

Report No.: EED32M00246401 Page 1 of 78

TEST REPORT

Product 10 inch WIFI Digital Photo Frame

Trade mark N/A

Model/Type reference Skylight 2, D104S

N/A **Serial Number**

Report Number EED32M00246401 FCC ID 2AABK-SKYLIGHT2

Date of Issue Sep. 08, 2020

Test Standards 47 CFR Part 15Subpart C

Test result **PASS**

Prepared for:

Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd. 4F & 6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen, P.R. China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Smile

Reviewed by:

Jok yang

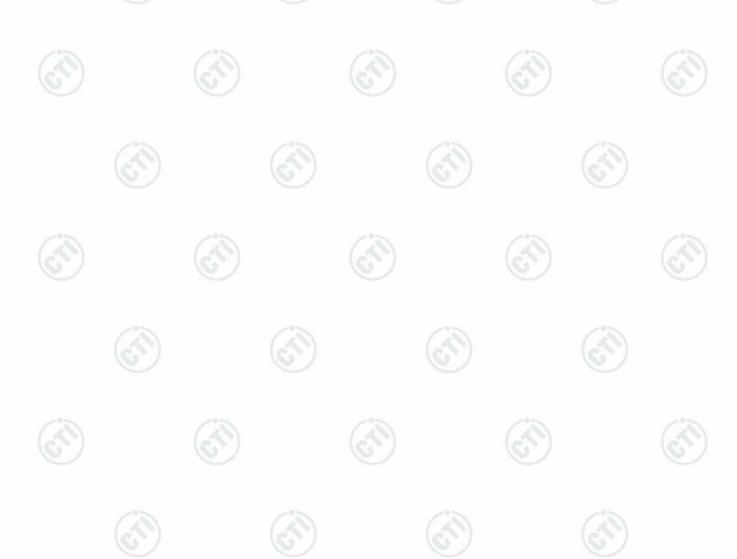
Smile Zhong Dan Cluey

Date:

Sep. 08, 2020

Sam Chuang

Check No.:3096322823



2 Version

Version No.	Date	Description
00	Dec. 19, 2018	Original
01	Aug.14, 2019	Add an adapter
		Change the new motherboard, adapter, and data line to change color, In this report No.
02	Sep. 08, 2020	EED32L00209701 all data except Band-edge for RF
	(1)	Conducted Emissions RF Conducted Spurious Emissions have been reverified

Report No. : EED32M00246401 Page 3 of 78

3 Test Summary

3 rest Summary			7.3	
Test Item	(2)	Test Requirement	Test method	Result
Antenna Requirement	47 CF	R Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CF	R Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CF	R Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CF	R Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Par	rt 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CF	R Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)		ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CF	R Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CF	R Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS


Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

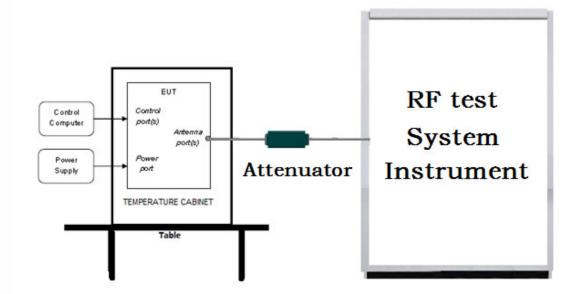
Model No.: Skylight 2, D104S

Only the model Skylight 2 was tested, Their electrical circuit design, layout, components used and internal writing are identical, Only the modes are different.

Report No. : EED32M00246401 Page 4 of 78

4 Content

1 C	OVER PAGE		•••••		•••••		1
2 VE	ERSION		•••••		•••••		2
3 TE	EST SUMMARY	•••••	•••••	•••••	•••••		3
4 C	ONTENT	•••••		•••••		•••••	4
5 TE	ST REQUIREMENT			•••••		•••••	5
5	.1 TEST SETUP	setupions test setup	up				5 6
	ENERAL INFORMATION						
6 6 6 6 6 6 6	.1 CLIENT INFORMATION	F EUTSUBJECTIVE TO TUNITSRDSANDARD CONDICUESTED BY THINTY (95% CON	THIS STANDAI TIONSE CUSTOMER	RD LS, K=2)			
7 E	QUIPMENT LIST	•••••	•••••		•••••		10
8 R/	ADIO TECHNICAL REQUI						
	Appendix A): Conducted Appendix B): 6dB Occupi Appendix C): Power Spec Appendix D): Antenna Re Appendix E): AC Power L Appendix F): Restricted b Appendix G): Radiated Specific Appendix G): Radiated Specific Appendix App	ed Bandwidth. ctral Density quirement ine Conducted ands around fo	d Emission	equency (Ra	diated)		19 29 30 33
PHO	OTOGRAPHS OF TEST SE						
PHO	OTOGRAPHS OF EUT CO	NSTRUCTION	IAL DETAILS		•••••		67



Report No. : EED32M00246401 Page 5 of 78

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

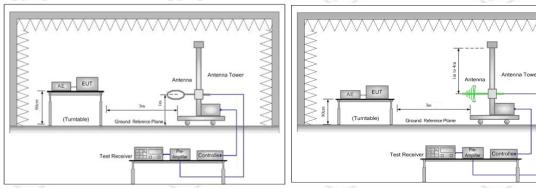


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

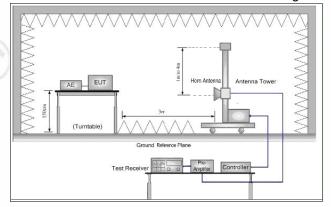
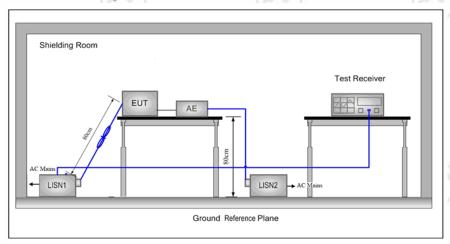
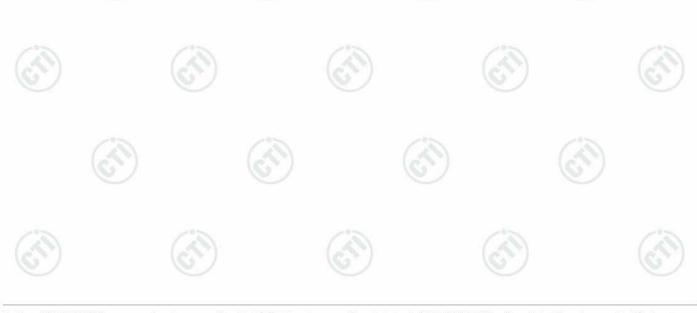
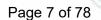



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

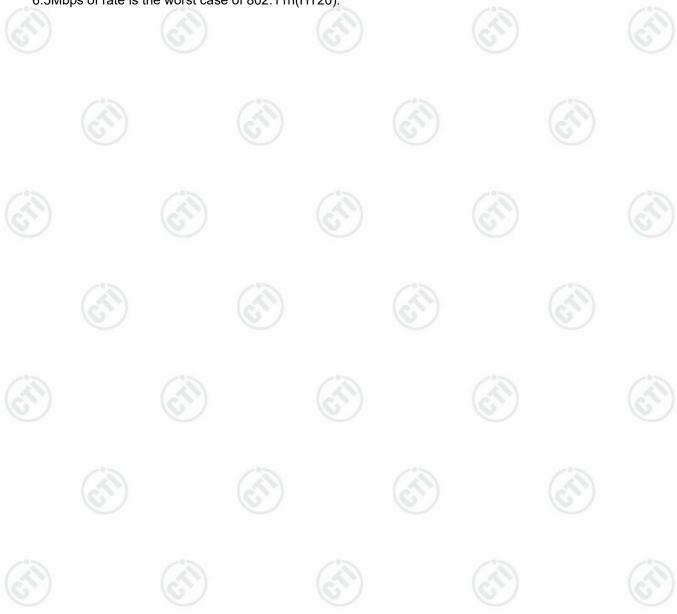

5.2 Test Environment

Operating Environment:		
Temperature:	24 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010mbar	


5.3 Test Condition

Test channel:

Took Mode	Ty/Dy	RF Channel			
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
902 11h/a/p/UT20)	2442MU= - 2462 MU=	Channel 1	Channel 6	Channel11	
802.11b/g/n(HT20) 2	2412MHz ~2462 MHz	2412MHz	2437MHz	2462MHz	
Transmitting mode:	he EUT transmitted the continuous signal at the specific channel(s).				



Test mode:

Pre-scan under all rate at lowest channel 1

Mode			8	02.11b	1		_	(0,	
Data Rate	1	Mbps	2Mbps	s 5.5Mbps	11Mbps	S			
Power(dBm)	1	12.18	12.16	12.14	12.12				
Mode	12	10	•	0	802	2.11g	(3)		
Data Rate	6	Mbps	9Mbp	s 12Mbps	18Mbps	24Mbps	s 36Mbps	48Mbps	54Mbps
Power(dBm) '	16.23	16.21	16.09	16.07	16.05	16.03	16.01	15.99
Mode				ı	802.11n	(HT20)			
Data Rate	6.5MI	ops 1	3Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	16.0)8	16.06	16.04	16.02	16.00	15.98	15.96	15.94

Through Pre-scan, 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).

