

FCC RF TEST REPORT

APPLICANT	:	Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd.
PRODUCT NAME	:	Tablet PC
MODEL NAME	:	101S/M1019/M101/M105/M1018E/M1016/ S1016/M1010/BNT-1011W
TRADE NAME	:	Hatch, Skyworth
BRAND NAME	:	Hatch/Skyworth/Tatung/BLUEDOT/TOSHIBA /SINOTEC/INVIO/IRIVER/SINGER
FCC ID	:	2AABK-101S
STANDARD(S)	:	47 CFR Part 15 Subpart E
ISSUE DATE	:	2017-11-30

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

 MORLAB GROUP
 FL1-3, Building A, Feitraing Science Faity, Ros League
 FL1-3, Building A, Feitraing Science Faity, Ros L

DIRECTORY

TEST	REPORT DECLARATION ····································
<u>1.</u>	ENERAL INFORMATION5
1.1	EUT DESCRIPTION
1.2	TEST STANDARDS AND RESULTS ····································
1.3	TEST ENVIRONMENT CONDITIONS6
2 4	
<u>2. 4</u>	7 CFR PART 15E REQUIREMENTS······7
2.1	ANTENNA REQUIREMENT ·······7
2.1.1	Applicable Standard ······7
2.1.2	Result: Compliant7
2.2	EMISSION BANDWIDTH7
2.2.1	REQUIREMENT7
2.2.2	TEST DESCRIPTION ······7
2.2.3	TEST RESULT8
2.3	MAXIMUM CONDUCTED OUTPUT POWER ······14
2.3.1	REQUIREMENT 14
2.3.2	TEST DESCRIPTION ······ 14
2.3.3	TEST RESULT······ 15
2.4	PEAK POWER SPECTRAL DENSITY
2.4.1	REQUIREMENT 16
2.4.2	TEST DESCRIPTION ······ 16
2.4.3	Test Result ······ 17
2.5	RESTRICTED FREQUENCY BANDS23
2.5.1	REQUIREMENT 23
2.5.2	TEST DESCRIPTION ······ 23
2.5.3	Test Result ······ 23
2.6	FREQUENCY STABILITY24
2.6.1	REQUIREMENT 24
2.6.2	Test Procedure ······ 24
2.6.3	Test Result ····· 24
2.7	TRANSMIT POWER CONTROL (TPC) AND DYNAMIC FREQUENCY SELECTION (DFS)25
2.7.1	REQUIREMENT 25

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

2.7.1.1	MASTER DEVICES 26
2.7.1.2	CLIENT DEVICES 27
2.7.1.3	DFS DETECTION THRESHOLDS 27
2.7.1.4	Response Requirements 28
2.7.2	TEST DESCRIPTION 28
2.7.3	Test Result29
2.8 C	CONDUCTED EMISSION ····································
2.8.1	REQUIREMENT
2.8.2	TEST DESCRIPTION
2.8.3	Test Result
2.9 R	ADIATED EMISSION ····································
2.9.1	REQUIREMENT 33
2.9.2	TEST DESCRIPTION
2.9.3	TEST RESULT······ 37
2.10 R	RF EXPOSURE EVALUATION ·······46
2.10.1	REQUIREMENT 46
2.10.2	RESULT 46

Change History				
Issue	Issue Date Reason for change			
1.0	1.0 2017-09-19 First edition			
2.0	2017-11-30	Second edition		

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

TEST REPORT DECLARATION

Applicant	Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd.
Applicant Address	4F & 6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen
Manufacturer	Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd.
Manufacturer Address	4F & 6F, Overseas plant south, Skyworth Industrial Park, Shiyan Street, Bao'an District, Shenzhen
Product Name	Tablet PC
Model Name	101S/M1019/M101/M105/M1018E/M1016/S1016/M1010/BNT- 1011W
Brand Name	Hatch/Skyworth/Tatung/BLUEDOT/TOSHIBA/SINOTEC/ INVIO/IRIVER/SINGER
HW Version	H1CWG_V1
SW Version	alps-mp-n0.mp102-v1.6-elink8163.tb.n_29
Test Standards	47 CFR Part 15 Subpart E
Test Date	2017-09-07 to 2017-09-19
Test Result	PASS

: <u>Su Hang</u> Su Hang (Test Engineer) Tested by

Approved by

Peng A

Peng Huarui (Supervisor)

 FL1-3, Building A, FeiYang Science Park, No.8 Long Unarry Ruau,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

1. GENERAL INFORMATION

1.1 EUT Description

Product Name:	Tablet PC	
Serial No:	(n.a, marked #1 by test site)	
Hardware Version::	H1CWG_V1	
Software Version::	alps-mp-n0.mp102-v1.6-elink8163.tb.n_29	
Applicant:	Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd.	
	4F & 6F, Overseas plant south, Skyworth Industrial Park,	
	Shiyan Street, Bao'an District, Shenzhen	
Manufacturer:	Shenzhen Chuangwei Electronic Appliance Tech Co., Ltd.	
	4F & 6F, Overseas plant south, Skyworth Industrial Park,	
	Shiyan Street, Bao'an District, Shenzhen	
Frequency Range::	802.11a /n: 5.725GHz- 5.850GHz	
Channel Number::	Refer Note(2)	
Modulation Type::	DSSS, OFDM	
Antenna Type:	PIFA Antenna	
Antenna Gain:	2 dBi	

Note 1: The U-NII band is applicable to this report, another bands of operation (2.4GHz) is documented in a separate report.

Note 2: According to the designer 101S, they hereby declare that the model M1019, M101, M105, M1018E, M1016, S1016, M1010, BNT-1011W and 101S are accordant in both hardware and software. These nine models only differ in brand name or model name.

The application information of M1019, M101, M105, M1018E, M1016, S1016, M1010,

BNT-1011Wand 101S are identical only except above mentioned points.

Note 3: The following tables are the channel number and frequency of the EUT, the black bold channels were selected for test.

20MHz Bandwidth:

Frequency Range	5725~5850MHz				
Channel Number	149	153	157	161	165
Frequency (MHz)	5745	5765	5785	5805	5825

40MHz Bandwidth:

Frequency Range	5725~5850 MHz		
Channel Number	151	159	
Frequency (MHz)	5755	5795	

Note 3: During test, the duty cycle of the EUT was setting to 100%.

Note 4: For a more detailed description, please refer to Specification or User's Manual supplied by

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

the applicant and/or manufacturer.

