Page 1 of 22

FCC PART 15, SUBPART B and C; and FCC SECTION 15.247; RSS-247 and RSS-GEN **TEST REPORT**

for

1-GANG SWITCH PLATE

Model: LS01

Prepared for

VIVINT, INC. 4931 N. 300 W PROVO, UTAH 84604 USA

en Prepared by:

JAMES ROSS

Approved by:

KYLE FUJIMOTO

COMPATIBLE ELECTRONICS INC. **114 OLINDA DRIVE BREA, CALIFORNIA 92823** (714) 579-0500

DATE: JULY 29, 2022

	REPORT		AP	TOTAL			
	BODY	A	B	С	D	Ε	
PAGES	22	2	2	2	13	62	103

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500

Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

Model: LS01

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	5
1. PURPOSE	6
1.1 DECISION RULE & RISK	6
 2. ADMINISTRATIVE DATA 2.1 Location of Testing 2.2 Traceability Statement 2.3 Cognizant Personnel 2.4 Date Test Sample was Received 2.5 Disposition of the Test Sample 2.6 Abbreviations and Acronyms 	7 7 7 7 7 7 7
3. APPLICABLE DOCUMENTS	8
4. DESCRIPTION OF TEST CONFIGURATION 4.1.1 Cable Construction and Termination	9 9
 5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT 5.1 EUT and Accessory List 5.2 Emissions Test Equipment 	10 10 11
 TEST SITE DESCRIPTION 6.1 Test Facility Description 6.2 EUT Mounting, Bonding and Grounding 6.3 Measurement Uncertainty 	12 12 12 12
 7. CHARACTERISTICS OF THE TRANSMITTER 7.1 Channel Number and Frequencies 7.2 Antenna 	13 13 13
 8. TEST PROCEDURES 8.1 RF Emissions 8.1.1 Conducted Emissions Test 8.1.2 Radiated Emissions Test 8.1.3 RF Emissions Test Results 8.1.4 Sample Calculations 8.2 DTS Bandwidth 8.3 Maximum Peak Conducted Output Power 8.4 Emissions in Non-restricted Frequency Bands 8.5 RF Band Edges 8.6 Spectral Density Test 8.7 99 % Bandwidth 8.8 Duty Cycle Calculation 	14 14 14 15 16 17 18 18 19 19 20 20 20 21
9. CONCLUSIONS	22

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500

Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

LIST OF APPENDICES

APPENDIX	TITLE			
А	Laboratory Accreditations and Recognitions			
В	Modifications to the EUT			
С	Models Covered Under This Report			
D	Diagrams and Charts			
	Test Setup Diagrams			
	Antenna and Effective Gain Factors			
Е	Data Sheets			

LIST OF FIGURES

FIGURE	TITLE		
1	Conducted Emissions Test Setup		
1	*		
2	Layout of the Semi-Anechoic Test Chamber		

LIST OF TABLES

TABLE	TITLE
1	Radiated Emission Results

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500

Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the U.S. government.

Device Tested:	1-Gang Switch Plate Model: LS01 S/N: N/A
Product Description:	The equipment under test is a wall mountable, battery powered, wireless 1-Gang Switch Plate. Panel Backplate Dimensions: 1.5 cm (L) x 7.3 cm (W) x 11 cm (H) Toggle Backplate Dimensions: 2.4 cm (L) x 7.3 cm (W) x 11 cm (H) Clock(s): 38 MHz, 2405 MHz, 2440 MHz and 2480 MHz
Modifications:	The EUT was not modified in order to meet the specifications.
Customer:	Vivint, Inc. 4931 N. 300 W Provo, Utah 84604 USA
Test Dates:	June 8, 13, 14, 15 and 16, 2022

Test Specification covered by accreditation:

- Test Specifications:Emissions requirements
CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209,
and 15.247; RSS-247 and RSS-GENTest Procedures:ANSI C63.4 and ANSI C63.10Test Deviations:The test procedure was not deviated from during the testing.
 - Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500

Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

Report Number: B20613D1 FCC Part 15 Subpart B and C; FCC Section 15.247; RSS-247; and RSS-GEN Test Report I-Gang Switch Plate Model: LS01

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz - 30 MHz	This test was not performed because the EUT operates on internal battery power only and cannot be connected to the AC public mains.
2	Radiated RF Emissions, 9 kHz – 25000 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15 Subpart C, 15.205, 15.209 and 15.247 (d); RSS-247 and RSS-GEN Highest reading in relation to spec limit 33.08 dB μ V/m (Qp) @ 781.00 MHz (*U = 3.30 dB)
3	DTS Bandwidth	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(2); RSS-247
4	Peak Output Power	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (b)(3); RSS-247
5	RF Band Edges	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (d); RSS-247
6	Spectral Density	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (e); RSS-247

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

PURPOSE

This document is a qualification test report based on the emissions tests performed on the 1-Gang Switch Plate, Model: LS01 (EUT). The emissions measurements were performed according to the measurement procedure described in ANSI C 63.4 and ANSI C 63.10. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.247; RSS-247 and RSS-Gen.

1.1 **DECISION RULE & RISK**

If a measured value exceeds a specification limit it implies non-compliance. If the value is below a specification limit it implies compliance. Measurement uncertainty of the laboratory is reported with all measurement results but generally not taken into consideration unless a standard, rule or law requires it to be considered.

Qualification test reports are only produced for products that are in compliance with the test requirements, therefore results are always in conformity. Otherwise, an engineering report or just the data is provided to the customer.

When performing a measurement and making a statement of conformity, in or out-of-specification to manufacturer's specifications or Pass/Fail against a requirement, there are two possible outcomes:

- The result is reported as conforming with the specification
- The result is reported as not conforming with the specification

The decision rule is defined below.

When the test result is found to be below the limit but within our measurement uncertainty of the limit, it is our policy that the final acceptance decision is left to the customer, after discussing the implications and potential risks of the decision.

When the test result is found to be exactly on the specification, it is our policy, in the case of unwanted emissions measurements to consider the result non-compliant; however, the final decision is left to the customer, after discussing the implications and potential risks of the decision.

When the test result is found to be over the specification limit under any condition, it is our policy to consider the result non-compliant.

In terms of uncertainty of measurement, the laboratory is a calibrated and tightly controlled environment and generally exceptionally stable, the measurement uncertainties are evaluated without the consideration of the test sample. When it comes to the test sample however, as most testing is performed on a single sample rather than a sample population, and that sample is often a preproduction representation of the final product that test sample represents a significantly higher source of measurement uncertainty. We advise our customers of this and that when in doubt (small test to limit margins), they may wish to perform statistical sampling on a population to gain a higher confidence in the results. All lab reported results are that of a single sample in any event.

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500

Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

2.1 Location of Testing

The emissions tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

Page 7 of 22

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Vivint, Inc.

Greg Hansen Regulatory Compliance Manager

Compatible Electronics Inc.

Kyle Fujimoto	Sr. Test Engineer
James Ross	Sr. Test Engineer

2.4 Date Test Sample was Received

The test sample was received prior to initial date of testing. Received as defined in product description.

2.5 Disposition of the Test Sample

The test sample has not been returned to Vivint, Inc. as of the date of this test report.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

EMI EUT P/N S/N ITE DoC	Electromagnetic Interference Equipment Under Test Part Number Serial Number Information Technology Equipment Declaration of Conformity
FCC	Federal Communications Commission
IC	Industry Canada
RSS	Radio Standards Specification
N/A	Not Applicable
Tx	Transmit
Rx	Receive
Inc.	Incorporated
RF	Radio Frequency
GND	Ground
LED	Light Emitting Diode

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this emissions Test Report.

SPEC	TITLE
FCC Title 47, Part 15 Subpart C	FCC Rules – Radio frequency devices (including digital devices) – Intentional Radiators
FCC Title 47, Part 15 Subpart B	FCC Rules – Radio frequency devices (including digital devices) – Unintentional Radiators
558074 D01 DTS Meas Guidance v05r02	Guidance for Performing Compliance Measurements on Digital Transmissions Systems (DTS) Operating Under Section 15.247
EN 50147-2: 1997	Anechoic chambers. Alternative test site suitability with respect to site attenuation
ANSI C63.4 2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10 2013	American National Standard for Testing Unlicensed Wireless Devices
RSS-Gen Issue 5 April 2019 Amendment 1	General Requirements for Compliance of Radio Apparatus
RSS-247 Issue 2 February 2017	Digital Transmissions Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

4. **DESCRIPTION OF TEST CONFIGURATION**

The 1-Gang Switch Plate, Model: LS01 (EUT) was tested as a stand-alone device. The EUT was continuously transmitting at the low, middle, or high channel.

The EUT was tested for emissions while in the Y and Z axis. The Y orientation is when the EUT is perpendicular to the ground mounted vertically. The Z orientation is when the EUT is perpendicular to the ground mounted horizontally.

The toggle backplate tested in the Y axis was the worst case.

The firmware inside the EUT allowed the EUT to continuously transmit at the low, middle, or high channel by hitting the reset switch inside the EUT.

The firmware is stored on the company's servers.

The radiated data was taken in the continuously exercising mode of operation. All initial investigations were performed with the EMI Receiver in manual mode scanning the frequency range continuously. The cables were bundled and routed as shown in the photographs in Appendix D.

4.1.1 Cable Construction and Termination

There were no external cables connected to the EUT.

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	ID
1-GANG SWITCH PLATE (EUT)	VIVINT, INC.	LS01	N/A	FCC: 2AAAS-LS01 IC: 10941A-LS01
FIRMWARE	VIVINT, INC.	1.0	N/A	N/A

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

5.2 Emissions Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE		
RF RADIATED, AC CONDUCTED, AND HARMONICS AND FLICKER EMISSIONS TEST EQUIPMENT							
TDK TestLab	TDK RF Solutions, Inc.	9.22	700145	N/A	N/A		
EMI Receiver, 20 Hz – 26.5 GHz	Keysight Technologies, Inc.	N9038A	MY51210510	September 17, 2021	September 17, 2022		
System Controller	Sunol Sciences Corporation	SC110V	112213-1	N/A	N/A		
Turntable	Sunol Sciences Corporation	2011VS	N/A	N/A	N/A		
Antenna-Mast	Sunol Sciences Corporation	TWR95-4	112213-3	N/A	N/A		
Loop Antenna	Com-Power	AL-130R	121090	February 10, 2022	February 10, 2024		
CombiLog Antenna	Com-Power	AC-220	61093	December 14, 2021	December 14, 2023		
Horn Antenna	Com-Power	AH-118	10050113	December 16, 2021	December 16, 2023		
Preamplifier	Com-Power	PA-118	181653	March 7, 2022	March 7, 2023		
Horn Antenna	Com-Power	AH-826	71957	N/A	N/A		
Preamplifier	Com-Power	PA-840	711013	April 8, 2022	April 8, 2024		
Computer	Hewlett Packard	p6716f	MXX1030PX0	N/A	N/A		
LCD Monitor	Hewlett Packard	52031a	3CQ046N3MG	N/A	N/A		

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for emissions test location.

