

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Application for Grant of Equipment Authorization

Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15 Subpart C

Model: SR1410

FCC ID: 2AAAS-SR1410 **APPLICANT:** Vivint, Inc. 2500 W. Executive Parkway, Suite 200 Lehi, UT 84043 TEST SITE(S): National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435 IC SITE REGISTRATION #: 2845B-3; 2845B-4, 2845B-5, 2845B-7 **REPORT DATE:** August 9, 2013 FINAL TEST DATES: March 25, 26, 27 and 28, 2013 TOTAL NUMBER OF PAGES: 53

PROGRAM MGR / TECHNICAL REVIEWER:

Mark E Hill

Mark E Hill Staff Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti

Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	08-09-2013	First release	

TABLE OF CONTENTS

REVISION HISTORY	
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	6
DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHZ).	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	6
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	10
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	12
ANTENNA MAST AND EQUIPMENT TURNTABLE	12
INSTRUMENT CALIBRATION	12
TEST PROCEDURES	13
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	14
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS. FCC 15.207, FCC 15.107(A), RSS GEN	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	19
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	21
APPENDIX B TEST DATA	22
END OF REPORT	53

SCOPE

An electromagnetic emissions test has been performed on the Vivint, Inc. model SR1410, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10-2009 FCC DTS Measurement Guidance KDB558074

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently

manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Vivint, Inc. model SR1410 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Vivint, Inc. model SR1410 and therefore apply only to the tested sample. The sample was selected and prepared by Venkat Kalkunte of Vivint, Inc..

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	36.1 MHz	>500kHz	Complies
15.247 (b)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	$20.0 \text{ dBm} \\ (0.101 \text{ Watts}) \\ \text{EIRP} = 0.637 \text{ W}^{\text{Note 1}}$	1 Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-1.4 dBm / 3kHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	All spurious emissions < -20dBc	< -30dBc ^{Note 2}	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	41.0 dBµV/m @ 125.01 MHz (-2.5 dB)	15.207 in restricted bands, all others <-30dBc ^{Note 2}	Complies
Note 1: EIRP calculated using antenna gain of 5 dBi for the highest EIRP system multi-point system. Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).					

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Uses standard SMA connectors – device is professionally installed	Unique or integral antenna required	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	62.6 dBμV @ 0.154 MHz (-3.2 dB)	Refer to page 17	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	-	Refer to page 18	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	n40: 36.6MHz	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	$\pm 0.52 \text{ dB}$
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz 1000 to 40000 MHz	$\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Vivint, Inc. model SR1410 is a multiple high-definition (HD) video transceiver that streams using 5GHz 4x4 802.11 over long haul mesh networks at very low packet error rates. The EUT was treated as tabletop equipment during testing to simulate the end-user environment. The EUT is powered via POE interface.

The sample was received on March 22, 2013 and tested on March 25, 26, 27 and 28, 2013. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Vivint, Inc.	SR1410	5GHz 4x4 802.11 Outdoor Access Point	10042	2AAAS-SR1410

OTHER EUT DETAILS

The following EUT details should be noted: Device supports 40MHz operation only. Mininum of MCS8, 2 spatial streams CDD and Beamforming operation TPC supported Master Device Outdoor use

ANTENNA SYSTEM

Four 5dBi (per client email) omni antennas EUT has standard SMA connectors

ENCLOSURE

The EUT enclosure is primarily constructed of cast aluminum. It measures approximately 10 cm wide by 16.2 cm deep by 6.5 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at National Technical Systems - Silicon Valley.

SUPPORT EQUIPMENT

No local support equipment was used during testing.

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
-	EH120150T	AC/DC Adapter	-	-
-	-	POE Injector	-	-
-	-	Laptop	-	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To	Cable(s)			
T OIT	Connected 10	Description	Shielded or Unshielded	Length(m)	
EUT - POE	Remote POE Injector- POE	CAT5	Unshielded	10	
POE Injector - LAN	Laptop	CAT5	Unshielded	2	
POE Injector - DC	AC/DC Adapter	2wire	Unshielded	1.5	

EUT OPERATION

During emissions testing the EUT was configured to continuously transmit on the noted channel at the lowest supported data rate of MCS8. This is the worst case condition.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location	
Site	FCC	Canada	Location
Chamber 3	769238	2845B-3	41039 Boyce Road
Chamber 7	A2LA accreditation	2845B-7	Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

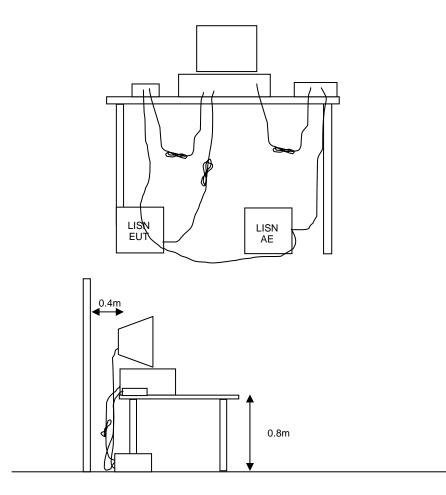
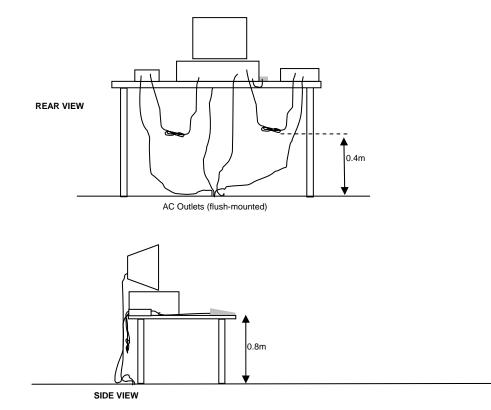
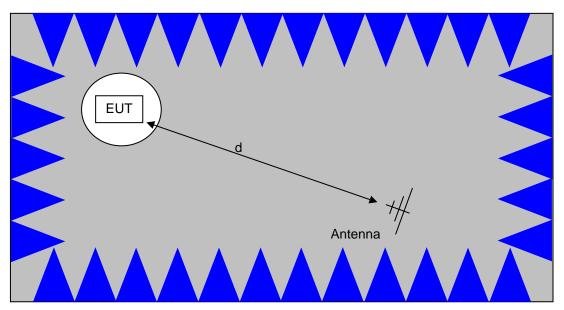


Figure 1 Typical Conducted Emissions Test Configuration

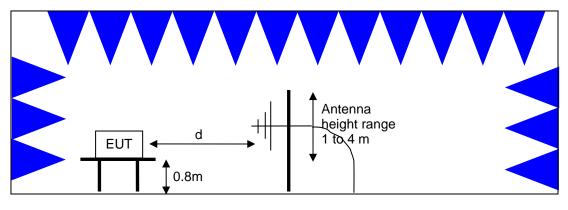

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

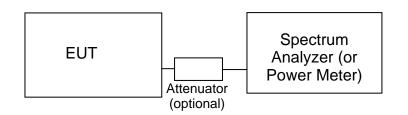
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and National Technical Systems - Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

 $F_d = 40*LOG_{10} (D_m/D_s)$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_c$$

and

$$M = R_{c} - L_{s}$$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

$$E = \frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Manufacturer Radiated Emissions	<u>Description</u> 30 - 6,500 MHz, 22-Mar-13	<u>Model</u>	<u>Asset #</u>	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/19/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/12/2013
Radiated Spurious Er EMCO	nissions, 1000 - 40,000 MHz, 25-M Antenna, Horn, 1-18 GHz	ar-13 3115	1142	8/23/2014
	(SA40-Red)			
Rohde & Schwarz Hewlett Packard	EMI Test Receiver, 20 Hz-7 GHz Microwave Preamplifier, 1- 26.5GHz	ESIB7 8449B	1630 2199	5/31/2013 2/19/2014
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	2241	10/4/2013
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	8/10/2013
Radiated Spurious Er	nissions, 1000 - 40,000 MHz, 26-M	ar-13		
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	11/9/2013
Narda West	High Pass Filter, 8 GHz	HPF 180	821	3/13/2014
Hewlett Packard	Head (Inc flex cable, 1143, 2198) Red	84125C	1145	7/5/2013
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	9/14/2013
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	7/12/2014
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	1682	3/13/2014
A.H. Systems	Blue System Horn, 18-40GHz	SAS-574, p/n: 2581	2159	5/30/2013
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2239	10/4/2013
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	2240	10/4/2013
	30 - 1,000 MHz, 26-Mar-13			
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	6/4/2014
Rohde & Schwarz Com-Power Corp.	EMI Test Receiver, 20 Hz-7 GHz Preamplifier, 30-1000 MHz	ESIB7 PAM-103	1756 2380	5/21/2013 11/9/2013
	•		2000	11/0/2010
	Power and Spurious Emissions), 2 SpecAn 30 Hz -40 GHz, SV		1148	9/14/2013
	(SA40) Red	00042 (041200)	1140	5/14/2015
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	5/21/2013
	Digital Device, 30 - 1,000 MHz, 28-			
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	6/4/2014
Rohde & Schwarz Com-Power Corp.	EMI Test Receiver, 20 Hz-7 GHz Preamplifier, 30-1000 MHz	ESIB7 PAM-103	1756 2380	5/21/2013 11/9/2013
Conducted Emission	s - AC Power Ports, 28-Mar-13			
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372	3/15/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	5/21/2013
Com-Power Corp.	9KHz-30MHz, 50uH, 15Aac, 10Adc, max	LI-215A	2671	5/25/2013

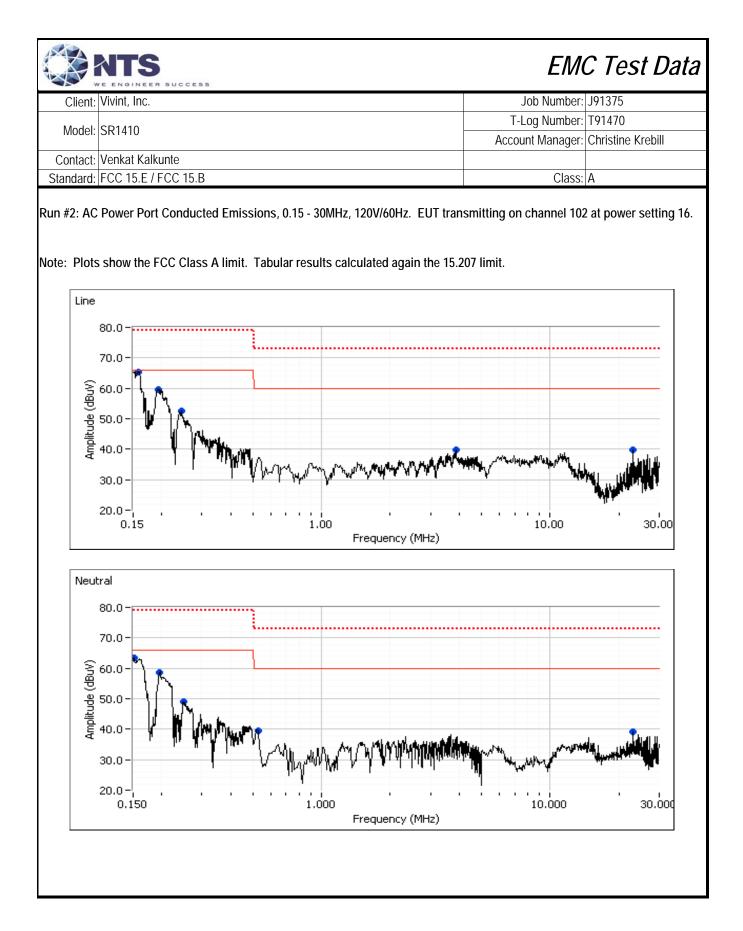
Appendix B Test Data

T91470 Pages 23 - 52

Client:	Vivint, Inc.	Job Number:	J91375
Product	SR1410	T-Log Number:	Т91470
		Account Manager:	Christine Krebill
Contact:	Venkat Kalkunte		
Emissions Standard(s):	FCC 15.E / FCC 15.B	Class:	A
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The


Vivint, Inc.