Report No. : EED32M00246401 Page 8 of 78

6 General Information

6.1 Client Information

A 400 C			
Applicant: Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd.			
Address of Applicant:	4F & 6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen, P. R. China		
Manufacturer:	Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd.		
Address of Manufacturer:	4F & 6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen, P. R. China		
Factory: Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd.			
Address of Factory:	4F & 6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen, P. R. China		

6.2 General Description of EUT

Product Name:	10 inch WIFI	10 inch WIFI Digital Photo Frame			
Model No.(EUT):	Skylight 2, D10	04S	4.0%		
Test Model No.:	Skylight 2				
Trade Mark:	N/A	(6)		(0)	
EUT Supports Radios application:	2.4GHz Wi-Fi:	802.11b/g/n(HT20	0): 2412MHz ~2462 MHz		
Power Supply:	AC Adapter	Model:S8 Input:100 Output:5\	~240V~ 50/60Hz, 0.5A		
Sample Received Date:	Aug. 14, 2020				
Sample tested Date:	Aug. 14, 2020	Aug. 14, 2020 to Aug. 31, 2020			

6.3 Product Specification subjective to this standard

IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz				
IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels				
MHz				
IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM, QPSK,BPSK)				
Default				
RFTestTool	130			
Integral antenna	(3)			
4dBi				
AC 120V, 60Hz				
	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels 5MHz IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20): OFDM (64QAM, 16QAM, QPSK,BPSK) Default RFTestTool Integral antenna 4dBi			

Operation	Frequency ea	ch of channe	el(802.11b/g/n l	HT20))	(67)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		(6,)

Report No. : EED32M00246401 Page 9 of 78

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

As	sociated	Manufacturer	Model	S/N serial	Certification	Supplied by
equip	ment name			number		
AE1	Notebook	DELL	DELL 3490	D245DX2	CE & FCC	DELL
	(6		(3)		(31)	(65)

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

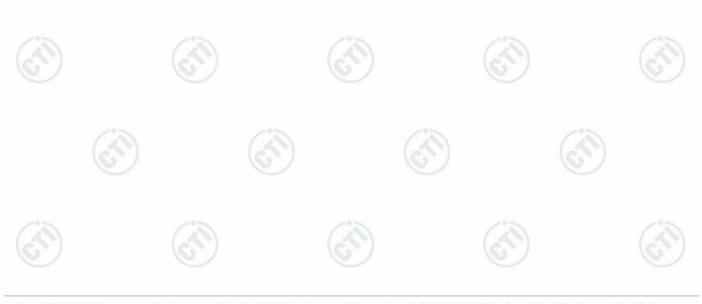
None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2//	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Country operation test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction amission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%



Report No. : EED32M00246401 Page 10 of 78

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	(4)	(<u></u>
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		(A)	(28
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		(<u>i</u>

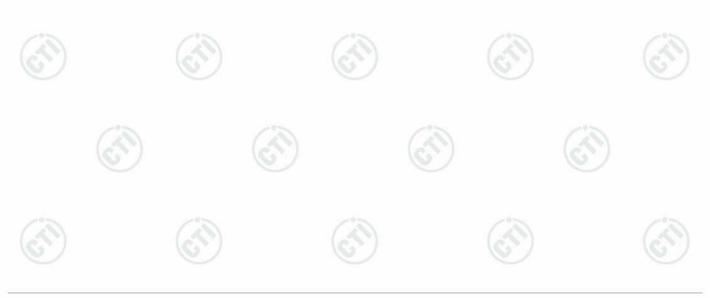
	Conducted disturbance Test				
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021
Temperature/ Humidity Indicator	Defu	TH128	/		
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021
Barometer	changchun	DYM3	1188	\	5° /

_		_	
Page	11	٥f	78

	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112			/°=
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A		
Cable line	Fulai(3M)	SF106	5217/6A		
Cable line	Fulai(3M)	SF106	5216/6A		

215		3M full-anechoi	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	(6	<u>(*)</u>
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		(3
Cable line	Times	EMC104-NMNM- 1000	SN160710		0
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	(PS
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	(5)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

Report No. : EED32M00246401 Page 13 of 78


8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

		_	
Test method	Test item	Verdict	Note
ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	N/A
ANSI C63.10	RF Conducted Spurious Emissions	PASS	N/A
ANSI C63.10	Power Spectral Density	PASS	Appendix C)
ANSI C63.10	Antenna Requirement	PASS	Appendix D)
ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix E)
ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix F)
ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix G)
	ANSI C63.10 ANSI C63.10	ANSI C63.10 Conducted Peak Output Power ANSI C63.10 GdB Occupied Bandwidth Band-edge for RF Conducted Emissions ANSI C63.10 RF Conducted Spurious Emissions ANSI C63.10 Power Spectral Density ANSI C63.10 Antenna Requirement AC Power Line Conducted Emission ANSI C63.10 Restricted bands around fundamental frequency (Radiated Emission) ANSI C63.10 Radiated Spurious	ANSI C63.10 Conducted Peak Output Power ANSI C63.10 6dB Occupied Bandwidth PASS ANSI C63.10 Band-edge for RF Conducted Emissions ANSI C63.10 RF Conducted Spurious Emissions ANSI C63.10 Power Spectral Density ANSI C63.10 Antenna Requirement ANSI C63.10 AC Power Line Conducted Emission ANSI C63.10 Restricted bands around fundamental frequency (Radiated Emission) ANSI C63.10 Radiated Spurious PASS

Report No.: EED32M00246401 Page 14 of 78

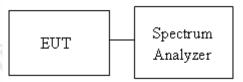
Appendix A): Conducted Peak Output Power

Test Limit

According to §15.247(b)(3),

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi. If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


25	
Limit	 □ Antenna with DG greater than 6 dBi : [Limit = 30 – (DG – 6)] □ Point-to-point operation :

Average output power: For reporting purposes only.

Test Procedure

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW = 1 MHz.
 - b) Set the VBW \geq [3 \times RBW].
 - c) Set the span \geq [1.5 \times DTS bandwidth].
 - d) Detector = peak.
 - e) Sweep time = auto couple.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges
- 4. Measure and record the result in the test report.

Test Setup

Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	12.18	PASS
11B	MCH	14.04	PASS
11B	HCH	12.38	PASS
11G	LCH	16.23	PASS
11G	MCH	18.46	PASS
11G	HCH	16.85	PASS
11N20SISO	LCH	16.08	PASS
11N20SISO	MCH	18.06	PASS
11N20SISO	HCH	16.41	PASS

Page 16 of 78

Test Graph

Page 17 of 78

Page 18 of 78

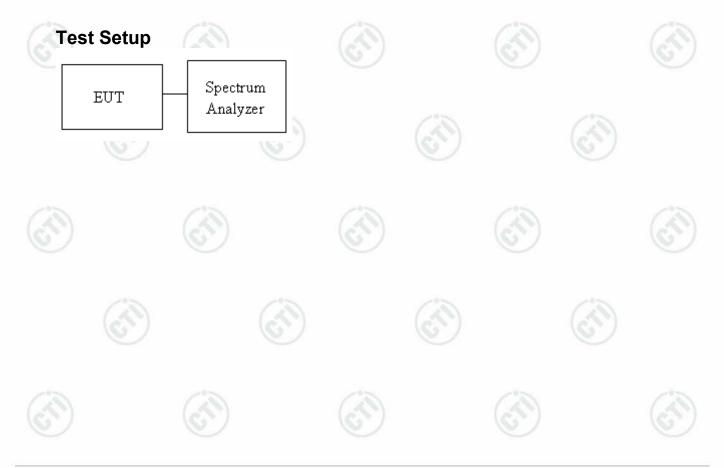
Report No. : EED32M00246401 Page 19 of 78

Appendix B): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2),

6 dB Bandwidth :


		(A)
Limit	Shall be at least 500kHz	(6)

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 and ANSI C63.10: 2013 clause 6.9.2,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =100KHz , VBW = 300KHz and Detector = Peak, to measurement 6dB Bandwidth
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Report No. : EED32M00246401 Page 20 of 78

Result Table

18.47.7		A REAL TO A	HELLY I THE STATE I	
Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	9.031	11.974	PASS
11B	MCH	9.036	12.063	PASS
11B	НСН	8.093	11.922	PASS
11G	LCH	16.29	16.438	PASS
11G	MCH	16.06	16.444	PASS
11G	HCH	16.30	16.433	PASS
11N20SISO	LCH	17.15	17.626	PASS
11N20SISO	MCH	17.30	17.644	PASS
11N20SISO	HCH	16.72	17.615	PASS

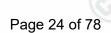
Report No. : EED32M00246401 Page 21 of 78

Test Graph

Page 22 of 78

Hotline: 400-6788-333

Page 23 of 78



Appendix C): Power Spectral Density

Test Limit

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit	☐ Antenna with DG greater than 6 dBi : [Limit = 8 – (DG – 6)]
	☐ Point-to-point operation :

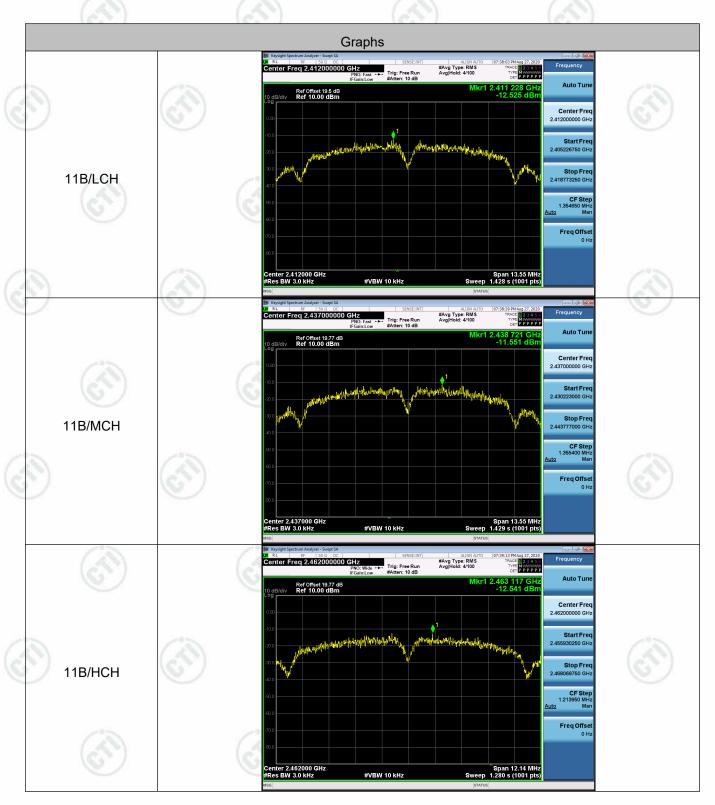
Test Procedure

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss was compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