6.2 EUT Mounting, Bonding and Grounding

For frequencies 1 GHz and below: The EUT was mounted on a 0.6 by 1.2 meter non-conductive table 0.8 meters above the ground plane.

For frequencies above 1 GHz: The EUT was mounted on a 0.6 by 1.2 meter non-conductive table 1.5 meters above the ground plane.

The EUT was not grounded.

6.3 Measurement Uncertainty

"Compatible Electronics" U_{lab} value is less than U_{cispr} , thus based on this – compliance is deemed to occur if no measured disturbance exceeds the disturbance limit.

The uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level, using a coverage factor of k=2

$$u_c(y) = \sqrt{\sum_i c_i^2 u^2(x_i)}$$

Measurement		Ucispr	$U_{lab} = 2uc(y)$
Conducted disturbance (mains port)	(150 kHz – 30 MHz)	3.4 dB	2.72 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(30 MHz – 1,000 MHz)	6.3 dB	3.32 dB (Vertical) 3.30 dB (Horizontal)
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(1 GHz – 6 GHz)	5.2 dB	4.06 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(6 GHz – 18 GHz)	5.5 dB	4.06 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(18 GHz – 26 GHz)	N/A	4.43 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(26.5 GHz – 40 GHz)	N/A	4.57 dB

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

7. CHARACTERISTICS OF THE TRANSMITTER

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 Channel Number and Frequencies

The EUT uses a total of 16 channels.

The low channel is 2405 MHz The middle channel is 2440 MHz The high channel is 2480 MHz

7.2 Antenna

The EUT has a 3.4 dBi gain PCB trace antenna.

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

8. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

8.1 **RF Emissions**

8.1.1 Conducted Emissions Test

The EMI Receiver was used as a measuring meter. A quasi-peak and/or average reading was taken only where indicated in the data sheets. A 10 dB attenuator used for the protection of the EMI Receiver input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the EMI Receiver. The output of the second LISN was terminated by a 50-ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding, and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI 63:4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by computer software. The final qualification data is located in Appendix E.

Test Results:

This test was not performed because the EUT operates on battery power only and cannot be connected to the AC public mains.

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

The EMI Receiver was used as the measuring meter. Above 1000 MHz, preamplifiers were used to increase the sensitivity of the instrument. The EMI Receiver was initially used with the Analyzer mode feature activated. In this mode, the EMI receiver can then record the actual frequency to be measured. This final reading is then taken accurately in the EMI Receiver mode, which takes into account the cable loss, amplifier gain and antenna factors, so that a true reading is compared to the true limit. The effective measurement bandwidth used for the radiated emissions test was according to the frequency measured.

The frequencies below 1 GHz were quasi-peaked using the quasi-peak detector of the EMI Receiver.

The frequencies above 1 GHz were averaged using the duty cycle correction factor in section 8.8 of this test report.

The EMI test chamber of Compatible Electronics, Inc. was used for radiated emissions testing. This test site is in full compliance with ANSI C63.4 and ANSI C63.10. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

The EUT was tested at a 3-meter test distance. The six highest emissions are listed in Table 1.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
9 kHz to 150 kHz	200 Hz	Loop Antenna
150 kHz to 30 MHz	9 kHz	Loop Antenna
30 MHz to 1 GHz	120 kHz	CombiLog Antenna
1 GHz to 25 GHz	1 MHz	Horn Antenna

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; the limits of CFR Title 47, Part 15, Subpart C sections 15.205, 15.209 and 15.247; and the limits of RSS-247 and RSS-Gen for radiated emissions.

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

8.1.3 **RF Emissions Test Results**

 Table 1
 RADIATED EMISSION RESULTS

 1-Gang Switch Plate

 Model: LS01

Frequency (MHz)	EMI Reading (dBuV/m)	Specification Limit (dBuV/m)	Delta (Cor. Reading – Spec. Limit) (dB)
781.00 (H) (High – Y-Axis)	33.08 (QP)	46.00	-12.92
782.00 (H) (High – Y-Axis)	33.04 (QP)	46.00	-12.96
782.50 (H) (High – Y-Axis)	32.93 (QP)	46.00	-13.07
779.10 (H) (High – Y-Axis)	32.33 (QP)	46.00	-13.67
4810.00 (V) (Low – Z-Axis)	39.35 (AV)	53.97	-14.62
4880.00 (V) (Mid – Z-Axis)	38.24 (AV)	53.97	-15.73

Notes: * The complete emissions data is given in Appendix E of this report.

- (V) Vertical
- (H) Horizontal
- Low Low Channel
- Mid Middle Channel
- High High Channel
- AV Average
- QP Quasi-Peak
- BE Band Edge

8.1.4 Sample Calculations

A correction factor for the antenna, cable and a distance factor (if any) must be applied to the meter reading before a true field strength reading can be obtained. This Corrected Meter Reading is then compared to the specification limit in order to determine compliance with the limits.

Conversion to logarithmic terms: Specification limit (μ V/m) log x 20 = Specification Limit in dBuV/m

To correct for distance when measuring at a distance other than the specification

For measurements below 30 MHz: (Specification distance / test distance) log x 40 = distance factor

For measurements above 30 MHz: (Specification distance / test distance) log x 20 = distance factor

Note: When using an Active Antenna, the Antenna factor shall be subtracted due to the combination of the internal amplification and antenna loss.

Corrected Meter Reading = meter reading + F - A + C

where: F = antenna factor

A= amplifier gain

C = cable loss

The correction factors for the antenna and the amplifier gain are attached in Appendix D of this report. The data sheets are attached in Appendix E.

The distance factor D is 0 when the test is performed at the required specification distance.

8.2 DTS Bandwidth

The DTS Bandwidth was measured using the EMI Receiver. The following steps were performed for measuring the DTS Bandwidth.

- 1. Set RBW = 100 kHz
- 2. Set the video bandwidth (VBW) to equal or greater than 3 times the RBW
- 3. Detector = Peak
- 4. Trace Mode = Max Hold
- 5. Sweep = Auto Couple
- 6. Allow the trace to stabilize

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(2); and RSS-247.

8.3 Maximum Peak Conducted Output Power

The Maximum Peak Conducted Output Power was measured using the EMI Receiver. The Maximum Peak Conducted Output Power was measured using the procedure described in section 11.9.1.1 of ANSI C63.10. The Maximum Peak Conducted Output Power was then taken. The following steps were performed for measuring the Maximum Peak Conducted Output Power.

- 1. Set the RBW \geq DTS bandwidth
- 2. Set VBW \geq [3 x RBW]
- 3. Set span $\geq [3 \times RBW]$
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = max hold

7. Allow trace to fully stabilize

8. Use peak marker function to determine the peak amplitude level

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (b)(3); and RSS-247.

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

The emissions in the non-restricted frequency bands measurements were performed using the EMI receiver directly connected to the EUT. The reference level was established by setting the instrument center frequency to the DTS channel center frequency. The span was set to ≥ 1.5 times the DTS bandwidth. The RBW was set to 100 kHz and the VBW was set to 300 kHz. A peak detector was used with sweep set to auto. A max hold trace was used and allowed to fully stabilize. The peak marker function was used to determine the reference level. For emission level measurement, the center frequency and span were set to encompass the frequency range to be measured. The RBW was set to 100 kHz and the VBW was set to 300 kHz. A peak detector was used with a sweep time set to auto. The number of measurement points were greater than the span/RBW. A max hold trace was used and allowed to fully stabilize. The peak marker function was used to fully stabilize. The peak marker function was used to fully stabilize. The peak marker function was used to determine the measurement points were greater than the span/RBW. A max hold trace was used and allowed to fully stabilize. The peak marker function was used to determine the maximum amplitude level. The final qualification data sheets are located in Appendix E.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d); and RSS-247.

8.5 **RF Band Edges**

The RF band edges were taken at 2390 MHz when the EUT was on the low channel and 2483.5 MHz when the EUT was on the high channel using the EMI Receiver. A preamplifier was used to boost the signal level, with the plots being taken at a 3 meter test distance. The radiated emissions test procedure as describe in section 8.1.2 of this test report was used to maximize the emission.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d); and RSS-247. The RF power at the restricted bands closest to the band edges at 2390 MHz and 2483.5 MHz also meet the limits of section 15.209. Please see the data sheets located in Appendix E.

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

8.6 Spectral Density Test

The spectrum density output was measured using the EMI Receiver. The spectral density output was measured using a direct connection from the RF out on the EUT into the input of the EMI Receiver. The following steps were performed for measuring the spectral density.

- 1. Set analyzer center frequency to DTS channel center frequency
- 2. Set the span to 1.5 times the OBW.
- 3. Set the \hat{RBW} to 3 kHz $\leq RBW \leq 100$ kHz
- 4. Set the VBW \geq [3 X RBW]
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = \max hold
- 8. Allow the trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (e); and RSS-247.

8.7 99 % Bandwidth

The 99 % bandwidth was measured using an EMI Receiver.

The following steps were performed for measuring the 99 % bandwidth per RSS-GEN, Issue 5, clause 6.7:

- 1. Set RBW to 1 % to 5 % of the actual occupied bandwidth.
- 2. Set VBW to greater than 3 times the RBW.
- 3. Set the EMI Receiver to the occupied bandwidth Function set at 99 %
- 4. Set the peak detector to max hold.
- 5. Set the sweep time to auto
- 6. Allow the trace to stabilize.

Please note that this was only used to determine the emission bandwidth and that there are no limits or pass/fail criteria for this test. Please see the data sheets located in Appendix E.

8.8 Duty Cycle Calculation

The fundamental and harmonics were measured at a 3-meter test distance. The EMI Receiver was used to obtain the final test data. The final qualification data sheets are located in Appendix E.

Where

 $\delta(\mathrm{dB}) = 20\log\left[\sum (nt_1 + mt_2 + \dots + \xi t_s)/T\right]$

n is the number of pulses of duration t1*m* is the number of pulses of duration t2 ξ is the number of pulses of duration tx*T* is the period of the pulse train or 100 ms if the pulse train length is greater than 100 ms

The worst case was when the EUT was in data mode

Duty Cycle Correction Factor = -20 dB

Time of One Pulse = $700 \ \mu s$

Total On Time = $700 \ \mu s$

The time between pulses is 2990 ms

Duty Cycle = 700 μ s / 100 ms = 0.007 = 0.7 %

The maximum Peak to Average ratio of -20 dB can be utilized

NOTE: The band edge data utilizes an RMS average

9. CONCLUSIONS

The 1-Gang Switch Plate, Model: LS01 (EUT), as tested, meets all of the specification limits defined in CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.247; RSS-GEN and RSS-247.

