

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538

EMC Test Report

Application for Grant of Equipment Authorization

FCC Part 15, Subpart E (April 2014 Rules)

Model: SR1420

FCC ID:	2AAAS-CE02
APPLICANT:	Vivint Wireless 3945 Freedom Circle, Suite 150 Santa Clara, CA 95054
TEST SITE(S):	National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435
REPORT DATE:	November 7, 2014
REISSUE DATE:	November 20, 2014
FINAL TEST DATES:	August 20, September 8, 10, 11, 12 and 15, 2014
TOTAL NUMBER OF PAGES:	71

PROGRAM MGR / TECHNICAL REVIEWER:

Mark E Hill Staff Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
1	November 7, 2014	First release	
2	November 20, 2014	Correct Referenced Power limits, clarification on operating mode	MEH

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES	6
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL	
OTHER EUT DETAILS ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	10
EUT OPERATION	
TEST SITE	11
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	11
RADIATED EMISSIONS CONSIDERATIONS	11
MEASUREMENT INSTRUMENTATION	12
RECEIVER SYSTEM	12
INSTRUMENT CONTROL COMPUTER	12
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	12
FILTERS/ATTENUATORS	
ANTENNAS	13
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	20
FCC 15.407 (A) OUTPUT POWER LIMITS	20
SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	71

SCOPE

An electromagnetic emissions test has been performed on the Vivint Wireless model SR1420, pursuant to the following rules:

FCC Part 15, Subpart E requirements for UNII Devices (April 2014)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10-2009 FCC General UNII Test Procedures KDB789033

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Vivint Wireless model SR1420 complied with the requirements of the following regulations:

FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Vivint Wireless model SR1420 and therefore apply only to the tested sample. The sample was selected and prepared by Venkat Kalkunte of Vivint Wireless.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band

FCC Rule Part	Description	Measured Value / Comments	Limit / Requirement ¹	Result
15.407(a)(1)(iv)-	Output Power	n40: 19.7dBm (93.3mW)	24 dBm / 250mW (eirp < 30dBm)	Complies
15.407(a)(1)(iv)-	Power Spectral Density	n40: 3.6dBm/MHz	11 dBm/MHz	Complies

Operation in the 5.25 – 5.35 GHz Band

FCC Rule Part	Description	Measured Value / Comments	Limit / Requirement ¹	Result (margin)
15.407(a) (2)	26dB Bandwidth	43.3MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	Output Power	n40: 20.9dBm (123.9mW) max eirp = 29.9dBm	24 dBm / 250mW (eirp < 30dBm)	Complies
	Power Spectral Density	n40: 4.8dBm/MHz	11 dBm/MHz	Complies

Operation in the 5.47 – 5.725 GHz Band

FCC Rule Part	Description	Measured Value / Comments	Limit / Requirement ¹	Result (margin)
15.407(a) (2)	26dB Bandwidth	36.9MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	Output Power	n40: 20.9dBm (123.4mW) max eirp = 29.9dBm	24 dBm / 250mW (eirp < 30dBm)	Complies
	Power Spectral Density	n40: 5.5dBm/MHz	11 dBm/MHz	Complies

Operation in the 5.725 – 5.850 GHz Band

FCC Rule Part	Description	Measured Value / Comments	Limit / Requirement ¹	Result (margin)
15.407(a) (3) / 15.407(e)	6dB Bandwidth	35.6 MHz	>500kHz	N/A
15.407(a) (3)	Output Power	n40: 23.6dBm (228.7mW) max eirp = 32.6dBm	30 dBm / 1000W (eirp < 36dBm)	Complies
	Power Spectral Density	n40: 7.5 dBm/MHz	30dBm/500kHz (27dBm/MHz)	Complies

¹ Power and PSD limits for devices with effective antenna gain <6dBi. Refer to test data for the final power and PSD limits.

Requirements for all U-NII/LELAN bands					
FCC Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result	
15.407	Modulation	Digital Modulation is used	Digital modulation is required	Complies	
15.407(b) / 15.209	Spurious Emissions	53.7 dBµV/m @ 5149.8 MHz (-0.3 dB)	Refer to page 20	Complies	
15.407 (c)	Operation in the absence of information to transmit	Operation is discontinued in the absence of information	Device shall automatically discontinue operation in the absence of information to transmit	Complies	
15.407(g) Frequency Stability		Frequency stability is better than 10ppm	Signal shall remain within the allocated band	Complies	
15.407(h)(1)	Transmit Power Control	TCP mechanism is discussed in the Operational Description	The U-NII device shall have the capability to operate with a mean EIRP value lower than 24dBm (250mW)	Complies	
15.407(h)(2)	Dynamic frequency Selection (device without radar detection)	Refer to separate test report, reference R96414	Channel move time < 10s Channel closing transmission time < 260ms	Complies	

Requirements for all U-NII/LELAN bands

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.	203	RF Connector	Antenna is integral	Unique or integral antenna required	Complies
15.	207	AC Conducted Emissions	60.0 dBµV @ 0.151 MHz (-5.9 dB) Refer to page 19		Complies
15.	109	Receiver spurious emissions	N/A – receiver tunes above 960MHz		
15.4	07(f)	RF Exposure Requirements	Refer to MPE calculations in separate exhibit, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dDu\//m	25 to 1000 MHz	± 3.6 dB
Raulateu eniissioit (lielu strengtri)	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Vivint Wireless model SR1420 is a 5GHz 802.11 4x4 client device. The EUT would normally be pole or wall mounted. For testing, it was placed on a tabletop. The EUT is powered via POE connection.

The sample was received on August 5, 2014 and tested on August 20, September 8, 10, 11, 12 and 15, 2014. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Vivint Wireless	1420	5GHz 802.11 4x4 radio	C7105S1140200BT	2AAAS-CE02

OTHER EUT DETAILS

The following EUT details should be noted: 5GHz only, all bands (new rules) 40MHz only, with MCS8 (2 spatial streams) minimum data rates 4x4 operation only Non-point-to-point Beamforming (2 pairs) supported Antenna: 6dBi panel Outdoor Use Client Device

ANTENNA SYSTEM

The antenna system consists of 4 element panel antenna integral to the device.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 31.5 cm wide by 10 cm deep by 31.5 cm high.

MODIFICATIONS

The following modification was made to the EUT during the time the product was at National Technical Systems - Silicon Valley:

1. For radiated emissions, FerriShield (www.leadertechinc.com) - cable clamp TC28B0617; placed on the etherent cable between external port and internal pcb

Modification made to comply with 15B requirements. Present during all testing.

SUPPORT EQUIPMENT

No local support equipment was used during testing.

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
-	PSE802G	POE Injector	-	-
Acer	Aspire 5735	Laptop Computer	LXAU59X265903089 BE2000	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To	Cable(s)				
1 011	Connected 10	Description	Shielded or Unshielded	Length(m)		
POE	POE Injector	CAT5	Unshielded			
USB	Not Connected	-	-	-		

Additional on Support Equipment

Port	Connected To	Cable(s)				
ron	Connected 10	Description	Shielded or Unshielded	Length(m)		
POE Injector	Laptop	CAT5	Unshielded			

EUT OPERATION

During emissions testing the EUT was configured to continuously transmit at the noted channel and power level. All transmissions were 4Tx with beamforming active.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Designation / Reg	Location		
Sile	FCC	Canada	Location	
Chamber 4	US0027	2845B-4	41039 Boyce Road	
Chamber 5	US0027	2845B-5	Fremont, CA 94538-2435	

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

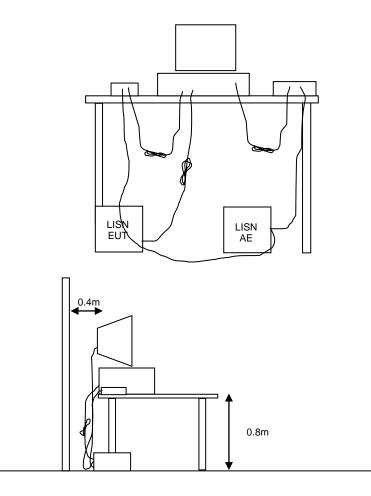
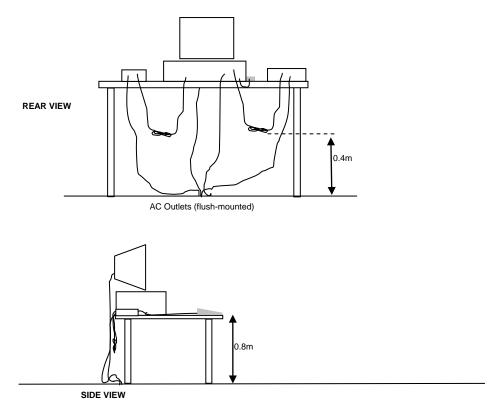
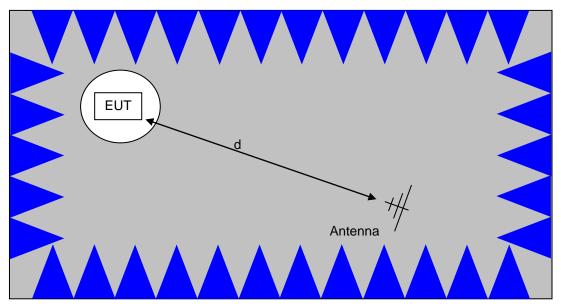


Figure 1 Typical Conducted Emissions Test Configuration

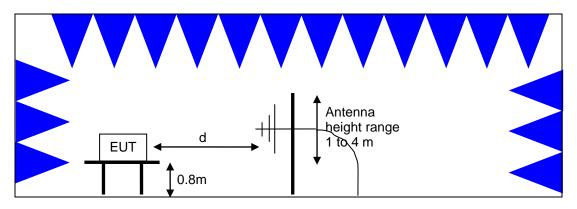
RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

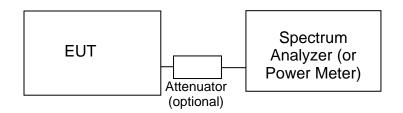

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands² (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 – 5250 (client devices)	250 mW (24 dBm)	11 dBm/MHz
5250 – 5350	250 mW (24 dBm)	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

SPURIOUS EMISSIONS LIMITS –UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of -27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10MHz of the allocated band is increased to -17dBm/MHz.

 $^{^{2}}$ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

 $R_r - S = M$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_d = 20*LOG_{10} (D_m/D_s)$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

and

 $M = R_c - L_s$

 $R_c = R_r + F_d$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- $R_c = Corrected Reading in dBuV/m$
- L_{S} = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{d}$ microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Manufacturer	Description	<u>Model</u>	<u>Asset #</u>	Cal Due
EMCO Rohde & Schwarz Rohde & Schwarz	s - AC Power Ports, 20-Aug-14 LISN, 10 kHz-100 MHz, 25A Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz	3825/2 ESH3 Z2 ESIB7	1292 1594 1630	2/13/2015 5/15/2015 6/21/2015
Radiated Emissions	1,000 - 12,000 MHz, 8, 10-Sep-14			
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	10/31/2014
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	9/14/2014
Micro-Tronics	Band Ŕeject Filter, 5150-5350 MHz	BRC50703-02	2239	9/18/2014
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	2240	9/18/2014
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	2241	9/18/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-40 GHz	ESIB40 (1088.7490.40)	2493	1/11/2015
EMCO	Antenna, Horn, 1-18 GHz	3115	2870	8/20/2015
	1,000 - 12,000 MHz, 11-Sep-14			
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	10/31/2014
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	9/14/2014
Rohde & Schwarz	ÈMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	6/21/2015
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2239	9/18/2014
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	2240	9/18/2014
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	2241	9/18/2014
EMCO	Antenna, Horn, 1-18 GHz	3115	2870	8/20/2015
Radio Antenna Port (I Agilent Technologies	Power and Spurious Emissions), 7 PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	1 2-Sep-14 E4446A	2139	4/8/2015
	Power and Spurious Emissions), ²			
Agilent Technologies	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	4/8/2015
Radiated Emissions,	30 - 1,000 MHz, 15-Sep-14			
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1549	5/30/2015
Com-Power Rohde & Schwarz	Preamplifier, 30-1000 MHz EMI Test Receiver, 20 Hz-40 GHz	PA-103 ESIB40 (1088.7490.40)	1632 2493	7/6/2015 1/11/2015

Appendix B Test Data

T95948 Pages 25 - 70

EMC Test Data

WE ENGINEER S	OCCESS		
Client:	Vivint Wireless	Job Number:	J95684
Product	SR1420 (4x4 5GHz 802.11 Client)	T-Log Number:	T95948
		Project Manager:	Christine Krebill
Contact:	Venkat Kalkunte	Project Coordinator:	-
Emissions Standard(s):	FCC 15.B / 15.407 (New Rules)	Class:	В
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Vivint Wireless

Product

SR1420 (4x4 5GHz 802.11 Client)

Date of Last Test: 9/29/2014

	NTS			EMO	C Test Da
Client:	Vivint Wireless			Job Number:	J95684
Model [.]	SR1420 (4x4 5GHz 802.11	Client)		T-Log Number:	
				Project Manager:	
	Venkat Kalkunte			Project Coordinator:	
Standard:	FCC 15.B / 15.407 (New Ru		Class:	N/A	
est Spec	cific Details	·		Spurious Emissior	
	Objective: specification lis		form final qualifica	tion testing of the EUT with r	espect to the
The EUT	Test Configuration and all local support equipme ed emissions testing the mea				e noted.
mbient	Conditions:	Temperature: Rel. Humidity:	24 °C 38 %		
	ions Made During Tes cations were made to the EU	•			
	is From The Standard ions were made from the req	uirements of the standard.			