Note 5: The antenna connector of EUT is designed with permanent attachment and no consideration of replacement.

1.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart E (UNII band) for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices
	(5-1-14 Edition)	

Test detailed items/section required by FCC rules and results are as below:

Section	Description	Result
15.203	Antenna Requirement	PASS
15.407(a) (e)	Emission Bandwidth	PASS
15.407(a)	Maximum conducted output Power	PASS
15.407(a)	Peak Power spectral density	PASS
15.407(b)	Restricted Frequency Bands	<u>N/A_{Note1}</u>
15.407(g)	Frequency Stability	PASS
15.407(h)	TPC and DFS	N/A _{Note2}
15.207	Conducted Emission	PASS
15.407(b)	Radiated Emission	PASS
15.407(f)	RF exposure evaluation	PASS
	15.203 15.407(a) (e) 15.407(a) 15.407(a) 15.407(b) 15.407(b) 15.407(b) 15.407(b) 15.407(b) 15.407(b) 15.407(b) 15.407(b) 15.407(b)	15.203Antenna Requirement15.407(a) (e)Emission Bandwidth15.407(a)Maximum conducted output Power15.407(a)Peak Power spectral density15.407(b)Restricted Frequency Bands15.407(g)Frequency Stability15.407(h)TPC and DFS15.207Conducted Emission15.407(b)Radiated Emission

Note 1: This test case not applies this kind of EUT.

Note 2: EUT is a Client Device Without Radar Detection, WIFI hotspot does not support U-NII band; A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.10 2013.

These RF tests were performed according to the method of measurements prescribed in KDB789033 D02 v01r04 (05/02/2017), KDB905462 D03 v01r02 (08/22/2016) and KDB644545 D03 v01 (08/14/2014).

1.3 **Test Environment Conditions**

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

2. 47 CFR PART 15E REQUIREMENTS

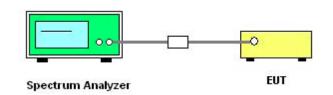
2.1 Antenna requirement

2.1.1 Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2 Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.


2.2 **Emission Bandwidth**

2.2.1 Requirement

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement. Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

2.2.2 Test Description

A. Test Set:

The EUT which is powered by the battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

B. Test Procedure

- 1. KDB 789033 Section C) 1) Emission Bandwidth was used in order to prove compliance
- 1) Set RBW = approximately 1% of the emission bandwidth.
- 2) Set the VBW > RBW.
- 3) Detector = Peak.
- 4) Trace mode = max hold.

MORLAB GROUP Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

Tel: 86-755-36698555 Http://www.morlab.com

- 5) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 2. KDB 789033 Section C) 2) minimum emission bandwidth for the band 5.725-5.85GHz was used in order to prove compliance.

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

2.2.3 Test Result

The lowest, middle and highest channels are selected to perform testing to record the 26 dB bandwidth of the Module.

2.2.3.1 802.11a-20MHz Test mode

A. Test Verdict:

Channel		6dB Bandwidth
Channel	Frequency (MHz)	(MHz)
149	5745	16.29
157	5785	16.15
165	5825	16.01

B. Test Plots

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

(Channel 157: 5785MHz @ 802.11a)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

(Channel 165: 5825MHz @ 802.11a)

2.2.3.2 802.11n-20MHz Test mode

A. Test Verdict:

Channel		6dB Bandwidth
Channel	Frequency (MHz)	(MHz)
149	5745	17.38
157	5785	17.27
165	5825	17.32

B. Test Plots

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

(Channel 149: 5745MHz @ 802.11n-20MHz)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

(Channel 165: 5825MHz @ 802.11n-20MHz)

2.2.3.3 802.11n-40MHz Test mode

A. Test Verdict:

Channel	Frequency (MHz)	26dB Bandwidth
Channer		(MHz)
151	5755	36.07
159	5795	36.07


B. Test Plots

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com

Tel: 86-755-36698555

(Channel 151: 5755MHz @ 802.11 n-40)

(Channel 159: 5795MHz @ 802.11 n-40)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

2.3 Maximum conducted output power

2.3.1 Requirement

(1) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

(2) For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250mW or 11dBm + 10log B, where B is the 26 dB emission bandwidth in megahertz.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

According FCC KDB644545 D03 D)1)b)3) requirement:

a) The maximum conducted output power within each band of operation shall comply with the limits for that band.


b) The limit on maximum conducted output power in each U-NII band is computed based on the portion of the emission bandwidth contained within that band

If transmitting antennas of directional gain greater than 6dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

2.3.2 Test Description

Section E) 3) of KDB 789033 defines a methodology using an RF average power meter.

A. Test Setup:

The EUT (Equipment under the test) which is powered by the Battery is coupled to the Power Meter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in power meter.

MORLAB GROUP Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

Tel: 86-755-36698555 Http://www.morlab.com

2.3.3 Test Result

2.3.3.1 802.11a-20MHz Test mode

Channel	Frequency (MHz)	Measured Output Peak Power(dBm)	Limit (dBm)	Verdict
149	5745	13.58		
157	5785	13.39	30	PASS
165	5825	12.07		

Channel	Frequency	Measured Output	Limit	Verdict
Channel	(MHz)	Average Power(dBm)	(dBm)	verdict
149	5745	9.51		
157	5785	9.29	30	PASS
165	5825	9.91		

2.3.3.2 802.11n-20MHz Test mode

Channel	Frequency	Measured Output	Limit	Verdict
Channel	(MHz)	Peak Power(dBm)	(dBm)	verdict
149	5745	17.48		
157	5785	17.51	30	PASS
165	5825	17.18		

Channel	Frequency	Measured Output	Limit	Verdict
	(MHz)	Average Power(dBm)	(dBm)	
149	5745	7.21		
157	5785	6.95	30	PASS
165	5825	7.22		

802.11n-40MHz Test mode 2.3.3.3

Channel	Frequency	Measured Output	Limit	Verdict
(MHz)		Peak Power(dBm)	(dBm)	Verdiet
151	5755	17.06	30	PASS
159	5795	14.71	30	FA00

Channel	Frequency (MHz)	Measured Output Average Power(dBm)	Limit (dBm)	Verdict
151	5755	7.31	30	PASS
159	5795	7.05	30	FA33

 MORLAB GROUP
 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com
 E-mail: service@morlab.cn

Page 15 0f 49

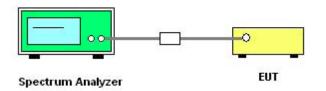
2.4 Peak Power spectral density

2.4.1 Requirement

(1) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

(2) For the 5.25–5.35 GHz and 5.47–5.725GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

(3) For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500KHz band.


