test c	hannel	C	CH06		Polarity		Horizontal	
	Mark		quency Hz	Reading dBuV/m	Antenna dB	Cable dB	Prea dB	mp Aux dB	Leve dBuV		Over limi		
	1	1273.57		34.36	25.95	5.34	36.40				44.75		
	2 3561.64		43.91	29.32 9.87 36.83					27.73				
	3 5151.68 4 7319.96			33.47 33.04			35.44			74.00 -32.51 74.00 -24.85			
Туре	802.11b						CH06				Vertical		
51													
	Mark	1	equency Mz	Reading dBuV/m	Antenna dB	dB	dB	' dB	Leve dBuV		Over limi		
	1		.90 34.53		25.89 5.25		36.51				44.84		
	2		1.64	43.33	29.32 30.51	9.87 10.69	36.83						
			1.97 2.46	33.47 29.96									
T		0021							+0.00		25.5		
			000 44										
Туре			802.11	b	l est c	hannel	C	CH11		Polarity		Horizontal	
туре	Mark			Reading dBuV/m					Leve dBuV	l Limit /m dBuV/m	Over limi	r Remark it	
туре	1	M 3561	quency Hz .64	Reading dBuV/m 42.66	Antenna dB 29.32	Cable dB 9.87	Prea dB 36.83	amp Aux dB 8 0.00	dBuV 0 45.02	l Limit /m dBuV/m 74.00 -	limi 28.98	r Remark it 8 Peak	
туре	1 2	M 3561 4354	quency Hz .64 .97	Reading dBuV/m 42.66 37.15	Antenna dB 29.32 30.51	Cable dB 9.87 10.69	Prea dB 36.83 36.18	amp Aux dB 3 0.00 8 0.00	dBuV 0 45.02 0 42.17	l Limit /m dBuV/m 74.00 - 74.00 -	limi 28.98 31.83	r Remark it 8 Peak 3 Peak	
туре	1	M 3561 4354 5151	quency Hz .64 .97 .68	Reading dBuV/m 42.66 37.15 34.02	Antenna dB 29.32 30.51 31.99	Cable dB 9.87 10.69 11.47	Prea dB 36.83 36.18 35.44	amp Aux dB 3 0.00 3 0.00 4 0.00	dBuV 9 45.02 9 42.17 9 42.04	l Limit /m dBuV/m 74.00 - 74.00 - 74.00 -	limi 28.98 31.83 31.96	r Remark it 3 Peak 3 Peak 6 Peak	
Туре	1 2 3	M 3561 4354	quency Hz .64 .97 .68	Reading dBuV/m 42.66 37.15 34.02 32.05	Antenna dB 29.32 30.51 31.99 36.59	Cable dB 9.87 10.69	Prea dB 36.83 36.18 35.44 34.02	amp Aux dB 3 0.00 3 0.00 4 0.00	dBuV 0 45.02 0 42.17	l Limit /m dBuV/m 74.00 - 74.00 - 74.00 -	limi 28.98 31.83 31.96	r Remark it 3 Peak 3 Peak 6 Peak	
	1 2 3 4	M 3561 4354 5151 7394 Fre	quency Hz .64 .97 .68 .88 802.11	Reading dBuV/m 42.66 37.15 34.02 32.05 Ib Reading	Antenna dB 29.32 30.51 31.99 36.59 Test c Antenna	Cable dB 9.87 10.69 11.47 14.34 hannel Cable	Prea dB 36.83 36.18 35.44 34.02 Q Prea	amp Aux dB 3 0.04 3 0.04 2 0.04 3 0.04 0 0.04 0000000000	dBuV 45.02 42.17 42.04 48.96 Leve	1 Limit /m dBuV/m 74.00 - 74.00 - 74.00 - 74.00 - Polarity 1 Limit	lim: 28.98 31.83 31.96 25.04	r Remark it 3 Peak 3 Peak 5 Peak 4 Peak Vertical r Remark	
	1 2 3 4 Mark	M 3561 4354 5151 7394 Fre	quency Hz .64 .97 .68 .88 802.11 quency Hz	Reading dBuV/m 42.66 37.15 34.02 32.05 Ib Reading dBuV/m	Antenna dB 29.32 30.51 31.99 36.59 Test c Antenna dB	Cable dB 9.87 10.69 11.47 14.34 hannel Cable dB	Prea dB 36.83 36.18 35.44 34.02 Q Prea dB	amp Aux dB 3 0.04 3 0.04 2 0.04 3 0.04 0 0.04 0000000000	dBuV 9 45.02 9 42.17 9 42.04 9 48.96 Leve dBuV	1 Limit /m dBuV/m 74.00 - 74.00 - 74.00 - 74.00 - 74.00 - Polarity 1 Limit /m dBuV/m	lim: 28.98 31.83 31.96 25.04 Over lim:	r Remark it 3 Peak 5 Peak 5 Peak 4 Peak Vertical r Remark	
	1 2 3 4 Mark 2	M 3561 4354 5151 7394 Fre N 1899	quency Hz .64 .97 .68 .88 802.11 quency Hz .28	Reading dBuV/m 42.66 37.15 34.02 32.05 Ib Reading dBuV/m 38.18	Antenna dB 29.32 30.51 31.99 36.59 Test c Antenna dB 25.80	Cable dB 9.87 10.69 11.47 14.34 hannel Cable dB 6.52	Prea dB 36.83 36.18 35.44 34.02 C Prea dB 37.00	amp Aux dB 0.04 0.04 0.04 0.04 0.04 CH11 CH11 Amp Aux dB 0.04	dBuV 45.02 42.17 42.04 48.96 Leve dBuV 33.50	1 Limit /m dBuV/m 74.00 - 74.00 - 74.00 - 74.00 - 74.00 - Polarity 1 Limit /m dBuV/m 74.00 -	limi 28.98 31.83 31.90 25.04 Over limi 40.50	r Remark it 3 Peak 3 Peak 5 Peak 4 Peak Vertical r Remark it 9 Peak	
	1 2 3 4 Mark	M 3561 4354 5151 7394 Fre	quency Hz .64 .97 .68 .88 802.11 quency Hz .28 .64	Reading dBuV/m 42.66 37.15 34.02 32.05 Ib Reading dBuV/m 38.18 44.39	Antenna dB 29.32 30.51 31.99 36.59 Test c Antenna dB	Cable dB 9.87 10.69 11.47 14.34 hannel Cable dB 6.52 9.87	Prea dB 36.83 36.18 35.44 34.02 C Prea dB 37.00 36.83	Amp Aux dB 0.04 0.04 0.04 0.04 2 0.04 2 0.04 CH11 Amp Aux dB 0.04 3 0.04	dBuV 9 45.02 9 42.17 9 42.04 9 48.96 Leve dBuV	1 Limit /m dBuV/m 74.00 - 74.00 - 74.00 - 74.00 - Polarity 1 Limit /m dBuV/m 74.00 - 74.00 -	lim: 28.98 31.83 31.90 25.04 0ver lim: 40.50 27.25	r Remark it 3 Peak 5 Peak 4 Peak Vertical r Remark it 9 Peak 5 Peak	