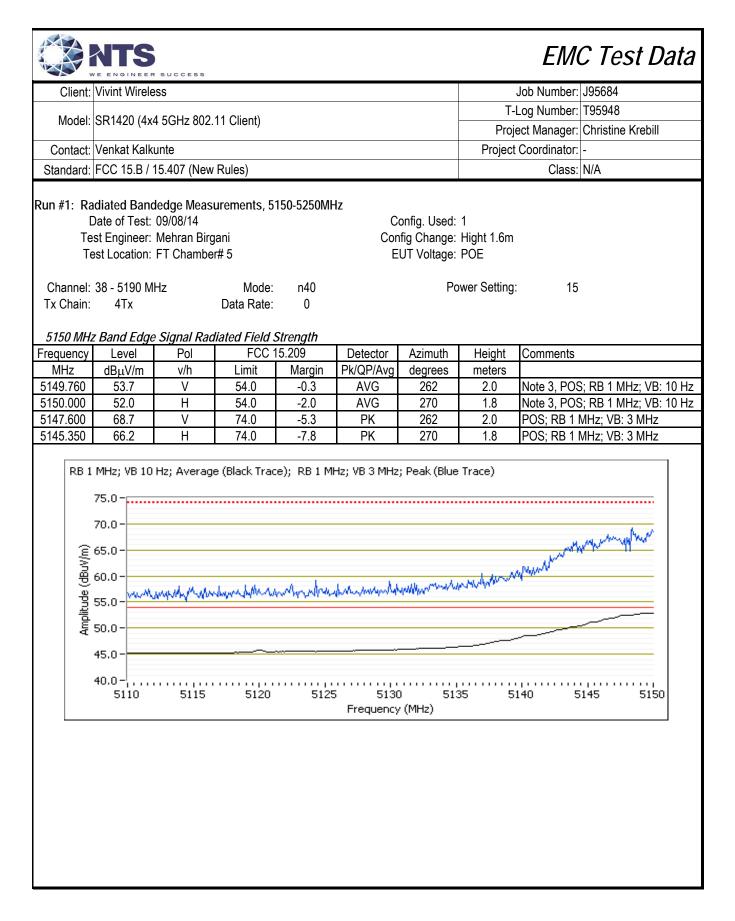
		RSUCCESS				EM	C Test Data
Client	: Vivint Wirel	ess				Job Number:	J95684
						T-Log Number:	T95948
Model	: SR1420 (4)	4 5GHz 802.	11 Client)		_	Project Manager:	Christine Krebill
Contact	: Venkat Kall	kunte				Project Coordinator:	-
Standard	; FCC 15.B /	15.407 (New	Rules)		Class:	N/A	
Summar	y of Resul	ts					
Run #	Mode	Channel	Target Power Setting	Passing Power Setting	Test Performed	Limit	Result / Margin
	n40	38 - 5190MHz	21	15	Restricted Band Edge at 5150 MHz	15.209	53.7 dBµV/m @ 5149.8 MHz (-0.3 dB)
1	n40	46 - 5230MHz	21	21	Restricted Band Edge at 5150 MHz	15.209	51.3 dBµV/m @ 5150.0 MHz (-2.7 dB)
I	n40	54 - 5270MHz	21	21	Restricted Band Edge at 5350 MHz	15.209	47.8 dBµV/m @ 5430.0 MHz (-6.2 dB)
	n40	62 - 5310MHz	21	15	Restricted Band Edge at 5350 MHz	15.209	52.2 dBµV/m @ 5350.0 MHz (-1.8 dB)
	n40	102 -	21	14	Restricted Band Edge at 5460 MHz	15.209	48.8 dBµV/m @ 5460.0 MHz (-5.2 dB)
	n40	n40 5510MHz	21	14	Band Edge 5460 - 5470 MHz	15E	66.7 dBµV/m @ 5467.9 MHz (-1.6 dB)
2	n40	110 -	04	01	Restricted Band Edge at 5460 MHz	15.209	47.7 dBµV/m @ 5458.9 MHz (-6.3 dB)
	n40	5550MHz	21	21	Band Edge 5460 - 5470 MHz	15E	65.1 dBµV/m @ 5465.5 MHz (-3.2 dB)
	n40	134 - 5670MHz	21	19	Band Edge 5725MHz	15E	66.5 dBµV/m @ 5725.6 MHz (-1.8 dB)
3	n40	151 - 5755MHz	21	15	Band Edge 5725MHz	15E	67.3 dBµV/m @ 5710.1 MHz (-1.0 dB)
3	n40	159 - 5795MHz	21	20	Band Edge 5850MHz	15E	65.8 dBµV/m @ 5863.3 MHz (-2.5 dB)

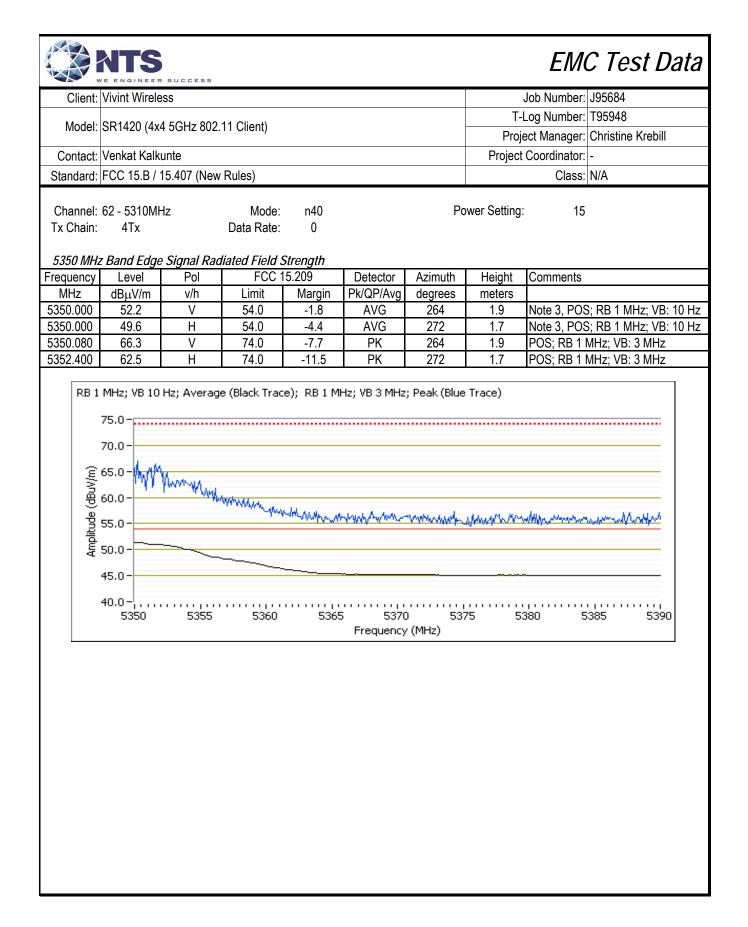
EMC Test Da				
Client:	Vivint Wireless	Job Number:	J95684	
Madalı	SR1420 (4x4 5GHz 802.11 Client)	T-Log Number:	T95948	
wouer.		Project Manager:	Christine Krebill	
Contact:	Venkat Kalkunte	Project Coordinator:	-	
Standard:	FCC 15.B / 15.407 (New Rules)	Class:	N/A	
		Project Coordinator:	-	

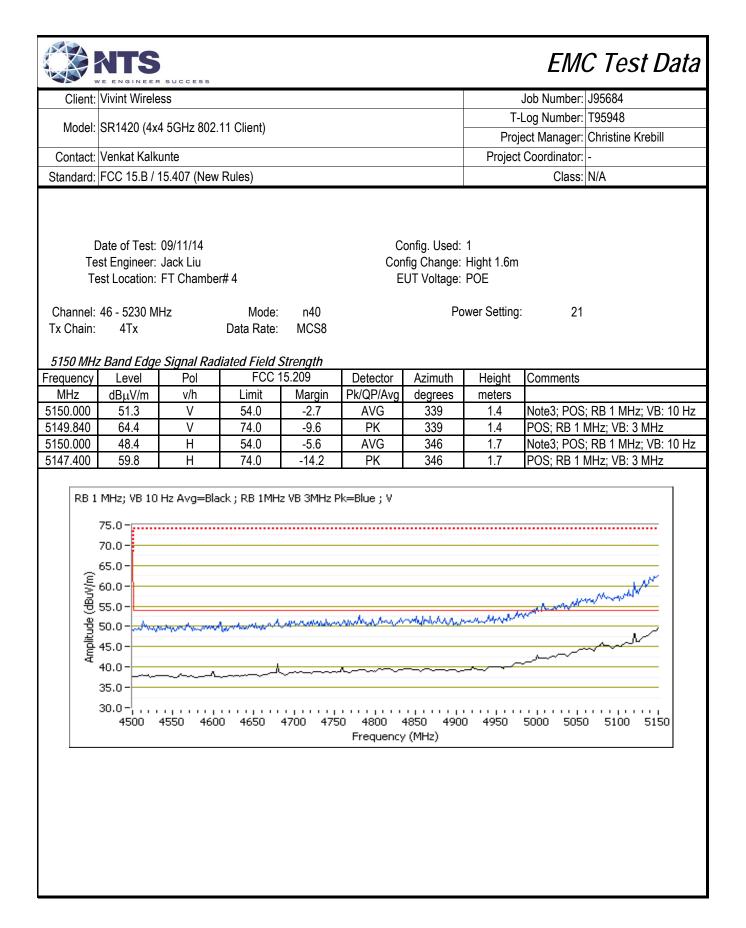
Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
n40	MCS8	0.90	Yes	2	0.4360509	0.8721018	500

Sample Notes

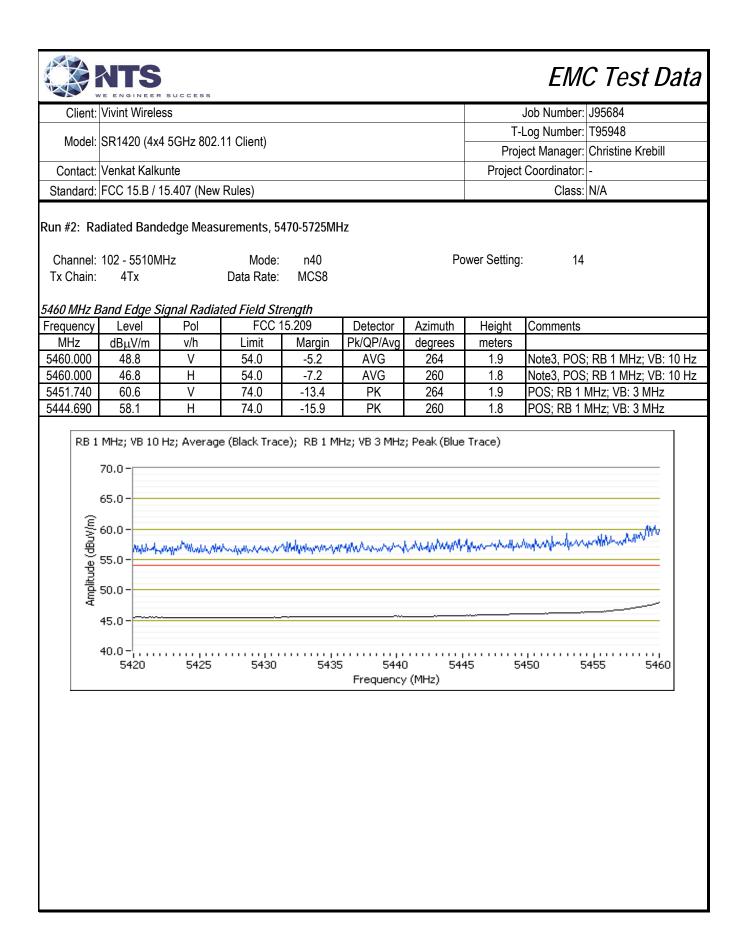
Sample S/N: C7105S1140200BT with ferrite Driver: 5.1.25 Antenna: 6dBi