Product

SR1410

Date of Last Test: 4/19/2013

NTS NE ENGINEER	a success			EM	C Test Data
Client: Vivint, Inc.				Job Number:	J91375
Model: SR1410			Log Number:		
		Accou	int Manager:	Christine Krebill	
Contact: Venkat Kalk					
Standard: FCC 15.E / I	FCC 15.B			Class:	A
	Conduc (Elliott Laboratories Fremo	cted Emissions ont Facility, Semi-Anech	hoic Chamb	er)	
	Is The objective of this test session is to specification listed above.	perform final qualificatior	n testing of th	ne EUT with r	respect to the
Date of Test: Test Engineer: Test Location:		Config. Used: Config Change: EUT Voltage:	none		
General Test Config	guration				
	-	rt equipment were routed 22 °C			
Summary of Result	S				
Run #	Test Performed	Limit	Result		Margin
2	CE, AC Power, 120V/60Hz	FCC 15.207	Pass	62.6 dBµV	'@ 0.154 MHz (-3.2 dB)
Deviations From Th	hade to the EUT during testing	d.			

Client	Vivint, Inc.	R SUCCESS					Job Number:	101275
	VIVITIL, ITIC.							
Model	SR1410					-	T-Log Number: Account Manager:	
Contact	Venkat Kalk	unte						
Standard	FCC 15.E /	FCC 15.B					Class	A
						vs. average lir	nit)	
requency	Level	AC		207	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.154	65.4	Line	55.8	9.6	Peak			
0.195	59.6	Line	53.8	5.8	Peak			
0.247	52.5	Line	51.9	0.6	Peak			
3.873	39.8	Line	46.0	-6.2	Peak			
23.136	39.7	Line	50.0	-10.3	Peak			
0.152	63.4	Neutral	55.9	7.5	Peak			
0.199	58.7	Neutral	53.6	5.1	Peak			
0.247	48.9	Neutral	51.9	-3.0	Peak			
0.527	39.6	Neutral	46.0	-6.4	Peak			
23.136	39.1	Neutral	50.0	-10.9	Peak			
inal auasi	-noak and a	vorano roadi	nas					
requency	Level	verage readi AC	15.	207	Detector	Comments		
requency MHz	Level dBµV	AC Line	15. Limit	Margin	QP/Ave	Comments		
requency MHz 0.154	Level dBµV 62.6	AC Line Line	15. Limit 65.8	Margin -3.2	QP/Ave QP	Comments		
requency MHz 0.154 0.152	Level dBµV 62.6 60.8	AC Line Line Neutral	15. Limit 65.8 65.9	Margin -3.2 -5.1	QP/Ave QP QP	Comments		
mHz 0.154 0.152 0.154	Level dBµV 62.6 60.8 49.0	AC Line Line Neutral Line	15. Limit 65.8 65.9 55.8	Margin -3.2 -5.1 -6.8	QP/Ave QP QP AVG	Comments		
requency MHz 0.154 0.152 0.154 0.195	Level dBµV 62.6 60.8 49.0 55.6	AC Line Line Neutral Line Line	15. Limit 65.8 65.9 55.8 63.8	Margin -3.2 -5.1 -6.8 -8.2	QP/Ave QP QP AVG QP	Comments		
requency MHz 0.154 0.152 0.154 0.195 0.195	Level dBµV 62.6 60.8 49.0 55.6 45.6	AC Line Line Neutral Line Line Neutral	15. Limit 65.8 65.9 55.8 63.8 55.9	Margin -3.2 -5.1 -6.8 -8.2 -10.3	QP/Ave QP QP AVG QP AVG	Comments		
requency MHz 0.154 0.152 0.154 0.195 0.152 0.152 0.199	Level dBµV 62.6 60.8 49.0 55.6 45.6 52.7	AC Line Neutral Line Line Neutral Neutral	15. Limit 65.8 65.9 55.8 63.8 55.9 63.7	Margin -3.2 -5.1 -6.8 -8.2 -10.3 -11.0	QP/Ave QP QP AVG QP AVG QP	Comments		
requency MHz 0.154 0.152 0.154 0.195 0.195 0.199 0.195	Level dBµV 62.6 60.8 49.0 55.6 45.6 52.7 38.8	AC Line Neutral Line Line Neutral Neutral Line	15. Limit 65.8 65.9 55.8 63.8 55.9 63.7 53.8	Margin -3.2 -5.1 -6.8 -8.2 -10.3 -11.0 -15.0	QP/Ave QP QP AVG QP AVG QP AVG	Comments		
requency MHz 0.154 0.152 0.154 0.195 0.152 0.195 0.195 0.247	Level dBµV 62.6 60.8 49.0 55.6 45.6 52.7 38.8 45.9	AC Line Line Line Line Neutral Neutral Line Line	15. Limit 65.8 65.9 55.8 63.8 55.9 63.7 53.8 61.9	Margin -3.2 -5.1 -6.8 -8.2 -10.3 -11.0 -15.0 -16.0	QP/Ave QP AVG QP AVG QP AVG QP	Comments		
requency MHz 0.154 0.152 0.154 0.195 0.152 0.199 0.195 0.247 0.247	Level dBµV 62.6 60.8 49.0 55.6 45.6 52.7 38.8 45.9 44.8	AC Line Line Line Line Neutral Neutral Line Line Neutral	15. Limit 65.8 65.9 55.8 63.8 55.9 63.7 53.8 61.9 61.9	Margin -3.2 -5.1 -6.8 -8.2 -10.3 -11.0 -15.0 -16.0 -17.1	QP/Ave QP AVG QP AVG QP AVG QP QP QP	Comments		
Trequency MHz 0.154 0.152 0.154 0.195 0.195 0.199 0.247 0.247 0.199	Level dBµV 62.6 60.8 49.0 55.6 45.6 52.7 38.8 45.9 44.8 36.2	AC Line Line Line Line Neutral Neutral Line Line Neutral Neutral Neutral	15. Limit 65.8 65.9 55.8 63.8 55.9 63.7 53.8 61.9 61.9 53.7	Margin -3.2 -5.1 -6.8 -8.2 -10.3 -11.0 -15.0 -15.0 -16.0 -17.1 -17.5	QP/Ave QP AVG QP AVG QP AVG QP QP AVG	Comments		
Frequency MHz 0.154 0.152 0.154 0.195 0.152 0.195 0.199 0.195 0.247 0.247	Level dBµV 62.6 60.8 49.0 55.6 45.6 52.7 38.8 45.9 44.8	AC Line Line Line Line Neutral Neutral Line Line Neutral	15. Limit 65.8 65.9 55.8 63.8 55.9 63.7 53.8 61.9 61.9	Margin -3.2 -5.1 -6.8 -8.2 -10.3 -11.0 -15.0 -16.0 -17.1	QP/Ave QP AVG QP AVG QP AVG QP QP QP	Comments		

Client:	Vivint, Inc.	Job Number:	J91375
Madal	SR1410	T-Log Number:	T91470
WOUEI.	3K1410	Account Manager:	Christine Krebill
Contact:	Venkat Kalkunte		
Standard:	FCC 15.E / FCC 15.B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

ITS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber, with all I/O connections running under the groundplane, through brass pipe.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature:	19 °C
Rel. Humidity:	37 %

Summary of Results - Device Operating in the 5725 - 5850 MHz Band

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	40MHz	151 @ 5755Mhz	16	NA	-30dBc bandedge at 5725MHz	FCC Part 15.209 / 15.247(c)	68.2 dBµV/m @ 5725.0 MHz (-4.0 dB)
1c	40MHz	159 @ 5795MHz	16	NA	-30dBc bandedge at 5850MHz	FCC Part 15.209 / 15.247(c)	56.0 dBµV/m @ 5852.5 MHz (-15.8 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Test Procedure Comments:

Antenna: 5dBi Omni Duty Cycle: >98%

		S	SUCCESS						EM	C Test Da
Client:	Vivint, I	nc.	30002535						Job Number:	J91375
	00141							T-	Log Number:	T91470
Model:	SR1410	0							unt Manager:	Christine Krebill
Contact:	Venkat	nkat Kalkunte								
Standard:	Standard: FCC 15.E / FCC 15.B								Class:	N/A
[Date of ⁻	Fest: 3	ous Emissi 3/25/2013 John Caizzi	ons, Bande	dge					
			Chamber 3							
			- 151 @ 575 =VBW=100							
Frequency			Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV		v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5756.960	102		V	-	-	Pk	189	1.07		
5751.350	88.	2	Н	-	-	Pk	134	1.08		
	Non-res	tricted	I band limit:	72.2	-30dBc					
Bandedge I		ons @		72.2 RBW=VBW= 15.209	=100kHz)	Detector	Azimuth	Height	Comments	
Bandedge I Frequency MHz	Emissic Leve dBµV	el //m	5725MHz (Pol v/h	RBW=VBW= 15.209 Limit	= 100kHz) / 15.247 Margin	Pk/QP/Avg	degrees	meters	Comments	
Bandedge I Frequency	Emissio Leve	el //m	5725MHz (Pol	RBW=VBW = 15.209	= 100kHz) / 15.247			Š	Comments	
Bandedge I Frequency MHz 5725.000 Note 1:	Emissic Levi dBµV 68.1 For em level of	el //m 2 issions the fu	5725MHz (Pol v/h V s in restricte	RBW=VBW= 15.209 Limit 72.2 ed bands, the and measure	= 100kHz) / 15.247 Margin - 4.0	Pk/QP/Avg Pk	degrees 186	meters 1.09		s set 30dB below the
Bandedge I Frequency MHz 5725.000 Note 1:	Emissic Levi dBµV 68.1 For em level of	el //m 2 issions the fu	5725MHz (Pol v/h V s in restricte	RBW=VBW= 15.209 Limit 72.2 ed bands, the and measure	= 100kHz) / 15.247 Margin - 4.0	Pk/QP/Avg Pk	degrees 186	meters 1.09		s set 30dB below the
Bandedge I Frequency MHz 5725.000 Jote 1:	Emissic Leve dBµV 68.3 For em level of	el //m 2 issions the fu	5725MHz (Pol v/h V s in restricte	RBW=VBW= 15.209 Limit 72.2 d bands, the and measure	= 100kHz) / 15.247 Margin -4.0 Himit of 15.2 d in 100kHz	Pk/QP/Avg Pk 209 was used	degrees 186 For all othe	meters 1.09 er emissions	, the limit was	
Bandedge I Frequency MHz 5725.000 Jote 1:	Emissic Leve dBµV 68.3 For em level of	el //m 2 issions the fu	5725MHz (Pol v/h V s in restricte	RBW=VBW= 15.209 Limit 72.2 d bands, the and measure	= 100kHz) / 15.247 Margin -4.0 Himit of 15.2 d in 100kHz	Pk/QP/Avg Pk 209 was used	degrees 186 For all othe	meters 1.09 er emissions	, the limit was	
Bandedge I Frequency MHz 5725.000 Jote 1:	Emissic Leve dBµV 68 For em level of 100 kHz; 80.0 – 70.0 –	el //m 2 issions the fu	5725MHz (Pol v/h V s in restricte	RBW=VBW= 15.209 Limit 72.2 d bands, the and measure	= 100kHz) / 15.247 Margin -4.0 Himit of 15.2 d in 100kHz	Pk/QP/Avg Pk 209 was used	degrees 186 For all othe	meters 1.09 er emissions	, the limit was	
Bandedge I Frequency MHz 5725.000 Jote 1:	Emissio Leve dBµV 68.3 For em level of 100 kHz; 80.0 –	el //m 2 issions the fu	5725MHz (Pol v/h V s in restricte	RBW=VBW= 15.209 Limit 72.2 d bands, the and measure	= 100kHz) / 15.247 Margin -4.0 Himit of 15.2 d in 100kHz	Pk/QP/Avg Pk 209 was used	degrees 186 For all othe	meters 1.09 er emissions	, the limit was	
Bandedge I Frequency MHz 5725.000 Jote 1:	Emissic Leve dBµV 68 For em level of 100 kHz; 80.0 – 70.0 –	el //m 2 issions the fu	5725MHz (Pol v/h V s in restricte	RBW=VBW= 15.209 Limit 72.2 d bands, the and measure	= 100kHz) / 15.247 Margin -4.0 Himit of 15.2 d in 100kHz	Pk/QP/Avg Pk 209 was used	degrees 186 For all othe	meters 1.09 er emissions	, the limit was	s set 30dB below the
Bandedge I Frequency MHz 5725.000 Note 1:	Emissic Level dBµV 68. For em level of 00 kHz; 80.0 70.0 60.0	el //m 2 issions the fu	5725MHz (Pol v/h V s in restricte	RBW=VBW= 15.209 Limit 72.2 d bands, the and measure	= 100kHz) / 15.247 Margin -4.0 Himit of 15.2 d in 100kHz	Pk/QP/Avg Pk 209 was used	degrees 186 For all othe	meters 1.09 er emissions	, the limit was	