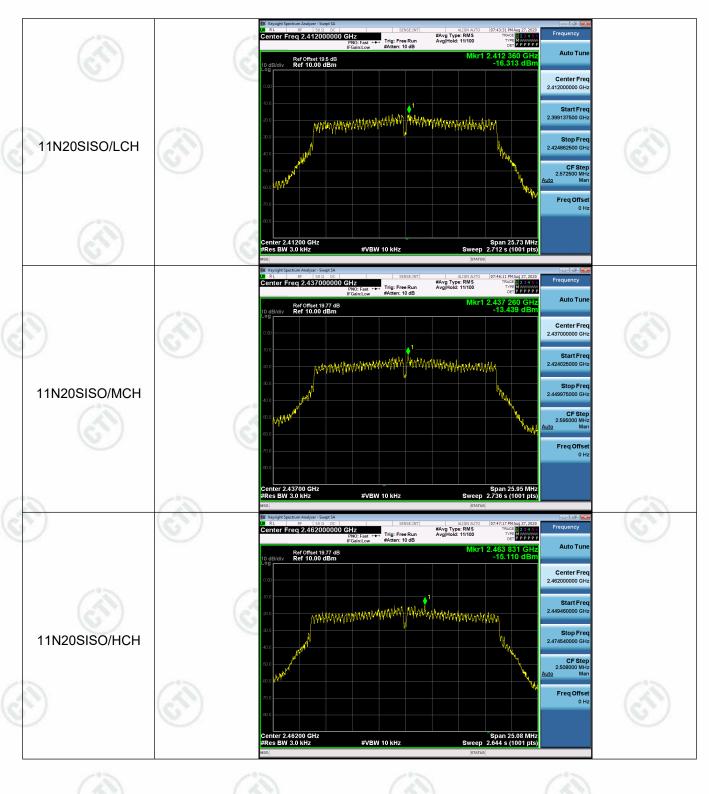
Test Setup

Result Table


A ROSE TO A STATE OF THE PARTY	A MC a To A		A
Mode	Channel	Power Spectral Density [dBm]	Verdict
11B	LCH	-12.525	PASS
11B	MCH	-11.551	PASS
11B	НСН	-12.541	PASS
11G	LCH	-14.909	PASS
11G	MCH	-12.983	PASS
11G	HCH	-14.957	PASS
11N20SISO	LCH	-16.313	PASS
11N20SISO	MCH	-13.439	PASS
11N20SISO	НСН	-15.110	PASS

Report No. : EED32M00246401 Page 26 of 78

Test Graph

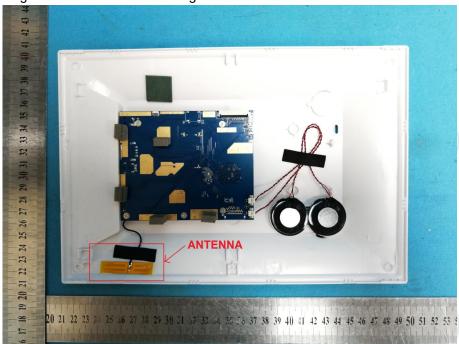

Page 27 of 78

Page 28 of 78

Report No. : EED32M00246401 Page 29 of 78

Appendix D): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Integral antenna. The best case gain of the antenna is 4dBi.

Report No.: EED32M00246401 Page 30 of 78

Appendix E): AC Power Line Conducted Emission

Test Procedure: Test frequency range: 150KHz-30MHz 1)The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2. which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT

- shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

Fraguency range (MHz)	Limit (c	dΒμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

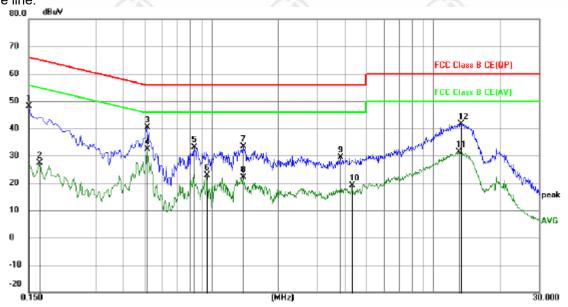
Measurement Data

Hotline: 400-6788-333

An initial pre-scan was performed on the live and neutral lines with peak detector.

www.cti-cert.com E-mail: info@cti-cert.com

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



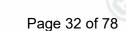
Page 31 of 78

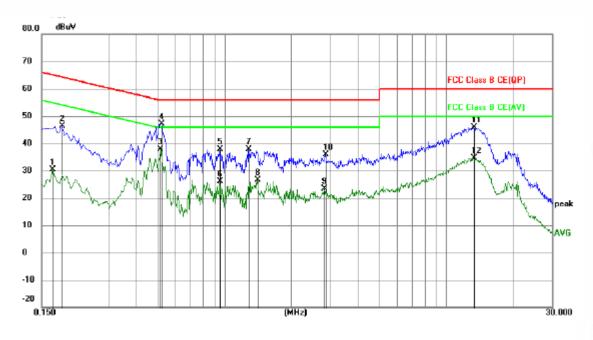
10 inch WIFI Digital Photo Model/Type reference **Pro**duct Skylight 2

: 23℃ Humidity 51% **Temperature**

1 2 3	MHz 0.1500 0.1680 0.5144 0.5144	dBuV 38.23 17.58 30.46 22.53	9.87 9.87 9.97 9.97	dBuV 48.10 27.45 40.43	dBuV 66.00 55.06 56.00	dB -17.90 -27.61 -15.57	peak AVG peak	Comment	
2	0.1680 0.5144	17.58 30.46	9.87 9.97	27.45 40.43	55.06	-27.61	AVG		
3	0.5144	30.46	9.97	40.43					
					56.00	-15.57	peak		
	0.5144	22.53	0.07						
4 *			3.31	32.50	46.00	-13.50	AVG		
5	0.8340	23.23	9.85	33.08	56.00	-22.92	peak		
6	0.9555	12.95	9.84	22.79	46.00	-23.21	AVG		
7	1.3875	23.59	9.81	33.40	56.00	-22.60	peak		
8	1.3875	12.22	9.81	22.03	46.00	-23.97	AVG		
9	3.8085	19.62	9.78	29.40	56.00	-26.60	peak		
10	4.2990	9.24	9.78	19.02	46.00	-26.98	AVG		
11	13.0290	21.39	9.87	31.26	50.00	-18.74	AVG		
12	13.3215	31.66	9.88	41.54	60.00	-18.46	peak		

Neutral line:





No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1680	20.63	9.87	30.50	55.06	-24.56	AVG	
2	0.1860	36.53	9.87	46.40	64.21	-17.81	peak	
3 *	0.5144	27.96	9.97	37.93	46.00	-8.07	AVG	
4	0.5190	37.08	9.97	47.05	56.00	-8.95	peak	
5	0.9555	28.01	9.84	37.85	56.00	-18.15	peak	
6	0.9555	16.30	9.84	26.14	46.00	-19.86	AVG	
7	1.2885	27.97	9.82	37.79	56.00	-18.21	peak	
8	1.4100	16.77	9.81	26.58	46.00	-19.42	AVG	
9	2.8184	13.66	9.79	23.45	46.00	-22.55	AVG	
10	2.8410	25.98	9.79	35.77	56.00	-20.23	peak	
11	13.2855	36.10	9.88	45.98	60.00	-14.02	peak	
12	13.2855	24.86	9.88	34.74	50.00	-15.26	AVG	

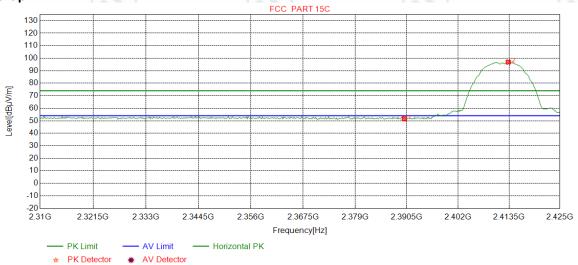
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

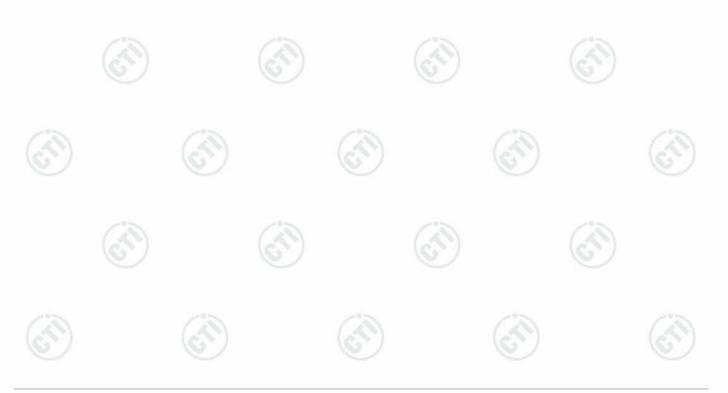
Report No. : EED32M00246401 Page 33 of 78

Appendix F): Restricted bands around fundamental frequency (Radiated)

13.2 . 1		147.5				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
	AL 4011	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximum polarizations of the antenna was turned from 0 deg e. The test-receiver systems and width with Maxim f. Place a marker at the effrequency to show combands. Save the spect for lowest and highest	n the top of a rota choic camber. The of the highest rad sters away from the p of a variable-he varied from one man value of the field enna are set to maission, the EUT varies to 360 degreem was set to Pealum Hold Mode. The restricted pliance. Also mean rum analyzer plot.	table wa iation. e interfere ight anter eter to fo d strength ake the m was arran meter to es to find k Detect I	ence-receinna tower. ur meters n. Both horneasurement ged to its v 4 meters a the maxim unction a	ving antennated above the gradual and vent. worst case and the rotated and Specified the transmit in the restrict in the restrict in the restrict.	to a, whice ound to rertical and the able cted
	g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the load. The radiation measure Transmitting mode, an j. Repeat above procedure.	ve is the test site, where change form to table 1 meter and table west channel, the ments are perform to do found the X axis	table 0.8 is 1.5 me Highest ned in X, positioni	meter to 1 eter). channel Y, Z axis p ng which i	.5 meter(Ab	ove r
					s complete.	se.
imit:	Frequency	Limit (dBµV/m	@3m)	- /	nark	se.
imit:	Frequency 30MHz-88MHz	Limit (dBµV/m	@3m)	Rer	nark	se.
mit:			i @3m)	Rer Quasi-pe	477	se.
imit:	30MHz-88MHz	40.0	@3m)	Rer Quasi-pe Quasi-pe	mark eak Value	se.
imit:	30MHz-88MHz 88MHz-216MHz	40.0 43.5	@3m)	Rer Quasi-pe Quasi-pe Quasi-pe	mark eak Value eak Value	se.
imit:	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	40.0 43.5 46.0	@3m)	Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	mark eak Value eak Value eak Value	se.
Limit:	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	40.0 43.5 46.0 54.0	@3m)	Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Averag	mark eak Value eak Value eak Value eak Value	se.