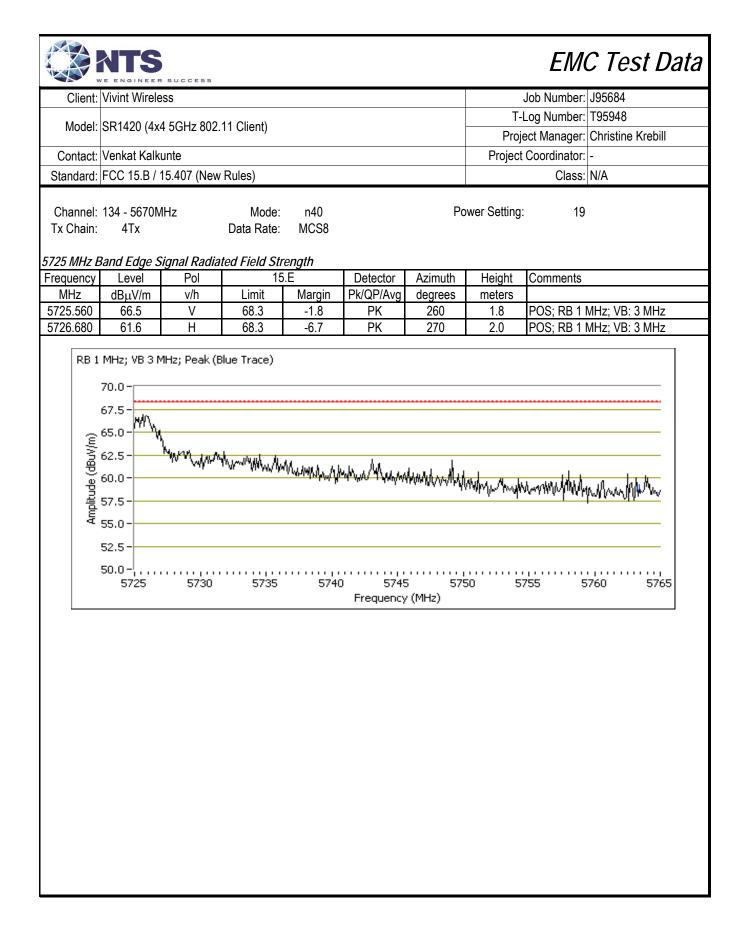

Procedure Comments:

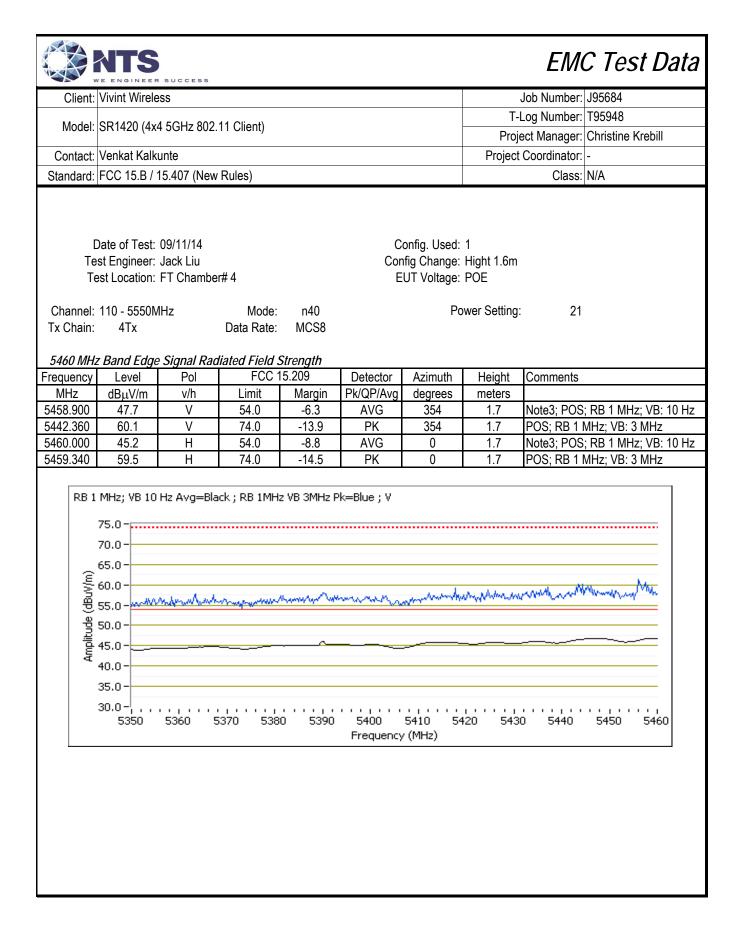

Measurements performed in accordance with FCC KDB 789033


Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

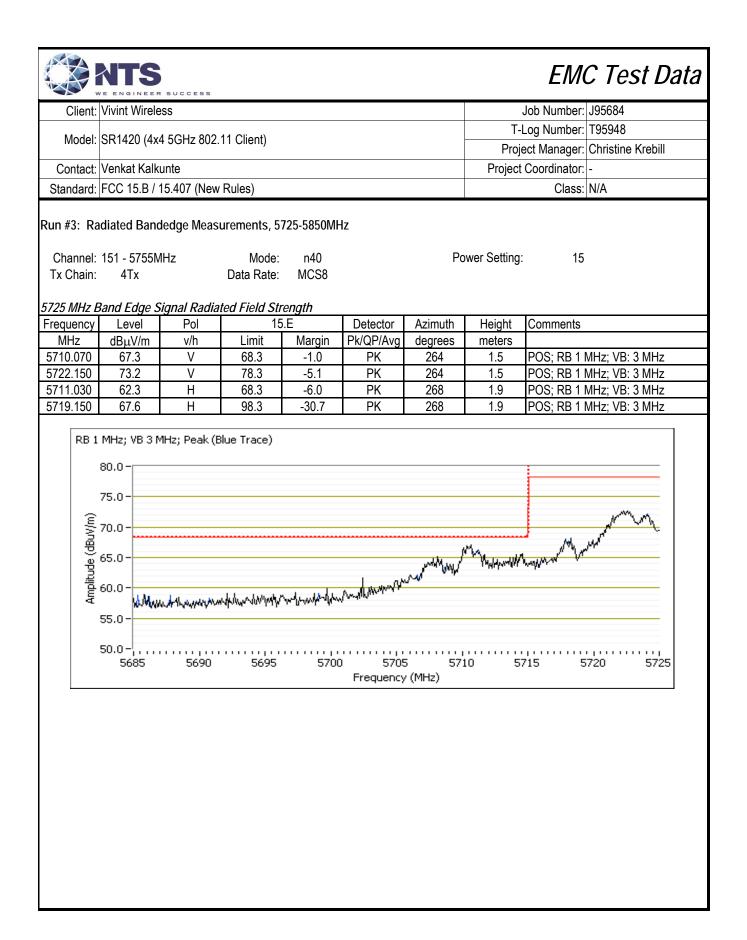
Measurement Specific Notes:

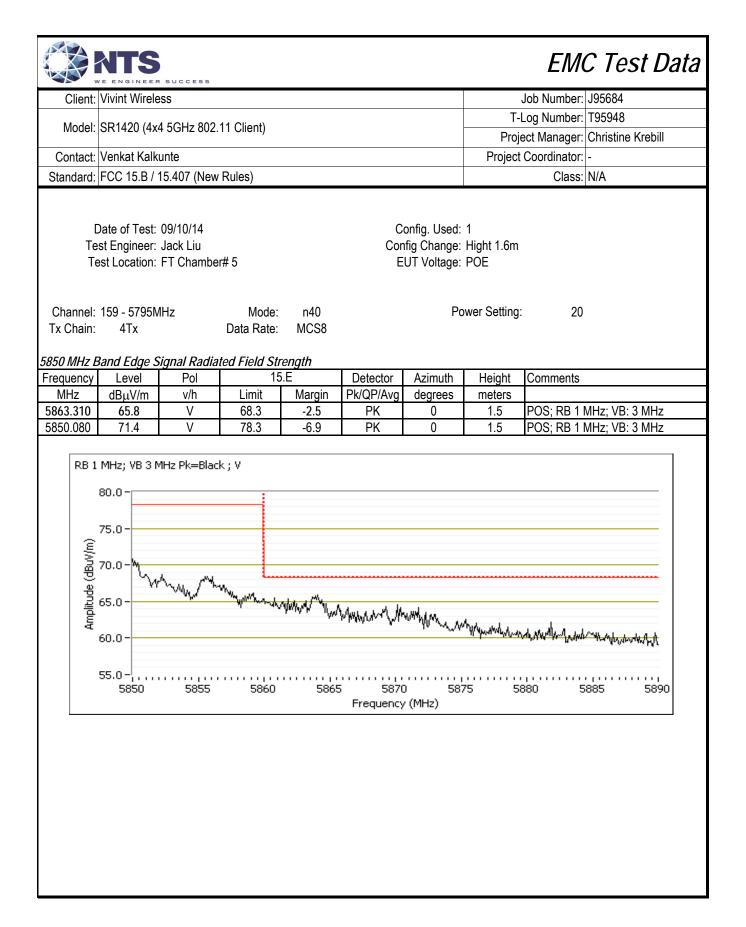

mousuro	
Note 1:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) (or -17dBm/MHz eirp (78.3dBuV/m)). The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per KDB 789033 D02 G) 2) (c), compliance can be demonstrated by meeing the average and peak limits of 15.209, as an alternative.
Note 3:	Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=10Hz, peak detector, linear averaging, auto sweep, trace average 100 * 1/DC traces, measurement corrected by Linear Voltage correction factor
Note 6:	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabluar results for final measurements.
1	