		R SUCCESS						EM	C Test Data
Client:	Vivint, Inc.							Job Number:	J91375
					T-Log Number: T91470		T91470		
Model:	SR1410				•	Christine Krebill			
Contact:	Venkat Kal	kunte							
Standard:	FCC 15.E /	FCC 15.B			Class:	N/A			
	-	el - 159 @ 579 W=VBW=100	kHz					-	
Frequency	Level	Pol	15.209	r	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5803.220	101.8	V	-	-	Pk	1	1.40		
	Non-restrict	ignal in band: ed band limit: @ 5850MHz (71.8	-30dBc					
Frequency	Level	Pol	15.209		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	oommonts	
5852.480	56.0	V	71.8	-15.8	Pk	356	1.02		
Amplitude (dBuv/m)	00 kHz; VB 80.0 - 70.0 - 60.0 - 50.0 -	fundamental	ntical	www.ana	muhan) 587			₩₩ ^{^~} ¶~₩,₩₩₩ 1885 5890
					<u> </u>	- *			

Client:	Vivint, Inc.	Job Number:	J91375
Madal	SR1410	T-Log Number:	T91470
WOUEI.	3K1410	Account Manager:	Christine Krebill
Contact:	Venkat Kalkunte		
Standard:	FCC 15.E / FCC 15.B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber, with all I/O connections running under the groundplane, through brass pipe.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature:	19 °C
Rel. Humidity:	37 %

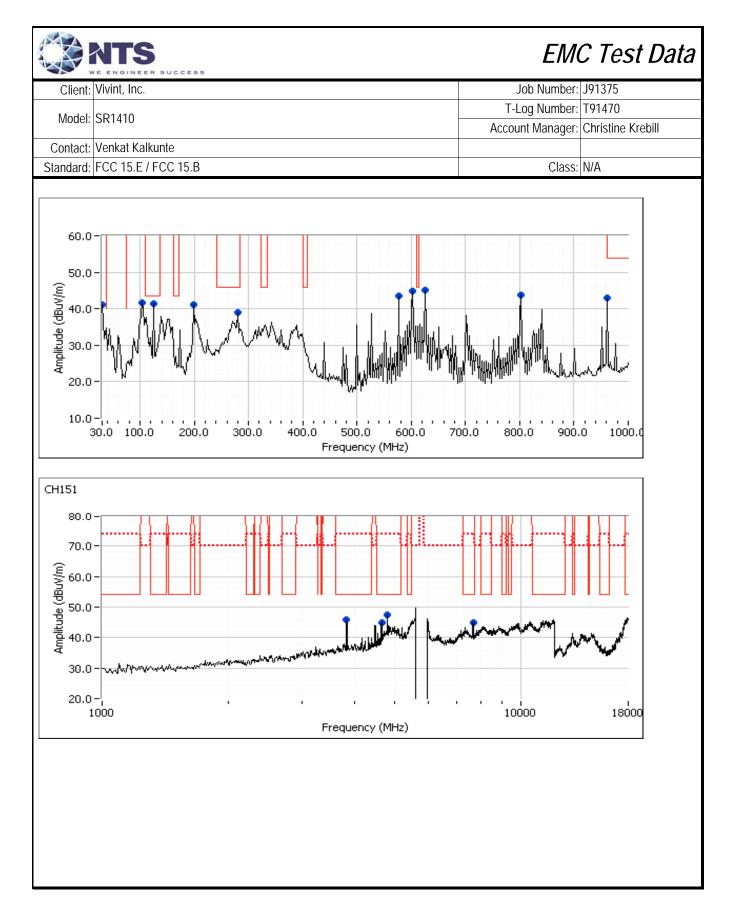
Summary of Results - Device Operating in the 5725 - 5850 MHz Band

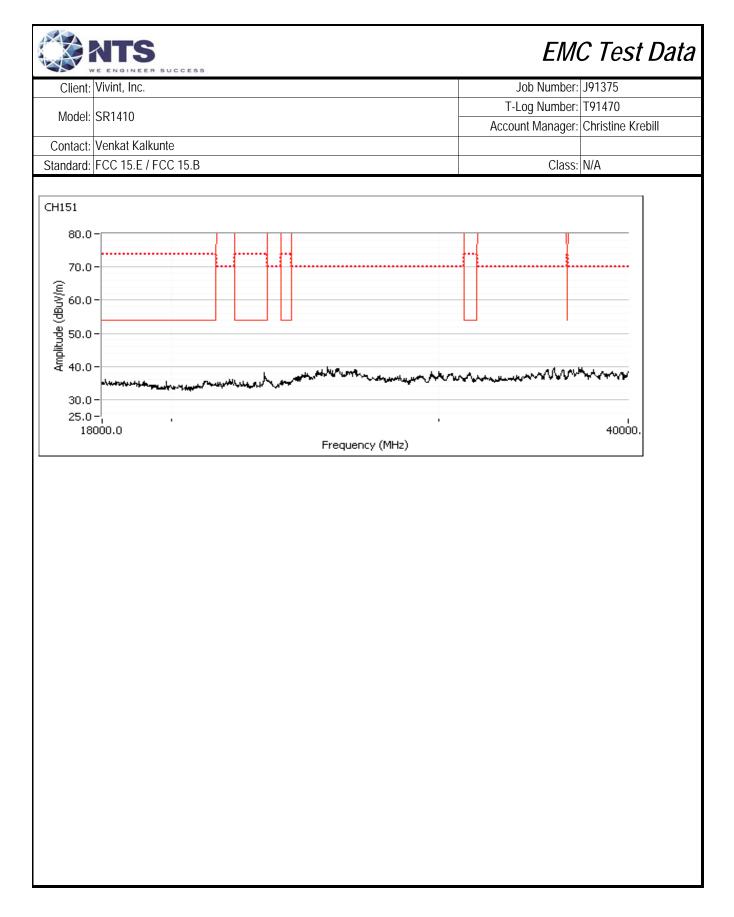
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	40MHz	151 @ 5755Mhz	16	NA	Radiated Emissions, 30MHz - 40GHz	FCC Part 15.209 / 15.247(c)	41.0 dBµV/m @ 125.01 MHz (-2.5 dB)
1c	40MHz	159 @ 5795MHz	16	NA	Radiated Emissions, 1 - 40GHz	FCC Part 15.209 / 15.247(c)	48.7 dBµV/m @ 3863.4 MHz (-5.3 dB)

Modifications Made During Testing

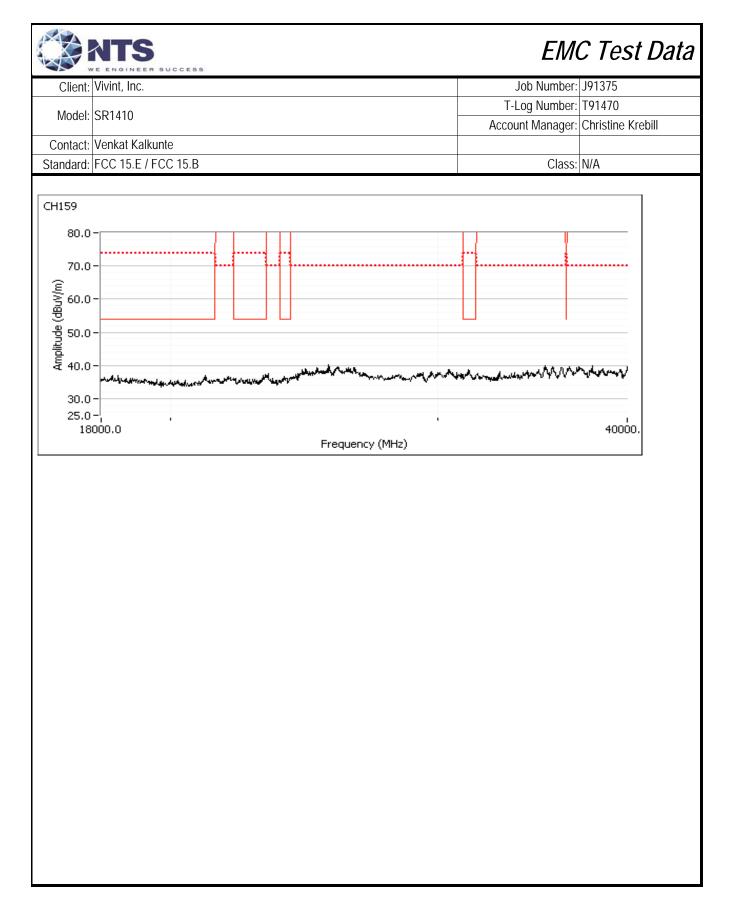
No modifications were made to the EUT during testing