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

APPENDIX A

LABORATORY ACCREDITATIONS AND RECOGNITIONS

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044 Page A1

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Japan, Taiwan, Korea, and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025.

For the most up-to-date version of our scopes and certificates please visit

http://celectronics.com/quality/scope/

Quote from ISO-ILAC-IAF Communiqué on the Management Systems Requirements of ISO/IEC 17025, General Requirements for the competence of testing and calibration laboratories:

"A laboratory's fulfilment of the requirements of ISO/IEC 17025 means the laboratory meets both the technical competence requirements and management system requirements that are necessary for it to consistently deliver technically valid test results and calibrations. The management system requirements in ISO/IEC 17025 are written in language relevant to laboratory operations and operate generally in accordance with the principles of ISO 9001"

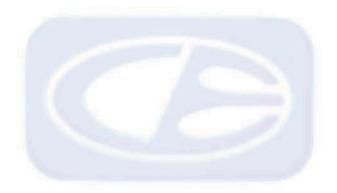
ISED Test Site Registration Number: 2154A

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

APPENDIX B

MODIFICATIONS TO THE EUT

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044 Page B1



MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Subpart B and FCC 15.247; RSS-GEN and RSS-247 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044 Page B2

APPENDIX C

MODELS COVERED UNDER THIS REPORT

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044 Page C1

MODELS COVERED UNDER THIS REPORT

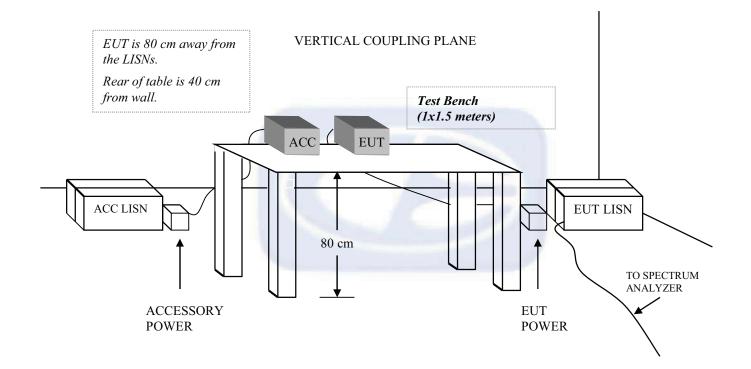
USED FOR THE PRIMARY TEST

1-Gang Switch Plate Model: LS01 S/N: N/A

There are no additional models covered under this report.

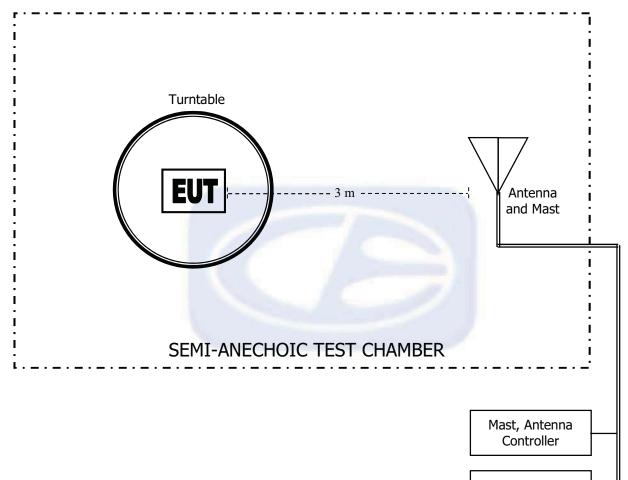
Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500

Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400


APPENDIX D

DIAGRAMS AND CHARTS

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400


FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044 Page D2

FIGURE 2: LAYOUT OF THE SEMI-ANECHOIC TEST CHAMBER

EMI Receiver

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

Compatible

ECTRONICS

LOOP ANTENNA

S/N: 121090

CALIBRATION DATE: FEBRUARY 10, 2022

FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)
0.009	15.6	-35.8
0.01	15.8	-35.6
0.02	14.8	-36.6
0.03	15.6	-35.9
0.04	15.0	-36.5
0.05	14.4	-37.1
0.06	14.6	-36.9
0.07	14.3	-37.2
0.08	14.3	-37.2
0.09	14.4	-37.0
0.10	14.1	-37.4
0.20	14.1	-37.4
0.30	14.0	-37.5
0.40	13.9	-37.6
0.50	14.1	-37.3
0.60	14.1	-37.3
0.70	14.2	-37.3
0.80	14.2	-37.3
0.90	14.2	-37.2
1.00	14.4	-37.0
2.00	14.6	-36.9
3.00	14.6	-36.8
4.00	14.9	-36.6
5.00	14.9	-36.7
6.00	14.8	-36.7
7.00	14.6	-36.8
8.00	14.5	-37.0
9.00	14.3	-37.2
10.00	14.5	-37.0
11.00	14.6	-36.9
12.00	14.7	-36.7
13.00	14.9	-36.6
14.00	15.0	-36.5
15.00	14.9	-36.6
16.00	14.9	-36.6
17.00	14.6	-36.8
18.00	14.4	-37.1
19.00	14.5	-37.0
20.00	14.5	-37.0
21.00	14.2	-37.3
22.00	13.9	-37.5
23.00	13.9	-37.5
24.00	13.8	-37.7
25.00	13.4	-38.0
26.00	13.2	-38.2
27.00	13.2	-38.3
28.00	12.7	-38.7
29.00	12.7	-38.8
30.00	12.4	-39.0

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500

Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

COM-POWER AC-220

COMBILOG ANTENNA

S/N: 61093

CALIBRATION DATE: DECEMBER 14, 2021

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	22.50	200	16.00
35	21.40	250	17.40
40	21.00	300	19.70
45	20.60	350	20.00
50	19.70	400	22.20
60	16.10	450	22.40
70	12.80	500	23.10
80	12.50	550	23.40
90	14.20	600	24.90
100	15.40	650	25.30
120	16.50	700	25.40
125	16.80	750	26.40
140	15.90	800	26.70
150	16.60	850	27.10
160	18.50	900	27.90
175	15.90	950	28.00
180	15.50	1000	28.00

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500

Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

COM POWER AH-118

HORN ANTENNA

S/N: 10050113

CALIBRATION DATE: DECEMBER 16, 2021

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	23.86	10.0	38.91
1.5	25.67	10.5	39.94
2.0	28.25	11.0	39.10
2.5	29.17	11.5	39.70
3.0	29.78	12.0	40.29
3.5	30.88	12.5	41.93
4.0	31.21	13.0	41.34
4.5	32.96	13.5	40.57
5.0	33.30	14.0	40.23
5.5	34.24	14.5	42.25
6.0	34.57	15.0	43.63
6.5	35.61	15.5	39.96
7.0	36.60	16.0	40.38
7.5	37.49	16.5	40.56
8.0	37.44	17.0	40.93
8.5	37.98	17.5	42.27
9.0	38.01	18.0	43.77
9.5	38.53		

Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

COM-POWER AH-826

HORN ANTENNA

S/N: 71957

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
18.0	33.5	22.5	35.5
18.5	33.5	23.0	35.9
19.0	34.0	23.5	35.7
19.5	34.0	24.0	35.6
20.0	34.3	24.5	36.0
20.5	34.9	25.0	36.2
21.0	34.7	25.5	36.1
21.5	35.0	26.0	36.2
22.0	35.0	26.5	35.7

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

COM-POWER PAM-118

PREAMPLIFIER

S/N: 181653

CALIBRATION DATE: MARCH 7, 2022

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
1.0	40.02	6.0	38.84
1.1	39.72	6.5	39.20
1.2	39.93	7.0	39.46
1.3	39.98	7.5	39.67
1.4	39.99	8.0	39.28
1.5	40.20	8.5	38.63
1.6	40.05	9.0	38.96
1.7	40.15	9.5	39.33
1.8	40.20	10.0	39.58
1.9	40.33	11.0	38.25
2.0	40.33	12.0	40.03
2.5	40.60	13.0	40.55
3.0	40.76	14.0	40.36
3.5	40.87	15.0	39.34
4.0	40.39	16.0	37.34
4.5	39.55	17.0	42.14
5.0	40.34	18.0	42.54
5.5	39.45		

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

COM-POWER PA-840

MICROWAVE PREAMPLIFIER

S/N: 711013

CALIBRATION DATE: APRIL 8, 2022

FREQUENCY (GHz)	FACTOR (dB)
18.0	24.85
19.0	24.25
20.0	22.69
21.0	22.17
22.0	22.78
23.0	23.23
24.0	23.72
25.0	24.13
26.0	24.28
26.5	25.06

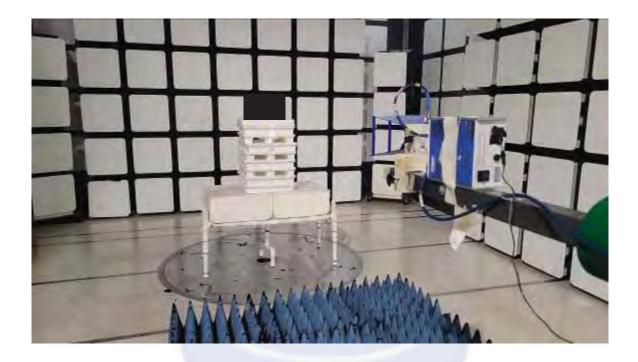
Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

FRONT VIEW

VIVINT, INC. 1-GANG SWITCH PLATE MODEL: LS01 FCC SUBPART B AND C; RSS-GEN and RSS-247 – RADIATED EMISSIONS – BELOW 1 GHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

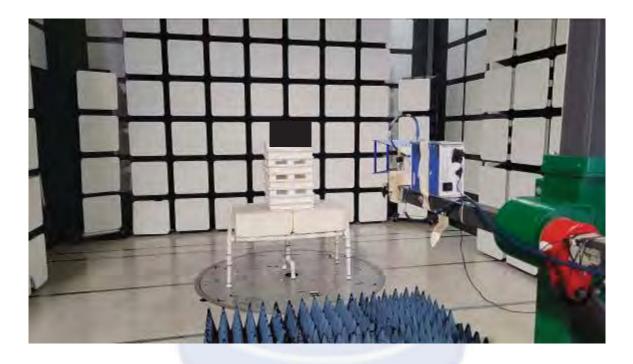


REAR VIEW

VIVINT, INC. 1-GANG SWITCH PLATE MODEL: LS01 FCC SUBPART B AND C; RSS-GEN and RSS-247 – RADIATED EMISSIONS – BELOW 1 GHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400



FRONT VIEW

VIVINT, INC. 1-GANG SWITCH PLATE MODEL: LS01 FCC SUBPART B AND C; RSS-GEN and RSS-247 – RADIATED EMISSIONS – ABOVE 1 GHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