5447.210 62.4 V 74.0 -11.6 PK 0 1.6 POS; RB 1 MHz; VB: 3 MH 5350.000 45.4 H 54.0 -8.6 AVG 350 1.9 Note3; POS; RB 1 MHz; VE 3 MH 5414.150 56.9 H 74.0 -17.1 PK 350 1.9 Note3; POS; RB 1 MHz; VB: 3 MH 5414.150 56.9 H 74.0 -17.1 PK 350 1.9 POS; RB 1 MHz; VB: 3 MH 75.0		Vivint Wirele	SS						Job Number: J95684	
Contact: Venkat Kalkunte Project Manager: Christine Kreb Standard: FCC 15.B / 15.407 (New Rules) Class: N/A Channel: 54 - 5270MHz Mode: n40 Power Setting: 21 Tx Chain: 4Tx Data Rate: MCS8 Stanuth Height Comments 5350 MHz Band Edge Signal Radiated Field Strength requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters j430.020 47.8 V 54.0 -6.2 AVG 0 1.6 Note3; POS; RB 1 MHz; VB 3 Hill j350.000 45.4 H 54.0 -8.6 AVG 350 1.9 Note3; POS; RB 1 MHz; VB: 3 MH j350.000 45.4 H 54.0 -8.6 AVG 350 1.9 POS; RB 1 MHz; VB: 3 MH j414.150 56.9 H 74.0 -17.1 PK 350	Model:	SR1420 (4x4	4 5GHz 802.	11 Client)						
Standard: FCC 15.B / 15.407 (New Rules) Class: N/A Channel: 54 - 5270MHz Mode: n40 Power Setting: 21 Tx Chain: 4Tx Data Rate: MCS8 MCS8 Power Setting: 21 Standard: FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 430.020 47.8 V 54.0 -6.2 AVG 0 1.6 Note3; POS; RB 1 MHz; VB 3 MHz 350.000 45.4 H 54.0 -8.6 AVG 350 1.9 Note3; POS; RB 1 MHz; VB 3 MHz 414.150 56.9 H 74.0 -17.1 PK 350 1.9 POS; RB 1 MHz; VB 3 MHz 60.0 -								-	÷	
Channel: 54 - 5270MHz Mode: n40 Power Setting: 21 Fx Chain: 4Tx Data Rate: MCS8 S <td></td> <td colspan="9"></td>										
x Chain: 4Tx Data Rate: MCS8 5350 MHz Band Edge Signal Radiated Field Strength Equency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters	Standard:	FCC 15.B / 1	15.407 (New	Rules)					Class: N/A	
equency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 430.020 47.8 V 54.0 -6.2 AVG 0 1.6 Note3; POS; RB 1 MHz; VB 3 MHz; VB: 3 MH 447.210 62.4 V 74.0 -11.6 PK 0 1.6 POS; RB 1 MHz; VB: 3 MH 350.000 45.4 H 54.0 -8.6 AVG 350 1.9 Note3; POS; RB 1 MHz; VB: 3 MH 414.150 56.9 H 74.0 -17.1 PK 350 1.9 POS; RB 1 MHz; VB: 3 MH 65.0	Tx Chain:	4Tx		Data Rate:	MCS8		Po	wer Setting	: 21	
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 430.020 47.8 V 54.0 -6.2 AVG 0 1.6 Note3; POS; RB 1 MHz; VB 447.210 62.4 V 74.0 -11.6 PK 0 1.6 POS; RB 1 MHz; VB: 3 MH 350.000 45.4 H 54.0 -8.6 AVG 350 1.9 Note3; POS; RB 1 MHz; VB: 3 MH 350.000 45.4 H 54.0 -8.6 AVG 350 1.9 Note3; POS; RB 1 MHz; VB: 3 MH 414.150 56.9 H 74.0 -17.1 PK 350 1.9 POS; RB 1 MHz; VB: 3 MH RB 1 MHz; VB 10 Hz Avg=Black ; RB 1MHz VB 3MHz Pk=Blue ; V 75.0						Detector	Azimuth	Hoight	Commonto	
I330.020 47.8 V 54.0 -6.2 AVG 0 1.6 Note3; POS; RB 1 MHz; VE I47.210 62.4 V 74.0 -11.6 PK 0 1.6 POS; RB 1 MHz; VB: 3 MH I350.000 45.4 H 54.0 -8.6 AVG 350 1.9 Note3; POS; RB 1 MHz; VE: 3 MH I14.150 56.9 H 74.0 -17.1 PK 350 1.9 POS; RB 1 MHz; VB: 3 MH RB 1 MHz; VB 10 Hz Avg=Black ; RB 1MHz VB 3MHz Pk=Blue ; V 75.0 -									Comments	
I47.210 62.4 V 74.0 -11.6 PK 0 1.6 POS; RB 1 MHz; VB: 3 MH 350.000 45.4 H 54.0 -8.6 AVG 350 1.9 Note3; POS; RB 1 MHz; VE 114.150 56.9 H 74.0 -17.1 PK 350 1.9 Note3; POS; RB 1 MHz; VE: 3 MH I14.150 56.9 H 74.0 -17.1 PK 350 1.9 POS; RB 1 MHz; VE: 3 MH I14.150 56.9 H 74.0 -17.1 PK 350 1.9 POS; RB 1 MHz; VE: 3 MH I14.150 56.0 -									Note3; POS; RB 1 MHz; VB: 10 F	
I14.150 56.9 H 74.0 -17.1 PK 350 1.9 POS; RB 1 MHz; VB: 3 MH RB 1 MHz; VB 10 Hz Avg=Black ; RB 1MHz VB 3MHz Pk=Blue ; V 75.0 70.0 65.0 65.0 60.0 90 55.0 90 90 90 90 90 90 90 90							-		POS; RB 1 MHz; VB: 3 MHz	
RB 1 MHz; VB 10 Hz Avg=Black ; RB 1MHz VB 3MHz Pk=Blue ; V 75.0 - 70.0 - 65.0 - 60.0 - 99, 55.0 - 45.0 - 40.0 -	350.000	45.4	Н	54.0	-8.6	AVG	350	1.9	Note3; POS; RB 1 MHz; VB: 10 H	
75.0 - 70.0 - 65.0 - (W) 60.0 - 9900 - 9000 - 45.0 - 40.0 -	14.150	56.9	Н	74.0	-17.1	PK	350	1.9	POS; RB 1 MHz; VB: 3 MHz	
30.0 -		40.0 - 35.0 - 30.0 -	5360 5	370 5380	5390	5400	5410 54	^	 0 5440 5450 5460	




Contact: Ve	/enkat Kalk		11 Client)					Log Number: T95948								
Contact: Ve	/enkat Kalk						: SR1420 (4x4 5GHz 802.11 Client) T-Log Number: T95948									
		unte	Project Manager: Christine Krebill													
Standard: FC	Contact: Venkat Kalkunte Standard: FCC 15.B / 15.407 (New Rules)						Project Coordinator: -									
	СС 15.В/	15.407 (New	Rules)					Class: N/A								
5470 MHz B	Band Edge	e Signal Rad	liated Field .	Strength												
requency	Level	Pol	15	ō.E	Detector	Azimuth	Height	Comments								
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters									
5467.920 5466.230	66.7 63.5	V H	68.3 68.3	-1.6 -4.8	PK PK	264 260	<u>1.9</u> 1.8									
DB 1 M		/IHz; Peak (E	lue Trace)													
4 55	0.0- 0000000000000000000000000000000000	yyl ddiod dwynody	prof When a population	<u>М. Лићчи и</u>	• •			hanhillenternannihandrandfraddfraddfraddfraddfraddfraddfra								
50	0.0- , , 5460.0	''''''''''''''''''''''''''''''''''''''	5462.0 54	463.0 54	64.0 5465. Frequency	0 5466.0	5467.0	5468.0 5469.0 5470.0								

v N	VE ENGINEER	SUCCESS							C Test Da
Client:	Vivint Wirele	SS						Job Number:	J95684
Model [.]	SR1420 (4x4	L 5GHz 802	11 Client)					Log Number:	
							2	Christine Krebill	
ontact:	Venkat Kalku	unte				Project	Coordinator:	-	
andard:	FCC 15.B / 1	5.407 (New	Rules)			Class:	N/A		
quency /IHz	Level dBµV/m	v/h	15 Limit	i.E Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
	z <i>Band Edge</i> Level	Pol		i.E	Detector	Azimuth	Height	Comments	
65.510	65.1	V	68.3	-3.2	PK	0	1.6	POS [,] RB 1	MHz; VB: 3 MHz
8.960	60.5	H	68.3	-7.8	PK	352	1.7		MHz; VB: 3 MHz
	MHz; VB 3 M	1Hz Pk=Blac	k trace ; V						
		IHz Pk=Blac	k trace ; V						
	70.0-	IHz Pk=Blacl	k trace ; V			.i. Ma.i			
dBuV/m)	70.0-	IHz Pk=Blacl				an the state of th	՝ Դութվետին	NAW .	

EMC Test Data

	/E ENGINEER SUCCESS		
Client:	Vivint Wireless	Job Number:	J95684
Model:	SR1420 (4x4 5GHz 802.11 Client)	T-Log Number:	T95948
wouer.	SR 1420 (4x4 561 2 602. 11 Client)	Project Manager:	Christine Krebill
Contact:	Venkat Kalkunte	Project Coordinator:	-
Standard:	FCC 15.B / 15.407 (New Rules)	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

NTS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:	Temperature:	23 °C
	Rel. Humidity:	40 %

Summary of Results

			T (D ·			
Run #	Mode	Channel	Target Power Setting	Passing Power Setting	Test Performed	Limit	Result / Margin
1	n40	38 - 5190MHz	21	21	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	64.7 dBµV/m @ 10380.7 MHz (-3.6 dB)
I	n40	46 - 5230MHz	21	21	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	67.1 dBµV/m @ 10467.1 MHz (-1.2 dB)
2	n40	54 - 5270MHz	21	21	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	53.3 dBµV/m @ 5433.3 MHz (-0.7 dB)
2	2 n40		21	15	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	43.9 dBµV/m @ 1000.0 MHz (-10.1 dB)
	n40	102 - 5510MHz	21	14	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	48.2 dBµV/m @ 7346.7 MHz (-5.8 dB)
3	n40	110 - 5510MHz	21	21	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	50.6 dBµV/m @ 7400.0 MHz (-3.4 dB)
	n40	142- 5710MHz	21	21	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	51.2 dBµV/m @ 11420.0 MHz (-2.8 dB)
4	n40	151 - 5755MHz	21	15	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	48.3 dBµV/m @ 7673.4 MHz (-5.7 dB)
4	n40	159 - 5795MHz	21	21	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	49.8 dBµV/m @ 11588.4 MHz (-4.2 dB)

	ATS	EMC Test Data			
Client:	Vivint Wireless	Job Number:	J95684		
Madal	SR1420 (4x4 5GHz 802.11 Client)	T-Log Number:	T95948		
wouer.	SR 1420 (4x4 561 2 602.11 Client)	Project Manager:	Christine Krebill		
Contact:	Venkat Kalkunte	Project Coordinator:	-		
Standard:	FCC 15.B / 15.407 (New Rules)	Class:	N/A		

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Procedure Comments:

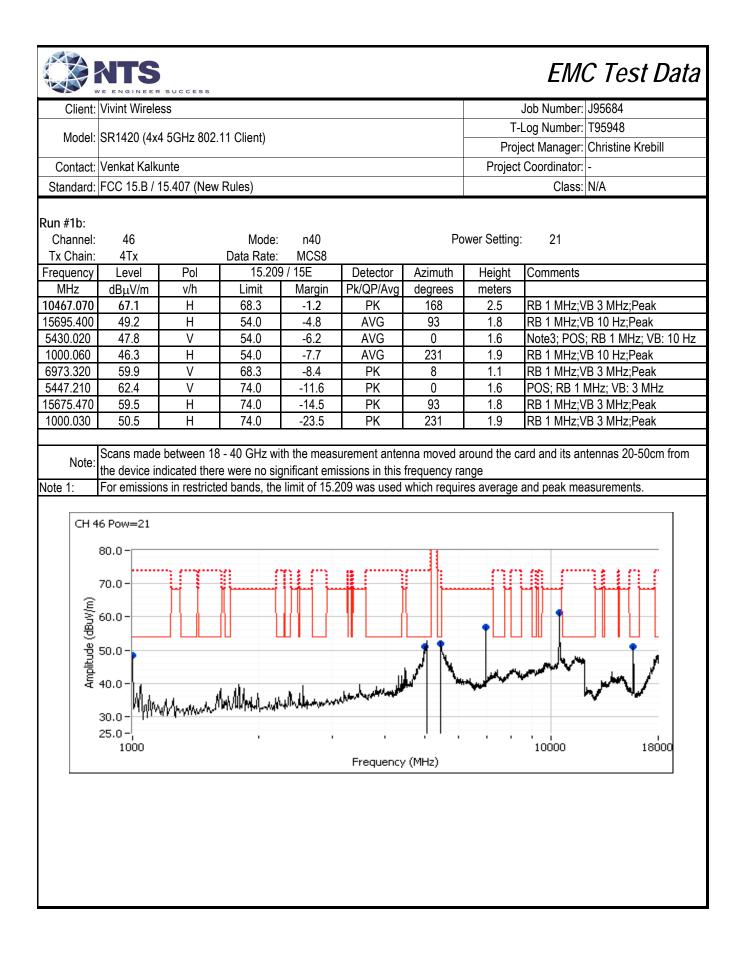
Measurements performed in accordance with FCC KDB 789033