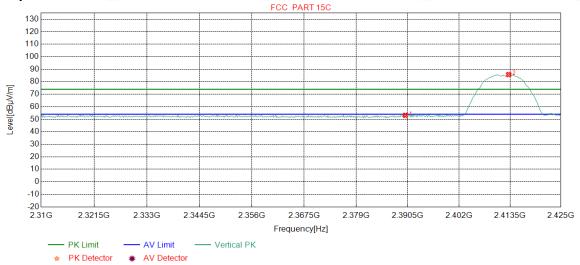


Report No. : EED32M00246401 Page 34 of 78


Test plot as follows:

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	PK		

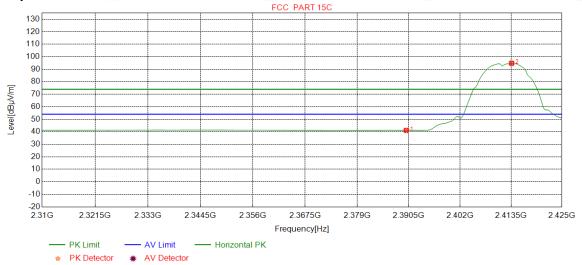
Test Graph

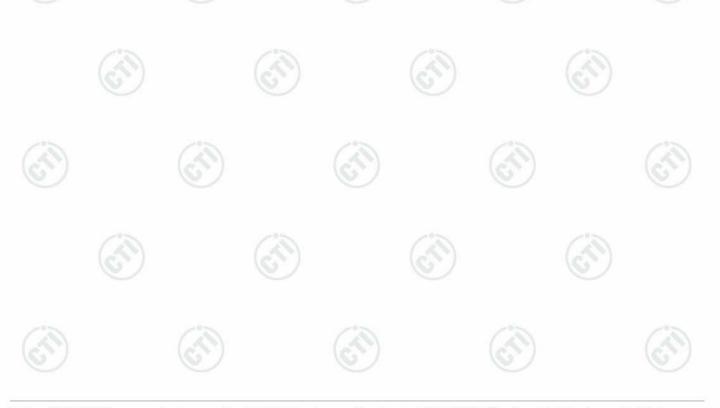

Ant Cable Pream Freq. Reading Limit Margin Level Factor NO gain Result Polarity loss [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] **Pass** 2390.0000 1 32.25 13.37 -43.12 49.13 51.63 74.00 22.37 Horizontal 2 2413.3417 32.28 13.36 -43.12 94.34 96.86 74.00 -22.86 **Pass** Horizontal

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412	
Remark:	PK			

Test Graph

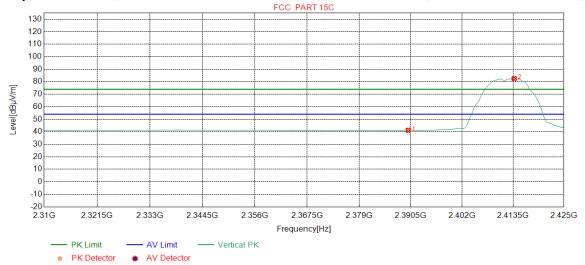
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	50.64	53.14	74.00	20.86	Pass	Vertical
2	2413.1977	32.28	13.36	-43.12	83.21	85.73	74.00	-11.73	Pass	Vertical

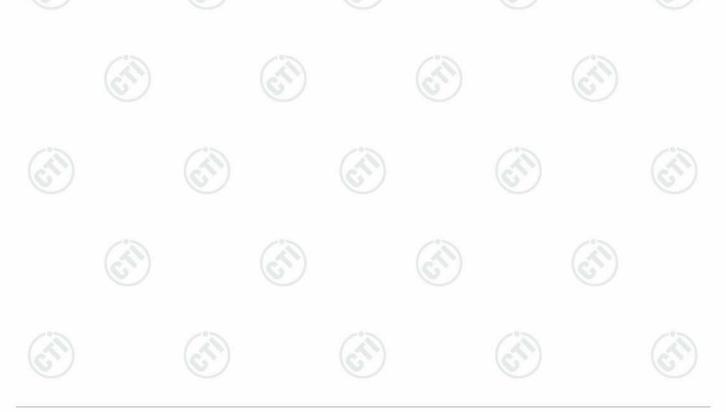



	Page	36	of	78	
--	------	----	----	----	--

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	AV		

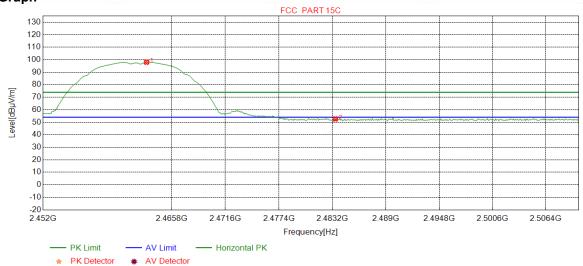
Test Graph

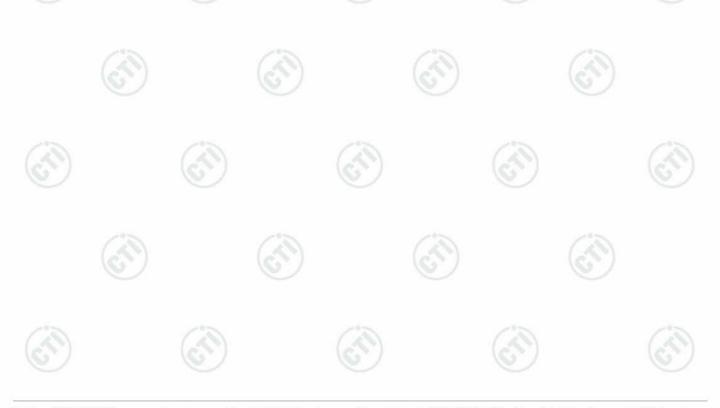

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.60	41.10	54.00	12.90	Pass	Horizontal
2	2413.6295	32.28	13.36	-43.12	92.23	94.75	54.00	-40.75	Pass	Horizontal



Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

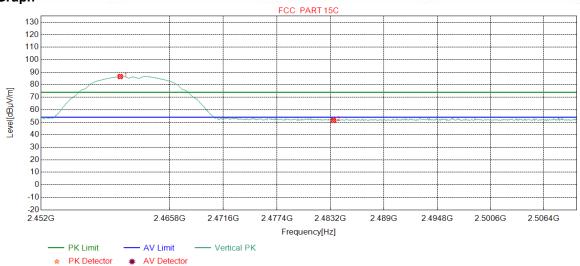

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.70	41.20	54.00	12.80	Pass	Vertical
2	2413.7735	32.28	13.36	-43.11	80.02	82.55	54.00	-28.55	Pass	Vertical

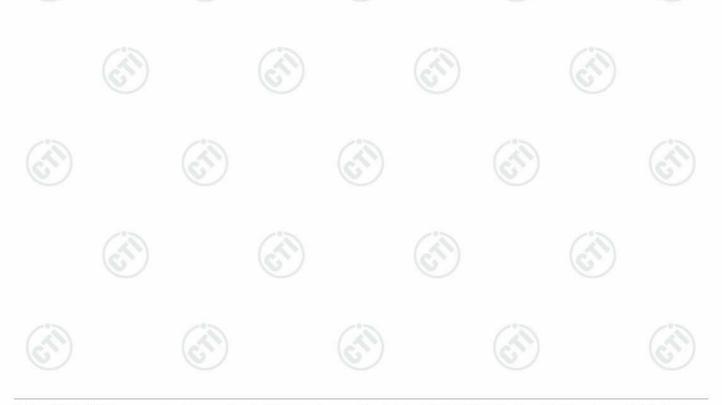


Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

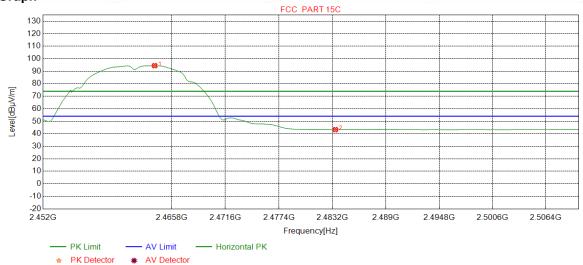
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2463.1064	32.35	13.47	-43.11	95.27	97.98	74.00	-23.98	Pass	Horizontal
Ī	2	2483.5000	32.38	13.38	-43.11	49.98	52.63	74.00	21.37	Pass	Horizontal




Page	วด	Ωf	78
I auc	\mathbf{u}	O.	10

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

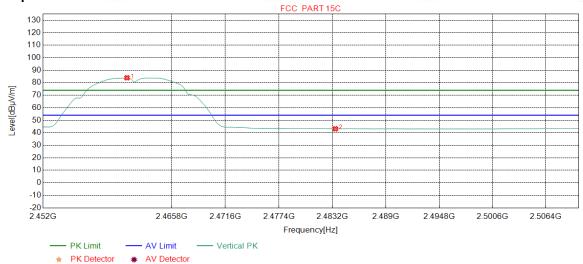

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.4931	32.34	13.48	-43.10	83.82	86.54	74.00	-12.54	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.84	51.49	74.00	22.51	Pass	Vertical

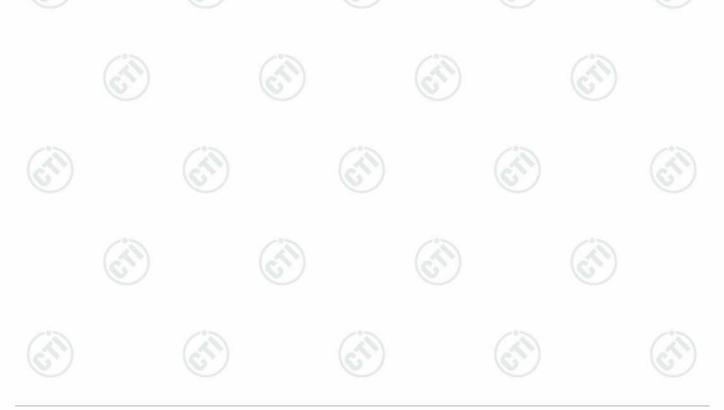


Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462	
Remark:	AV			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.9775	32.35	13.47	-43.11	91.75	94.46	54.00	-40.46	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.67	43.32	54.00	10.68	Pass	Horizontal