Deviations From The Standard

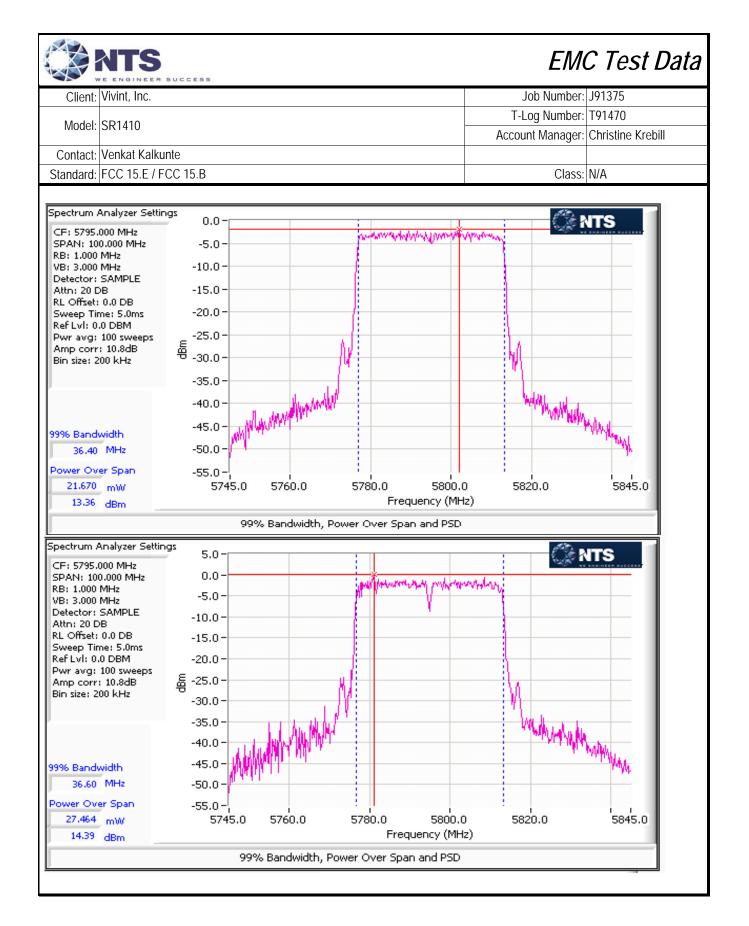

No deviations were made from the requirements of the standard.

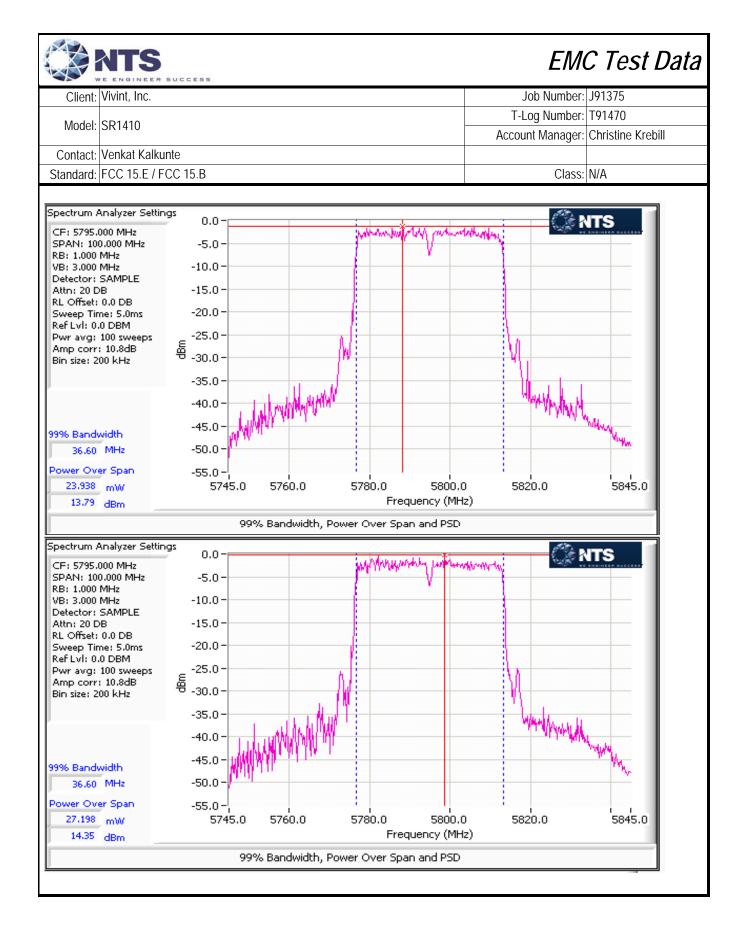

Test Procedure Comments:

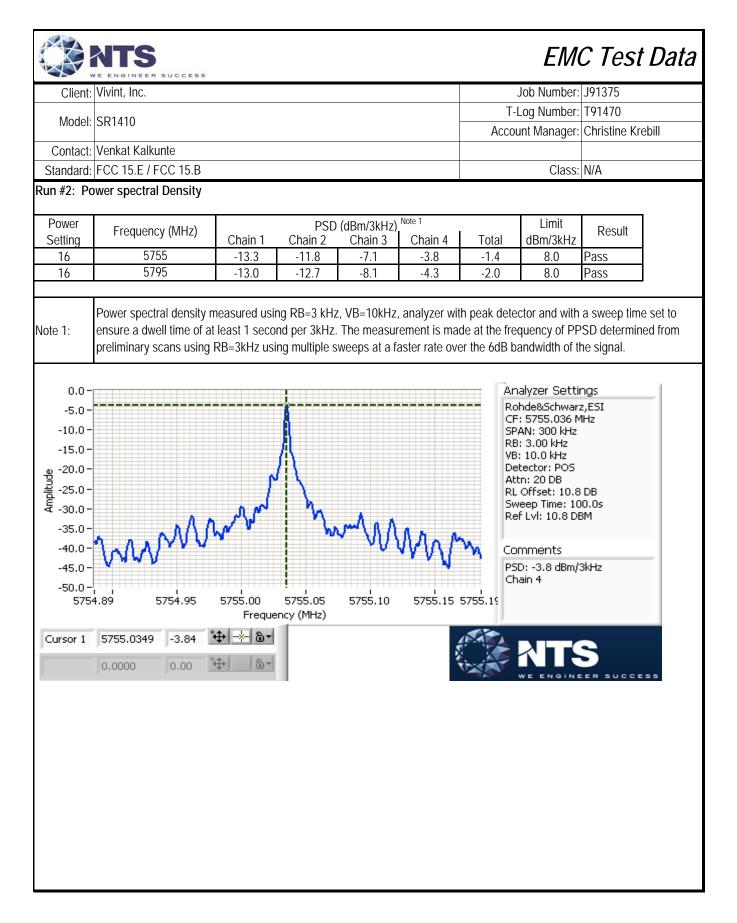
Antenna: 5dBi Omni Duty Cycle: >98%

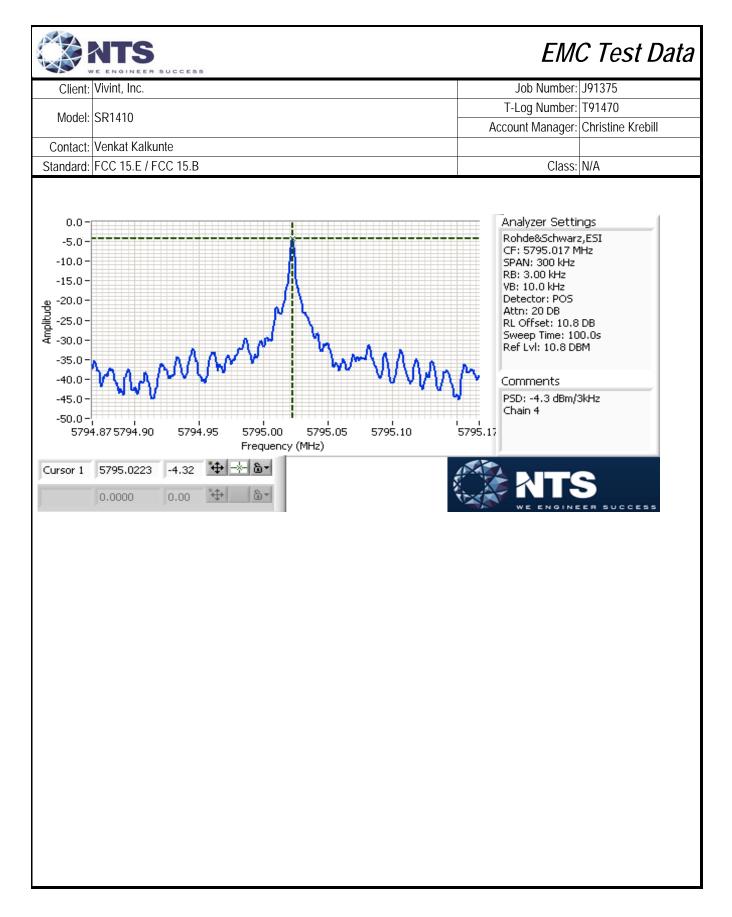

Testing for 30-1000 MHz was performed at the High Channel for UNII and Low Channel for DTS.