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

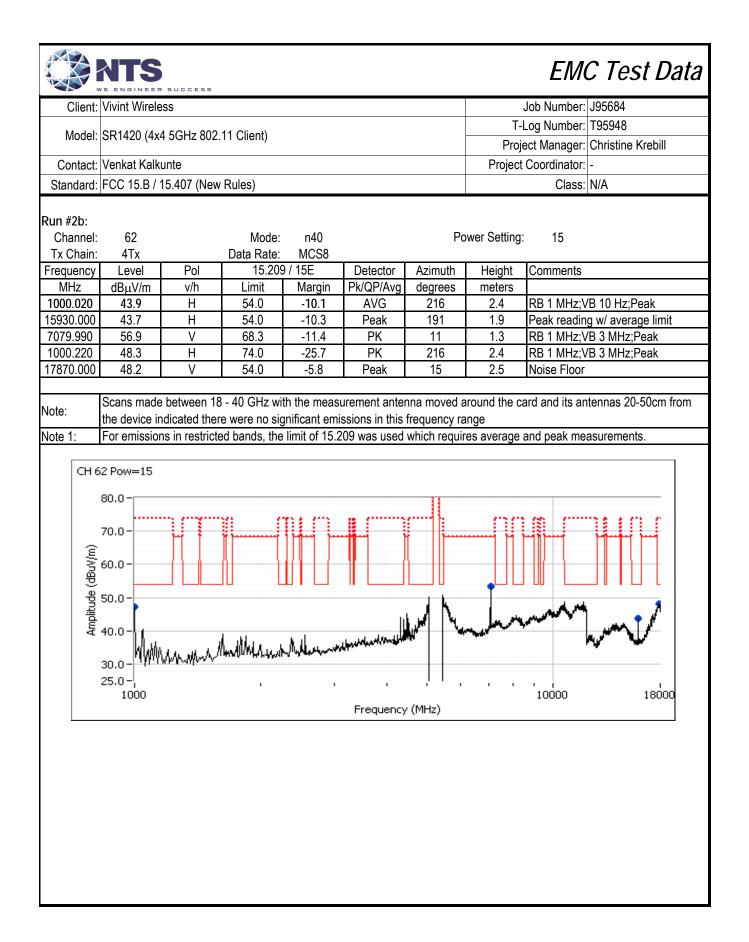
Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)	
n40	MCS8	0.90	Yes	2	0.4360509	0.8721018	500	

Sample Notes

Sample S/N: C7105S1140200BT with ferrite Driver: 5.1.25 Antenna: 6dBi


Measurement Specific Notes:

	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
Note 1:	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per KDB 789033 2) c) (i), compliance can be
	demonstrated by meeing the average and peak limits of 15.209, as an alternative.
Note 3:	Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=10Hz, peak detector,
Note 3:	linear averaging, auto sweep, trace average 100 * 1/DC traces, measurement corrected by Linear Voltage correction factor
Nata Ci	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabluar results for final
Note 6:	measurements.


Notes:

Preliminary testing showed no radio related emissions below 1GHz.

Client:	Vivint Wirele	SS						Job Number: J95684	
M	0.004.400.74	4 5 0 1 0 00					T-	Log Number: T95948	
Model:	SR1420 (4x4	4 5GHz 802.	11 Client)				Project Manager: Christine Krebill		
Contact:	Venkat Kalkı	unte					Project	Coordinator: -	
Standard:	FCC 15.B / 1	15.407 (New	Rules)					Class: N/A	
D Te	diated Spurio Date of Test: st Engineer: est Location:	09/10/14 Jack Liu		40,000 MHz	Cor	n the 5150-5 onfig. Used: ifig Change: UT Voltage:	1 Hight 1.6m	and	
Run #1a: Channel: Tx Chain:	38 4Tx		Mode: Data Rate:	n40 MCS8		Po	wer Setting:	21	
Frequency	Level	Pol		9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
10380.700	64.7	Н	68.3	-3.6	PK	202	1.6	RB 1 MHz;VB 3 MHz;Peak	
5005.130	49.7	V	54.0	-4.3	AVG	3	1.9	RB 1 MHz;VB 10 Hz;Peak	
15570.200	49.0	Н	54.0	-5.0	AVG	223	1.9	Note 3;RB 1 MHz;VB 10 Hz;Peak	
1000.040	46.7	Н	54.0	-7.3	AVG	217	1.9	RB 1 MHz;VB 10 Hz;Peak	
6920.100	59.2	V	68.3	-9.1	PK	360	1.2	RB 1 MHz;VB 3 MHz;Peak	
15565.370	63.1	Н	74.0	-10.9	PK	223	1.9	RB 1 MHz;VB 3 MHz;Peak	
5020.930	63.0	V	74.0	-11.0	PK	3	1.9	RB 1 MHz;VB 3 MHz;Peak	
1000.000	50.2	Н	74.0	-23.8	PK	217	1.9	RB 1 MHz;VB 3 MHz;Peak	
Note: Note 1:	the device in	idicated ther	e were no sig	nificant emi	ssions in this	frequency ra	nge	ard and its antennas 20-50cm from and peak measurements.	
Amplitude (dBuV/m)	8 Pow=21 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 25.0 - 1000	Mum		1) - - - - - -	Frequency				

	ATS WE ENGINEER	SUCCESS						EMO	C Test Data	
Client:	Vivint Wirele	SS						Job Number:	J95684	
Madalı	001400 /4.						T-	Log Number:	T95948	
Model:	SR1420 (4x4	4 5GHZ 802.	TT Client)				Proj	ect Manager:	Christine Krebill	
Contact:	Venkat Kalkı	unte					Project	Coordinator:	-	
Standard:	FCC 15.B / 1	15.407 (New	Rules)				Class: N/A			
l Te	diated Spurie Date of Test: est Engineer: est Location:	09/10/14 M. Birgani		40,000 MHz	Cor	n the 5250-5 onfig. Used: ıfig Change: UT Voltage:	1 Hight 1.6m	and		
Run #2a:										
Channel:	54		Mode:	n40		Pc	ower Setting:	21		
Tx Chain:	4Tx		Data Rate:	MCS8				-		
Frequency	Level	Pol		9 / 15E	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	D	<u> </u>	
5433.330	53.3	V	54.0	-0.7	Peak	5	1.6		E measurment	
10542.270		H	68.3	-1.5	PK	199	1.5		/B 3 MHz;Peak	
1000.060 15797.420	46.5 45.5	<u>н</u> Н	54.0 54.0	-7.5 -8.5	AVG AVG	<u>241</u> 45	2.0 2.0		/ <u>B 10 Hz;Peak</u> MHz;VB 10 Hz;Peak	
7026.680	45.5 59.3	V	68.3	-0.5	PK	10	1.3		/B 3 MHz;Peak	
15803.620	58.4	 H	74.0	-15.6	PK	45	2.0		/B 3 MHz;Peak	
10000.020										
1000.030	50.7	Н	74.0	-23.3	PK	241	2.0	RB 1 MHz;V	/B 3 MHz;Peak	

Cliont		SUCCESS								
UIEIII.	Vivint Wireles	SS						Job Number: J95684		
Model:	SR1420 (4x4	5GHz 802.	11 Client)					Log Number: T95948		
			•				-	ect Manager: Christine Krebill		
	Venkat Kalku		- · · ·				Project Coordinator: -			
Standard:	FCC 15.B / 1	5.407 (New	Rules)					Class: N/A		
[Te	diated Spuric Date of Test: est Engineer: est Location:	09/10/14 M. Birgani		40,000 MHz	Con	n the 5470-5 onfig. Used: ifig Change: UT Voltage:	1 Hight 1.6m			
Run #3a:						_				
hannel:	102 4Tx		Mode:	n40		Po	ower Setting	: 14		
x Chain:	4Tx Level	Pol	Data Rate:	MCS8 9 / 15E	Detector	Azimuth	Hoight	Comments		
Frequency MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	Height meters			
7346.690	48.2	H	54.0	-5.8	AVG	44	1.7	RB 1 MHz;VB 10 Hz;Peak		
5120.140	46.9	V	54.0	-7.1	AVG	360	1.7	RB 1 MHz;VB 10 Hz;Peak		
1000.020	43.9	Н	54.0	-10.1	AVG	216	2.4	RB 1 MHz;VB 10 Hz;Peak		
7347.000	55.3	Н	74.0	-18.7	PK	44	1.7	RB 1 MHz;VB 3 MHz;Peak		
5119.800	55.3	V	74.0	-18.7	PK	360	1.7	RB 1 MHz;VB 3 MHz;Peak		
1000.220	48.3	H	74.0	-25.7	PK	216	2.4	RB 1 MHz;VB 3 MHz;Peak		
4690.000	46.8	V V	68.3	-21.5	Peak	159	1.9	RB 1 MHz;VB 3 MHz;Peak		
7790.000	-	V	-	-	Peak	-	-	RB 1 MHz;VB 3 MHz;Peak		
	the device in	dicated ther	e were no si	gnificant emi	ssions in this	frequency ra	inge	ard and its antennas 20-50cm from and peak measurements.		

		SUCCESS						EMC Test Data	
Client:	Vivint Wirele	SS						Job Number: J95684	
Madal	004400 (4		44.0[])				T-	Log Number: T95948	
Wodel:	SR1420 (4x4	5GHZ 802	.11 Client)				Proj	ect Manager: Christine Krebill	
Contact:	Venkat Kalkı	unte					Project	Coordinator: -	
Standard:	FCC 15.B / 1	5.407 (New	(Rules)				Class: N/A		
		,	/						
Run #3b:									
Channel:	110		Mode:	n40		Po	wer Setting	: 21	
Tx Chain:	4Tx		Data Rate:	MCS8	_				
Frequency	Level	Pol	15.209		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7400.040	50.6 50.2	V H	54.0 54.0	-3.4 -3.8	AVG AVG	335 210	<u>1.1</u> 1.2	RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak	
11099.000	63.4	<u>п</u> Н	54.0 74.0	-3.0 -10.6	PK	210	1.2	RB 1 MHz;VB 3 MHz;Peak	
7399.870	56.5	<u> </u>	74.0	-10.0	PK	335	1.2	RB 1 MHz;VB 3 MHz;Peak	
16640.000	50.5	H	68.3	-17.3	Peak	145	1.1	RB 1 MHz;VB 3 MHz;Peak	
14800.000	47.5	H	68.3	-20.8	Peak	143	1.9	RB 1 MHz;VB 3 MHz;Peak	
17850.000	-	V		-20.0	Peak	-	-	Noise Floor	
					Ssions in this	which requir		and peak measurements.	

		SUCCESS						EMO	C Test Data
Client:	Vivint Wirele	SS						Job Number:	J95684
	0.54400.44						T-	Log Number:	T95948
Model:	SR1420 (4x4	1 5GHz 802.	11 Client)				Proj	ect Manager:	Christine Krebill
Contact:	Venkat Kalkı	unte					Project	Coordinator:	-
Standard:	FCC 15.B / 1	5.407 (New	Rules)					Class:	N/A
Τe	Date of Test: est Engineer: est Location:	Jack Liu	r# 5		Con	onfig. Used: fig Change: UT Voltage:	Hight 1.6m		
Channel: Tx Chain:	142 4Tx		Mode: Data Rate:	n40 MCS8		Po	ower Setting	21	
Frequency	Level	Pol		9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
11420.000		Н	54.0	-2.8	AVG	202	1.6	RB 1 MHz;V	/B 10 Hz;Peak
7613.380	48.1	V	54.0	-5.9	AVG	123	2.3		/B 10 Hz;Peak
3806.630	44.2	V	54.0	-9.8	AVG	307	2.3		/B 10 Hz;Peak
11410.700	63.9	Н	74.0	-10.1	PK	202	1.6	,	/B 3 MHz;Peak
1000.070	41.5	Н	54.0	-12.5	AVG	219	2.2		/B 10 Hz;Peak
17110.000	50.0	H	68.3	-18.3	Peak	206	1.6		/B 3 MHz;Peak
7613.270	54.7	V	74.0	-19.3	PK	123	2.3		/B 3 MHz;Peak
3806.630	50.3	V	74.0	-23.7	PK	307	2.3		/B 3 MHz;Peak
999.930	46.6	Н	74.0	-27.4	PK	219	2.2	RB 1 MHZ;V	/B 3 MHz;Peak
	the device in	dicated ther	e were no sig	gnificant emi	urement anter issions in this 209 was used	frequency ra	ange		tennas 20-50cm from asurements.
	30.0- 25.0- 1000	when the stand	hallin	Mathema	http://www.enderland.com		-	10000	18000