REAR VIEW

VIVINT, INC. 1-GANG SWITCH PLATE MODEL: LS01 FCC SUBPART B AND C; RSS-GEN and RSS-247 – RADIATED EMISSIONS – ABOVE 1 GHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

APPENDIX E

DATA SHEETS

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044 Page E1

HARMONICS AND RADIATED EMISSIONS DATA SHEETS

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044 Page E2

FCC 15.247 Vivint, Inc. 1-Gang Switch Plate Model: LS01

Date: 6/13/2022 Lab: D Tested By: Kyle Fujimoto

Harmonics - Low Channel Transmit Mode - Y-Axis - Duty Cycle Average Toggle Switch Backplate Worst Case

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
4810.00	53.30	V	73.97	-20.67	Peak	27.00	127.46	
4810.00	33.30	V	53.97	-20.67	Avg	27.00	127.46	
7215.00								Not in Restricted Band
7215.00								Done Via Conducted
9620.00			-					Not in Restricted Band
9620.00								Done Via Conducted
12025.00	53.43	V	73.97	-20.54	Peak	297.75	127.40	
12025.00	33.43	V	53.97	-20.54	Avg	297.75	127.40	
14430.00								Not in Restricted Band
14430.00								Done Via Conducted
16835.00								Not in Restricted Band
16835.00								Done Via Conducted
19240.00								No Emission
19240.00				1				Detected
21645.00		-						No Emission
21645.00								Detected
24050.00								No Emission
24050.00								Detected

FCC 15.247 Vivint, Inc. 1-Gang Switch Plate Model: LS01

Date: 6/13/2022 Lab: D Tested By: Kyle Fujimoto

Harmonics - Low Channel Transmit Mode - Z-Axis - Duty Cycle Average Toggle Switch Backplate Worst Case

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
4810.00	59.35	V	73.97	-14.62	Peak	191.25	161.86	
4810.00	39.35	V	53.97	-14.62	Avg	191.25	161.86	
7215.00				1				Not in Restricted Band
7215.00								Done Via Conducted
9620.00				12				Not in Restricted Band
9620.00				4				Done Via Conducted
12025.00	52.91	V	73.97	-21.06	Peak	107.25	249.97	
12025.00	32.91	V	53.97	-21.06	Avg	107.25	249.97	
14430.00								Not in Restricted Band
14430.00			-					Done Via Conducted
16835.00				-				Not in Restricted Band
16835.00								Done Via Conducted
19240.00					1	-		No Emission
19240.00				1.5				Detected
21645.00								No Emission
21645.00								Detected
24050.00				0.00				No Emission
24050.00								Detected

FCC 15.247 Vivint, Inc. 1-Gang Switch Plate Model: LS01

Date: 6/13/2022 Lab: D Tested By: Kyle Fujimoto

Harmonics - Low Channel Transmit Mode - Y-Axis - Duty Cycle Average Toggle Switch Backplate Worst Case

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
4810.00	57.45	Н	73.97	-16.52	Peak	166.00	158.14	
4810.00	37.45	Н	53.97	-16.52	Avg	166.00	158.14	
7215.00								Not in Restricted Band
7215.00								Done Via Conducted
9620.00			-					Not in Restricted Band
9620.00								Done Via Conducted
12025.00	56.68	н	73.97	-17.29	Peak	77.00	109.79	
12025.00	36.68	Н	53.97	-17.29	Avg	77.00	109.79	
14430.00								Not in Restricted Band
14430.00								Done Via Conducted
16835.00								Not in Restricted Band
16835.00								Done Via Conducted
19240.00								No Emission
19240.00								Detected
21645.00		-						No Emission
21645.00								Detected
24050.00								No Emission
24050.00								Detected

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

FCC 15.247 Vivint, Inc. 1-Gang Switch Plate

Model: LS01

Date: 6/13/2022 Lab: D Tested By: Kyle Fujimoto

Harmonics - Low Channel Transmit Mode - Z-Axis - Duty Cycle Average Toggle Switch Backplate Worst Case

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
4810.00	53.59	Н	73.97	-20.38	Peak	317.25	122.50	
4810.00	33.59	Н	53.97	-20.38	Avg	317.25	122.50	
7215.00								Not in Restricted Band
7215.00								Done Via Conducted
9620.00			-					Not in Restricted Band
9620.00								Done Via Conducted
12025.00	57.80	Н	73.97	-16.17	Peak	248.25	111.46	
12025.00	37.80	Н	53.97	-16.17	Avg	248.25	111.46	
14430.00								Not in Restricted Band
14430.00								Done Via Conducted
16835.00			-					Not in Restricted Band
16835.00								Done Via Conducted
19240.00								No Emission
19240.00								Detected
21645.00		-						No Emission
21645.00								Detected
24050.00								No Emission
24050.00	1 - X			10.000				Detected

FCC 15.247 Vivint, Inc.

1-Gang Switch Plate Model: LS01 Date: 6/13/2022 Lab: D Tested By: Kyle Fujimoto

Harmonics - Middle Channel Transmit Mode - Y-Axis - Duty Cycle Average Toggle Switch Backplate Worst Case

Comments	Ant. Height (cm)	Table Angle (deg)	Peak / QP / Avg	Margin	Limit	Pol (v/h)	Level (dBuV/m)	Freq. (MHz)
	143.34	0.00	Peak	-18.58	73.97	V	55.39	4880.00
	143.34	0.00	Avg	-18.58	53.97	V	35.39	4880.00
	111.40	87.00	Peak	-18.08	73.97	V	55.89	7320.00
	111.40	87.00	Avg	-18.08	53.97	V	35.89	7320.00
Not in Restricted Band								9760.00
Done Via Conducted								9760.00
	223.04	247.25	Peak	-20.50	73.97	V	53.47	12200.00
	223.04	247.25	Avg	-20.50	53.97	V	33.47	12200.00
Not in Restricted Band								14640.00
Done Via Conducted		-						14640.00
Not in Restricted Band			-		-	-	-	17080.00
Done Via Conducted				-				17080.00
No Emission	1							19520.00
Detected								19520.00
No Emission								21960.00
Detected								21960.00
No Emission				1				24400.00
Detected								24400.00

FCC 15.247 Vivint, Inc.

1-Gang Switch Plate Model: LS01 Date: 6/13/2022 Lab: D Tested By: Kyle Fujimoto

Harmonics - Middle Channel Transmit Mode - Z-Axis - Duty Cycle Average Toggle Switch Backplate Worst Case

Comments	Ant. Height (cm)	Table Angle (deg)	Peak / QP / Avg	Margin	Limit	Pol (v/h)	Level (dBuV/m)	Freq. (MHz)
	190.98	165.25	Peak	-15.73	73.97	V	58.24	4880.00
	190.98	165.25	Avg	-15.73	53.97	V	38.24	4880.00
	191.10	245.50	Peak	-18.88	73.97	V	55.09	7320.00
	191.10	245.50	Avg	-18.88	53.97	V	35.09	7320.00
Not in Restricted Band								9760.00
Done Via Conducted								9760.00
	239.16	126.15	Peak	-20.74	73.97	V	53.23	12200.00
	239.16	126.50	Avg	-20.74	53.97	V	33.23	12200.00
Not in Restricted Band								14640.00
Done Via Conducted	1							14640.00
Not in Restricted Band		-		-			-	17080.00
Done Via Conducted								17080.00
No Emission								19520.00
Detected								19520.00
No Emission								21960.00
Detected								21960.00
No Emission								24400.00
Detected								24400.00

FCC 15.247 Vivint, Inc. 1-Gang Switch Plate Model: LS01

Date: 6/13/2022 Lab: D Tested By: Kyle Fujimoto

Harmonics - Middle Channel Transmit Mode - Y-Axis - Duty Cycle Average Toggle Switch Backplate Worst Case

Comments	Ant. Height (cm)	Table Angle (deg)	Peak / QP / Avg	Margin	Limit	Pol (v/h)	Level (dBuV/m)	Freq. (MHz)
	163.28	298.50	Peak	-19.36	73.97	Н	54.61	4880.00
	163.28	298.50	Avg	-19.36	53.97	Н	34.61	4880.00
	152.29	275.00	Peak	-17.64	73.97	Н	56.34	7320.00
	152.29	275.00	Avg	-17.64	53.97	Н	36.34	7320.00
Not in Restricted Band								9760.00
Done Via Conducted				_				9760.00
	150.50	126.75	Peak	-21.29	73.97	Н	52.69	12200.00
	150.50	126.75	Avg	-21.29	53.97	Н	32.69	12200.00
Not in Restricted Band								14640.00
Done Via Conducted								14640.00
Not in Restricted Band								17080.00
Done Via Conducted			1	1				17080.00
No Emission								19520.00
Detected								19520.00
No Emission								21960.00
Detected								21960.00
No Emission				-				24400.00
Detected								24400.00

FCC 15.247 Vivint, Inc.

1-Gang Switch Plate Model: LS01 Date: 6/13/2022 Lab: D Tested By: Kyle Fujimoto

Harmonics - Middle Channel Transmit Mode - Z-Axis - Duty Cycle Average Toggle Switch Backplate Worst Case

Comments	Ant. Height (cm)	Table Angle (deg)	Peak / QP / Avg	Margin	Limit	Pol (v/h)	Level (dBuV/m)	Freq. (MHz)
	159.22	278.00	Peak	-24.80	73.97	Н	49.17	4880.00
	159.22	278.00	Avg	-24.80	53.97	Н	29.17	4880.00
	154.68	166.25	Peak	-18.32	73.97	Н	55.65	7320.00
	154.68	166.25	Avg	-18.32	53.97	Н	35.65	7320.00
Not in Restricted Band								9760.00
Done Via Conducted				_			[9760.00
	169.01	190.75	Peak	-21.18	73.97	Н	52.79	12200.00
	169.01	190.75	Avg	-21.18	53.97	Н	32.79	12200.00
Not in Restricted Band								14640.00
Done Via Conducted				[]				14640.00
Not in Restricted Band								17080.00
Done Via Conducted								17080.00
No Emission								19520.00
Detected								19520.00
No Emission								21960.00
Detected								21960.00
No Emission								24400.00
Detected			1					24400.00

FCC 15.247 Vivint, Inc. 1-Gang Switch Plate Model: LS01

Date: 6/13/2022 Lab: D Tested By: Kyle Fujimoto

Harmonics - High Channel Transmit Mode - Y-Axis - Duty Cycle Average Toggle Switch Backplate Worst Case

