

EMC Test Data

Client:	Vivint Wireless	Job Number:	J96091					
Model:	1520 (4x4 5GHz 802.11 Client)	T-Log Number:	T96173					
	1320 (4x4 3GHZ 602.11 Gliefit)	Project Manager:	Irene Rademacher					
Contact:	Venkat Kalkunte	Project Coordinator:	-					
Standard:	FCC 15.B / 15.407 (New Rules)	Class:	N/A					

Maximum Permissible Exposure

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/17/2015 Test Engineer: Mark Hill

General Test Configuration

Calculation uses the free space transmission formula:

 $S = (PG)/(4 \pi d^2)$

Where: S is power density (W/m²), P is output power (W), G is antenna gain relative to isotropic, d is separation distance from the transmitting antenna (m).

Summary of Results

Device complies with Power Density requirements at 20cm separation:	Yes
---	-----

General Use:

6dBi 4x4 antenna, 9dBi effective gain Antenna:

Using worse case channel/mode from each band

Total de la company de la comp												
	EUT		Cable Loss	Ant	Power		Power Density (S)	MPE Limit				
Freq.	Power		Loss	Gain	at Ant	EIRP	at 20 cm	at 20 cm				
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm ²	mW/cm ²				
5230	20.7	117.5	0	9	20.7	933.25	0.186	1.000				
5270	20.9	123.0	0	9	20.9	977.24	0.194	1.000				
5710	21.2	132.1	0	9	21.2	1049.31	0.209	1.000				
5795	24.1	257.0	0	9	24.1	2041.74	0.406	1.000				

Note: For channels that span 5725MHz, the measured power in the UNII2c and UNII3 was summed, as this would be worse case from an RF exposure perspective.