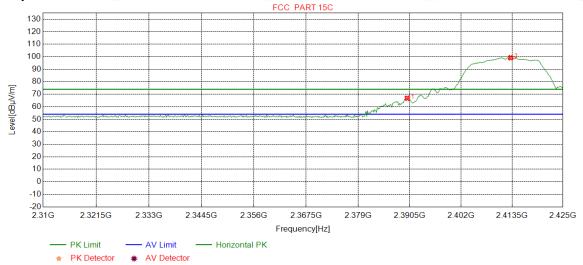


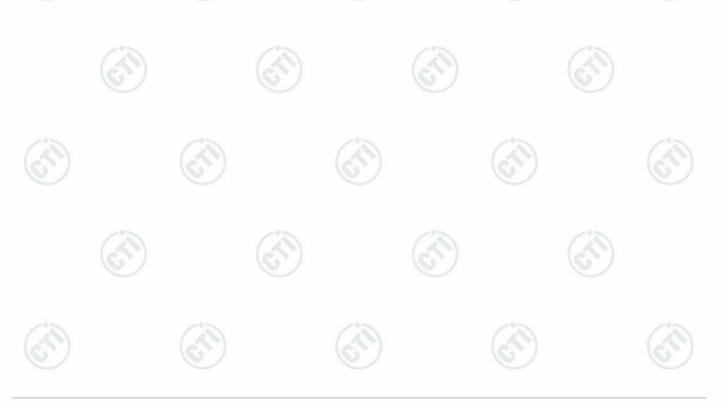

Page 41	of 78
---------	-------

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.0013	32.35	13.48	-43.11	81.21	83.93	54.00	-29.93	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.51	43.16	54.00	10.84	Pass	Vertical

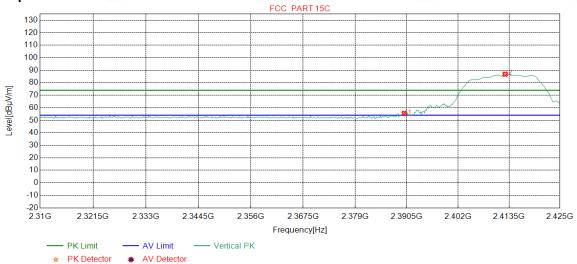


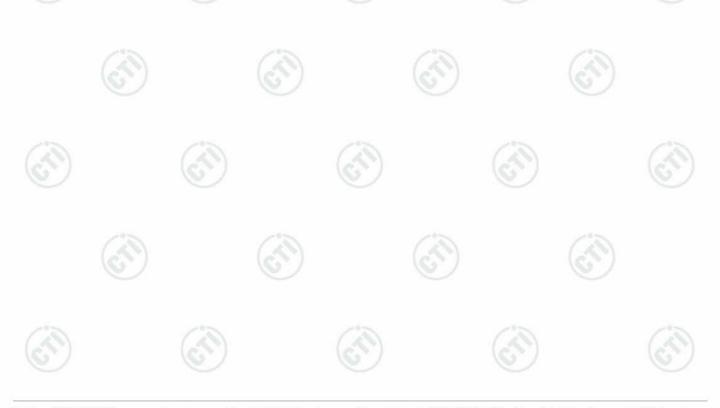

Page	42	of	78	
------	----	----	----	--

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	64.30	66.80	74.00	7.20	Pass	Horizontal
2	2413.1977	32.28	13.36	-43.12	96.63	99.15	74.00	-25.15	Pass	Horizontal

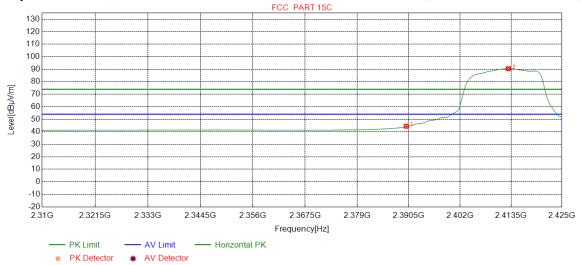


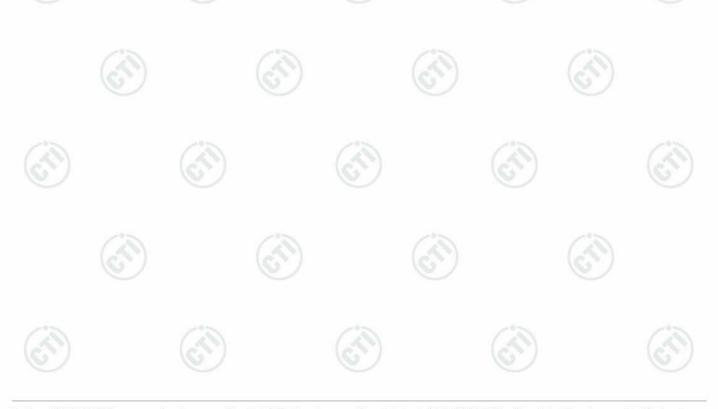

Page	13	Ωf	78	
raue	43	ΟI	<i>1</i> O	

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412	
Remark:	PK			

Test Graph

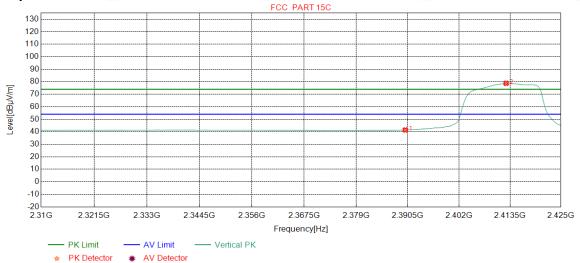
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	53.00	55.50	74.00	18.50	Pass	Vertical
2	2412.6220	32.28	13.36	-43.12	84.29	86.81	74.00	-12.81	Pass	Vertical

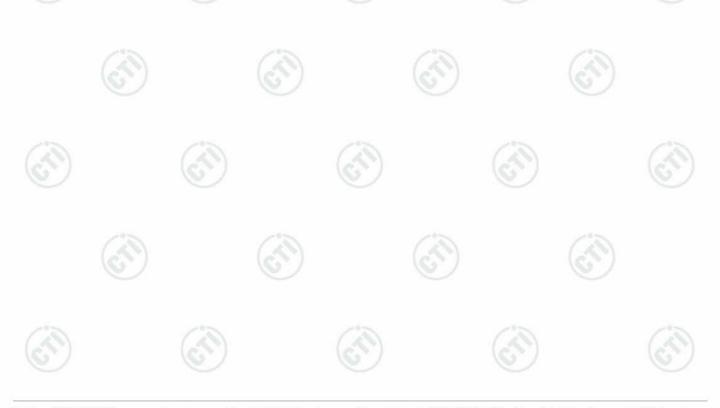



Page 44 of 78

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412	
Remark:	AV			

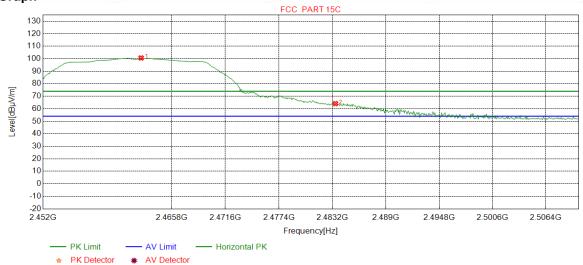
Test Graph

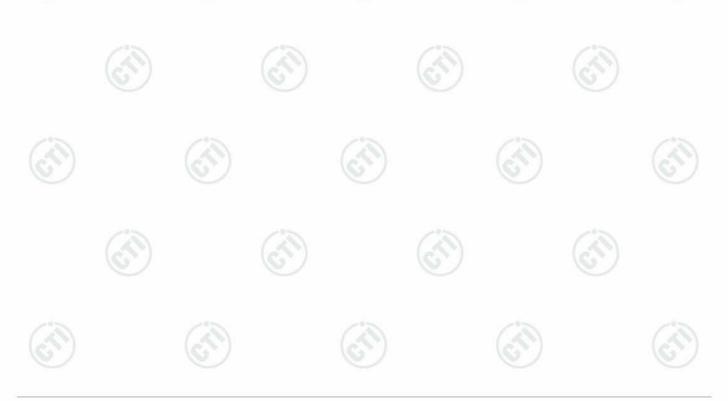

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	41.93	44.43	54.00	9.57	Pass	Horizontal
2	2412.9099	32.28	13.36	-43.12	87.95	90.47	54.00	-36.47	Pass	Horizontal



Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412	
Remark:	AV			

Test Graph

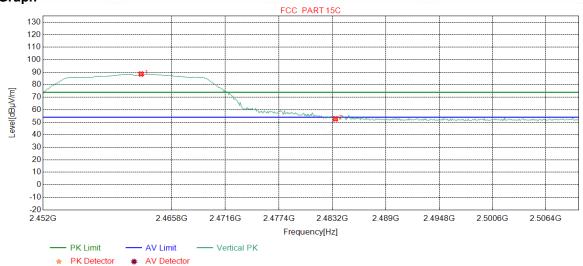

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.93	41.43	54.00	12.57	Pass	Vertical
2	2412.6220	32.28	13.36	-43.12	76.21	78.73	54.00	-24.73	Pass	Vertical

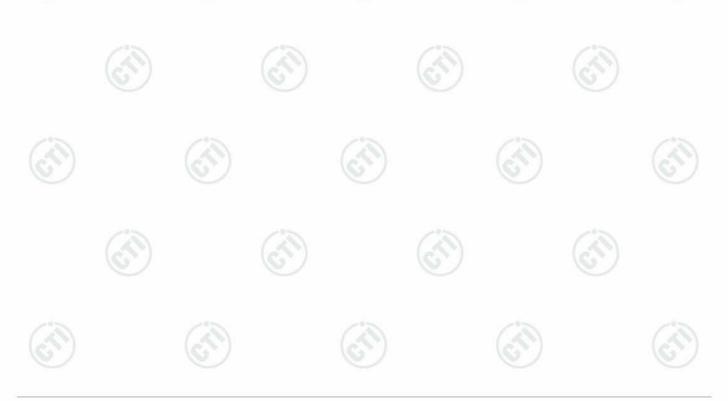


Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462	
Remark:	PK			

Test Graph

N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.5257	32.35	13.47	-43.11	97.89	100.60	74.00	-26.60	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	61.46	64.11	74.00	9.89	Pass	Horizontal

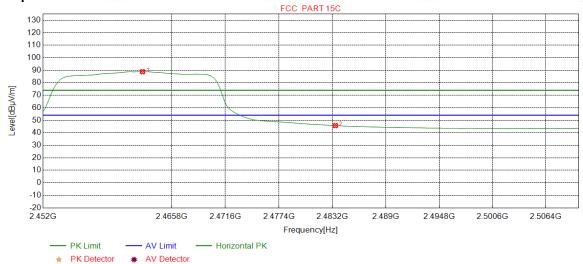



_		_		
Page	17	f	70	
raue	41	OI	70	

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.5257	32.35	13.47	-43.11	85.85	88.56	74.00	-14.56	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	50.06	52.71	74.00	21.29	Pass	Vertical