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
4960.00	53.40	V	73.97	-20.57	Peak	26.25	143.58	
4960.00	33.40	V	53.97	-20.57	Avg	26.25	143.58	
7440.00	51.81	V	73.97	-22.16	Peak	259.00	143.22	
7440.00	31.81	V	53.97	-22.16	Avg	259.00	143.22	
9920.00								Not in Restricted Band
9920.00			2					Done Via Conducted
12400.00	56.27	V	73.97	-17.70	Peak	6.75	143.46	
12400.00	36.27	V	53.97	-17.70	Avg	6.75	143.46	
14880.00		_						Not in Restricted Band
14880.00								Done Via Conducted
17360.00			-					Not in Restricted Band
17360.00								Done Via Conducted
19840.00			12					No Emission
19840.00								Detected
22320.00								No Emission
22320.00								Detected
24800.00			1					No Emission
24800.00			10					Detected

FCC 15.247 Vivint, Inc. 1-Gang Switch Plate Model: LS01

Date: 6/13/2022 Lab: D Tested By: Kyle Fujimoto

Harmonics - High Channel Transmit Mode - Z-Axis - Duty Cycle Average Toggle Switch Backplate Worst Case

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
4960.00	54.19	V	73.97	-19.78	Peak	153.00	112.47	
4960.00	34.19	V	53.97	-19.78	Avg	153.00	112.47	
7440.00	56.83	V	73.97	-17.14	Peak	29.75	207.34	
7440.00	36.83	V	53.97	-17.14	Avg	29.75	207.34	
9920.00								Not in Restricted Band
9920.00								Done Via Conducted
12400.00	55.50	V	73.97	-18.47	Peak	199.00	249.92	
12400.00	35.50	V	53.97	-18.47	Avg	199.00	249.92	
14880.00							1	Not in Restricted Band
14880.00								Done Via Conducted
17360.00								Not in Restricted Band
17360.00								Done Via Conducted
19840.00								No Emission
19840.00				1				Detected
22320.00		-						No Emission
22320.00								Detected
24800.00								No Emission
24800.00								Detected

FCC 15.247 Vivint, Inc. 1-Gang Switch Plate

Model: LS01

Date: 6/13/2022 Lab: D Tested By: Kyle Fujimoto

Harmonics - High Channel Transmit Mode - Y-Axis - Duty Cycle Average Toggle Switch Backplate Worst Case

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
4960.00	52.98	Н	73.97	-20.99	Peak	173.50	175.34	
4960.00	32.98	Н	53.97	-20.99	Avg	173.50	175.34	
7440.00	55.07	Н	73.97	-18.90	Peak	156.50	111.34	
7440.00	35.07	Н	53.97	-18.90	Avg	156.50	111.34	
9920.00								Not in Restricted Band
9920.00								Done Via Conducted
12400.00	55.43	Н	73.97	-18.54	Peak	75.00	111.40	
12400.00	35.43	Н	53.97	-18.54	Avg	75.00	111.40	
14880.00								Not in Restricted Band
14880.00	1							Done Via Conducted
17360.00								Not in Restricted Band
17360.00								Done Via Conducted
19840.00	1							No Emission
19840.00								Detected
22320.00	-							No Emission
22320.00								Detected
24800.00	-							No Emission
24800.00								Detected

FCC 15.247 Vivint, Inc. 1-Gang Switch Plate

Model: LS01

Date: 6/13/2022 Lab: D Tested By: Kyle Fujimoto

Harmonics - High Channel Transmit Mode - Z-Axis - Duty Cycle Average Toggle Switch Backplate Worst Case

Pol //h) Limit Margin Avg (deg) (cm)	Comments
H 73.97 -25.64 Peak 150.50 127.40	
H 53.97 -25.64 Avg 150.50 127.40	
H 73.97 -17.63 Peak 245.00 127.22	
H 53.97 -17.63 Avg 245.00 127.22	
	Not in Restricted Band
	Done Via Conducted
H 73.97 -19.64 Peak 281.50 191.28	
H 53.97 -19.64 Avg 281.50 191.28	
	Not in Restricted Band
	Done Via Conducted
	Not in Restricted Band
	Done Via Conducted
	No Emission
	Detected
	No Emission
	Detected
	No Emission
	Detected

FCC Class B and FCC 15.247 Vivint, Inc. 1-Gang Switch Plate Model: LS01

Date: 6/13/2022 Lab: D Tested By: Kyle Fujimoto

Non Harmonic Emissions from the Tx and Digital Portion - 9 kHz to 30 MHz Non Harmonic Emissions from the Tx and Digital Portion - 1 GHz to 25 GHz

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
				1122	T-s-=		1	
			1	(1	1	-	No Emissions Detected
				1				from 9 kHz to 30 MHz
			1					for the digital portion
	· · · · · · · · · · · · · · · · · · ·		-					of the EUT
-			1000					No Emissions Detected
				1				from 9 kHz to 30 MHz
								for the Non-Harmonic Emissions
								No Emissions Detected
								from 1 GHz to 25 GHz
-				-	-			
					-			for the digital portion
				-	-			of the EUT
-			1	1	1	· · · · ·		No Emissions Detected
								from 1 GHz to 25 GHz
				1				for the Non-Harmonic Emissions
						1		Incontinueto di in the M. Asia
				_				Investigated in the X-Axis,
							-	Y-Axis, and Z-Axis
			h	(I		
_								
							1	

Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

Title: Pre-Scan - FCC Class B File: 4 - LF - Pre-Scan - FCC Class B - Y-Axis - 1 Gang - 06-15-2022.set Sequence: Preliminary Scan Operator: Kyle Fujimoto EUT Type: 1-Gang Switch Plate EUT Condition: The EUT is continuously transmitting at 2480 MHz Company: Vivint, Inc. M/N: LS01 S/N: N/A Y-Axis Toggle Switch Backplate Worst Case FCC Class B Electric Field Strength (dBµV/m) 100.00-90.00 80.00 70.00 60.00 FCC B - 3 Meters 50.00 40.00 30.00 الاستقرار والمراجع والمتقدين والمتقافة العالى ومعتقاته والراجا والمتعالية THE LOCAL DAME AND 140+ 20.00 10.00 0.00-30.00 100.00 200.00 300.00 400.00 600.00 700.00 800.00 900.00 1000.00 500.00 Freq (MHz) (PEAK) EMI (H) - Limit

(PEAK) EMI (V)

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500

Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044

6/15/2022 8:39:45 AM

Title: Final Scan - FCC Class B File: 4 - LF - Final Scan - FCC Class B - Y-Axis - 1 Gang - 06-15-2022.set Operator: Kyle Fujimoto EUT Type: 1-Gang Switch Plate EUT Condition: The EUT is continuously transmitting at 2480 MHz Company: Vivint, Inc. M/N: LS01 S/N: N/A Y-Axis Worst Case Toggle Switch Backplate Worst Case

FCC Class B

Freq (MHz)	Pol	(PEAK) EMI (dBµV/m)	(QP) EMI (dBµV/m)	(PEAK) Margin (dB)	(QP) Margin (dB)	Limit (dBµV/m)	Transducer (dB)	Cable (dB)	Ttbl Agl (deg)	Twr Ht (cm)
162.20	н	31.62	26.16	-11.88	-17.34	43.50	22.84	1.07	196.25	143.16
162.60	н	31.01	26.09	-12.49	-17.41	43.50	22.75	1.07	215.50	111.28
779.10	н	37.43	32.33	-8.57	-13.67	46.00	26.10	2.45	101.00	286.68
781.00	н	37.34	33.08	-8.66	-12.92	46.00	26.10	2.46	228.75	159.16
782.00	н	37.64	33.04	-8.36	-12.96	46.00	26.10	2.46	194.00	270.62
782.50	н	37.50	32.93	-8.50	-13.07	46.00	26.10	2.47	56.50	304.89

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500

Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044 Page E17

6/15/2022 8:47:49 AM Sequence: Final Measurements BAND EDGES DATA SHEETS

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044 Page E18

FCC 15.247 Vivint, Inc. 1-Gang Switch Plate

Date: 06/14/2022 Lab: D Tested By: Kyle Fujimoto

Band Edges

Model: LS01

Toggle Switch Backplate Worst Case

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
2405.00	101.61	V			Peak	10.50	249.25	Fundamental - Low Ch.
2405.00	81.61	V			Avg	10.50	249.25	Z-Axis Worst Case
2390.00	39.90	V	73.97	-34.07	Peak	10.50	249.25	Band Edge
2390.00	19.90	۷	53.97	-34.07	Avg	10.50	249.25	Z-Axis Worst Case
2405.00	101.80	н			Peak	330.00	183.40	Fundamental - Low Ch.
2405.00	81.80	Н			Avg	330.00	183.40	Y-Axis - Worst Case
2390.00	40.81	н	73.97	-33.16	Peak	330.00	183.40	Band Edge
2390.00	20.81	Н	53.97	-33.16	Avg	330.00	183.40	Y-Axis - Worst Case
			-					

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

FCC 15.247 Vivint, Inc. 1-Gang Switch Plate Model: LS01

Date: 06/14/2022 Lab: D Tested By: Kyle Fujimoto

Band Edges

Toggle Switch Backplate Worst Case

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
2480.00	100.88	V			Peak	315.25	185.26	Fundamental - High Ch.
2480.00	80.88	۷	-		Avg	315.25	185.26	Z-Axis - Worst Case
2483.50	57.66	٧	73.97	-16.31	Peak	315.25	185.26	Band Edge
2483.50	37.66	۷	53.97	-16.31	Avg	315.25	185.26	Z-Axis - Worst Case
2480.00	101.12	н			Peak	115.00	163.25	Fundamental - High Ch.
2480.00	81.12	Н	++		Avg	115.00	163.25	Y-Axis - Worst Case
2483.50	58.13	н	73.97	-15.84	Peak	110.00	163.25	Band Edge
2483.50	38.13	Н	53.97	-15.84	Avg	110.00	163.25	Y-Axis - Worst Case