Client:	Vivint Wirele	SUCCESS						Job Number:	10568/
Cilent.		33						Log Number:	
Model:	SR1420 (4x4	5GHz 802.	11 Client)					-	Christine Krebill
Carataati	Venkat Kalkı	unto					,	0	
							Project	Coordinator:	-
Standard:	FCC 15.B / 1	5.407 (New	Rules)					Class:	N/A
un #4. Rad	diated Spurio	ous Emissio	ons. 1.000 - 4	40.000 MHz	. Operation i	n the 5725-5	850 MHz B	and	
	Date of Test:		, ,			onfig. Used:			
	st Engineer:					ifig Change:	-		
Te	est Location:	FT Chambe	r# 5		E	UT Voltage:	POE		
un #4a:					_				
hannel:	151		Mode:	n40	Po	wer Setting:	15		
x Chain:	4Tx		Data Rate:	MCS8		<u>, , , , </u>			
requency	Level	Pol	15.209	1	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1500.080	48.3	V H	54.0	-5.7	AVG	123	2.5		B 10 Hz;Peak
1509.980 000.010	47.2 44.2	<u>н</u> Н	54.0 54.0	-6.8 -9.8	AVG AVG	193 135	1.8 1.9		<u>B 10 Hz;Peak</u> B 10 Hz;Peak
120.000	44.2	V	54.0 54.0	-9.0	AVG	262	1.9		MHz;VB 10 Hz;Peak
836.700	40.9	V	54.0	-10.3	AVG	266	1.7		B 10 Hz;Peak
509.750	58.2	H	74.0	-15.8	PK	193	1.7		B 3 MHz;Peak
673.340	54.0	V	74.0	-20.0	PK	123	2.5		B 3 MHz;Peak
119.820	50.6	V	74.0	-23.4	PK	262	1.7		B 3 MHz;Peak
000.040	47.6	Н	74.0	-26.4	PK	135	1.9		B 3 MHz;Peak
836.740	45.6	V	74.0	-28.4	PK	266	1.7		B 3 MHz;Peak
7810.000	-	V	-	-	Peak	100	1.3	Noise Floor	
ote:								ard and its an	tennas 20-50cm from
					ssions in this				
ote 1:	For emission	is in restricte	ed bands, the	limit of 15.2	209 was used	which requir	es average	and peak mea	asurements.
CH 1	51 Pow=15								
	80.0-								
	70.0	1.1	81 - F	nem	11	mal	- നന	180 F	11111
	70.0-	Ηİ	i haaraa i	i hini in	nin i	i ijirtu	i ii i	hilithi	Manfri Imi
l l l	60.0-		<u> </u>						
멸	00.0								
e	50.0-						•	•	
olitu					•	. / 1	بقر ا	\sim	J. I
Amp	60.0 -						14 M		JAMAN /
	1.000	1 Berrich	Maple	Mann	a service would be				v v
	30.0 - ¹⁹ 91 91								
	25.0-					, I İ			1
	1000							10000	18000

		SUCCESS						EMC Test Data
Client	Vivint Wireles	SS						Job Number: J95684
	0.54400.44.4	5011 000					T-	Log Number: T95948
Model	SR1420 (4x4	5GHz 802	.11 Client)				Proj	ect Manager: Christine Krebill
Contact	Venkat Kalku	inte					Project	Coordinator: -
Standard	FCC 15.B / 1	5.407 (New	(Rules)					Class: N/A
		,	/					
Run #4b:								
Channel:	159		Mode:	n40		Po	wer Setting	: 21
Tx Chain:	4Tx		Data Rate:	MCS8				
Frequency	Level	Pol	15.209		Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11588.400		H	54.0	-4.2	AVG	173	1.7	RB 1 MHz;VB 10 Hz;Peak
7726.690	49.5	H	54.0	-4.5	AVG	130	1.4	RB 1 MHz;VB 10 Hz;Peak
5120.140	45.8	V	54.0	-8.2	AVG PK	359	1.6	RB 1 MHz;VB 10 Hz;Peak
11590.470 17390.000	63.4 53.3	<u>Н</u> Н	74.0 68.3	-10.6 -15.0	Prk Peak	173 159	<u>1.7</u> 1.9	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
5120.140	55.4	V	74.0	-13.0	Peak	359	1.9	RB 1 MHz;VB 3 MHz;Peak
7726.900	54.6	 H	74.0	-10.0	PK	130	1.0	RB 1 MHz;VB 3 MHz;Peak
1120.000	0110		11.0	10.1		100		
					ssions in this 209 was used			and peak measurements.

NTS			EMC Test Data
Client: Vivint Wireless			Job Number: J95684
			T-Log Number: T95948
Model: SR1420 (4x4 5GHz 802.1	1 Client)		Project Manager: Christine Krebill
Contact: Venkat Kalkunte			Project Coordinator: -
Standard: FCC 15.B / 15.407 (New F	Rules)		Class: N/A
Power, P	RSS-210 (LELAN) a Antenna Port SD, Peak Excursion, B	Measuremer	nts
Test Specific Details Objective: The objective specification		orm final qualificatio	on testing of the EUT with respect to the
•	le attenuator to prevent over	•	port of the EUT was connected to the spectrum ement system. All measurements are corrected to
Ambient Conditions:	Temperature: Rel. Humidity:	24 °C 40 %	
Modifications Made During Te No modifications were made to the B			
Deviations From The Standard No deviations were made from the re			

		SUCCESS				C Test Data
Client: V	/ivint Wireles	S			Job Number:	J95684
Model: S	SR1420 (4x4	5GHz 802.11 Client)			_og Number:	
	-				-	Christine Krebill
	/enkat Kalku			Project	Coordinator:	
Standard: F	-CC 15.B / 1	5.407 (New Rules)			Class:	N/A
Summary	of Results	5				
Run	#	Test Performed	Limit	Pass / Fail	Result / Mar	gin
1		Power, 5150 - 5250MHz	15.407(a) (1) (iv)	Pass	n40: 19.7dB	m (93.3mW)
1		PSD, 5150 - 5250MHz	15.407(a) (1) (iv)	Pass	n40: 3.6dBn	n/MHz
1		Power, 5250 - 5350MHz	15.407(a) (2)	Pass	n40: 20.9dB	m (123.9mW)
1		PSD, 5250 - 5350MHz	15.407(a) (2)	Pass	n40: 4.8dBn	n/MHz
1		Max EIRP 5250 - 5350MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP ≥ 200mW (23dBm) DFS threshold = -64dBm.	Pass	EIRP = 29.9	dBm (987mW)
1		Power, 5470 - 5725MHz	15.407(a) (2)	Pass	n40: 20.9dB	m (123.4mW)
1		PSD, 5470 - 5725MHz	15.407(a) (2)	Pass	n40: 5.5dBn	n/MHz
1		Max EIRP 5470 - 5725MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP ≥ 200mW (23dBm) DFS threshold	Pass	EIRP = 29.9	dBm (982mW)
1		Power, 5725 - 5850MHz	15.407(a) (3)	Pass	n40: 23.6dB	m (228.7mW)
1		PSD, 5725 - 5850MHz	15.407(a) (3)	Pass	n40: 7.5dBn	n/MHz
1		26dB Bandwidth	15.407 (Information only)	-	n40: 36.9MI	Hz (min across all band
2		Minimum 6dB Bandwidth for UNII3 band	15.407(e)	Pass	n40: 35.6MH	lz

	NTS	EMO	C Test Data
Client:	Vivint Wireless	Job Number:	J95684
Madal	SR1420 (4x4 5GHz 802.11 Client)	T-Log Number:	T95948
Model.	SR 1420 (4x4 5GHz 602.11 Client)	Project Manager:	Christine Krebill
Contact:	Venkat Kalkunte	Project Coordinator:	-
Standard:	FCC 15.B / 15.407 (New Rules)	Class:	N/A

Note:

1. Antenna port number defined Port JE09 -Test port 0 ; Port JE10 -Test port 1 ; Port JE11 -Test port 2 ; Port JE12 -Test port 3

2. All the measurements measured at the end of the internal cable

	ATS	EMC Test Data			
Client:	Vivint Wireless	Job Number:	J95684		
Model	SR1420 (4x4 5GHz 802.11 Client)	T-Log Number:	T95948		
WOUEI.	SR 1420 (4x4 5GHz 602.11 Client)	Project Manager:	Christine Krebill		
Contact:	Venkat Kalkunte	Project Coordinator:	-		
Standard:	FCC 15.B / 15.407 (New Rules)	Class:	N/A		

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033 D01 v01r03, dated April 8, 2013

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
n40	MCS8	0.90	Yes	2	0.4360509	0.8721018	500

Sample Notes

Sample S/N: C7105S1140200BT Driver: 5.1.25

Antenna Gain Information

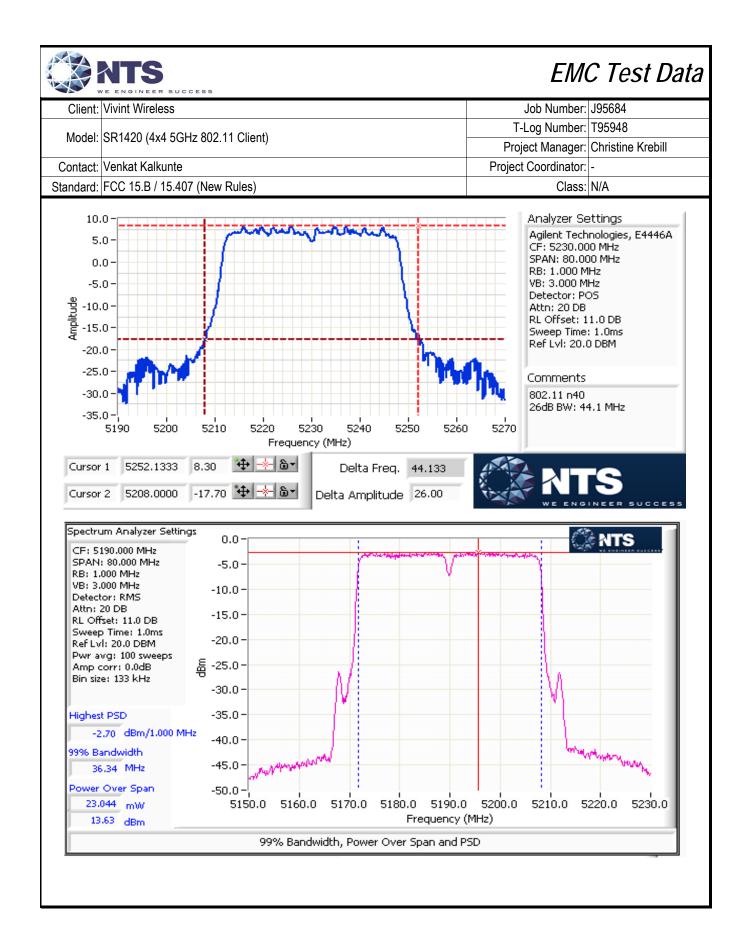
Freq	ŀ	Antenna Gair	n (dBi) / Chai	n	BF	MultiChain	MultiChain CDD	Sectorized	Dir G	Dir G
печ	1	2	3	4	DF	Legacy	CDD	/ Xpol	(PWR)	(PSD)
5150-5250	6	6	6	6	Yes	No	Yes	No	9.0	9.0
5250-5350	6	6	6	6	Yes	No	Yes	No	9.0	9.0
5470-5725	6	6	6	6	Yes	No	Yes	No	9.0	9.0
5725-5850	6	6	6	6	Yes	No	Yes	No	9.0	9.0