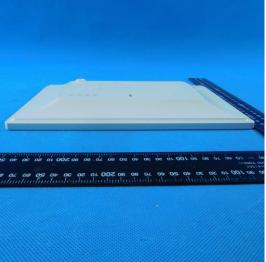
Туре			802.11	lg	Test c	hannel	(CH01		Polarity		Horizontal	
	Mark Frequency MHz		· · · · ·	Reading dBuV/m	Antenna dB	Cable dB	Prea dB	. dB	Leve] dBuV/		Over limit	Remark	
	1 1899			42.87	25.80	6.52	37.00			74.00	-35.81	Peak	
	2	3561 5151		42.55			36.83			74.00	-29.09 -31.18	Peak	
	4	7941		34.80 30.93	31.99 36.88	11.47 14.47	33.32			74.00 74.00	-25.04	Peak Peak	
Туре						CH01		Polarity		Vertical			
	Mark	M	Hz	Reading dBuV/m	dB	dB	dB	dB	dBu\	//m dBuV/r	m lim	it	
	1	1894		38.90	25.78	6.52	37.0						
	2	3561 4983		42.02 37.91	29.32 31.77	9.87 11.56	36.8						
		7245		33.23	36.41	13.69	34.0						
Туре	· ·		802.11			hannel		CH06		Polarity	2	Horizontal	
	Mark		quency Hz	Reading dBuV/m	Antenna dB	Cable dB	Prea dB	amp Aux dB	Leve dBuV		Over 1 limi		
	1	1244		34.42	25.87	5.24	36.52				-44.99		
	2	3561		40.76	29.32	9.87	36.83				-30.88		
	3 4	4354		36.69	30.51 37.19	10.69 14.28	36.18				-32.29	Peak	
	4	8042	.90	29.97	57.19	14.20	55.51	1 0.0	9 40.15	74.00	-25.0/	' Peak	
Туре			802.11	lg	Test channel CH06				Polarity	Vertical			
		P	IHz	Reading dBuV/m	dB	dB	dB	dB	dBuV	/m dBuV/m		t	
	1 2	1309		33.87	26.06 29.32	5.43 9.87	36.3				-44.96		
	3	3561 4996		43.16 35.95	31.87	11.57	35.24				-20.40		
	4	8063		30.38	37.20		33.3				-25.46		
Туре			802.11	lg	Test c	Test channel CH1				Polarity	Horizontal		
		М	quency Hz	dBuV/m	dB	dB	dB	dB	Level dBuV,	/m dBuV/m	Over limit		
	1	1179		34.82	25.52	5.07	36.67			74.00	-45.26	Peak	
	2	3561 5151		41.77 34.53	29.32 31.99	9.87 11.47	36.83		<pre>44.13 42.55</pre>	74.00 74.00	-29.87	Peak Peak	
	4	7394		31.63	36.59	14.34			48.54		-25.46	Peak	
Туре			802.11	lg	Test c	hannel	(CH11		Polarity		Vertical	
	Mark		quency Hz	Reading dBuV/m	Antenna dB	Cable dB	Prea dB				Over 1 limi		_
1									0 38.21		-35.79		
	1	1899	.28	42.89	25.80	6.52	57.00		0 00.21	74.00		r cuix	
	1 2	1899 3561		42.89 41.07	25.80 29.32	9.87		3 0.0	0 43.43	74.00			
			.64 .99				36.83 35.22	3 0.0 2 0.0		74.00 74.00		7 Peak 9 Peak	