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

arkor		PRESEL 50		SEI	NSE:INT SOURCE OFF	ALIGN AUTO		08:42:43 AM Jun 14, 20
anter	22	.4052350		PNO: Fast 😱	Trig: Free Run #Atten: 20 dB	Avg Type	: Voltage	TRACE 1 2 3 4 TYPE WMWW DET R P N N
) dB/div	V	Ref 116.9	9 dBµV				М	kr2 2.405 235 GH 98.05 dBµ
og 107								12 *
7.0								
7.0								
7.0								
7.0								
7.0								b 797 c
7.0							03	man hus
TO when	- Martine	a contraction of the second	Aspondon Mannan files	man man man has	100 manuter and market	Man manager and	Matherstein Mager	and the second s
2.0							<u>l</u>	
G.B.								
		00 GHz CISPR) 1.(0 MHz	#VBW	3.0 MHz		Swe	Stop 2.41500 G eep 138.1 s (1001 p
Res B	W (0	CISPR) 1.0	X	Y	FUNCTION	FUNCTION WIDTH		Stop 2.41500 G eep 138.1 s (1001 p
Res B	W (0	CISPR) 1.0	× 2.404 500 GHz	Y 101.80 dE	FUNCTION	FUNCTION WIDTH		eep 138.1 s (1001 p
Res B	W (0	CISPR) 1.0	X 2.404 500 GHz 2.405 235 GHz 2.390 010 GHz	Y 101.80 dB 98.05 dB 40.813 dB		FUNCTION WIDTH		eep 138.1 s (1001 p
Res B R Mode 1 N 2 N 3 N 4 N	W (0	CISPR) 1.0	× 2.404 500 GHz 2.405 235 GHz	Y 101.80 dB 98.05 dB 40.813 dB		FUNCTION WIDTH		eep 138.1 s (1001 p
	W (0	CISPR) 1.0	X 2.404 500 GHz 2.405 235 GHz 2.390 010 GHz	Y 101.80 dB 98.05 dB 40.813 dB		FUNCTION WIDTH		eep 138.1 s (1001 p
Res B' R MODE 1 N 2 N 3 N 4 N 5 6 7 8	W (0	CISPR) 1.0	X 2.404 500 GHz 2.405 235 GHz 2.390 010 GHz	Y 101.80 dB 98.05 dB 40.813 dB		FUNCTION WIDTH		Stop 2.41500 Gl eep 138.1 s (1001 pl FUNCTION VALUE
Res B' KR MODE 1 N 2 N 3 N 4 N 5 - 6 - 7 - 8 - 9 -	W (0	CISPR) 1.0	X 2.404 500 GHz 2.405 235 GHz 2.390 010 GHz	Y 101.80 dB 98.05 dB 40.813 dB		FUNCTION WIDTH		eep 138.1 s (1001 pi
Res B' 1 N 2 N 3 N 4 N 5 6 7	W (0	CISPR) 1.0	X 2.404 500 GHz 2.405 235 GHz 2.390 010 GHz	Y 101.80 dB 98.05 dB 40.813 dB		FUNCTION WIDTH		eep 138.1 s (1001 pi

BE - 2405 MHz - Horizontal - Y-Axis - Worst Case

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

State of the local division of the local div		SEL 50 Q 🛕 DC	CORREC	SENSE;1	NT SOURCE OFF	ALIGN AUTO	e: Voltage	05:41:35 AM Jun 14, 20
arker	2 2.4	0523500000	PNC		g: Free Run Iten: 20 dB	Avg Type	e: voitage	TRACE 1 2 3 4 TYPE WMWWM DET R P N N
dB/div	Re	f 116.99 dBµ'	v				Mkr	2 2.405 235 GH 97.83 dBµ
07								A.2 *
7.0								
7.0								
7.0								
7.0								
7.0								
7.0							3	and the loss
7.0	mulanyo	ar alun - and when the linguage	and the second and the second s	- man ward and the second	and an alle and and	-	- anonemour agenant	
7.0					~		2	
	31000 W (CIS	GHZ PR) 1.0 MHZ		#VBW 3.0) MHz		Swee	Stop 2.41500 GF p 138.1 s (1001 pt
	TRC SCL	1	-	Y	FUNCTION	FUNCTION WIDTH	FUN	CTION VALUE
R MODE			04 500 GHz 05 235 GHz	101.61 dBµV 97.83 dBuV				
R MODE	2 f 1 f	2.4						
R MODE	2 f 1 f 2 f	2.39	90 010 GHz	39.904 dBµV				
1 N 2 N 3 N 4 N	2 f 1 f 2 f 1 f	2.39	90 010 GHz 90 000 GHz	39.904 dBµV 29.21 dBµV				
1 N 2 N 3 N 4 N	2 f 1 f 2 f 1 f	2.39						
1 N 2 N 3 N 4 N 5 6 7 8	2 f 1 f 1 f	2.39						
1 N 2 N 3 N 4 N 5 6 6 7 7	2 f 1 f 2 f 1 f	2.39						
1 N 2 N 3 N 4 N 5 6 6 7 8	2 f 1 f 2 f 1 f	2.39			10			

BE - 2405 MHz - Vertical - Z-Axis - Worst Case

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

annen		RESEL 50 Ω▲ D 1835000000	000 GHz	D: East	: Free Run en: 20 dB	ALIGN AUTO Avg Type: V		08:52:51 AM Jun 14, 20 TRACE 1 2 3 4 TYPE WMWW DET R P N N
dB/div	R	ef 116.99 dE	ЗμV				Mkr4 2	2.483 50 GH 47.96 dBµ
07						Ø ¹		*
7.0						A		
7.0								
7.0				_		1 1.2		
								53.97 di
					mannel		and on	
7.0 Handed	1. Servera	provident and the state of the	mannanmallation	winite water and the second state			and show the delansers	Amulasthemania
7.0 ===								
) GHz		AMERICA P			St	op 2.50000 GI
	W (CI	SPR) 1.00 N	/IHz	#VBW 3.0	MHz		Sweep 65	5.77 s (1001 p
_			X	Y	FUNCTION	FUNCTION WIDTH	FUNCTION	VALUE
_		CL	-177	404 440 -00-04				
_			2.480 50 GHz	101.118 dBµV 97.35 dBµV				
R MODE			2.480 50 GHz 2.480 10 GHz 2.483 50 GHz	97.35 dBµV 58.13 dBµV				
R MODE			2.480 50 GHz 2.480 10 GHz	97.35 dBµV				
R MODE			2.480 50 GHz 2.480 10 GHz 2.483 50 GHz	97.35 dBµV 58.13 dBµV				
R MODE 1 N 2 N 3 N 4 N 5 6 7			2.480 50 GHz 2.480 10 GHz 2.483 50 GHz	97.35 dBµV 58.13 dBµV				
R MODE 1 N 2 N 3 N 5 S			2.480 50 GHz 2.480 10 GHz 2.483 50 GHz	97.35 dBµV 58.13 dBµV				
R MODE			2.480 50 GHz 2.480 10 GHz 2.483 50 GHz	97.35 dBµV 58.13 dBµV				
R MODE			2.480 50 GHz 2.480 10 GHz 2.483 50 GHz	97.35 dBµV 58.13 dBµV				

BE - 2480 MHz - Horizontal - Y-Axis - Worst Case

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

Report Number: **B20613D1** FCC Part 15 Subpart B and C; FCC Section 15.247; RSS-247; and RSS-GEN Test Report *COMPATIBLE I-Gang Switch Plate Model: LS01*

arker	12	2.4794		O: Fast	nt source off g: Free Run ten: 20 dB	ALIGN AUTO Avg Type:	Voltage	08:57:35 AM Jun 14, 20 TRACE 1 2 3 4 TYPE WMWWM DET R P N N
dB/div	v	Ref 1	16.99 dBµV				Mkr	1 2.479 45 GH 100.88 dBµ
07						1 ²		*
7.0								
7.0					2			53.97 dE
7.0			mun work of silver destalling	all a share a s	smonth	4. ·	Boylin march Walling	Muhmanua Anensangenetali
7.0	- 10 a.c. / 4	erat pilater						
		00 GH CISPR	lz) 1.00 MHz	#VBW 3.0	MHz		Sweep	Stop 2.50000 GI 65.77 s (1001 pt
	TRC	SCL	X	Y	FUNCTION	FUNCTION WIDTH	FUNCTI	ON VALUE
	2	f	2.479 45 GHz 2.480 10 GHz	100.88 dBµV 97.11 dBuV				
	2	f	2.483 50 GHz	57.66 dBµV				
2 N 3 N		1	2.483 50 GHz	47.63 dBµV				
	1				_			
	1							
N N N N N N N N N N N N N N N N N N N	1							

BE - 2480 MHz - Vertical - Z-Axis - Worst Case

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

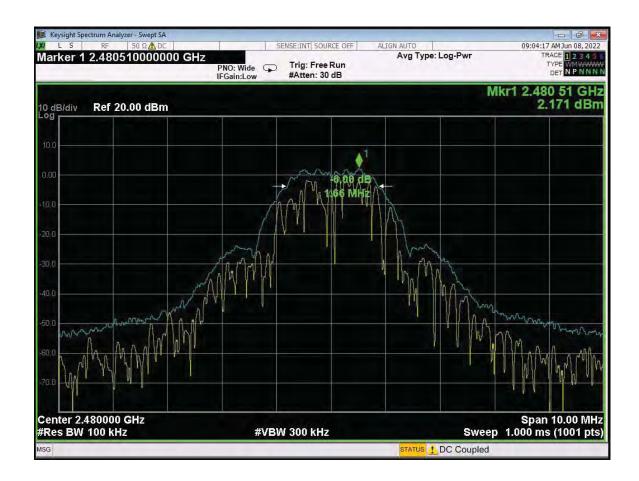
Keysight Spectrum Analyzer L S RF isplay Line -17.8	50 Ω≜DC 81 dBm PNO	East Trig	IT SOURCE OFF : Free Run en: 30 dB	ALIGN AUTO Avg Type	e: Log-Pwr	TR. T	AM Jun 08, 202 ACE 1 2 3 4 YPE WMWW DET N P N N
0 dB/div Ref 20.	00 dBm	in Low			N	Akr2 2.400 -53	00 GH
og							
).00			man				
0.0							-17.81 d
0.0		m		ha			-17.01 0
0.0		1					
1.0 <u> </u>	\$ ²	uffert material		- marine	La Jack		
0.0 mangelen have and	with man the charter				" The the last will	and a second of the second	
0.0							
enter 2.40500 GH Res BW 100 kHz	lz	#VBW 300) kHz		Swee	Span p 1.933 ms	20.00 MI (1001 pt
KR MODE TRC SCL	X	Y	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
1 N 2 f 2 N 2 f	2.404 76 GHz 2.400 00 GHz	2.189 dBm -53.32 dBm					
5							
6							
8							
			m				
G				STATUS	DC Coupled		

BE - 2400 MHz - Conducted

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

DTS BANDWIDTH DATA SHEETS

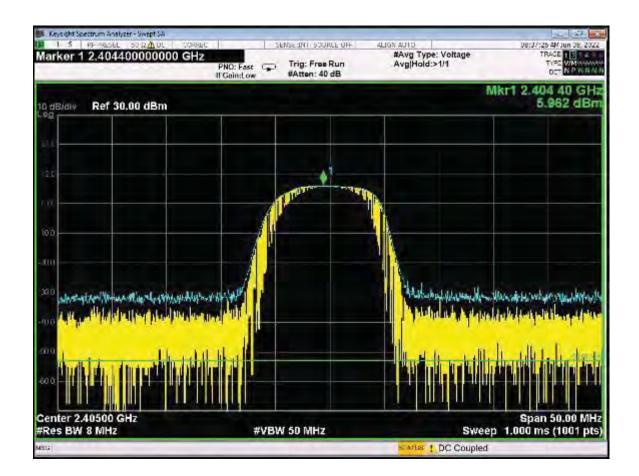
Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044 Page E26