According FCC KDB644545 D03 D)1)b)2) requirement:

Emissions in each band shall comply with the PSD limits applicable to that band under the appropriate rule section.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

2.4.2 Test Description

A. Test Set:

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

B. Test Procedure

KDB 789033 Section F) Maximum Power Spectral Density (PSD) Method SA-1 was used in order to prove compliance

- 1) Set span to encompass the entire 26-dB emission bandwidth
- 2) Set RBW = 1 MHz. Set VBW \geq 3 MHz.
- 3) Number of points in sweep ≥ 2 Span / RBW. Sweep time = auto.
- 4) Detector = RMS (i.e., power averaging)
- 5) Trace average at least 100 traces in power averaging (i.e., RMS) mode
- 6) Record the max value

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.4.3 Test Result

2.4.3.1 802.11a Test mode

A. Test Verdict:

Channel	Frequency	Measured PPSD	Limit	Verdict
Channel	(MHz)	(dBm/500KHz)	(dBm/500KHz)	veruici
149	5745	3.93		
157	5785	3.98	30	PASS
165	5825	4.10		

B. Test Plots

(Channel 149: 5745MHz @ 802.11a)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com


Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 17 Of 49

er - Swept SA Peak Search Marker 1 5.784280000000 GHz Avg Type: Log-Pwr Avg|Hold>10/10 Trig: Free Run Atten: 14 dB PNO: Fast 🖵 IFGain:Low Next Peak Mkr1 5.784 28 GHz 3.980 dBm Ref Offset 11 dB Ref 15.00 dBm 0 dB/div Next Pk Right Next Pk Left home de Marker Delta Mkr→CF Mkr→RefLv More 1 of 2 Center 5.78500 GHz #Res BW 1.0 MHz Span 30.00 MHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz STATUS

(Channel 165: 5825MHz @ 802.11a)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

2.4.3.2 802.11n-20MHz Test mode

Test Verdict: Α.

Channel	Frequency (MHz)	Measured PPSD Limit (dBm/500KHz) (dBm/500KHz)		Verdict
149	5745	4.02		
157	5785	4.02	30	PASS
165	5825	3.72		

B. Test Plots

(Channel 149: 5745MHz @ 802.11n-20MHz)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com

Tel: 86-755-36698555

er - Swept SA Marker 1 5.786230000000 GHz Peak Search Avg Type: Log-Pwr Avg|Hold>10/10 Trig: Free Run Atten: 14 dB PNO: Fast 😱 IFGain:Low Next Peak Mkr1 5.786 23 GHz 4.021 dBm Ref Offset 11 dB Ref 15.00 dBm 0 dB/div 1 Next Pk Right Next Pk Left Whentheyede n Milli Marker Delta Mkr→CF Mkr→RefLv More 1 of 2 Center 5.78500 GHz #Res BW 1.0 MHz Span 30.00 MHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz STATUS

(Channel 157: 5785MHz @802.11n-20MHz)

(Channel 165: 5825MHz @ 802.11n-20MHz)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

2.4.3.3 802.11n-40MHz Test mode

A. Test Verdict:

Channel	Frequency (MHz)	Measured PPSD (dBm/500KHz)	Limit (dBm/500KHz)	Verdict
151	5755	0.84	20	PASS
159	5795	1.19	30	PASS

B. Test Plots

(Channel 151: 5755MHz @ 802.11 n-40)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com

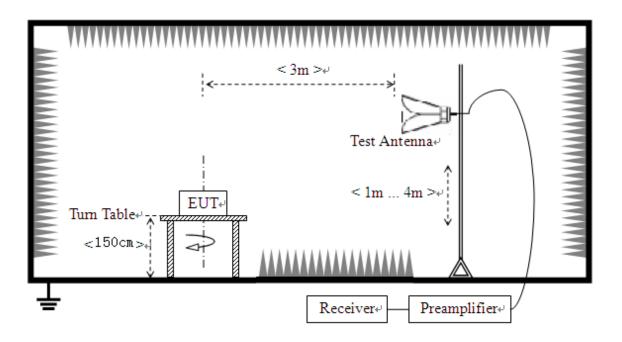
Tel: 86-755-36698555

(Channel 159: 5795MHz @ 802.11 n-40)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com


2.5 **Restricted Frequency Bands**

2.5.1 Requirement

According to FCC section 15.407(b)(7), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.5.2 Test Description

A. Test Setup

The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

KDB 789033 Section H) 3)5)6(d)) was used in order to prove compliance

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

2.5.3 Test Result

This test case not applies this kind of EUT.

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, MORLAB GROUP HL1-3, Building A, Fei rang Goodie F LL1-3, Building A, Fei rang Goodie

Tel: 86-755-36698555 Http://www.morlab.com

2.6 Frequency Stability

2.6.1 Requirement

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

2.6.2 Test Procedure

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

2.6.3 Test Result

Frequency Stability Measurements for UNII Band 3 (Ch. 149)

VOLTAGE	POWER	TEMP	FREQUENCY	Freq Dev.	Deviation
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)
100%		+20(Ref)	5,745,000,044	44	0.000008
100%		-30	5,744,999,977	23	0.0000004
100%		-20	5,745,000,015	15	0.000003
100%		-10	5,744,999,985	15	0.000003
100%	44.50	0	5,745,000,004	4	0.0000001
100%	14.52	+10	5,744,999,987	13	0.0000002
100%		+20	5,745,000,015	15	0.000003
100%		+30	5,745,000,011	11	0.0000002
100%		+40	5,744,999,996	4	0.0000001
100%		+50	5,745,000,017	17	0.000003
85%	12.00	+20	5,744,999,989	11	0.0000002
115%	16.80	+20	5,745,000,021	21	0.0000004

Note: Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

2.7 Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)

2.7.1 Requirement

According to FCC section 15.407(h), (1) Transmit power control (TPC). U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

(2) Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems. Operators shall only use equipment with a DFS mechanism that is turned on when operating in these bands. The device must sense for radar signals at 100 percent of its emission bandwidth. The minimum DFS detection threshold for devices with a maximum e.i.r.p. of 200 mW to 1 W is -64 dBm. For devices that operate with less than 200 mW e.i.r.p. and a power spectral density of less than 10 dBm in a 1 MHz band, the minimum detection threshold is -62 dBm. The detection threshold is the received power averaged over 1 microsecond referenced to a 0 dBi antenna. For the initial channel setting, the manufacturers shall be permitted to provide for either random channel selection or manual channel selection.