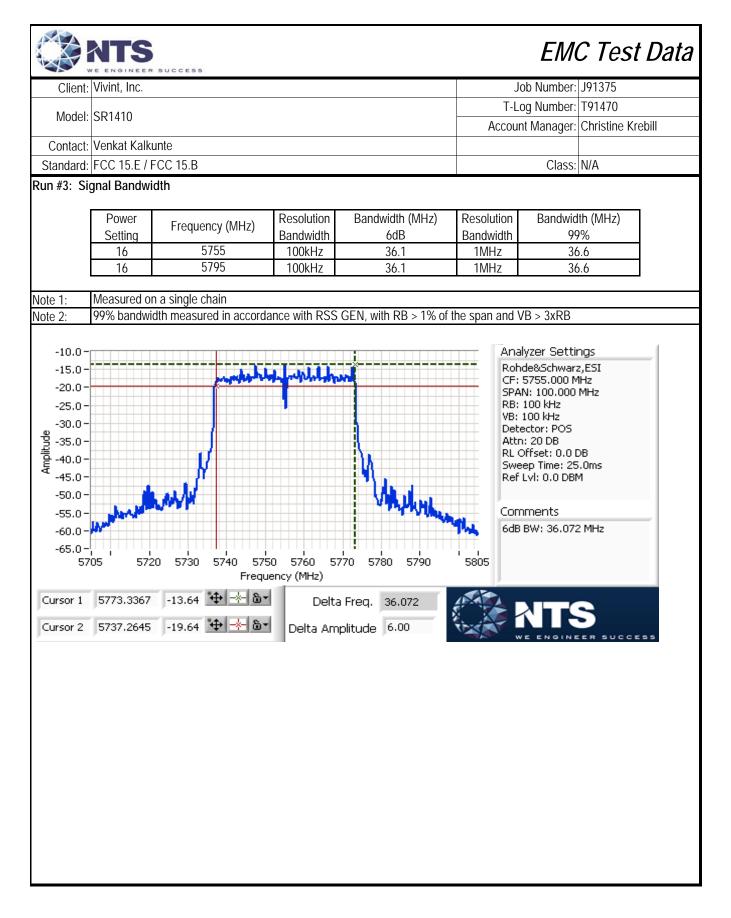
Test E	enkat Kalku CC 15.E / Fo ated Spurid te of Test: 3 Engineer: J Location: (CC 15.B Dus Emissi 3/25/2013 & John Caizzi Chamber 3 &			perating Moc	le: 40MHz		Log Number: ount Manager: Class:	Christine Krebill
Contact: Ve Standard: FC un #1: Radia Date Test E Test I un #1a: Low	enkat Kalku CC 15.E / Fo ated Spurid te of Test: 3 Engineer: J Location: (CC 15.B Dus Emissi 3/25/2013 & John Caizzi Chamber 3 &	3/26/13 / R. Varelas		perating Moc	le: 40MHz	Ассо		
Standard: FC un #1: Radia Date Test E Test I un #1a: Low	CC 15.E / F(ated Spuric te of Test: 3 Engineer: J Location: (CC 15.B Dus Emissi 3/25/2013 & John Caizzi Chamber 3 &	3/26/13 / R. Varelas		perating Moc	le: 40MHz		Class:	N/A
eun #1: Radia Date Test E Test Run #1a: Low	ated Spuric te of Test: 3 Engineer: J Location: (bus Emissi 3/25/2013 & Iohn Caizzi Chamber 3 &	3/26/13 / R. Varelas		perating Moc	le: 40MHz		Class:	N/A
Date Test E Test I Run #1a: Low	e of Test: 3 Engineer: J Location: (3/25/2013 & Iohn Caizzi Chamber 3 {	3/26/13 / R. Varelas		perating Moc	le: 40MHz			
ourious Emis			5 MHz	1					
	ssions								
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
125.008	41.0	Н	43.5	-2.5	QP	127	2.3		
799.998	44.7	V	70.2	-25.5	QP	2	1.1		
280.006	37.1	V	46.0	-8.9	QP	70	1.7		
575.012	45.5	Н	70.2	-24.7	QP	162	1.2		
960.003	41.7	H	54.0	-12.3	QP	194	1.1		
200.011	41.2	H	70.2	-29.0	QP QP	160	1.1		
600.013 625.007	46.5 45.1	H H	70.2 70.2	-23.7 -25.1	QP QP	173 173	1.1 1.0		
104.624	35.7	H	70.2	-25.1	QP	332	1.0		
30.646	40.6	V	70.2	-29.6	QP	360	1.0		
3836.750	44.9	V	54.0	-9.1	AVG	166	1.00		
3836.730	50.4	V	74.0	-23.6	PK	166	1.00		
1800.080	43.5	V	54.0	-10.5	AVG	228	1.00		
4800.200	51.8	V	74.0	-22.2	PK	228	1.00	1	
4640.090	45.8	V	54.0	-8.2	AVG	330	1.05		
4639.870	51.8	V	74.0	-22.2	PK	330	1.05		
7673.470	45.0	V	54.0	-9.0	AVG	330	1.99		
7673.630	51.8	V	74.0	-22.2	PK	330	1.99	1	
5741.890	100.2	V	-	-	PK	0	1.39	POS; RB 10	00 kHz; VB: 100 kH
5747.500	87.1	Н	-	-	PK	314	1.11	POS; RB 10	00 kHz; VB: 100 kHz

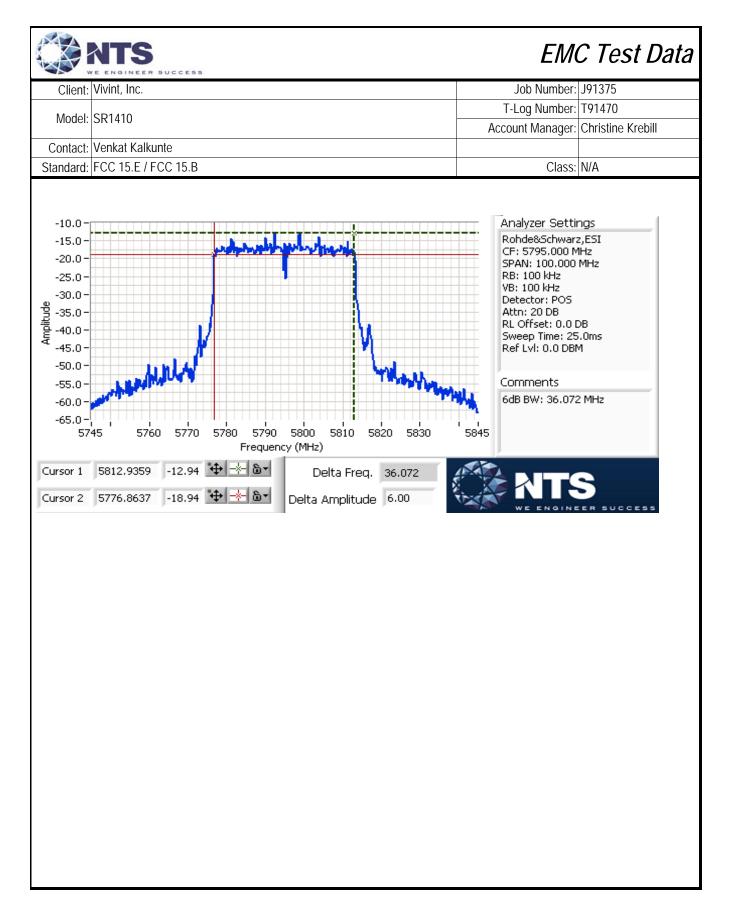

Client: Vivint, Inc. Job Number: J91375 Model: SR1410 T-Log Number: T91470 Account Manager: Christine Krebill Christine Krebill Contact: Venkat Kalkunte Class: N/A Standard: FCC 15.E / FCC 15.B Class: N/A Run #1c: High Channel - 159 @ 5795 MHz Class: N/A Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 3863.400 52.9 V 74.0 -21.1 PK 165 1.50 4920.070 53.1 V 74.0 -21.1 PK 165 1.50 4920.070 53.1 V 74.0 -22.0 PK 337 1.15 4440.120 45.3 V 54.0 -3.7 AVG 220 1.04 Same signal on CH151. 4640.120 52.0 V			SUCCESS						EM	C Test Data
Model: SR1410 Account Manager: Christine Krebill Contact: Venkat Kalkunte Class: N/A Standard: FCC 15.E / FCC 15.B Class: N/A Run #1c: High Channel - 159 @ 5795 MHz Class: N/A Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MH2 dBµV/m v/h Limit Margin PK/OP/Avg degrees meters 3863.400 48.7 V 54.0 -5.3 AVG 165 1.50	Client:	: Vivint, Inc.							Job Number:	J91375
Model: SR1410 Account Manager: Christine Krebill Contact: Venkat Kalkunte Class: N/A Standard: FCC 15.E / FCC 15.B Class: N/A Run #1c: High Channel - 159 @ 5795 MHz Class: N/A Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MH2 dBµV/m v/h Limit Margin PK/OP/Avg degrees meters 3863.400 48.7 V 54.0 -5.3 AVG 165 1.50		0.01.140						T-	Log Number:	T91470
Standard: Class: N/A Standard: FCC 15.E / FCC 15.B Class: N/A Run #1c: High Channel - 159 @ 5795 MHz Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dB _µ V/m V/h Limit Margin Pk/QP/Avg degrees meters 3863.400 48.7 V 54.0 -5.3 AVG 165 1.50	Model:	SR1410					-		-	
Run #1c: High Channel - 159 @ 5795 MHz Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters	Contact:	: Venkat Kalku	nte							
Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3863.400 48.7 V 54.0 -5.3 AVG 165 1.50 3863.470 52.9 V 74.0 -21.1 PK 165 1.50 4920.000 42.9 V 54.0 -11.1 AVG 337 1.15 4920.070 53.1 V 74.0 -20.9 PK 337 1.15 4640.120 45.3 V 54.0 -8.7 AVG 220 1.04 Same signal on CH151. 4640.240 52.0 V 74.0 -22.0 PK 220 1.04 Same signal on CH151. 7726.780 43.4 V 54.0 -10.6 AVG 8 1.40 6040.000 48.1 V 71.8 <td< td=""><td>Standard:</td><td>: FCC 15.E / F</td><td>CC 15.B</td><td></td><td></td><td></td><td></td><td></td><td>Class:</td><td>N/A</td></td<>	Standard:	: FCC 15.E / F	CC 15.B						Class:	N/A
Frequency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3863.400 48.7 V 54.0 -5.3 AVG 165 1.50 3863.470 52.9 V 74.0 -21.1 PK 165 1.50 4920.000 42.9 V 54.0 -11.1 AVG 337 1.15 4920.070 53.1 V 74.0 -20.9 PK 337 1.15 4640.120 45.3 V 54.0 -8.7 AVG 220 1.04 Same signal on CH151. 4640.240 52.0 V 74.0 -22.0 PK 220 1.04 Same signal on CH151. 7726.780 43.4 V 54.0 -10.6 AVG 8 1.40 6040.000 48.1 V 71.8 -23.7 Peak 360 1.		-	· 159 @ 579	95 MHz						
MHz dB _{II} V/m v/h Limit Margin Pk/QP/Avg degrees meters 3863.400 48.7 V 54.0 -5.3 AVG 165 1.50 3863.470 52.9 V 74.0 -21.1 PK 165 1.50 4920.000 42.9 V 54.0 -11.1 AVG 337 1.15 4920.070 53.1 V 74.0 -20.9 PK 337 1.15 4640.120 45.3 V 54.0 -8.7 AVG 220 1.04 Same signal on CH151. 4640.240 52.0 V 74.0 -22.0 PK 220 1.04 Same signal on CH151. 7726.780 43.4 V 54.0 -10.6 AVG 8 1.40 6040.000 48.1 V 71.8 -23.7 Peak 360 1.0			Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
3863.400 48.7 V 54.0 -5.3 AVG 165 1.50 3863.470 52.9 V 74.0 -21.1 PK 165 1.50 4920.000 42.9 V 54.0 -11.1 AVG 337 1.15 4920.070 53.1 V 74.0 -20.9 PK 337 1.15 4640.120 45.3 V 54.0 -8.7 AVG 220 1.04 Same signal on CH151. 4640.240 52.0 V 74.0 -22.0 PK 220 1.04 Same signal on CH151. 7726.780 43.4 V 54.0 -10.6 AVG 8 1.40 7727.000 51.2 V 74.0 -22.8 PK 8 1.40 6040.000 48.1 V 71.8 -23.7 Peak 360 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below for the fundamental and measured in 100kHz. CH159 80.0										
3863.470 52.9 V 74.0 -21.1 PK 165 1.50 4920.000 42.9 V 54.0 -11.1 AVG 337 1.15 4920.070 53.1 V 74.0 -20.9 PK 337 1.15 4640.120 45.3 V 54.0 -8.7 AVG 220 1.04 Same signal on CH151. 4640.240 52.0 V 74.0 -22.0 PK 220 1.04 Same signal on CH151. 7726.780 43.4 V 54.0 -10.6 AVG 8 1.40 7727.000 51.2 V 74.0 -22.8 PK 8 1.40 6040.000 48.1 V 71.8 -23.7 Peak 360 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. CH159 80.0						<u> </u>				
4920.070 53.1 V 74.0 -20.9 PK 337 1.15 4640.120 45.3 V 54.0 -8.7 AVG 220 1.04 Same signal on CH151. 4640.240 52.0 V 74.0 -22.0 PK 220 1.04 Same signal on CH151. 7726.780 43.4 V 54.0 -10.6 AVG 8 1.40 7726.780 43.4 V 54.0 -10.6 AVG 8 1.40 7726.780 43.4 V 54.0 -10.6 AVG 8 1.40 7727.000 51.2 V 74.0 -22.8 PK 8 1.40 6040.000 48.1 V 71.8 -23.7 Peak 360 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. CH159 80.0 70.0 A										
4640.120 45.3 V 54.0 -8.7 AVG 220 1.04 Same signal on CH151. 4640.240 52.0 V 74.0 -22.0 PK 220 1.04 Same signal on CH151. 7726.780 43.4 V 54.0 -10.6 AVG 8 1.40 7726.780 43.4 V 54.0 -10.6 AVG 8 1.40 7727.000 51.2 V 74.0 -22.8 PK 8 1.40 6040.000 48.1 V 71.8 -23.7 Peak 360 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. CH159 80.0								1.15		
4640.240 52.0 V 74.0 -22.0 PK 220 1.04 Same signal on CH151. 7726.780 43.4 V 54.0 -10.6 AVG 8 1.40 7726.780 43.4 V 54.0 -10.6 AVG 8 1.40 7727.000 51.2 V 74.0 -22.8 PK 8 1.40 6040.000 48.1 V 71.8 -23.7 Peak 360 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. CH159 80.0					-20.9			1.15		
7726.780 43.4 V 54.0 -10.6 AVG 8 1.40 7727.000 51.2 V 74.0 -22.8 PK 8 1.40 6040.000 48.1 V 71.8 -23.7 Peak 360 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. CH159 80.0 70.0										
7727.000 51.2 V 74.0 -22.8 PK 8 1.40 6040.000 48.1 V 71.8 -23.7 Peak 360 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. CH159 80.0								1.04	Same signa	on CH151.
6040.000 48.1 V 71.8 -23.7 Peak 360 1.0 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz. CH159 80.0 -										
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below to level of the fundamental and measured in 100kHz.										
CH159 80.0 - 70.0 -	6040.000	48.1	V	71.8	-23.7	Peak	360	1.0		
100 50.0- 100 40.0- W	80.0 70.0)			Murahean Maria	بالم الم الم	/ / [h/	n n n Marrie		
30.0 - Wywwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww		I - MIL WAY PARTY	· · · · ·							