Bandwidth 6 dB - 2405 MHz

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

Bandwidth 6 dB - 2440 MHz

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044 Page E28

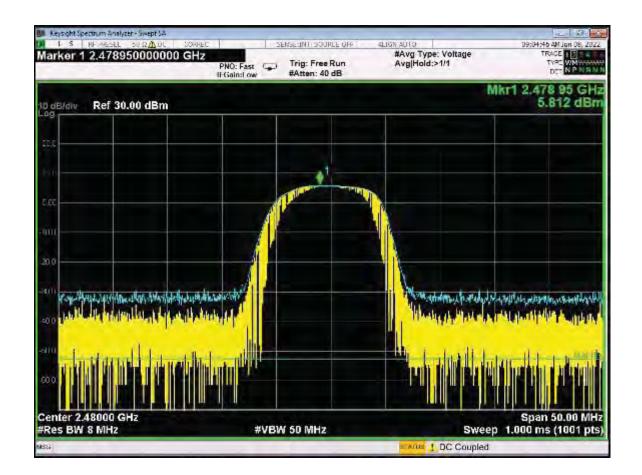

Bandwidth 6 dB - 2480 MHz

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

PEAK OUTPUT POWER DATA SHEETS

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044 Page E30

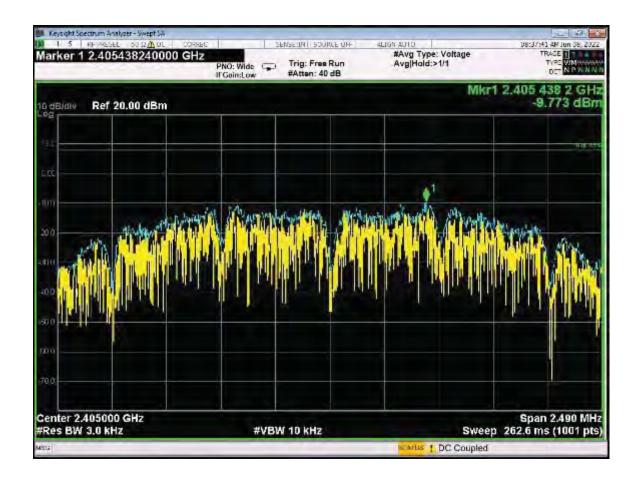
Report Number: **B20613D1** FCC Part 15 Subpart B and C; FCC Section 15.247; RSS-247; and RSS-GEN Test Report I-Gang Switch Plate Model: LS01


Peak Power Output - 2405 MHz

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044 Page E31

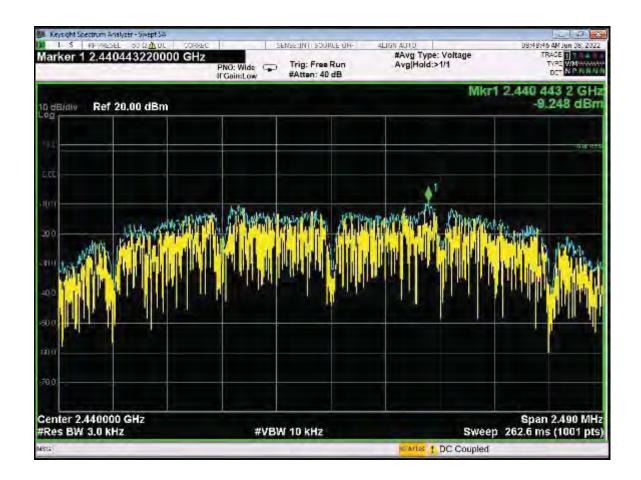
Peak Power Output - 2440 MHz

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

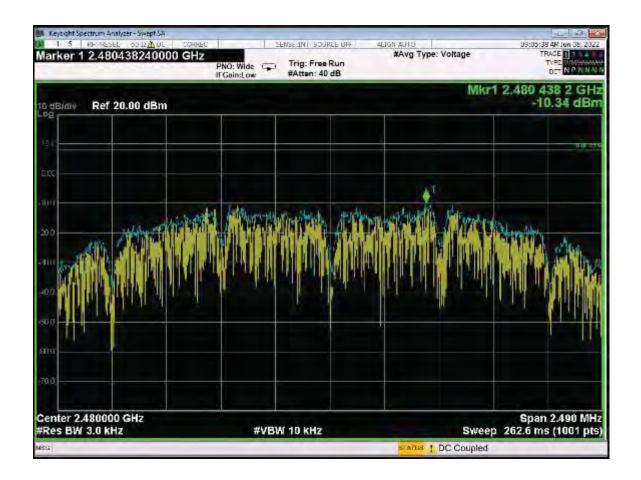


Peak Power Output - 2480 MHz

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044


SPECTRAL DENSITY OUTPUT DATA SHEETS

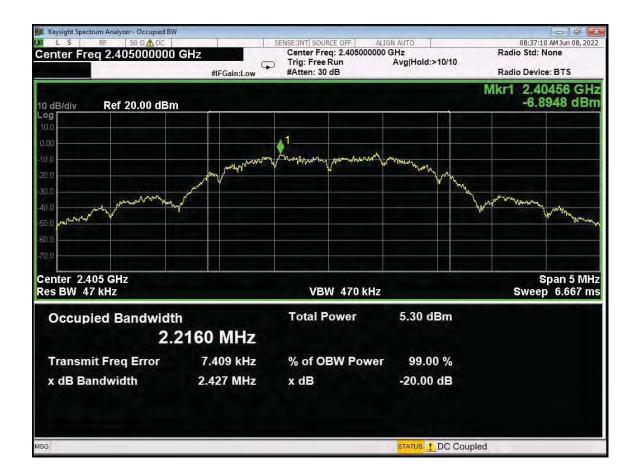
Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044


Special Density Output - 2405 MHz

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

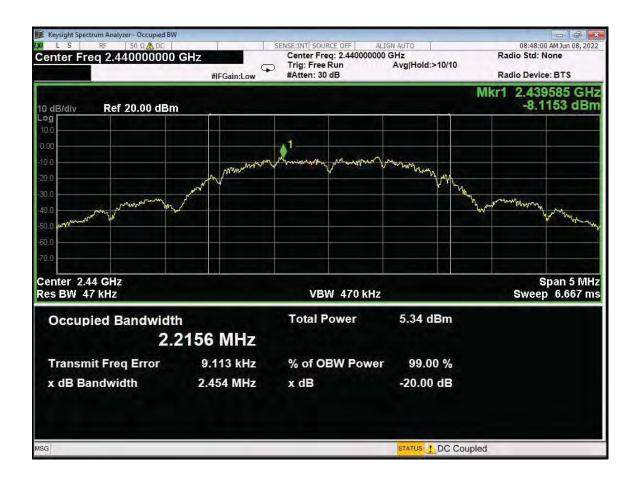
Special Density Output - 2440 MHz

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044



Special Density Output - 2480 MHz

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400


99% BANDWIDTH DATA SHEETS

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044

99% Bandwidth - 2405 MHz

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

99% Bandwidth - 2440 MHz

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

E Keysight Spectrum Analyzer - Occupied BW 2 L S RF 50 Ω ▲ DC Center Freq 2.480000000	GHz #IFGain:Low	Center Freq: 2.48000000	SN AUTO GHz Avg Hold:>10/10	09:04:31 AM Jun 08, 202: Radio Std: None Radio Device: BTS
0 dB/div Ref 20.00 dBm				Mkr1 2.480455 GH -7.0031 dBr
10.0 10.0 10.0 20.0 30.0 40.0 50.0 50.0 50.0	for the second s		munu Many	have been and the second and the sec
enter 2.48 GHz es BW 47 kHz Occupied Bandwidth		VBW 470 kHz Total Power	5.50 dBm	Span 5 MH Sweep 6.667 m
2.2 Transmit Freq Error x dB Bandwidth	2095 MHz 8.636 kHz 2.480 MHz	% of OBW Power x dB	99.00 % -20.00 dB	
3			STATUS ! DC Coup	led

99% Bandwidth - 2480 MHz

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

RF ANTENNA CONDUCTED DATA SHEETS

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044

RF Antenna Conducted Test - Low Channel - Reference Level

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

	CORREC SENSE;INT SOURCE OFF	ALIGN AUTO	08:42:07 AM Jun 08, 202
arker 1 661.470000000 N	PNO: Fast Trig: Free Run IFGain:Low #Atten: 40 dB	#Avg Type: Voltage	TRACE 1 2 3 4 5 TYPE WMWWW DET N P N N N
dB/div Ref 20.00 dBm			Mkr1 661.47 MH -50.77 dBr
19			
0.01			
öö			
.0			
.0			-17.93 di
.0			
.0			
		1	
1.0	14 A Mary Land A. at Mr. a A Maran A Marin was de marine a marine	and commonly appropriate of more	Participant and all and a ministration
o substanting the second second second	an Liefell field while the all breaked in the flower he	all is a little stated basices with a solution of the state of the solution of the state of the	ale chines mulla. Alan da
inan 1 da adh Ìrdua	added in the advantation of the a	an the state of th	nata nata la tida da an
art 0.0300 GHz tes BW 100 kHz	#VBW 300 kHz	Sween	Stop 1.0000 GH 92.73 ms (1001 pt
		STATUS ! DC Coupled	

RF Antenna Conducted Test – Low Channel – 30 MHz to 1 GHz

dB/div Ref	20.00 dBm				Mkr1 1.217 0 GF -47.11 dB
0.0					
.00					
1.0					-17.93 c
.0					
),0					
	1				
3.0 (Swimt)	W-197 Ver Transfer Laurilla	wither and we want	water part and white and white and a second s		and the states of the states
and the second s	In other and succession	a contractivity for the	and the factor of the factor of the second	ladi (lanisaran kana sa	INTERNET WITH PRESERVE AND IN

RF Antenna Conducted Test – Low Channel – 1 GHz to 2.4 GHz

	PNO: Fast Free IFGain:Low #Atten: 40) dB		DET NPNN
dB/div Ref 20.00 dBm			M	kr1 7.249 GH -48.77 dBr
pg				
0.0				
.00				
1.0				
3.0				-17.93 d
],0]				
0.0				
n Warhutu ala Mandalanana		elinade malathan an an	A hadaded at a set	العرباء المحالطا والمرا
or her and her a	and the she has a second second second	office and advantage of	and the party of the second	A.S.W. Halo, and a second care of our
3.0				
0.0				