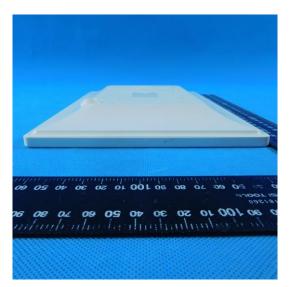
Туре			802.11	n(HT20)	Test channel CH01						Pola	arity		Horizontal	
	Mark Frequency MHz		Reading dBuV/m	Antenna dB	Cable dB	Pr d		Aux dB	Level dBuV/		Limit dBuV/m	Over limi			
	2	3561 4354 5151	.64 .97	41.53 37.37 33.98	29.32 30.51 31.99	9.87 10.69	36. 36. 35.	83 18	0.00 0.00 0.00	43.89 42.39 42.00		74.00 74.00	-30.11 -31.61 -32.00	Peak Peak	
		7245		31.91		13.69			0.00	47.95		74.00			
Туре	e 802.11n(H		n(HT20)	Test channel			CH01			Polarity			Vertical		
	Mark	M	Hz	Reading dBuV/m	Antenna dB	Cable dB		reamp IB	Aux dB	Leve dBuV		Limit dBuV/m	Over limi		
	1 2 3	3561 4354 4996	.97	42.68 34.76 35.13	29.32 30.51 31.87	9.87 10.69 11.57	36. 36. 35.	18	0.00 0.00 0.00	45.04 39.78 43.33		74.00 74.00 74.00	-28.96 -34.22 -30.67	2 Peak	
	4	8002		30.33	37.10	14.29	33.			48.41		74.00	-25.59		
Туре			802.11	n(HT20)	Test c	hannel		CH0	6		Pola	arity		Horizontal	
	Mark		equency MHz	Reading dBuV/m	Antenna dB	Cable dB		reamp dB	Aux dB	Leve dBuV		Limit dBuV/m	Over limi		
	1 2 3	1894 356:	4.45 1.64 4.97	36.13 44.06 38.54	25.78 29.32 30.51	6.52 9.87 10.69	37. 36. 36.	.00 .83 .18	0.00 0.00 0.00	31.43 46.42 43.56		74.00 74.00 74.00	-42.57 -27.58 -30.44	Peak Peak Peak	
_	4	515	1.68	34.92	31.99	11.47	35.			42.94		74.00	-31.06		
Туре			802.11	n(HT20)	l est c	Test channel			CH06			arity		Vertical	
	Mark		equency MHz	Reading dBuV/m	Antenna dB	Cable dB		reamp dB	Aux dB	Leve dBuV		Limit dBuV/m	Over limi		
	1 2 3 4	435 499	1.64 4.97 6.69 0.82	42.70 34.31 38.27 30.71	29.32 30.51 31.87 36.60	9.87 10.69 11.57 14.37	36	.83 .18 .24 .23	0.00 0.00 0.00 0.00	39.33 46.47		74.00 74.00 74.00 74.00	-28.94 -34.67 -27.53 -25.59	7 Peak 3 Peak	
Туре			802.11	n(HT20)	Test c	hannel		CH1	1		Pola	arity		Horizontal	
	Mark		equency Hz	Reading dBuV/m	Antenna dB	Cable dB		reamp IB	Aux dB	Leve dBuV		Limit dBuV/m	Over limi		
	1 2 3	3561 4354 5718		39.84 35.85 29.99	29.32 30.51 31.90	9.87 10.69 12.44	36.	18	0.00	42.20 40.87 39.45		74.00 74.00 74.00	-31.80 -33.13 -34.55) Peak	
	4	7394		31.28	36.59	14.34				48.19		74.00			
Туре			802.11	n(HT20)	Test c	hannel		CH1	1		Pola	arity		Vertical	
	Mark		equency Mz	Reading dBuV/m	Antenna dB	Cable dB		reamp dB	Aux dB	Leve dBuV		Limit dBuV/m	Ove lim		
	1		L.64	36.87	29.32	9.87	36	.83	0.00	39.23	3	74.00	-34.7		
	2	4983	4.97 3.99	34.23 33.48	30.51 31.77	10.69 11.56	35		0.00 0.00	39.25 41.59)	74.00	-34.7	1 Peak	
	4	8145	5.93	30.56	37.02	14.43	33	.40	0.00	48.61		74.00	-25.3	9 Peak	