For devices that support CDD modes

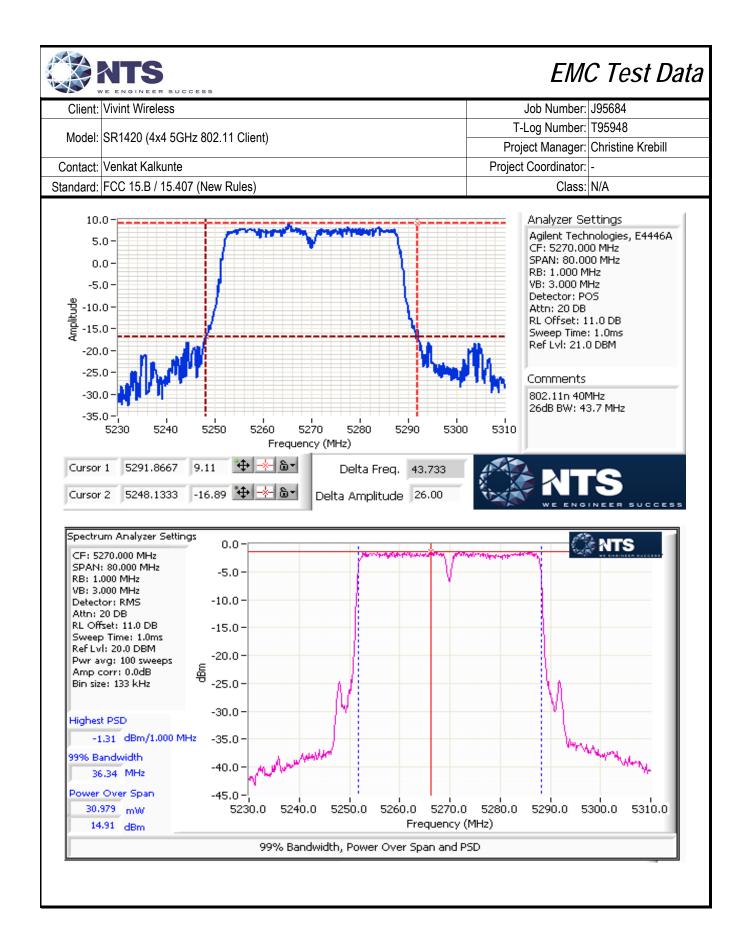
Min # of spatial streams: Max # of spatial streams: 2

4

MCS8 is the lowest rate supported

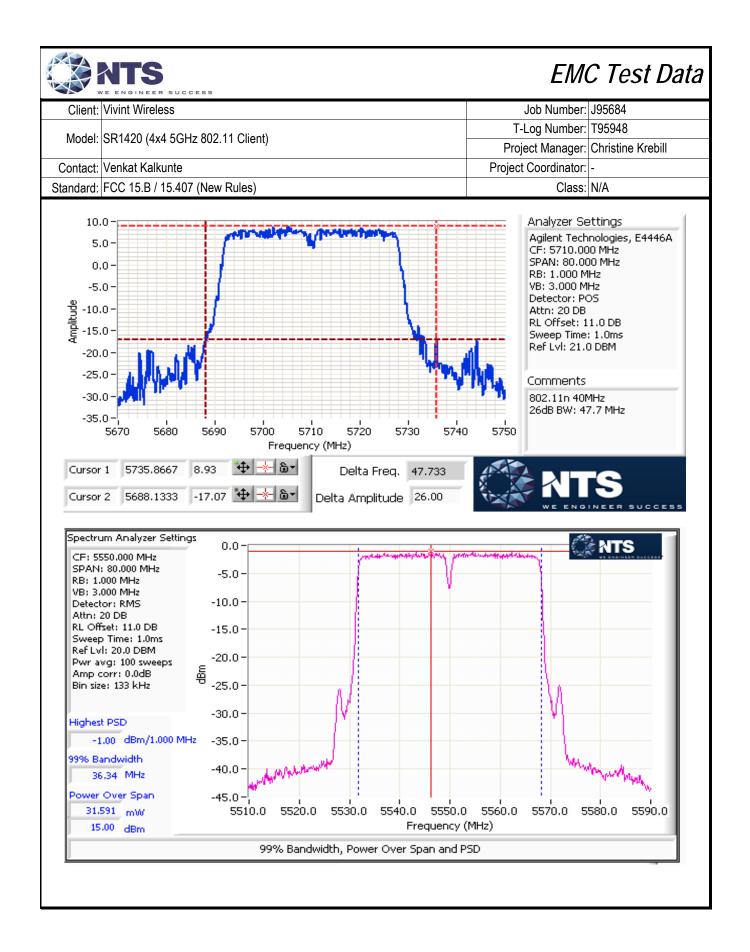

 Notes:
 BF = beamforming mode supported, Multichain Legacy = 802.11 legacy data rates supported for multichain transmissions, CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized or cross polarized.

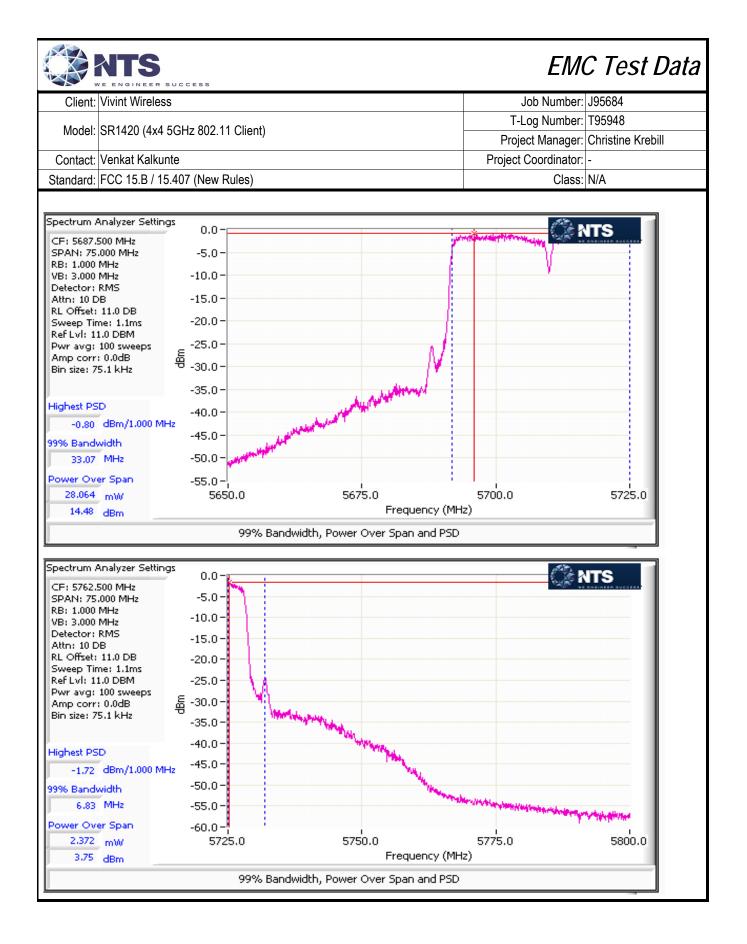
 Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; GA (PSD) = total gain for PSD calculations based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different from the PSD value.

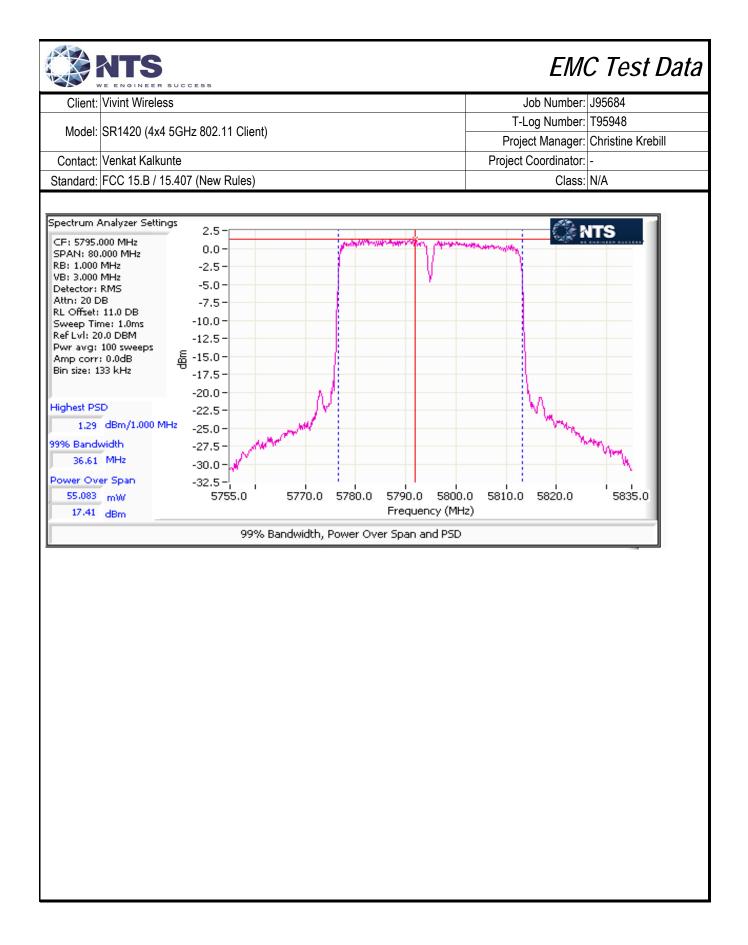

 Notes:
 Array gain for power/psd calculated per KDB 662911 D01, v02r01. Spatial Multiplexing with Nant=4, Nss=2, for worse case condition. Array gain = 10*log(4/2) = 3dB.

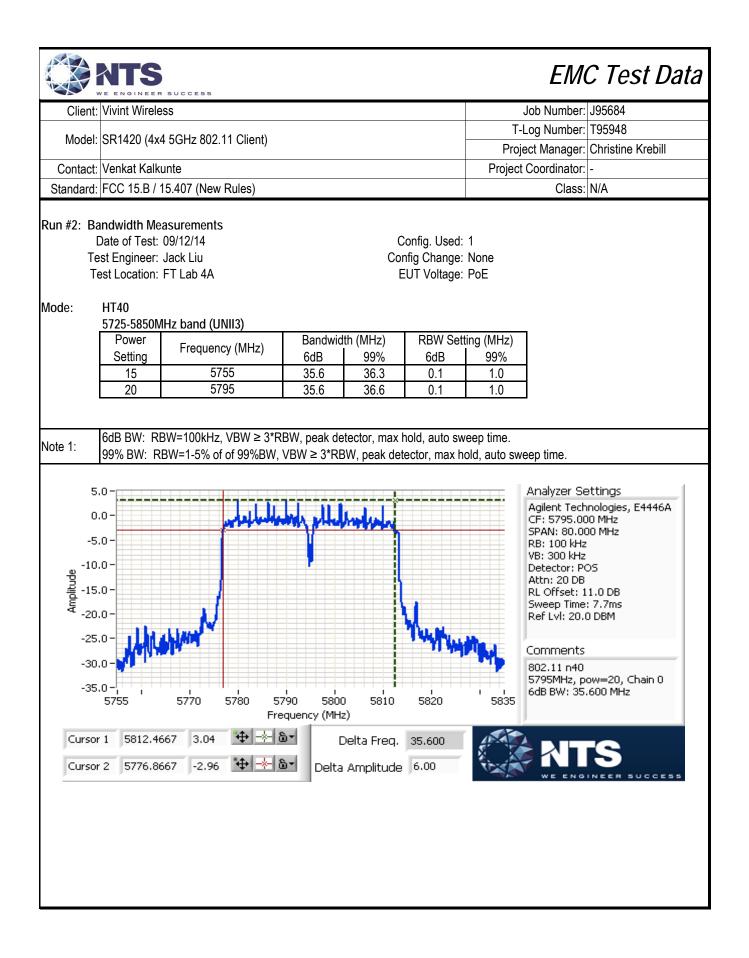
VITS Vivint Wireless		C Test Data
	Job Number:	J95684
SD1420 (Av4 5CHz 802 11 Client)	T-Log Number:	Т95948
SR1420 (4x4 5GHz 802.11 Client)	Project Manager:	Christine Krebill
/enkat Kalkunte	Project Coordinator:	-
FCC 15.B / 15.407 (New Rules)	Class:	N/A
dwidth, Output Power and Power Spectral Density - MIMO Systems		
Measured using the same analyzer settings used for output power.		
		f the conductivity of the last
in linear terms). The antenna gain used to determine the EIRP and limits f node of the MIMO device. If the signals on the non-coherent between the t he limits is the highest gain of the individual chains and the EIRP is the sun	or PSD/Output power dep transmit chains then the n of the products of gain a	pends on the operating gain used to determine and power on each
	CC 15.B / 15.407 (New Rules) dwidth, Output Power and Power Spectral Density - MIMO Systems Dutput power measured using a spectrum analyzer (see plots below). RBW t*span/RBW, Sample or RMS detector, power averaging on and power into the of KDB 789033). Measured using the same analyzer settings used for output power. 19% Bandwidth measured in accordance with RSS GEN - RB > 1% of span For MIMO systems the total output power and total PSD are calculated form in linear terms). The antenna gain used to determine the EIRP and limits f node of the MIMO device. If the signals on the non-coherent between the the limits is the highest gain of the individual chains and the EIRP is the sur than. If the signals are coherent then the effective antenna gain is the sum	CC 15.B / 15.407 (New Rules) Class: dwidth, Output Power and Power Spectral Density - MIMO Systems Class: Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, # of t*span/RBW, Sample or RMS detector, power averaging on and power integration and adjusted for the of KDB 789033). Measured using the same analyzer settings used for output power. 0% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB For MIMO systems the total output power and total PSD are calculated form the sum of the powers of in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depende of the MIMO device. If the signals on the non-coherent between the transmit chains then the he limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain a chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the g