A U-NII network will employ a DFS function to detect signals from radar systems and to avoid co-channel operation with these systems. This applies to the 5250-5350 MHz and/or 5470-5725 MHz bands.1

Within the context of the operation of the DFS function, a U-NII device will operate in either Master Mode or Client Mode. U-NII devices operating in Client Mode can only operate in a network controlled by a U-NII device operating in Master Mode.2

Tables 1 and 2 shown below summarize the information contained in sections 5.1.1 and 5.1.2. Table 1: Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode				
Requirement	Master	Client Without Radar	Client With Radar		
		Detection	Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

MORLAB GROUP Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

Poquiromont	Operational Mode		
Requirement	Master	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Table 2: Applicability of DFS requirements during normal operation

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection		
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required		
Channel Move Time and Channel	Test using widest BW mode	Test using the widest BW		
Closing Transmission Time	available	mode available for the link		
All other tests	Any single BW mode	Not required		
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several				
frequencies within the radar detection bandwidth and frequencies near the edge of the radar				
detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded				
20 MHz channels and the channel center frequency.				

The operational behavior and individual DFS requirements that are associated with these modes are as follows:

2.7.1.1 **Master Devices**

a) The Master Device will use DFS in order to detect Radar Waveforms with received signal strength above the DFS Detection Threshold in the 5250 - 5350 MHz and 5470 - 5725 MHz bands. DFS is not required in the 5150 – 5250 MHz or 5725 – 5825 MHz bands.

b) Before initiating a network on a Channel, the Master Device will perform a Channel Availability Check for a specified time duration (Channel Availability Check Time) to ensure that there is no radar system operating on the Channel, using DFS described under subsection a) above.

c) The Master Device initiates a U-NII network by transmitting control signals that will enable other U-NII devices to Associate with the Master Device.

d) During normal operation, the Master Device will monitor the Channel (In-Service Monitoring) to ensure that there is no radar system operating on the Channel, using DFS described under a).

e) If the Master Device has detected a Radar Waveform during In-Service Monitoring as described under d), the Operating Channel of the U-NII network is no longer an Available Channel. The Master Device will instruct all associated Client Device(s) to stop transmitting on this Channel within the Channel Move Time. The transmissions during the Channel Move Time will be limited to

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

the Channel Closing Transmission Time.

f) Once the Master Device has detected a Radar Waveform it will not utilize the Channel for the duration of the Non-Occupancy Period. 3

a) If the Master Device delegates the In-Service Monitoring to a Client Device, then the combination will be tested to the requirements described under d) through f) above.

2.7.1.2 **Client Devices**

a) A Client Device will not transmit before having received appropriate control signals from a Master Device.

b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.

c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.

d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.

e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear.

DFS Detection Thresholds 2.7.1.3

Table 3 below provides the DFS Detection Thresholds for Master Devices as well as Client Devices incorporating In-Service Monitoring.

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)	
$EIRP \ge 200 milliwatt$	-64 dBm	
EIRP < 200 milliwatt and	-62 dBm	
power spectral density < 10 dBm/MHz		
EIRP < 200 milliwatt that do not meet the power spectral density	-64 dBm	
requirement		

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
 Http://www.morlab.com

2.7.1.4 Response Requirements

Table 4 provides the response requirements for Master and Client Devices incorporating DFS.

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over
	remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power
	bandwidth. See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. **Note 2:** The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

2.7.2 Test Description

Section 7.2 of KDB 905462 D02 V01R01

B. Test Setup:

B .1 Setup for Master with injection at the Master

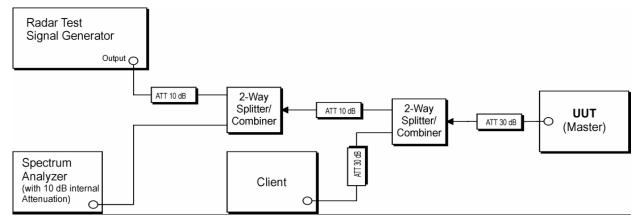


Figure 2: Example Conducted Setup where UUT is a Master and Radar Test Waveforms are injected into the Master

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

B.2 Setup for Client with injection at the Master

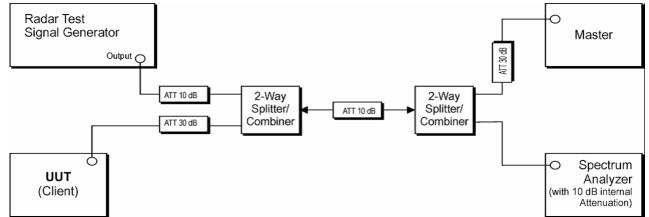


Figure 3: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Master

B.3 Setup for Client with injection at the Client

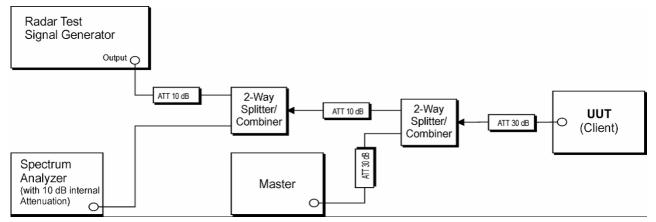


Figure 4: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Client

2.7.3 Test Result

This test case not applies this kind of EUT.

MORLAB GROUP

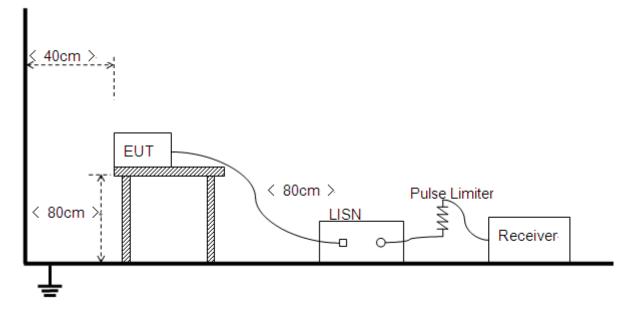
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 29 Of 49

2.8 **Conducted Emission**

2.8.1 Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).