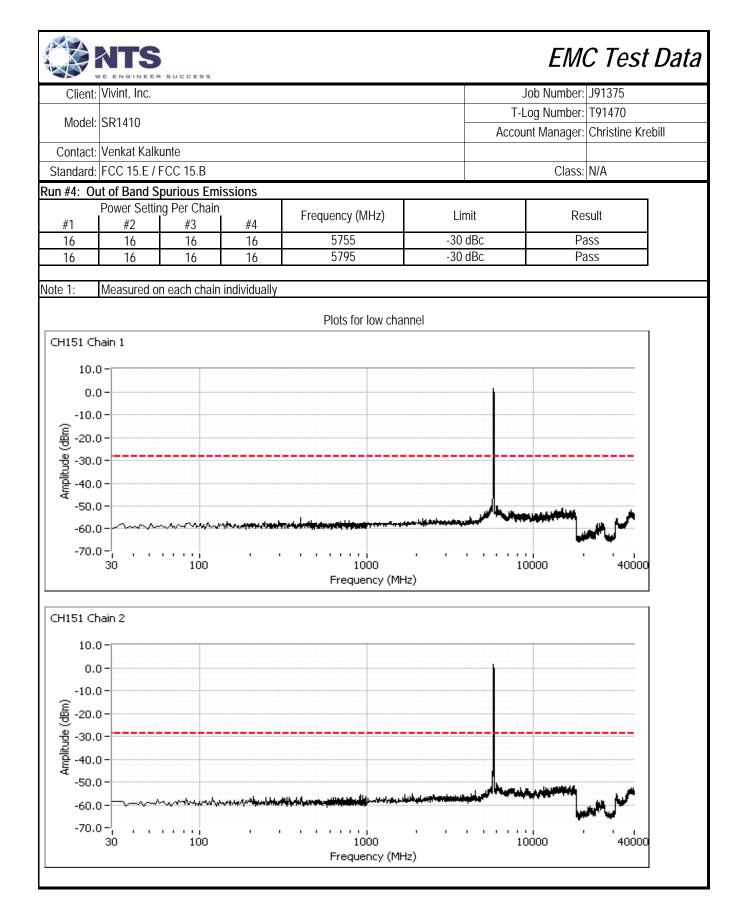


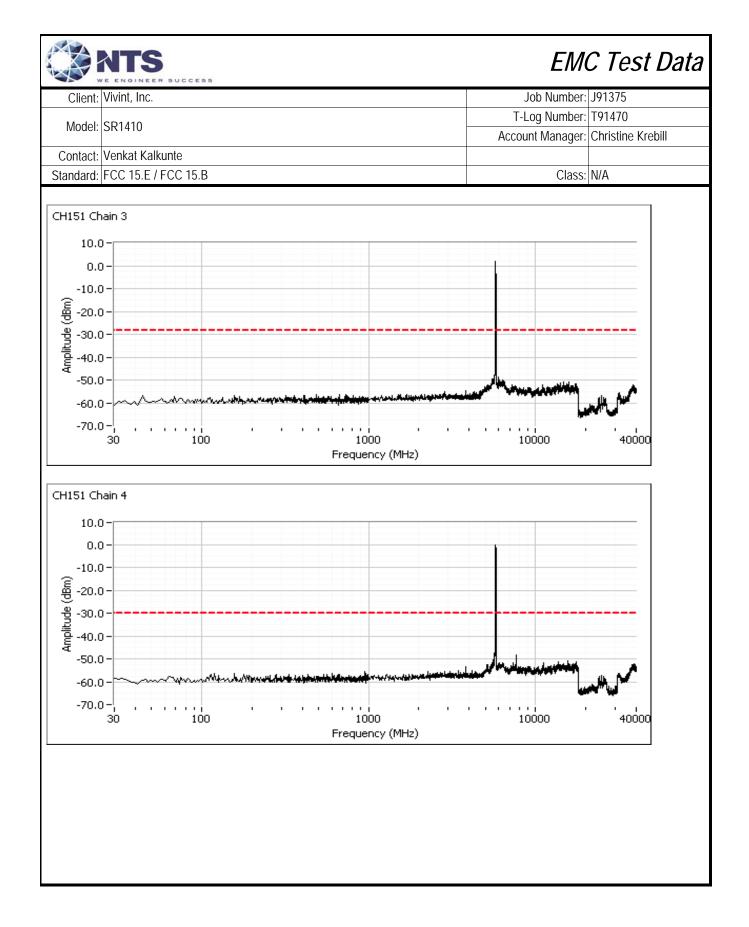

Client		SUCCESS		1	EMO	
Client	: Vivint, Inc.				Job Number:	
Model	: SR1410				T-Log Number:	
				Ac	count Manager:	Christine Krebill
	: Venkat Kalkı					
Standard	: FCC 15.E / F	FCC 15.B			Class:	N/A
	F		and FCC 15.247 (DTS) An MIMO and Smart Ante Power, PSD, Bandwidth and S	enna Systems		5
est Spe	cific Detail	S				
			e of this test session is to perform fina listed above.	I qualification testing c	of the EUT with r	respect to the
	Date of Test:	3/27/2013	C	onfig. Used: 1		
	est Engineer:		R. Varelas Cor	nfig Change: none		
Т	est Location:	Chamber 7	E	UT Voltage: PoE		
	Test Config					
he EUT w hain.	as connected	to the spectr	um analyzer or power meter via a sui		easurements w	ere made on a single
he EUT w hain. Il measure	as connected	to the spectr been correcte	um analyzer or power meter via a sui d to allow for the external attenuators		ieasurements w	ere made on a single
he EUT w hain. Il measure	as connected	to the spectr been correcte	d to allow for the external attenuators		ieasurements w	ere made on a single
he EUT w nain. II measure	as connected	to the spectr been correcte S: Te	d to allow for the external attenuators emperature: 21 °C		ieasurements w	ere made on a single
he EUT w hain. Il measure	as connected	to the spectr been correcte S: Te	d to allow for the external attenuators		ieasurements w	ere made on a single
ne EUT w nain. I measure mbient ummar	as connected ements have b Conditions y of Result	to the spectr been correcte S: Te Re	d to allow for the external attenuators emperature: 21 °C श. Humidity: 38 %	used.		
ne EUT w lain. I measure mbient ummar Run #	as connected	to the spectr been correcte S: Te Re	d to allow for the external attenuators emperature: 21 °C		easurements w	ere made on a single Result / Margin
ne EUT w pain. I measure mbient mbient <u>Run #</u> <u>MHz</u>	as connected ements have b Conditions y of Result Pwr setting	to the spectr been correcte S: Te Re S Avg Pwr	d to allow for the external attenuators emperature: 21 °C el. Humidity: 38 % Test Performed	used.	Pass / Fail	Result / Margin
ne EUT w aain. I measure mbient mbient <u>Run #</u> <u>MHz</u> 1	as connected ements have b Conditions y of Result Pwr setting 16	to the spectr been correcte S: Te Re	d to allow for the external attenuators emperature: 21 °C el. Humidity: 38 % Test Performed Output Power	used. Limit 15.247(b)	Pass / Fail	Result / Margin 20.0 dBm
e EUT w ain. measure mbient mbient ummar Run # <u>MHz</u> 1 2	as connected ements have b Conditions y of Result Pwr setting 16 16	to the spectr been correcte S: Te Re S Avg Pwr	d to allow for the external attenuators emperature: 21 °C el. Humidity: 38 % Test Performed Output Power Power spectral Density (PSD)	used. Limit 15.247(b) 15.247(d)	Pass / Fail Pass Pass	Result / Margin 20.0 dBm -1.4 dBm/3kHz
ne EUT w aain. I measure mbient mbient <u>Run #</u> <u>MHz</u> 1	as connected ements have b Conditions y of Result Pwr setting 16	to the spectr been correcte S: Te Re S Avg Pwr	d to allow for the external attenuators emperature: 21 °C el. Humidity: 38 % Test Performed Output Power	used. Limit 15.247(b)	Pass / Fail	Result / Margin 20.0 dBm
ne EUT w nain. I measure mbient <u>ummar</u> <u>Run #</u> <u>DMHz</u> 1 2 3	as connected ements have b Conditions y of Result Pwr setting 16 16 16	to the spectr been correcte S: Te Re S Avg Pwr	d to allow for the external attenuators emperature: 21 °C el. Humidity: 38 % Test Performed Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth	used. Limit 15.247(b) 15.247(d) 15.247(a)	Pass / Fail Pass Pass Pass	Result / Margin 20.0 dBm -1.4 dBm/3kHz 36.1 MHz
he EUT w nain. Il measure Ambient Ambient Ambient Ambient Ambient Aummar Aummar A A	as connected ements have b Conditions y of Result Pwr setting 16 16 16 16 16	to the spectr been correcte S: Te Re S Avg Pwr - - - - -	d to allow for the external attenuators emperature: 21 °C el. Humidity: 38 % Test Performed Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth 99% Bandwidth Spurious emissions	used. Limit 15.247(b) 15.247(d) 15.247(a) RSS GEN	Pass / Fail Pass Pass Pass Pass Pass	Result / Margin 20.0 dBm -1.4 dBm/3kHz 36.1 MHz 36.6 MHz All emissions belo
ne EUT w nain. I measure mbient <u>ummar</u> Run # <u>DMHz</u> 1 2 3 3 4 k lodifica	as connected ements have b Conditions y of Result Pwr setting 16 16 16 16 16 16	to the spectr been correcte S: Te Re S Avg Pwr - - - - - - - - - - - - - - - - - - -	d to allow for the external attenuators emperature: 21 °C el. Humidity: 38 % Test Performed Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth 99% Bandwidth Spurious emissions	used. Limit 15.247(b) 15.247(d) 15.247(a) RSS GEN	Pass / Fail Pass Pass Pass Pass Pass	Result / Margin 20.0 dBm -1.4 dBm/3kHz 36.1 MHz 36.6 MHz All emissions belo
ne EUT w nain. I measure mbient <u>ummar</u> Run # <u>DMHz</u> 1 2 3 3 4 4	as connected ements have b Conditions y of Result Pwr setting 16 16 16 16 16 16	to the spectr been correcte S: Te Re S Avg Pwr - - - - - - - - - - - - - - - - - - -	d to allow for the external attenuators emperature: 21 °C el. Humidity: 38 % Test Performed Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth 99% Bandwidth Spurious emissions	used. Limit 15.247(b) 15.247(d) 15.247(a) RSS GEN	Pass / Fail Pass Pass Pass Pass Pass	Result / Margin 20.0 dBm -1.4 dBm/3kHz 36.1 MHz 36.6 MHz All emissions belo