RF Antenna Conducted Test – Low Channel – 2484 MHz to 10 GHz

L S RF 50 Ω Δ DC Marker 1 23.99500000000	CORREC SENSE:INT SOURCE OFF ALIGN	#Avg Type: Voltage	08:43:55 AM Jun 08, 202 TRACE 1 2 3 4 5 TYPE WMWWW
	IFGain:Low #Atten: 40 dB		DET NPNN
o dB/div Ref 20.00 dBm		N	lkr1 23.995 GH -39.80 dBi
.og			
0.0			
1.00			
0.0	والتصور ومحين التحيين التجه		-17.93 d
0.0			-)(1.500
0.0			
			ha and
0.0	and and another of a state the last of the state of the state	Allow water the loss of the state of the sta	AP Part of a stand of a stand
so.o bilishing halayan kindan parakan kina	Million Charles Strategy 1		
50.0			
		in a la s	ا ماه بطبيب
ao 2. a m. ti. 1 Ia bano. al Ad	and attack of the sector of the states of the sector of th		ILL II II III III
itart 10.000 GHz Res BW 150 kHz	#VBW 300 kHz	Sweep	Stop 25.000 GH 665.9 ms (1001 pt
SG		STATUS ! DC Coupled	

RF Antenna Conducted Test – Low Channel – 10 GHz to 25 GHz

RF Antenna Conducted Test - Middle Channel - Reference Level

	and the second second				N	Akr1 814.73	
) dB/div	Ref 20.00 dBm	1				-50.99	аы
0.0							
.00							
0.0							
0.0							-18.01 d
0.0							
0,0							
0.0						4	
0.0	Munifold Balls 4		No. of Control of Control	and the second barrent states	ut to Balance	r an hikada	
	A HIGH AND	In the second second		the share a state	Hundredan da di	al Malin Alterior	r'i fi
0.0					1 1		

RF Antenna Conducted Test – Middle Channel – 30 MHz to 1 GHz

		IFC	Gain:Low	#Atten: 40	dB		_		
dB/div Ref	20.00 dBm							Mkr1 1.2 -47.	664 dB
og									
0,0									
.00									
10									
									-18.01 c
0									
) 0									
	∮ ¹								
1.0 philippine	revenue ber ange berger		And the second	www.i.smbelassina	and the survey	alan and a start and a start and a start a star	al and hit have been been been been been been been be	Amphoneterston	when when the second
2.0		erta -			a na alla		1. a des de	e adverate	feelin of a lie
00									
	J 1.	1.11.		. In . I	di	and shall	1	1.1.2	

RF Antenna Conducted Test – Middle Channel – 1 GHz to 2.4 GHz

	ORREC SENSE;INT SOURCE OFF ALIGN AUT	0 08:55:37 AM Jun 08, 202 g Type: Voltage TRACE 1 2 3 4 5
larker 1 7.248961000000 G	PNO: Fast C Trig: Free Run IFGain:Low #Atten: 40 dB	
0 dB/div Ref 20.00 dBm		Mkr1 7.249 GH -50.26 dBr
0.0		
.00		
0.0		
0.0		-18.01 d
0.0		
0.0		
0.0	per ferðindur stærer minder ser sæðindinna skilli dinna skiller skiller skiller skiller skiller skiller skiller	and the second strates and a second strategy of the second strategy
o o	hat i the second se	and a stand of the second s
0.0		
tart 2.484 GHz	e er falls, rabinetta, elk	Stop 10.000 GH
Res BW 100 kHz	#VBW 300 kHz	Sweep 718.4 ms (1001 pt

RF Antenna Conducted Test - Middle Channel - 2484 MHz to 10 GHz

		AUTO	08:56:00 AM Jun 08, 202
larker 1 24.385000000000 G	PNO: Fast Trig: Free Run IFGain:Low #Atten: 40 dB	#Avg Type: Voltage	TRACE 1 2 3 4 5 TYPE WMWWW DET NPNNN
dB/div Ref 20.00 dBm		Mk	r1 24.385 GH -42.43 dBr
og			
0.0			
.00			
0.0			
0.0			-18.01 di
0.0			
0.0			
	and the second statistically and a state of the	Mada Marth Martin The back on the for	AT IN A REAL PROPERTY OF
0.0 Here a feel and the state of the state o	alegistelis personal and a second		
0.0			
		(Lat. & L	A A MANY WALL
tart 10.000 GHz Res BW 100 kHz	#VBW 300 kHz		Stop 25.000 GH
IG I I I I I I I I I I I I I I I I I I	#VBW 500 KHZ	STATUS ! DC Coupled	How a froor be

RF Antenna Conducted Test – Middle Channel – 10 GHz to 25 GHz

RF Antenna Conducted Test - High Channel - Reference Level

		Trig: Free Run #Atten: 40 dB		TYPE WMWWW DET NPNN
0 dB/div Re	ef 20.00 dBm			Mkr1 772.05 MH -51.31 dBi
0,0				
0.0				
0.0			_	-18.04 d
0.0				
0.0				
			\	

RF Antenna Conducted Test – High Channel – 30 MHz to 1 GHz

-18.04 d

RF Antenna Conducted Test - High Channel - 1 GHz to 2.4 GHz

Keysight Sp	RF 50 Ω Λ DO		SENSE:INT SOURCE O	FF ALIGN AUTO		09:10:46 AM Jun 08, 202
/larker 1				#Avg Type	Voltage	TRACE 1 2 3 4 5 TYPE WMWWW DET N P N N N
0 dB/div	Ref 20.00 dBn	n				Mkr1 7.241 GH -50.29 dBr
10.0						
0.00						
0.0						
20.0						-18.04 dt
30.0						
10.0						
50.0 1700-194	under hannelensteren en	Law manufactor and	anatora a vinda	enter a subscription of the second	-	Vield Same Agencies and the second states and the
50.0						
70.0						
tart 2.4	84 GHz 100 kHz	#1	BW 300 kHz	, detail 1	Sween	Stop 10.000 GH 718.4 ms (1001 pt
ACCES I DAY	1040 MI12	<i>#</i> V	EM-500-MHZ		DC Coupled	r tosa nis (1001 pt

RF Antenna Conducted Test - High Channel - 2484 MHz to 10 GHz

LS RF 50ΩADC C Aarker 1 24.790000000000	GHz	IN AUTO 09:11:20 AM Jun 08, 20 #Avg Type: Voltage TRACE 2 3 4 TYPE WMWW
	PNO: Fast Frig: Free Run IFGain:Low #Atten: 40 dB	DET NPNN
o dB/div Ref 20.00 dBm		Mkr1 24.790 GI -40.48 dB
log		
10,0		
3.00		
100		
0.0		
20.0		-18.04
30,0		
10.0		
0.0	s maintai su	and and a some south of the stand of the stand of the stand of the
50.0 May an Independently water the second state	Alter Indergram and produced and a second state of the second state of the second se	and the second
0.0		
00		I to a state of the state
		المالكة والمرافة المراجة والمراجع والمراجع المراجع والمراجع
tart 10.000 GHz	#\/BW/ 200 kUs	Stop 25.000 G
Res BW 100 kHz	#VBW 300 kHz	Sweep 1.434 s (1001 p

RF Antenna Conducted Test – High Channel – 10 GHz to 25 GHz

VIVINT, INC.

1-GANG SWITCH PLATE

MODEL: LS01

EMISSIONS IN NON-RESTRICTED BANDS

FREQUENCY (MHz)	LEVEL (dBm)	Limit* (dBm)	Margin (dB)
24790.00	-40.48	-18.04	-22.44
24385.00	-42.43	-18.01	-24.42
7.249	-48.77	-17.93	-30.84

Note: The three highest non-restricted emissions are reported.

*The Limit is based on 20 dB below the highest reference level obtained on the previous pages.

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

DUTY CYCLE

DATA SHEETS

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044

L RF PRESEL 50 ΩΔDC CORRE Marker 1 Δ 6.00000 ms	PNO: Fast 🕞 Trig: Free Run	ALIGN AUTO #Avg Type: Voltage	08:32:04 AM Jun 16, 202: TRACE 1 2 3 4 5 TYPE WMWWW DET N P N N N
0 dB/div Ref 96.99 dBµV	IFGain:Low #Atten: 10 dB		ΔMkr1 6.000 m 1.28 d
og			
7.0			
7.0			
7.0			
7.0			53.97 dB
7.0			
7.0	alman his war the allow the	and a sale of a sale site of a sale	nels ar she was had a bound to be and
			Prote and Michael Barthard
7.0			
5,99			
enter 2.475000000 GHz es BW 1.0 MHz	#VBW 3.0 MHz	Sw	Span 0 H eep 1.000 s (1001 pt
	#VBW 3.0 MHz	Sw. status <u>1</u> DC Coupled	eep 1.000 s (1001 pt

Only One Pulse per 100 ms

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

Keysight Spectrum Analyzer - Swept SA RF PRESEL 50 Ω Δ DC CORF	EC SENSE;INT SOURCE OFF A	LIGN AUTO	08:31:33 AM Jun 16, 202
larker 1 Δ 2.99000 s	PNO: Fast Trig: Free Run IFGain:Low #Atten: 10 dB	#Avg Type: Voltage	TRACE 1 2 3 4 TYPE WMWWW DET N P N N
0 dB/div Ref 96.99 dBµV			ΔMkr1 2.990 -1.61 d
pg			
7.0			
70			
7.0			
7.0			53.97 dE
7.0			
7.0	162		
7.0 Marsharman 21 minuter	nakaun perten yaran galan perten ana haran haran ya perten yaran yaran yaran yaran yaran yaran yaran yaran yar	alich zazzmana water and a for a position to be an a strategy and the type	warmen and an and an and an and
7.0			
.99			
enter 2.475000000 GHz es BW 1.0 MHz	#VBW 3.0 MHz	Swe	Span 0 H ep 10.00 s (1001 pt
G		STATUS ! DC Coupled	

Time Between Pulses 2.99 Seconds

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400

Keysight Spectrum Analyzer - Swept SA L RF PRESEL 50 Ω Δ DC Marker 1 Δ 700.000 μs		ALIGN AUTO #Avg Type: Voltage	08:33:00 AM Jun 16, 2022 TRACE 1234 TYPE WM WM
	PNO: Fast 🕞 Trig: Free Run IFGain:Low #Atten: 10 dB		DET NPNNN
0 dB/div Ref 96.99 dBµV			ΔMkr1 700.0 μ 0.20 di
- 3			
37.0			
77.0			
	1		
7,0			
57.0			53.97 dBj
7.0			
7.0	102		
17 D innordalism month habit to static from	bour to some fight on the index some and a share both and the solution of the	no-low males with the hard a port of the	and many marker and
7.0			
1.0			
5,99			
			0
enter 2.475000000 GHz es BW 1.0 MHz	#VBW 3.0 MHz	Swee	Span 0 H p 50.00 ms (1001 pts
SG		STATUS ! DC Coupled	

Time of One Pulse 700 μs

Brea Division 114 Olinda Drive Brea, CA 92823 (714) 579-0500 Lake Forest Division 20621 Pascal Way Lake Forest, CA 92630 (949) 587-0400 Newbury Park Division 1050 Lawrence Drive Newbury Park, CA 91320 (805) 480-4044