Frequency renge (MHz)	Conducted Limit (dBµV)		
Frequency range (MHz)	Quai-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
5 - 30	60	50	

NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

2.8.2 Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

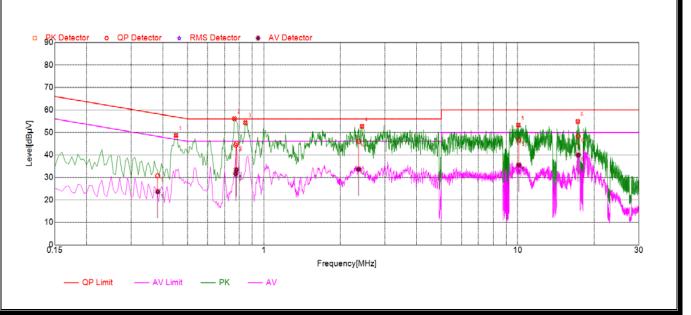
The EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The factors of the site are calibrated to correct the reading. During the

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, MORLAB GROUP Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

measurement, the EUT is activated and controlled by the Wi-Fi Service Supplier (SS) via a Common Antenna.

2.8.3 Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

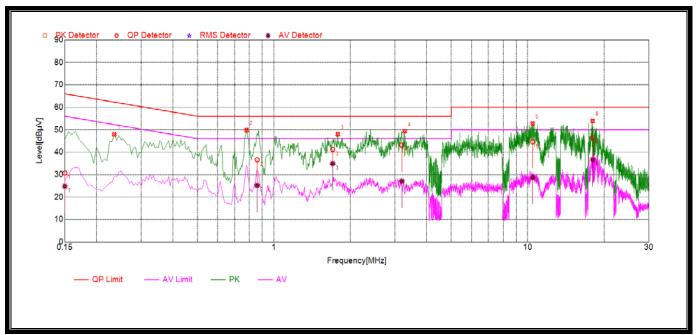

Note: All test modes are performed, only the worst case is recorded in this report.

A. Test setup:

The EUT configuration of the emission tests is EUT + Link.

Note: The test voltage is AC 120V/60Hz.

A. Test Plots:


(Plot A: L Phase)

NO.	Fre. Emission Leve		evel (dBµV)	Limit (dBµV)		Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.3814	30.73	23.68	59.39	49.39		PASS
2	0.7792	45.06	33.41	56	46	Line	PASS
3	0.7744	44.32	31.56	56	46		PASS
4	2.3616	46.10	33.66	56	46	Line	PASS
5	10.0934	46.67	35.51	60	50		PASS
6	17.303	48.35	39.95	60	50		PASS

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

(Plot B: N Phase)

NO.	Fre.			Limit (Limit (dBµV)		Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average	Power-line	
1	0.15	30.75	24.80	66	56		PASS
2	0.8588	36.62	25.19	56	46		PASS
3	1.7032	41.20	34.90	56	46	Line	PASS
4	3.1888	43.15	27.09	56	46	Line	PASS
5	10.4644	44.61	28.73	60	50		PASS
6	18.0222	46.39	36.66	60	50		PASS

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

2.9 **Radiated Emission**

2.9.1 Requirement

The peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

(2) For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

(3) For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of -27dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

The following formula is used to convert the equipment isotropic radiated power(eirp) to field strength (dBµV/m);

$$E = 1000000 \times \sqrt{30P} / 3_{\mu V/m}$$

where P is the EIRP in Watts
Therefore: -27 dBm/MHz = 68.23 dBuV/m

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

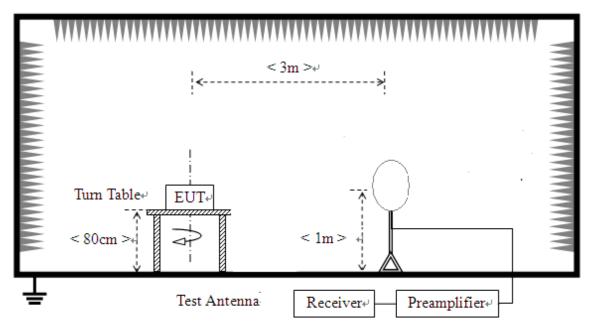
Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

Note:

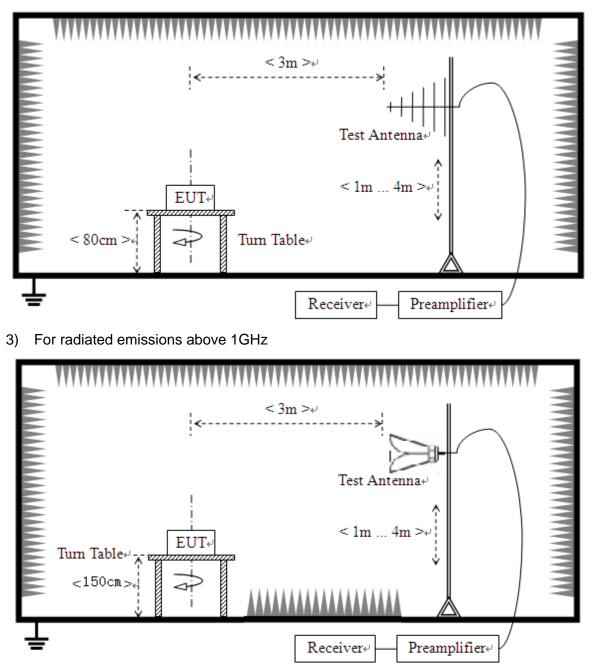

For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

2.9.2 Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz



MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

2) For radiated emissions from 30MHz to1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

 FL1-3, Building A, FerYang Science Park, INO.0 LongOntang Acces,

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.com

2.9.3 Test Result

According to ANSI C63.4 selection 4.2.2, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

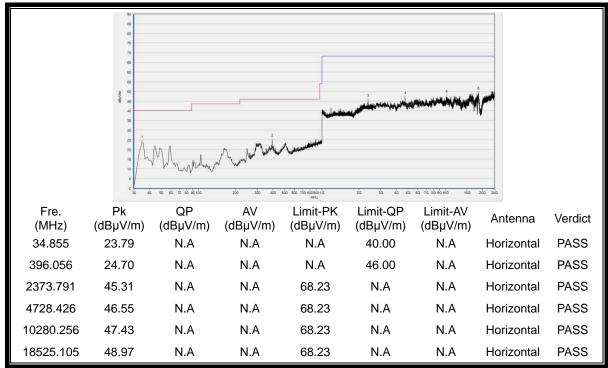
Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

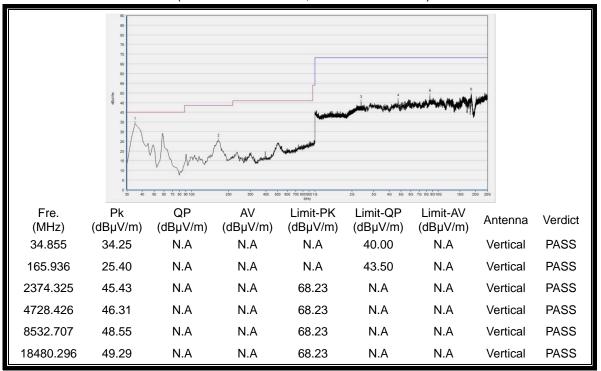
Note2: The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

For the frequency, which started from 25G to 40G, was pre-scanned and the result which was 10dB lower than the limit.