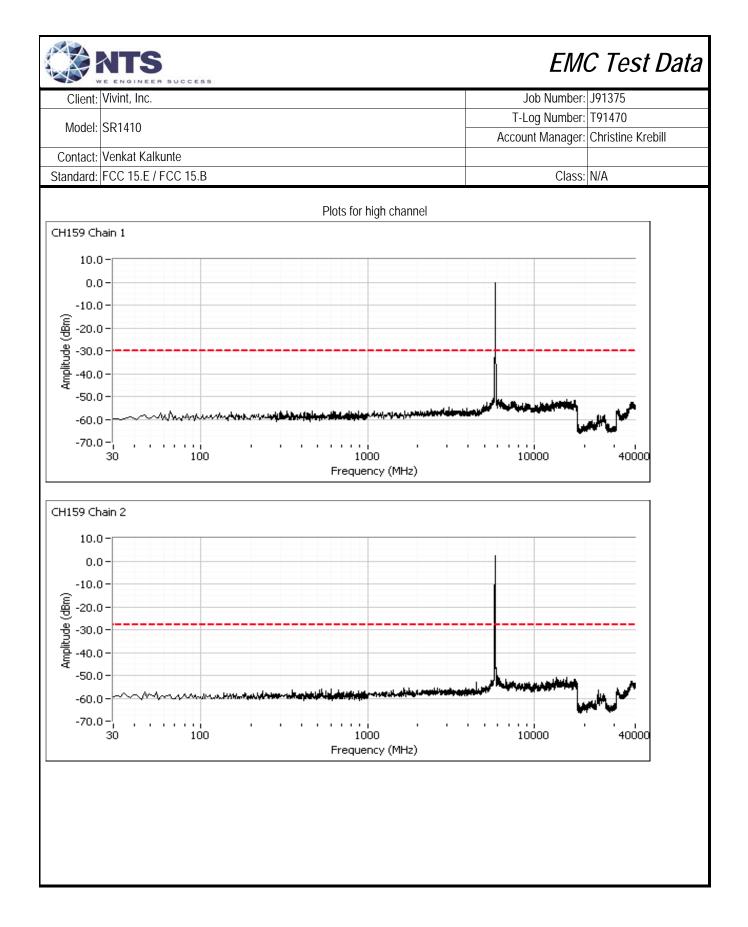

Client:	Vivint, Inc.						Job Number: J91375				
Model:	SR1410							T-Log Number: T91470 Account Manager: Christine Krebill			
Contact:	: Venkat Kalkunte						AUU	uni manayer.		CDIII	
Standard:	FCC 15.E / F	CC 15.B						Class:	N/A		
Antenna G	ain Informati				-			· · · ·			
Freq	A	ntenna Gain 2	i (dBi) / Chai 3	n 4	BF	MultiChain Legacy	CDD	Sectorized / Xpol	Dir G (PWR)	Dir G (PSD)	
5150-5250		2	3	- T	Yes	No	Yes	No	-	-	
5250-5350	5	5	5	5	Yes	No	Yes	No	8.0	8.0	
5470-5725	5	5	5	5	Yes	No	Yes	No	8.0	8.0	
5725-5850	5	5	5	5	Yes	No	Yes	No	8.0	8.0	
	cross polariz Dir G (PWR) FCC KDB 66	ed = total gain	(Gant + Arra	y Gain) for p	power calcul	s supported, Se ations; GA (PS Array Gain valu	D) = total	gain for PSD c	alculations	based on	
Notes:			calculated p 0*log(4/2) =		911 D01, v0	1r02. Spatial N	Iultiplexing	g with Nant=4,	Nss=2, for v	vorse cas	

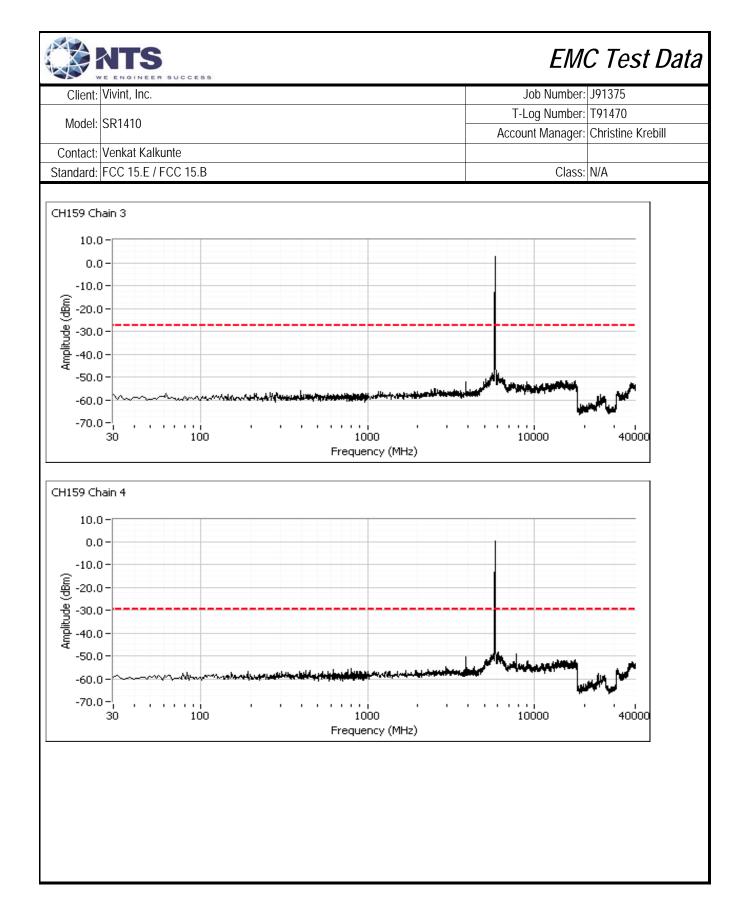

.B Operating Mode: Chain 1 16.0 14.2 5 19.2 Chain 1 16.0 14.4 5 19.4 SD limits include ured using a sper mitted signal was	Chain 2 16.0 13.6 5 18.6 Chain 2 16.0 13.8 5 18.8 s correction f	Chain 3 16.0 14.3 5 19.3 Chain 3 16.0 14.4 5 19.4	Chain 4 16.0 12.9 5 17.9 Chain 4 16.0 13.36 5 18.36	T-L Accou Total Acros 19.8 dBm 8.0 dBi 27.8 dBm	Class: s All Chains 0.096 W 0.605 W s All Chains 0.101 W	T91470 Christine Krebill
Operating Mode: Chain 1 16.0 14.2 5 19.2 Chain 1 16.0 14.4 5 19.4 PSD limits include ured using a spece	Chain 2 16.0 13.6 5 18.6 Chain 2 16.0 13.8 5 18.8 s correction f	16.0 14.3 5 19.3 Chain 3 16.0 14.4 5 19.4	16.0 12.9 5 17.9 Chain 4 16.0 13.36 5	Accou Total Acros 19.8 dBm 8.0 dBi 27.8 dBm Total Acros 20.0 dBm 8.0 dBi	s All Chains 0.096 W 0.605 W s All Chains 0.101 W	Christine Krebill N/A Limit 28.0 dBm 0.62 Pass Limit 28.0 dBm 0.62
Operating Mode: Chain 1 16.0 14.2 5 19.2 Chain 1 16.0 14.4 5 19.4 PSD limits include ured using a spece	Chain 2 16.0 13.6 5 18.6 Chain 2 16.0 13.8 5 18.8 s correction f	16.0 14.3 5 19.3 Chain 3 16.0 14.4 5 19.4	16.0 12.9 5 17.9 Chain 4 16.0 13.36 5	Total Acros 19.8 dBm 8.0 dBi 27.8 dBm Total Acros 20.0 dBm 8.0 dBi	Class: s All Chains 0.096 W 0.605 W s All Chains 0.101 W	N/A Limit 28.0 dBm 0.62 Pass Limit 28.0 dBm 0.62
Operating Mode: Chain 1 16.0 14.2 5 19.2 Chain 1 16.0 14.4 5 19.4 PSD limits include ured using a spece	Chain 2 16.0 13.6 5 18.6 Chain 2 16.0 13.8 5 18.8 s correction f	16.0 14.3 5 19.3 Chain 3 16.0 14.4 5 19.4	16.0 12.9 5 17.9 Chain 4 16.0 13.36 5	19.8 dBm 8.0 dBi 27.8 dBm Total Acros 20.0 dBm 8.0 dBi	s All Chains 0.096 W 0.605 W s All Chains 0.101 W	Limit 28.0 dBm 0.62 Pass Limit 28.0 dBm 0.62
Operating Mode: Chain 1 16.0 14.2 5 19.2 Chain 1 16.0 14.4 5 19.4 PSD limits include ured using a spece	Chain 2 16.0 13.6 5 18.6 Chain 2 16.0 13.8 5 18.8 s correction f	16.0 14.3 5 19.3 Chain 3 16.0 14.4 5 19.4	16.0 12.9 5 17.9 Chain 4 16.0 13.36 5	19.8 dBm 8.0 dBi 27.8 dBm Total Acros 20.0 dBm 8.0 dBi	s All Chains 0.096 W 0.605 W s All Chains 0.101 W	Limit 28.0 dBm 0.62 Pass Limit 28.0 dBm 0.62
Chain 1 16.0 14.2 5 19.2 Chain 1 16.0 14.4 5 19.4 SD limits include ured using a speci-	Chain 2 16.0 13.6 5 18.6 Chain 2 16.0 13.8 5 18.8 s correction f	16.0 14.3 5 19.3 Chain 3 16.0 14.4 5 19.4	16.0 12.9 5 17.9 Chain 4 16.0 13.36 5	19.8 dBm 8.0 dBi 27.8 dBm Total Acros 20.0 dBm 8.0 dBi	0.096 W 0.605 W s All Chains 0.101 W	28.0 dBm 0.62 Pass Limit 28.0 dBm 0.62
16.0 14.2 5 19.2 Chain 1 16.0 14.4 5 19.2	16.0 13.6 5 18.6 Chain 2 16.0 13.8 5 18.8 es correction f	16.0 14.3 5 19.3 Chain 3 16.0 14.4 5 19.4	16.0 12.9 5 17.9 Chain 4 16.0 13.36 5	19.8 dBm 8.0 dBi 27.8 dBm Total Acros 20.0 dBm 8.0 dBi	0.096 W 0.605 W s All Chains 0.101 W	28.0 dBm 0.62 Pass Limit 28.0 dBm 0.62
14.2 5 19.2 Chain 1 16.0 14.4 5 19.2	13.6 5 18.6 Chain 2 16.0 13.8 5 18.8 es correction f	14.3 5 19.3 Chain 3 16.0 14.4 5 19.4	12.9 5 17.9 Chain 4 16.0 13.36 5	19.8 dBm 8.0 dBi 27.8 dBm Total Acros 20.0 dBm 8.0 dBi	0.096 W 0.605 W s All Chains 0.101 W	28.0 dBm 0.62 Pass Limit 28.0 dBm 0.62
5 19.2 Chain 1 16.0 14.4 5 19.4 PSD limits include ured using a spec	5 18.6 Chain 2 16.0 13.8 5 18.8 es correction f	5 19.3 Chain 3 16.0 14.4 5 19.4	5 17.9 Chain 4 16.0 13.36 5	8.0 dBi 27.8 dBm Total Acros 20.0 dBm 8.0 dBi	0.605 W s All Chains 0.101 W	Pass Limit 28.0 dBm 0.62
19.2 Chain 1 16.0 14.4 5 19.4 PSD limits include ured using a speci-	18.6 Chain 2 16.0 13.8 5 18.8	19.3 Chain 3 16.0 14.4 5 19.4	17.9 Chain 4 16.0 13.36 5	27.8 dBm Total Acros 20.0 dBm 8.0 dBi	s All Chains 0.101 W	Limit 28.0 dBm 0.62
Chain 1 16.0 14.4 5 19.4 PSD limits include ured using a spec	Chain 2 16.0 13.8 5 18.8 es correction f	Chain 3 16.0 14.4 5 19.4	Chain 4 16.0 13.36 5	Total Acros 20.0 dBm 8.0 dBi	s All Chains 0.101 W	28.0 dBm 0.62
16.0 14.4 5 19.4 2SD limits include ured using a spec	16.0 13.8 5 18.8 es correction f	16.0 14.4 5 19.4	16.0 13.36 5	20.0 dBm 8.0 dBi	0.101 W	28.0 dBm 0.62
16.0 14.4 5 19.4 2SD limits include ured using a spec	16.0 13.8 5 18.8 es correction f	16.0 14.4 5 19.4	16.0 13.36 5	20.0 dBm 8.0 dBi	0.101 W	28.0 dBm 0.62
14.4 5 19.4 PSD limits include ured using a special	13.8 5 18.8 es correction f	14.4 5 19.4	13.36 5	8.0 dBi		I
5 19.4 2SD limits include ured using a spec	5 18.8 es correction f	5 19.4	5	8.0 dBi		I
2SD limits include ured using a spec	18.8 es correction f	19.4	-		0 () 7) 1 (Pass
PSD limits include	es correction f				0.637 W	
single number the ated by a comma	•	•				pers the power settir ng y for chain 2.