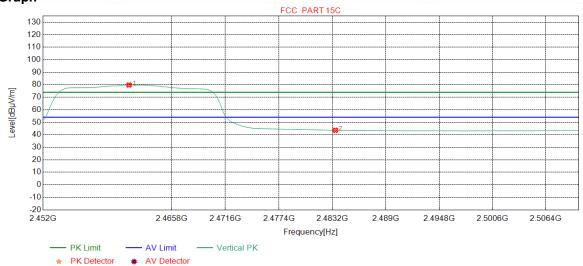


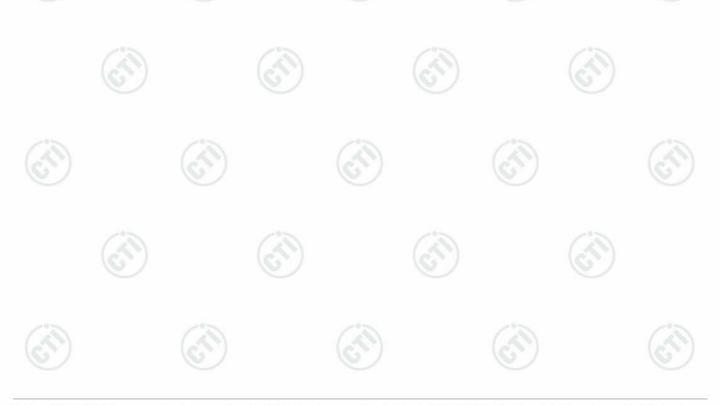

1 440 70 01 70	Page	e 48	of	78
----------------	------	------	----	----

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.6708	32.35	13.47	-43.11	86.11	88.82	54.00	-34.82	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	43.06	45.71	54.00	8.29	Pass	Horizontal

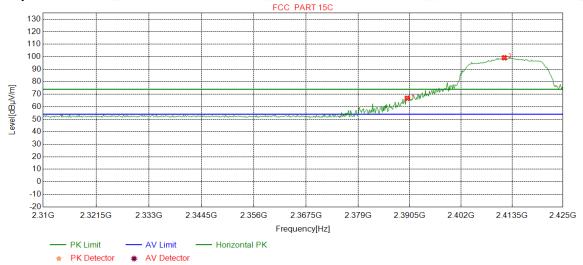


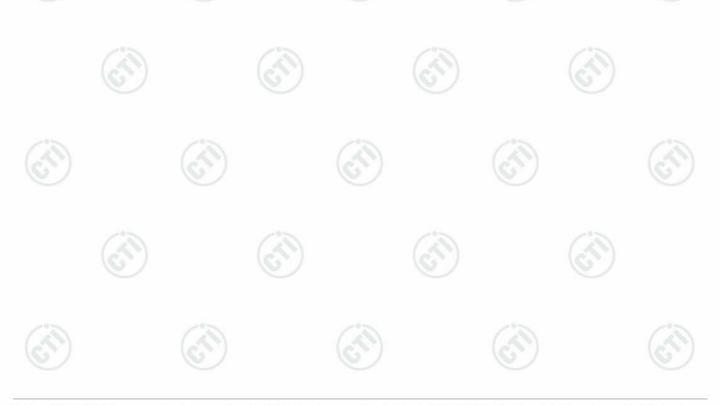

Page	40	٥f	70	
Page.	49	OΤ	78	

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

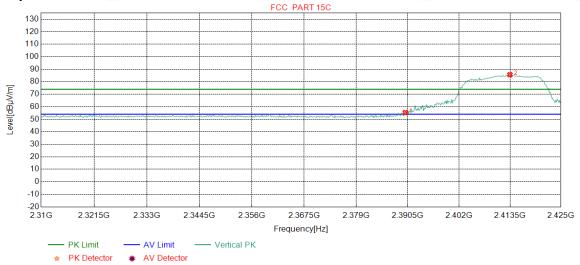
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.2190	32.35	13.48	-43.11	77.06	79.78	54.00	-25.78	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.93	43.58	54.00	10.42	Pass	Vertical

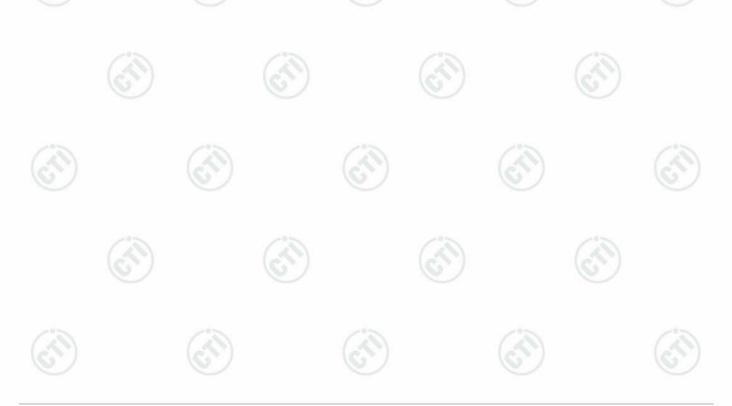




Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

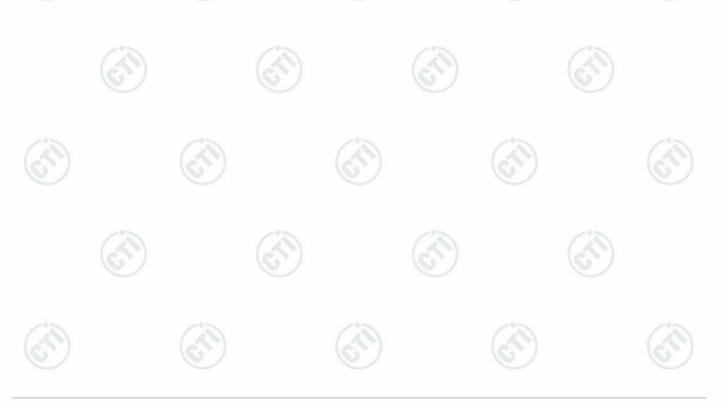

N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	64.30	66.80	74.00	7.20	Pass	Horizontal
2	2411.7584	32.28	13.35	-43.12	96.65	99.16	74.00	-25.16	Pass	Horizontal



Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412	
Remark:	PK			

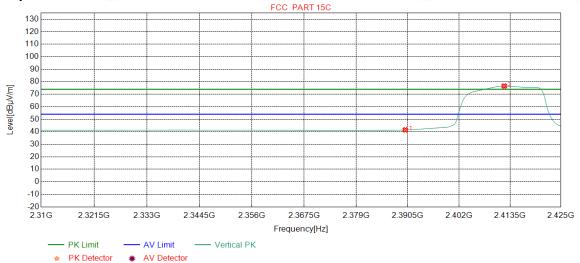
Test Graph

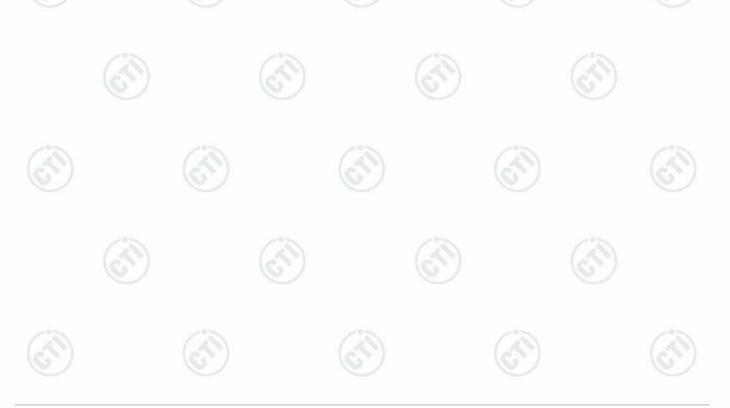
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	52.82	55.32	74.00	18.68	Pass	Vertical
2	2413.4856	32.28	13.36	-43.12	83.08	85.60	74.00	-11.60	Pass	Vertical



Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

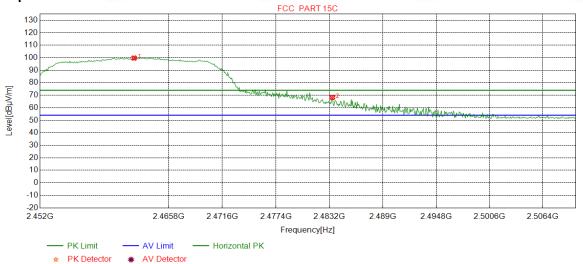

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	42.02	44.52	54.00	9.48	Pass	Horizontal
2	2412.3342	32.28	13.36	-43.12	86.52	89.04	54.00	-35.04	Pass	Horizontal

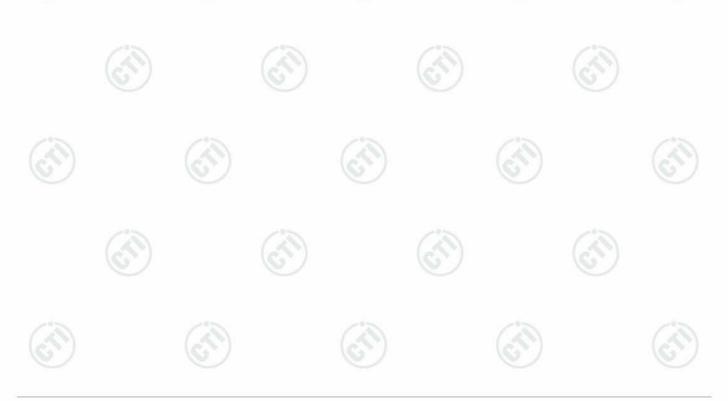


Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412	
Remark:	AV			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	39.02	41.52	54.00	12.48	Pass	Vertical
2	2412.1902	32.28	13.36	-43.12	74.00	76.52	54.00	-22.52	Pass	Vertical