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

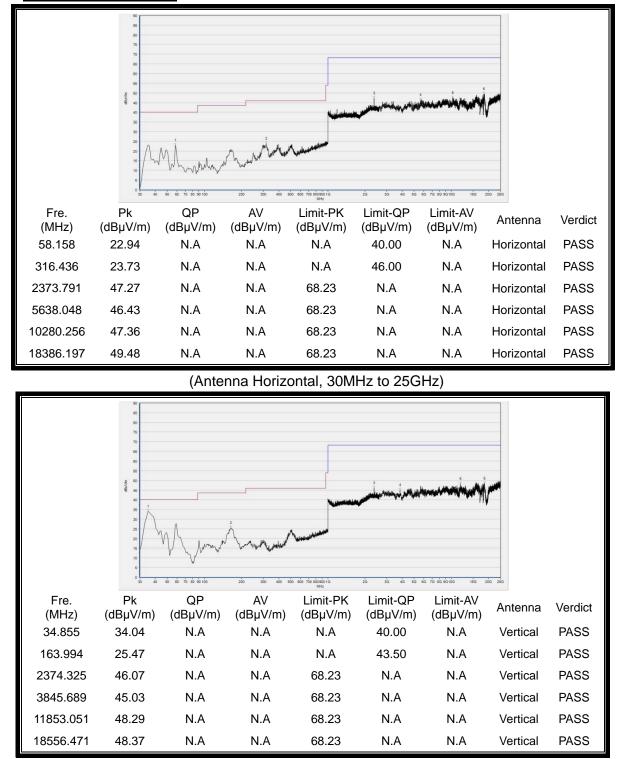

Tel: 86-755-36698555 Http://www.morlab.com


2.9.3.1 802.11a-20MHz Test mode

A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 149

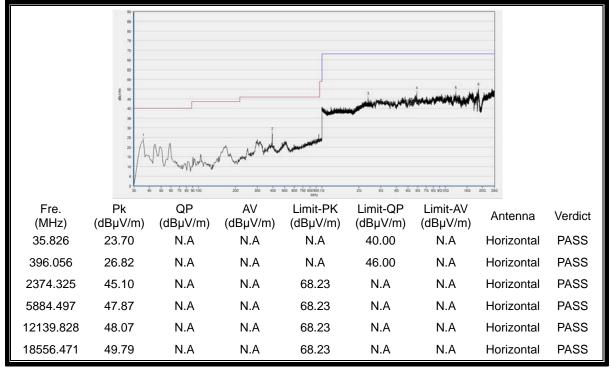
(Antenna Horizontal, 30MHz to 25GHz)


(Antenna Vertical, 30MHz to 25GHz)

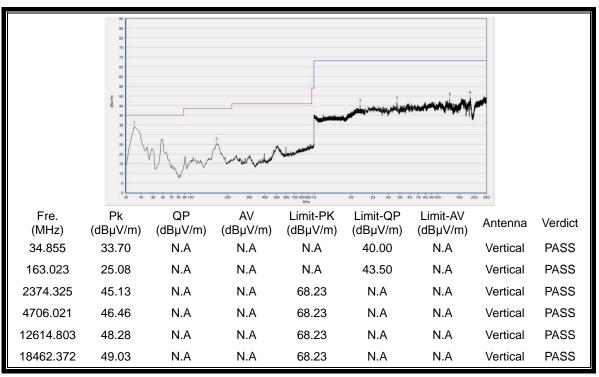
MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

Plots for Channel = 157


(Antenna Vertical, 30MHz to 25GHz)

MORLAB GROUP

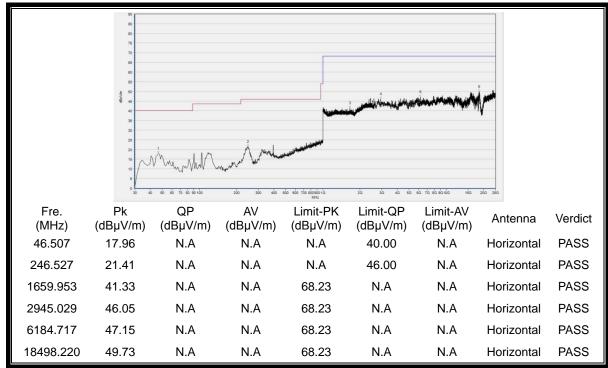

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

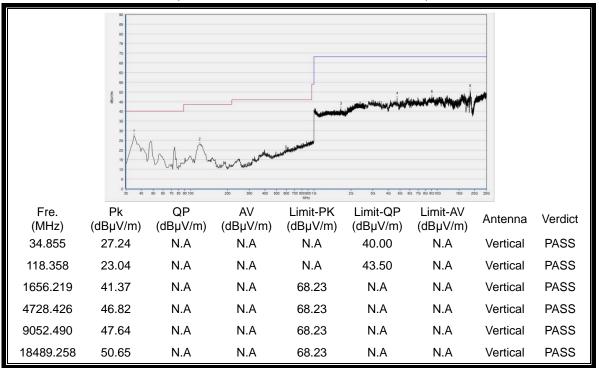
Plot for Channel = 165

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

MORLAB GROUP

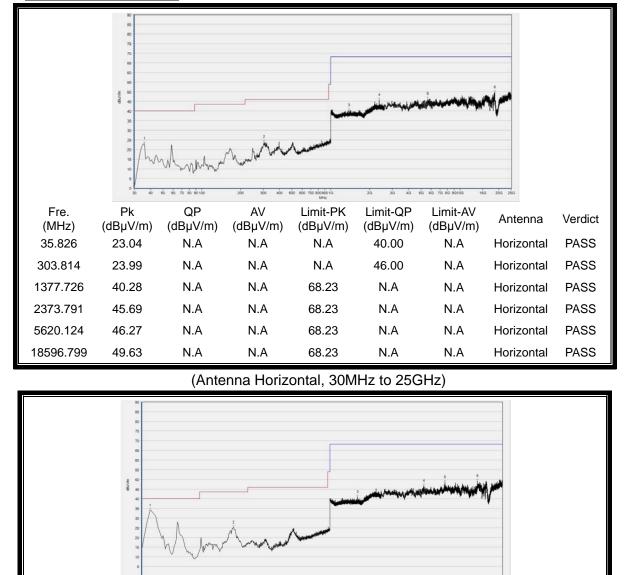

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com


2.9.3.2 802.11n-20MHz Test mode

A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 149

(Antenna Horizontal, 30MHz to 25GHz)