EMC Test Data

Client:	Vivint, Inc.	Job Number:	J91375
Madalı	SR1410	T-Log Number:	Т91470
would.	3K1410	Account Manager:	Christine Krebill
Contact:	Venkat Kalkunte		
Standard:	FCC 15.E / FCC 15.B	Class:	А

Radiated Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

ITS

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 3/28/2013 Test Engineer: John Caizzi Test Location: Fremont Chamber #7 Config. Used: 1 Config Change: none EUT Voltage: PoE

General Test Configuration

The EUT was located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semianechoic chamber. Any cables running to remote support equipment were routed through metal conduit and passed through a ferrite clamp upon exiting the chamber.

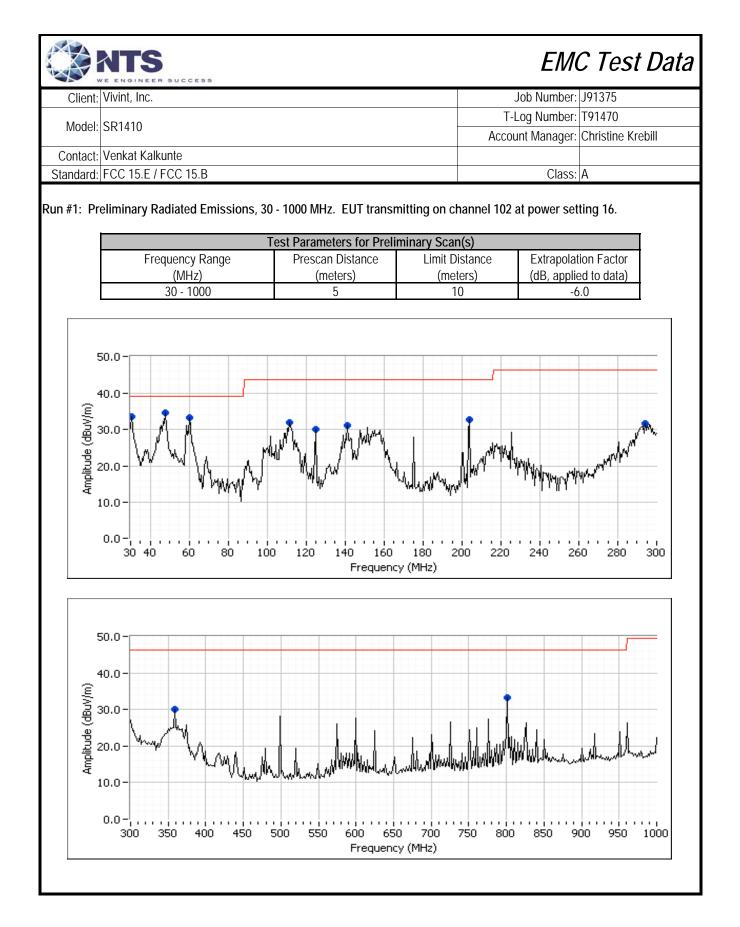
The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature:	21 °C
Rel. Humidity:	43 %

Summary of Results (ANSI C63.4:2009)


Run #	Test Performed	Limit	Result	Margin
1	Radiated Emissions 30 - 1000 MHz, Preliminary	Class A	Eval	33.4 dBµV/m @ 60.23 MHz (-5.7 dB)
2	Radiated Emissions 30 - 1000 MHz, Maximized	Class A	Pass	33.4 dBµV/m @ 60.23 MHz (-5.7 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Vivint, Inc.	SUCCESS	6					Job Number:	191375
								Log Number:	
Model	: SR1410							0	Christine Krebi
Contact	Venkat Kalk	unto					ALLU	uni manayer.	
	FCC 15.E / I							Class:	٨
Stanuaru.		I CC IJ.D						01033.	Λ
Preliminar	y peak readir	nas captui	ed durina a	re-scan					
Frequency	Level	Pol		15B	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
47.790	34.7	V	39.1	-4.4	Peak	236	1.0		
30.604	33.4	V	39.1	-5.7	Peak	133	1.5		
60.226	33.3	V	39.1	-5.8	Peak	0	1.0		
203.687	32.7	V	43.5	-10.8	Peak	42	2.0		
111.581	31.8	V	43.5	-11.7	Peak	274	1.0		
141.194	31.0	V	43.5	-12.5	Peak	65	3.5		
799.997	33.3	V	46.4	-13.1	Peak	178	1.5		
124.997	30.1	V	43.5	-13.4	Peak	254	1.0		
294.048	31.6	V	46.4	-14.8	Peak	319	2.5		
358.918	30.1	Н	46.4	-16.3	Peak	188	1.0		
	y quasi-peak	readings	(no manipu	lation of EU	T interface c	ables)		-	
Preliminary		Pol	FCC	15B	Detector	Azimuth	Height	Comments	
	Level	FUI	Linait	Margin	Pk/QP/Avg	degrees	meters		
		v/h	Limit	margin					
Frequency	Level	v/h V	29.1	-5.7	QP	328	1.00		
Frequency MHz 60.226 47.790	Level dBµV/m 33.4 33.2	v/h V V	39.1 39.1	- 5.7 -5.9	QP	328 302	1.00 1.00		
Frequency MHz 60.226 47.790 30.604	Level dBµV/m 33.4 33.2 31.5	v/h V V V	39.1 39.1 39.1	-5.7 -5.9 -7.6	QP QP	302 171	1.00 1.00		
Frequency MHz 60.226 47.790 30.604 111.581	Level dBµV/m 33.4 33.2 31.5 31.4	v/h V V V V	39.1 39.1 39.1 43.5	-5.7 -5.9 -7.6 -12.1	QP QP QP	302 171 230	1.00 1.00 1.00		
Frequency MHz 60.226 47.790 30.604 111.581 124.997	Level dBµV/m 33.4 33.2 31.5 31.4 30.3	v/h V V V V V	39.1 39.1 39.1 43.5 43.5	-5.7 -5.9 -7.6 -12.1 -13.2	QP QP QP QP	302 171 230 255	1.00 1.00 1.00 1.00		
Frequency MHz 60.226 47.790 30.604 111.581	Level dBµV/m 33.4 33.2 31.5 31.4	v/h V V V V	39.1 39.1 39.1 43.5	-5.7 -5.9 -7.6 -12.1	QP QP QP	302 171 230	1.00 1.00 1.00		

	ATS	EMC Test Da			
Client:	Vivint, Inc.	Job Number:	J91375		
Madalı	SR1410	T-Log Number:	Т91470		
woder:	SR1410	Account Manager:	Christine Krebill		
Contact:	Venkat Kalkunte				
Standard:	FCC 15.E / FCC 15.B	Class:	A		
Run #2: Ma	iximized Readings From Run #1				

Test Parameters for Maximized Reading(s)							
Frequency Range	Test Distance	Limit Distance	Extrapolation Factor				
(MHz)	(meters)	(meters)	(dB, applied to data)				
30 - 1000	5	10	-6.0				

Maximized quasi-peak readings (includes manipulation of EUT interface cables)

Frequency	Level	Pol	FCC	15B	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
60.226	33.4	V	39.1	-5.7	QP	328	1.00	Moving cable lowered reading.
47.790	33.2	V	39.1	-5.9	QP	302	1.00	Moving cable lowered reading.
30.604	31.5	V	39.1	-7.6	QP	171	1.00	Moving cable lowered reading.
111.581	31.4	V	43.5	-12.1	QP	230	1.00	Moving cable lowered reading.
124.997	30.3	V	43.5	-13.2	QP	255	1.00	Moving cable lowered reading.
141.194	30.3	V	43.5	-13.2	QP	89	3.28	Moving cable lowered reading.

End of Report

This page is intentionally blank and marks the last page of this test report.