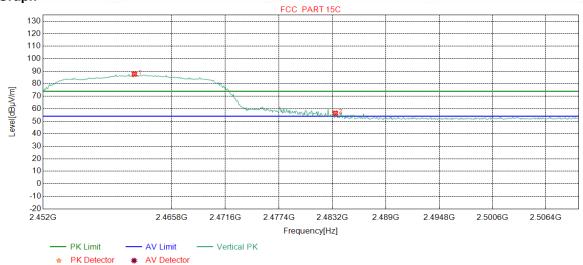


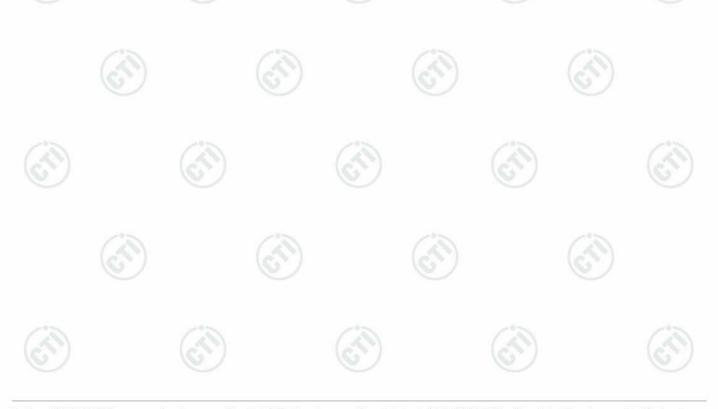

Page 54 of 78

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.0901	32.35	13.47	-43.11	97.00	99.71	74.00	-25.71	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	65.63	68.28	74.00	5.72	Pass	Horizontal

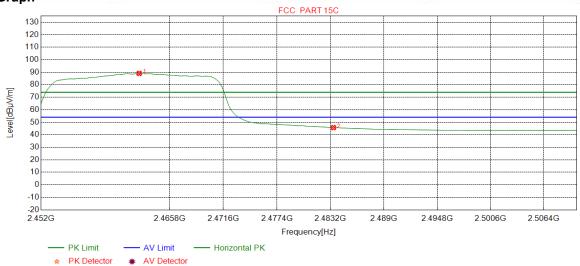


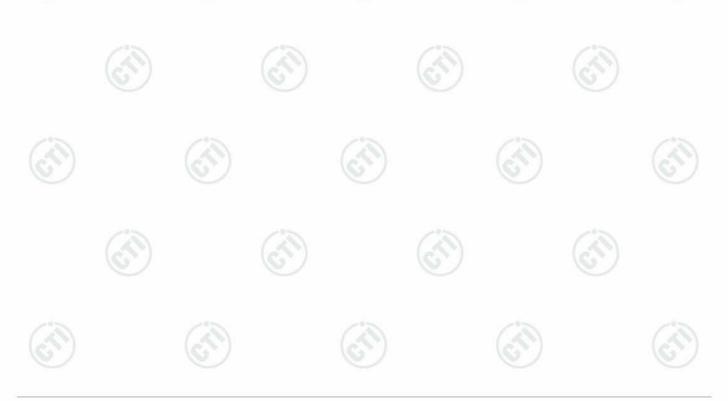

Page 55 of 78

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462	
Remark:	PK			

Test Graph

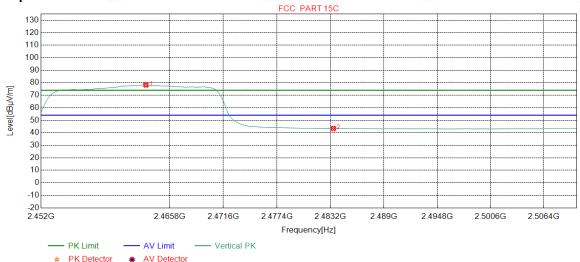
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.7998	32.35	13.48	-43.12	85.04	87.75	74.00	-13.75	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	53.84	56.49	74.00	17.51	Pass	Vertical





Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph


NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.5257	32.35	13.47	-43.11	86.33	89.04	54.00	-35.04	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	43.07	45.72	54.00	8.28	Pass	Horizontal

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.2516	32.35	13.47	-43.11	75.42	78.13	54.00	-24.13	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.77	43.42	54.00	10.58	Pass	Vertical

Note:

- 1) Through transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32M00246401 Page 58 of 78

Appendix G): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

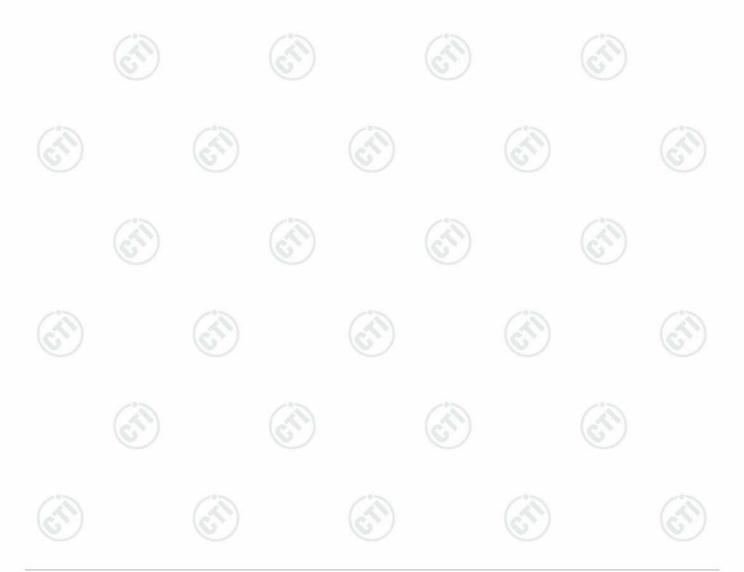
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

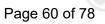
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)..
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

_	-	-	-	_	-
			Ķ		
	- 1	n	n	IT	٠.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	70/	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(4)	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.


Report No. : EED32M00246401 Page 59 of 78

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode	:		802.11	g(6Mbps) T	Fransmitting			Channel:		2437	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	54.6405	12.46	0.84	-31.98	44.26	25.58	40.00	14.42	Pass	Н	PK
2	131.2781	7.64	1.34	-32.02	52.31	29.27	43.50	14.23	Pass	Н	PK
3	150.0010	7.55	1.45	-32.01	51.82	28.81	43.50	14.69	Pass	Н	PK
4	241.0931	11.97	1.84	-31.90	50.09	32.00	46.00	14.00	Pass	Н	PK
5	325.0065	13.75	2.14	-31.79	44.93	29.03	46.00	16.97	Pass	Н	PK
6	750.0060	20.35	3.29	-32.04	39.38	30.98	46.00	15.02	Pass	Н	PK
7	36.5967	11.21	0.67	-31.38	44.56	25.06	40.00	14.94	Pass	V	PK
8	54.8345	12.43	0.84	-31.97	40.99	22.29	40.00	17.71	Pass	V	PK
9	195.0135	10.43	1.64	-31.94	47.63	27.76	43.50	15.74	Pass	V	PK
10	242.5483	12.01	1.85	-31.90	46.28	28.24	46.00	17.76	Pass	V	PK
11	325.0065	13.75	2.14	-31.79	45.10	29.20	46.00	16.80	Pass	V	PK
12	600.0290	19.00	2.96	-31.50	39.08	29.54	46.00	16.46	Pass	V	PK

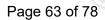
Transmitter Emission above 1GHz

Mode	:		802.11 8	o(1Mbps) T	Fransmitting			Channel:		2412	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1188.0188	28.09	2.67	-42.91	62.87	50.72	74.00	23.28	Pass	Н	PK
2	1792.2792	30.33	3.31	-42.71	56.26	47.19	74.00	26.81	Pass	Н	PK
3	1991.8992	31.65	3.46	-43.18	58.74	50.67	74.00	23.33	Pass	Н	PK
4	4824.0000	34.50	4.61	-42.80	46.87	43.18	74.00	30.82	Pass	Н	PK
5	7236.0000	36.34	5.79	-42.16	47.81	47.78	74.00	26.22	Pass	Н	PK
6	9648.0000	37.66	6.72	-42.10	46.86	49.14	74.00	24.86	Pass	Н	PK
7	1188.2188	28.09	2.67	-42.91	59.09	46.94	74.00	27.06	Pass	V	PK
8	1798.0798	30.37	3.32	-42.72	60.59	51.56	74.00	22.44	Pass	V	PK
9	1980.0980	31.57	3.45	-43.15	58.26	50.13	74.00	23.87	Pass	V	PK
10	4824.0000	34.50	4.61	-42.80	47.61	43.92	74.00	30.08	Pass	V	PK
11	7236.0000	36.34	5.79	-42.16	45.65	45.62	74.00	28.38	Pass	V	PK
12	9648.0000	37.66	6.72	-42.10	45.97	48.25	74.00	25.75	Pass	V	PK

Mode	:		802.11 8	b(1Mbps) T	ransmitting			Channel:	el: 2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1187.8188	28.09	2.67	-42.91	62.95	50.80	74.00	23.20	Pass	Н	PK
2	1798.6799	30.37	3.32	-42.71	59.36	50.34	74.00	23.66	Pass	Н	PK
3	1998.4999	31.69	3.47	-43.20	59.77	51.73	74.00	22.27	Pass	Н	PK
4	4874.0000	34.50	4.78	-42.80	48.12	44.60	74.00	29.40	Pass	Н	PK
5	7311.0000	36.41	5.85	-42.14	47.71	47.83	74.00	26.17	Pass	Н	PK
6	9748.0000	37.70	6.77	-42.10	47.35	49.72	74.00	24.28	Pass	Н	PK
7	1797.4797	30.36	3.32	-42.71	58.67	49.64	74.00	24.36	Pass	V	PK
8	1993.0993	31.65	3.46	-43.18	61.06	52.99	74.00	21.01	Pass	V	PK
9	3564.0376	33.45	4.41	-43.08	53.86	48.64	74.00	25.36	Pass	V	PK
10	4874.0000	34.50	4.78	-42.80	46.87	43.35	74.00	30.65	Pass	V	PK
11	7311.0000	36.41	5.85	-42.14	47.21	47.33	74.00	26.67	Pass	V	PK
12	9748.0000	37.70	6.77	-42.10	46.08	48.45	74.00	25.55	Pass	V	PK

Mode	:		802.11 1	o(1Mbps) T	ransmitting			Channel:	el: 2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1187.8188	28.09	2.67	-42.91	55.26	43.11	74.00	30.89	Pass	Н	PK
2	1980.0980	31.57	3.45	-43.15	55.80	47.67	74.00	26.33	Pass	Н	PK
3	2772.1772	32.84	4.19	-43.10	55.72	49.65	74.00	24.35	Pass	Н	PK
4	4924.0000	34.50	4.85	-42.80	47.63	44.18	74.00	29.82	Pass	Н	PK
5	7386.0000	36.49	5.85	-42.13	47.47	47.68	74.00	26.32	Pass	Н	PK
6	9848.0000	37.74	6.83	-42.10	46.49	48.96	74.00	25.04	Pass	Н	PK
7	1796.0796	30.35	3.31	-42.70	59.34	50.30	74.00	23.70	Pass	V	PK
8	3564.0376	33.45	4.41	-43.08	53.96	48.74	74.00	25.26	Pass	V	PK
9	4356.0904	34.30	4.51	-42.85	53.86	49.82	74.00	24.18	Pass	V	PK
10	4924.0000	34.50	4.85	-42.80	46.56	43.11	74.00	30.89	Pass	V	PK
11	7386.0000	36.49	5.85	-42.13	47.50	47.71	74.00	26.29	Pass	V	PK
12	9848.0000	37.74	6.83	-42.10	47.45	49.92	74.00	24.08	Pass	V	PK