(Antenna Vertical, 30MHz to 25GHz)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

Plots for Channel = 157

(Antenna Vertical, 30MHz to 25GHz)

Limit-PK

(dBµV/m)

N.A

N.A

68.23

68.23

68.23

68.23

MORLAB GROUP

Fre.

(MHz)

34.855

165.936

1674.358

5781.436

8577.516

15675.255

Ρk

(dBµV/m)

34.06

25.31

41.02

46.77

48.57

49.36

QP

(dBµV/m)

N.A

N.A

N.A

N.A

N.A

N.A

AV

(dBµV/m)

N.A

N.A

N.A

N.A

N.A

N.A

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

40 50 60 70 80 9010

Limit-AV

(dBµV/m)

N.A

N.A

N.A

N.A

N.A

N.A

Antenna

Vertical

Vertical

Vertical

Vertical

Vertical

Vertical

Verdict

PASS

PASS

PASS

PASS

PASS

PASS

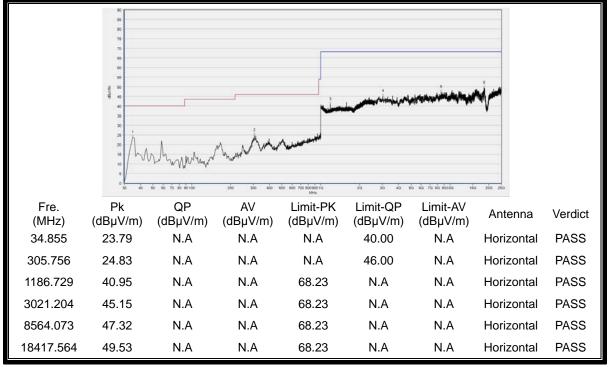
Limit-QP

(dBµV/m)

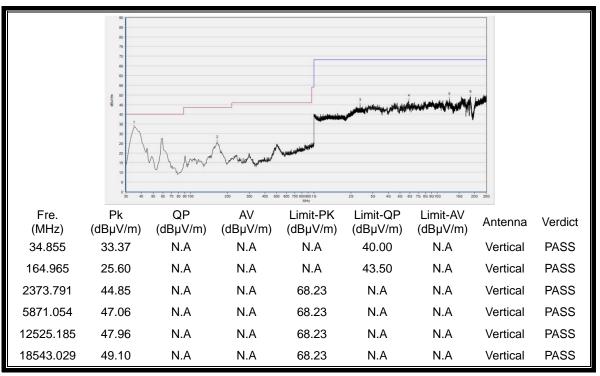
40.00

43.50

N.A


N.A

N.A

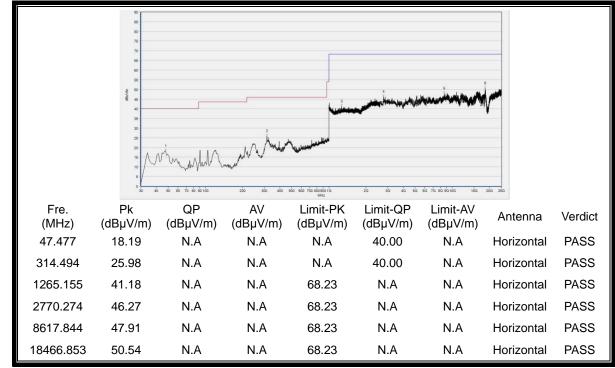

N.A

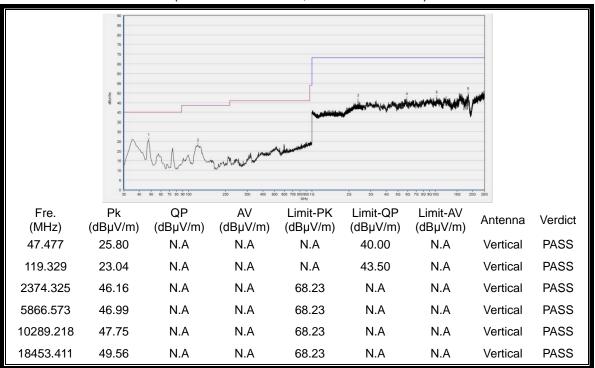
Plot for Channel = 165

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

MORLAB GROUP

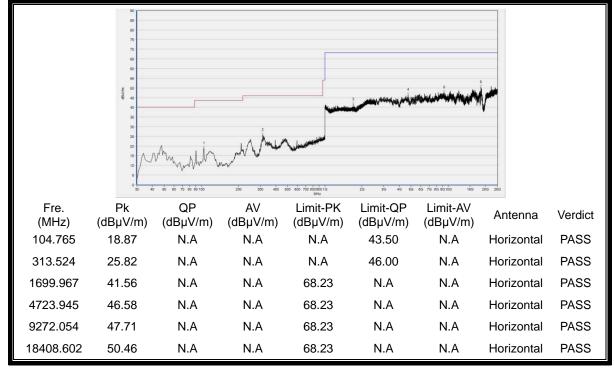

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com


2.9.3.3 802.11n-40MHz Test mode

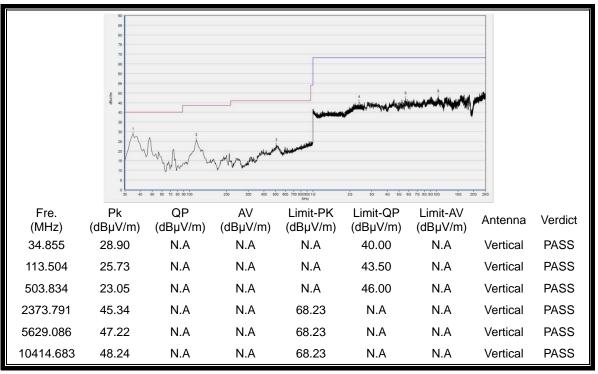
A. Test Plots for the Whole Measurement Frequency Range:

Plot for Channel = 151

(Antenna Horizontal, 30MHz to 40GHz)


(Antenna Vertical, 30MHz to 40GHz)

MORLAB GROUP


FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

Plots for Channel = 159

(Antenna Horizontal, 30MHz to 40GHz)

(Antenna Vertical, 30MHz to 40GHz)

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com

2.10 RF exposure evaluation

2.10.1 Requirement

According to § 1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy lever in excess of Commission's guideline.