6. TEST SETUP PHOTOS

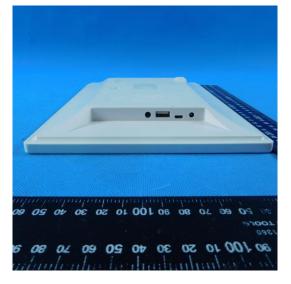
Radiated Emission

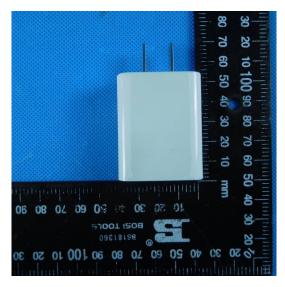

AC Conducted Emission



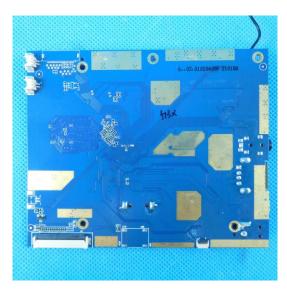

7. EXTERANAL AND INTERNAL PHOTOS

EXTERANAL PHOTOS



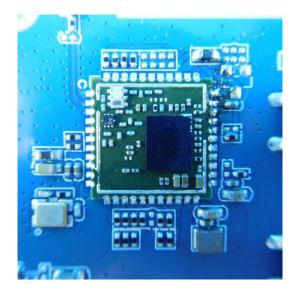


Shenzhen Huatongwei International Inspection Co., Ltd.




Shenzhen Huatongwei International Inspection Co., Ltd.

INTERNAL PHOTOS



8. APPENDIX REPORT