Mode	:		802.11 (g(6Mbps) T	ransmitting			Channel:	Channel: 24		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1188.0188	28.09	2.67	-42.91	59.66	47.51	74.00	26.49	Pass	Н	PK
2	1799.4799	30.38	3.32	-42.71	58.53	49.52	74.00	24.48	Pass	Н	PK
3	1979.8980	31.57	3.45	-43.15	61.15	53.02	74.00	20.98	Pass	Н	PK
4	4824.0000	34.50	4.61	-42.80	46.80	43.11	74.00	30.89	Pass	Н	PK
5	7236.0000	36.34	5.79	-42.16	46.24	46.21	74.00	27.79	Pass	Н	PK
6	9648.0000	37.66	6.72	-42.10	46.34	48.62	74.00	25.38	Pass	Н	PK
7	1187.8188	28.09	2.67	-42.91	58.09	45.94	74.00	28.06	Pass	V	PK
8	1792.6793	30.33	3.31	-42.71	59.35	50.28	74.00	23.72	Pass	V	PK
9	1990.6991	31.64	3.46	-43.18	61.64	53.56	74.00	20.44	Pass	V	PK
10	4824.0000	34.50	4.61	-42.80	48.11	44.42	74.00	29.58	Pass	V	PK
11	7236.0000	36.34	5.79	-42.16	45.90	45.87	74.00	28.13	Pass	V	PK
12	9648.0000	37.66	6.72	-42.10	45.94	48.22	74.00	25.78	Pass	V	PK


Page	ຂາ	Ωf	70
raue	UZ	OI	70

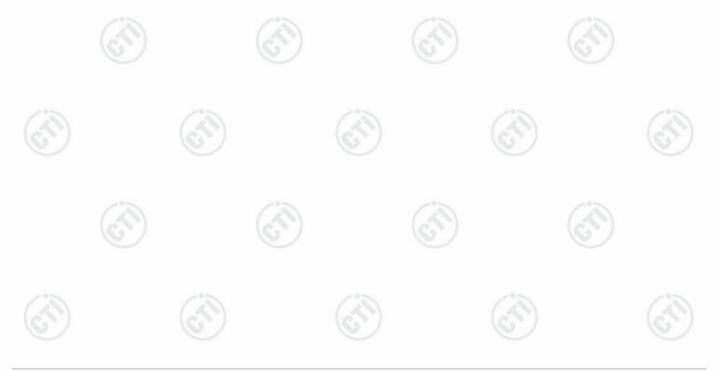
Mode	:		802.11 (g(6Mbps) T	ransmitting			Channel:		2437	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1188.4188	28.09	2.67	-42.91	52.77	40.62	74.00	33.38	Pass	Н	PK
2	2771.9772	32.84	4.19	-43.11	54.81	48.73	74.00	25.27	Pass	Н	PK
3	3564.0376	33.45	4.41	-43.08	50.66	45.44	74.00	28.56	Pass	Н	PK
4	4874.0000	34.50	4.78	-42.80	46.42	42.90	74.00	31.10	Pass	Н	PK
5	7311.0000	36.41	5.85	-42.14	47.47	47.59	74.00	26.41	Pass	Н	PK
6	9748.0000	37.70	6.77	-42.10	46.53	48.90	74.00	25.10	Pass	Н	PK
7	1796.8797	30.36	3.31	-42.70	59.15	50.12	74.00	23.88	Pass	V	PK
8	1996.4997	31.68	3.47	-43.20	61.45	53.40	74.00	20.60	Pass	V	PK
9	2191.7192	31.97	3.65	-43.16	55.86	48.32	74.00	25.68	Pass	V	PK
10	4874.0000	34.50	4.78	-42.80	46.06	42.54	74.00	31.46	Pass	V	PK
11	7311.0000	36.41	5.85	-42.14	46.30	46.42	74.00	27.58	Pass	V	PK
12	9748.0000	37.70	6.77	-42.10	47.41	49.78	74.00	24.22	Pass	V	PK

Mode	:		802.11 (g(6Mbps) ٦	ransmitting			Channel:		2462	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1188.0188	28.09	2.67	-42.91	60.78	48.63	74.00	25.37	Pass	Н	PK
2	1979.8980	31.57	3.45	-43.15	59.60	51.47	74.00	22.53	Pass	Н	PK
3	2772.3772	32.84	4.19	-43.10	57.92	51.85	74.00	22.15	Pass	Н	PK
4	4924.0000	34.50	4.85	-42.80	46.49	43.04	74.00	30.96	Pass	Н	PK
5	7386.0000	36.49	5.85	-42.13	47.40	47.61	74.00	26.39	Pass	Н	PK
6	9848.0000	37.74	6.83	-42.10	45.81	48.28	74.00	25.72	Pass	Н	PK
7	1795.0795	30.35	3.31	-42.71	60.23	51.18	74.00	22.82	Pass	V	PK
8	1980.0980	31.57	3.45	-43.15	58.06	49.93	74.00	24.07	Pass	V	PK
9	3564.0376	33.45	4.41	-43.08	55.69	50.47	74.00	23.53	Pass	V	PK
10	4924.0000	34.50	4.85	-42.80	46.43	42.98	74.00	31.02	Pass	V	PK
11	7386.0000	36.49	5.85	-42.13	46.84	47.05	74.00	26.95	Pass	V	PK
12	9848.0000	37.74	6.83	-42.10	45.99	48.46	74.00	25.54	Pass	V	PK

Mode	:		802.11 ו	n(HT20) (6	.5Mbps) Trar	nsmitting		Channel:		2412	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1188.0188	28.09	2.67	-42.91	56.11	43.96	74.00	30.04	Pass	Н	PK
2	2772.1772	32.84	4.19	-43.10	56.32	50.25	74.00	23.75	Pass	Н	PK
3	3564.0376	33.45	4.41	-43.08	52.56	47.34	74.00	26.66	Pass	Н	PK
4	4824.0000	34.50	4.61	-42.80	46.62	42.93	74.00	31.07	Pass	Н	PK
5	7236.0000	36.34	5.79	-42.16	46.26	46.23	74.00	27.77	Pass	Н	PK
6	9648.0000	37.66	6.72	-42.10	47.44	49.72	74.00	24.28	Pass	Н	PK
7	1187.8188	28.09	2.67	-42.91	58.12	45.97	74.00	28.03	Pass	V	PK
8	1979.8980	31.57	3.45	-43.15	58.83	50.70	74.00	23.30	Pass	V	PK
9	3564.0376	33.45	4.41	-43.08	54.99	49.77	74.00	24.23	Pass	V	PK
10	4824.0000	34.50	4.61	-42.80	46.67	42.98	74.00	31.02	Pass	V	PK
11	7236.0000	36.34	5.79	-42.16	46.72	46.69	74.00	27.31	Pass	V	PK
12	9648.0000	37.66	6.72	-42.10	46.00	48.28	74.00	25.72	Pass	V	PK

Mode:			802.11 n(HT20) (6.5Mbps) Transmitting					Channel:		2437	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1188.0188	28.09	2.67	-42.91	62.31	50.16	74.00	23.84	Pass	Н	PK
2	1979.8980	31.57	3.45	-43.15	60.77	52.64	74.00	21.36	Pass	Н	PK
3	2772.1772	32.84	4.19	-43.10	57.63	51.56	74.00	22.44	Pass	Н	PK
4	4874.0000	34.50	4.78	-42.80	46.50	42.98	74.00	31.02	Pass	Н	PK
5	7311.0000	36.41	5.85	-42.14	47.81	47.93	74.00	26.07	Pass	Н	PK
6	9748.0000	37.70	6.77	-42.10	46.91	49.28	74.00	24.72	Pass	Н	PK
7	1187.8188	28.09	2.67	-42.91	59.00	46.85	74.00	27.15	Pass	V	PK
8	1979.8980	31.57	3.45	-43.15	57.95	49.82	74.00	24.18	Pass	V	PK
9	3564.0376	33.45	4.41	-43.08	54.19	48.97	74.00	25.03	Pass	V	PK
10	4874.0000	34.50	4.78	-42.80	45.87	42.35	74.00	31.65	Pass	V	PK
11	7311.0000	36.41	5.85	-42.14	46.21	46.33	74.00	27.67	Pass	V	PK
12	9748.0000	37.70	6.77	-42.10	47.00	49.37	74.00	24.63	Pass	V	PK

Mode:			802.11 n(HT20) (6.5Mbps) Transmitting					Channel:		2462	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1187.8188	28.09	2.67	-42.91	58.05	45.90	74.00	28.10	Pass	Н	PK
2	1979.8980	31.57	3.45	-43.15	57.88	49.75	74.00	24.25	Pass	Н	PK
3	2771.9772	32.84	4.19	-43.11	57.16	51.08	74.00	22.92	Pass	Н	PK
4	4924.0000	34.50	4.85	-42.80	48.53	45.08	74.00	28.92	Pass	Н	PK
5	7386.0000	36.49	5.85	-42.13	46.13	46.34	74.00	27.66	Pass	Н	PK
6	9848.0000	37.74	6.83	-42.10	46.03	48.50	74.00	25.50	Pass	Н	PK
7	1187.8188	28.09	2.67	-42.91	59.79	47.64	74.00	26.36	Pass	V	PK
8	1979.8980	31.57	3.45	-43.15	60.46	52.33	74.00	21.67	Pass	V	PK
9	4924.0000	34.50	4.85	-42.80	47.04	43.59	74.00	30.41	Pass	V	PK
10	7386.0000	36.49	5.85	-42.13	46.65	46.86	74.00	27.14	Pass	V	PK
11	9848.0000	37.74	6.83	-42.10	46.02	48.49	74.00	25.51	Pass	V	PK
12	11883.5922	39.21	7.43	-41.93	48.62	53.33	74.00	20.67	Pass	V	PK


Note:

- 1) Through transmitting modewith all kind of modulation and data rate, find the 1Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