2.10.2 Result

Please refer to SAR report.

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

Fax: 86-755-36698525 E-mail: service@morlab.cn

Page 46 Of 49

ANNEX A GENERAL INFORMATION

1.1 Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.				
Department:	Morlab Laboratory				
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang				
	Road, Block 67, BaoAn District, ShenZhen, GuangDong				
	Province, P. R. China				
Responsible Test Lab Manager:	Mr. Su Feng				
Telephone:	+86 755 36698555				
Facsimile:	+86 755 36698525				

1.2 Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.					
	Morlab Laboratory					
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang					
	Road, Block 67, BaoAn District, ShenZhen, GuangDong					
	Province, P. R. China					

1.3 Facilities and Accreditations

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

1.4 Maximum measurement uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty			
Peak Output Power	±2.22dB			
Power spectral density (PSD)	±2.22dB			
Bandwidth	±5%			
Restricted Frequency Bands	±5%			
Radiated Emission	±2.95dB			
Conducted Emission	±2.44dB			

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

1.5 Test Equipments Utilized

1.5.1 Conducted Test Equipments

Conducted Test Equipment

No.	Equipment Name	Serial No.	No. Type Manufacturer		Cal. Date	Cal. Due	
1	Spectrum Analyzer	MY45101810	E4407B	Agilent	2017.05.24	2018.05.23	
2	Power Splitter	NW521	1506A	Weinschel	2017.05.24	2018.05.23	
3	Attenuator 1	(N/A.)	10dB	Resnet	2017.05.24	2018.05.23	
4	Attenuator 2	(N/A.)	3dB	Resnet	2017.05.24	2018.05.23	
5	EXA Signal	MY53470836	N9010A	Agilent	2016.12.07	2017.12.06	
	Analzyer	101 0000				2017.12.00	
6	RF cable	CB01	RF01	Morlab	N/A	N/A	
	(30MHz-26GHz)	CBUT	REUI	IVIOTIAD	IN/A	IN/A	
7	Coaxial cable	CB02	RF02	Morlab	N/A	N/A	
8	SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A	

1.5.2 Conducted Emission Test Equipments

Conducted Emission Test Equipments

No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due			
1	Receiver	US44210471	E7405A	Agilent	2017.05.24	2018.05.23			
2	LISN	812744	NSLK 8127	Schwarzbeck	2017.05.24	2018.05.23			
3	Service Supplier	100448	CMU200	R&S	2017.05.24	2018.05.23			
4	Pulse Limiter	9391	VTSD	Schwarzbeck	2017.05.24	2018.05.23			
	(20dB)		9561-D		2017.05.24	2010.05.25			
5	Coaxial cable(BNC)	CB01	EMC01	Morlab	N/A	N/A			
	(30MHz-26GHz)								

1.5.3 Auxiliary Test Equipment

Auxiliary Test Equipment							
No.	. Equipment Name Model No. Brand Name Manufacturer Cal.Date Cal.Due Da						
1	Computer	T430i	Think Pad	Lenovo	N/A	N/A	

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com

1.5.4 Radiated Test Equipments

Radia	ated Test Equipments	6									
No.	Equipment Name	Serial No.		Туре		Manufact	Manufacturer		е	Cal.Due Date	
1	System Simulator	GB45360846		8960-E5	8960-E5515C		Agilent		17	2018.05.16	
2	Receiver	MY54130	016	N9038	3A	Agilen	ıt	2017.05.1	17	2018.05.16	
3	Test Antenna - Bi-Log	N/A		VULB9163		Schwarzt	Schwarzbeck)9	2017.12.08	
4	Test Antenna - Horn	9170C-5	531	BBHA9	170	Schwarzt	Schwarzbeck		30	2018.03.29	
5	Test Antenna - Loop	1519-02	22	FMZB1	519	Schwarzt	beck	2017.03.3	30	2018.03.29	
6	Test Antenna - Horn	71688	}	BBHA 91	120D	Schwarzt	beck	2017.03.3	30	2018.03.29	
7	Coaxial cable (N male) (9KHz-30MHz)	CB04		EMC	EMC04		Morlab			N/A	
8	Coaxial cable (N male) (30MHz-26GHz)	CB02		EMC)2	Morlal	C	N/A		N/A	
9	Coaxial cable(N male) (30MHz-26GHz)	CB03		EMC03		Morlal	Morlab			N/A	
10	1-18GHz pre-Amplifier	MA02		TS-PR18			Rohde& Schwarz		17	2018.05.16	
11	18-26.5GHz pre-Amplifier	MA03	MA03 TS-F		18 Rohde& Schwar			2017.05.17		2018.05.16	
1	.5.5 Climate Chaml	ber									
Clima	ite Chamber										
No.	Equipment Name	Serial I	No.	Туре	Ма	nufacturer	Ca	al.Date C		Cal.Due Date	
1	Climate Chamber	20040	12	HL4003T		Yinhe	201	17.01.11		2018.01.10	
1	.5.6 Vibration Table)									
Vibra	tion Table										
No.	Equipment Name	Serial No.		Туре	ype Mar		er Cal.Date		Cal.Due Date		
1	Vibration Table	N/A ACT		T2000-S01	2000-S015L CMI-CO		2	2017.01.11		2018.01.10	
1.5.7 Anechoic Chamber											
Anechoic Chamber											
No.	Equipment Name	Serial N/A	lo.	Туре		Manufacturer		Cal.Date			
1	Anechoic Chamber	9m*6m*6n	n	Changning	20	017.01.11	2	2018.01.10			
***** END OF REPORT *****											

***** END OF REPORT *****

 FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
 Tel: 86-755-36698555

 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Http://www.morlab.com