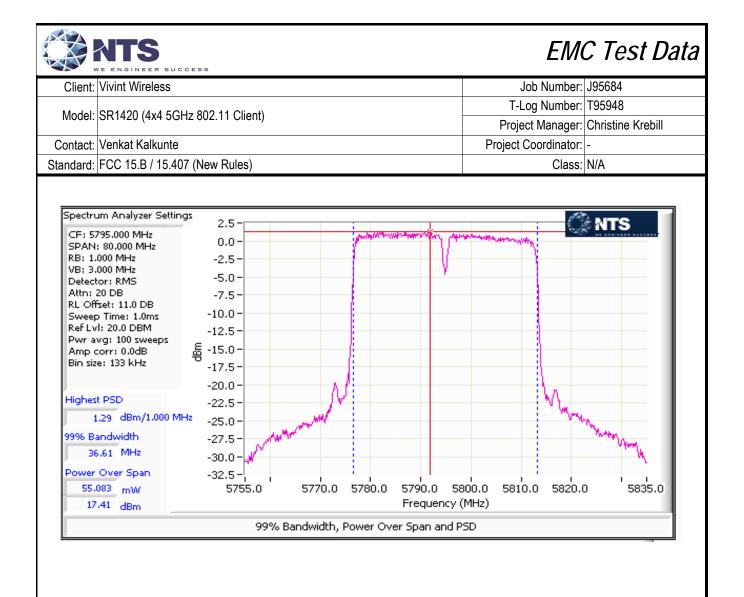
Client:	Vivint Wirele	ess						Job Number: .og Number:		
Model:	SR1420 (4x	4 5GHz 802.	11 Client)					0	Christine Kre	bill
Contact:	Venkat Kalk	unte						Coordinator:		
Standard:	FCC 15.B /	15.407 (New	Rules)					Class:	N/A	
Te To IIMO Devi	Date of Test: est Engineer: est Location: ce - 5150-52	J. Liu, M. Bi FT Lab 4A	-		Cor	config. Used: nfig Change: EUT Voltage:	None PoE			
Mode:	n40	Coffuero		Dut. Quala	Б 1	Tatal		EIRP (mW):	743.26	
requency (MHz)	Chain	Software Setting	26dB BW (MHz)	Duty Cycle %	Power ¹ dBm	n otai mW	Power dBm	FCC Limit	Max Power (W)	Result
5190	0 2 3 1	15	43.1	90	13.6 13.3 13.1 12.8	93.3	19.7	21.0		Pass
5230	0 2 3 1	16	44.1	90	14.1 13.9 13.9 9.1	92.7	19.7	21.0	0.093 -	Pass
150-5250 Mode: requency (MHz)	PSD - FCC n40 Chain	Software Setting	99% BW (MHz)	Duty Cycle %	PSD dBm/MHz	Total mW/MHz	PSD ¹ dBm/MHz	FCC Limit dBm	IC Limit /MHz	Resul
5190	0 2 3 1	15	36.3	90	-2.7 -2.6 -3.2 -3.3	2.3	3.6	8.0	-	Pass
5230	0 2 3 1	16	36.3	90	-2.0 -2.1 -2.1 -6.9	2.3	3.6	8.0	-	Pass

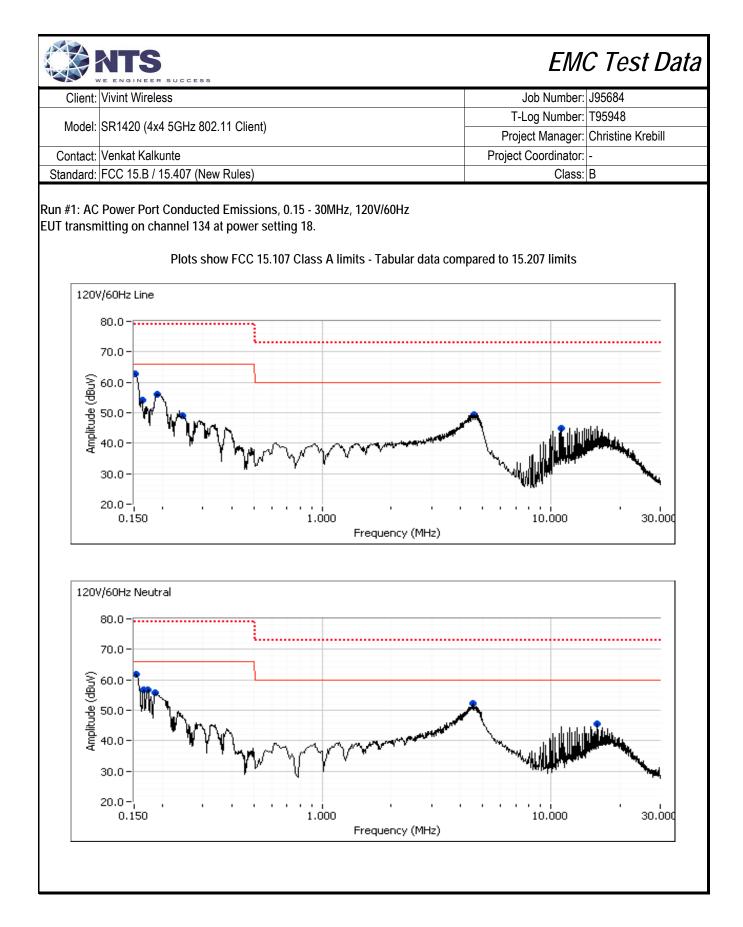



Client:	Vivint Wirele	SUCCESS						Job Number:		Duiu
Cilent.								.og Number:		
Model:	SR1420 (4x4	4 5GHz 802.	11 Client)					-	Christine Kre	bill
Contact:	Venkat Kalk	unte						Coordinator:	-	
Standard:	FCC 15.B /	15.407 (New	Rules)					Class:	N/A	
Te Te	Date of Test: st Engineer: est Location: :e - 5250-53! n40	M. Birgani	d - FCC		Cor	onfig. Used: ıfig Change: UT Voltage:	None PoE	EIRP (mW):	986.9	
Frequency	Chain	Software	26dB BW	Duty Cycle	Power	Total F	Power ¹	FCC Limit	Max Power	Result
(MHz)		Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Rooun
5270	0 2 3 1	17	43.7	90	14.9 14.5 14.5 13.8	123.9	20.9	21.0	0.124	Pass
5310	0 2 3 1	15	43.3	90	13.9 13.2 13.2 13.2	96.9	19.9	21.0	0.124	Pass
Mode: Frequency	e 5250-5350 n40 Chain) PSD - FCC Software	99% BW	Duty Cycle	PSD	Total	-	FCC Limit		Result
(MHz)		Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	rtooun
5270	0 2 3 1	17	36.3	90	-1.3 -1.7 -1.7 -2.3	3.0	4.8	8.0	-	Pass
5310	0 2 3 1	15	36.3	90	-2.2 -2.8 -3.0 -3.0	2.4	3.8	8.0	-	Pass
	1				-3.0					


Client: Vivint WirelessModel:SR1420 (4x4 5GHz 802.1)Contact:Venkat KalkunteStandard:FCC 15.B / 15.407 (NewDate of Test:9/12/2014 arTest Engineer:M. BirganiTest Engineer:M. BirganiTest Location:FT Lab 4AMIMO Device - 5470-5725 MHz Band Mode:n40Frequency (MHz)ChainSoftware Setting0214110255501101010210102101010101010101	Rules) nd 9/15/2014	4 Duty Cycle % 90 90	Cor	onfig. Used: nfig Change: UT Voltage: Total mW 74.6	T- Proj Project 1 None PoE	Coordinator: Class:	T95948 Christine Kre - N/A	ebill Result Pass
$\begin{tabular}{ c c c c } \hline Contact: Venkat Kalkunte \\ \hline Standard: FCC 15.B / 15.407 (New \\ \hline Date of Test: 9/12/2014 ar \\ Test Engineer: M. Birgani \\ Test Location: FT Lab 4A \\ \hline MIMO Device - 5470-5725 MHz Band \\ \hline Mode: n40 \\ \hline Frequency (MHz) & Chain & Software \\ \hline MHz) & 0 & \\ \hline 5510 & 2 & \\ \hline 1 & \\ \hline 0 & \\ \hline 5550 & 2 & \\ \hline 1 & \\ \hline 0 & \\ \hline 1 & \\ \hline 0 & \\ \hline 0 & \\ \hline 1 & \\ \hline 0 & \\ \hline 0 & \\ \hline 1 & \\ \hline 0 & \\ \hline 1 & \\ \hline 0 & \\ \hline 1 & \\ \hline 0 & \\ \hline 1 & \\ \hline 0 & \\ \hline 1 & \\ 1 & \\ \hline 1 & \\ 1 & \\ \hline 1 & \\ 1 & \\ \hline 1 & \\ 1 $	Rules) nd 9/15/2014 d - FCC 26dB BW (MHz) 43.2	Duty Cycle % 90	Cor E Power dBm 12.7 11.6 12.0 12.6 15.0	nfig Change: CUT Voltage: Total mW	Proj Project 1 None PoE Max Power ¹ dBm	ct Manager: Coordinator: Class: EIRP (mW): FCC Limit dBm	Christine Kre - N/A 982.6 Max Power	Result
$\begin{tabular}{ c c c c } \hline Contact: Venkat Kalkunte \\ \hline Standard: FCC 15.B / 15.407 (New \\ \hline Date of Test: 9/12/2014 ar \\ Test Engineer: M. Birgani \\ Test Location: FT Lab 4A \\ \hline MIMO Device - 5470-5725 MHz Band \\ \hline Mode: n40 \\ \hline Frequency (MHz) & Chain & Software \\ \hline MHz) & 0 & \\ \hline 5510 & 2 & \\ \hline 10 & \\ \hline 5550 & 2 & \\ \hline 10 & \\ \hline 10 & \\ \hline 0 & \hline 10 & \\ \hline 10 & \hline 10 & \\ \hline 10 & \hline 10 & \\ \hline 10 & \hline 10 & \\ \hline 10 & \hline 10$	Rules) nd 9/15/2014 d - FCC 26dB BW (MHz) 43.2	Duty Cycle % 90	Cor E Power dBm 12.7 11.6 12.0 12.6 15.0	nfig Change: CUT Voltage: Total mW	Project 1 None PoE Max Power ¹ dBm	Coordinator: Class: EIRP (mW): FCC Limit dBm	- N/A 982.6 Max Power	Result
Standard: FCC 15.B / 15.407 (New Date of Test: 9/12/2014 ar Test Engineer: M. Birgani Test Engineer: M. Birgani Test Location: FT Lab 4A VIMO Device - 5470-5725 MHz Band Mode: n40 Frequency (MHz) Chain Software Setting 0 2 14 5510 2 16 5550 1 1 0 1 1 0 1 1 0 1 1 0 1 1	nd 9/15/2014 d - FCC 26dB BW (MHz) 43.2	Duty Cycle % 90	Cor E Power dBm 12.7 11.6 12.0 12.6 15.0	nfig Change: CUT Voltage: Total mW	1 None PoE Max Power ¹ dBm	Class: EIRP (mW): FCC Limit dBm	N/A 982.6 Max Power	
Date of Test: 9/12/2014 ar Test Engineer: M. Birgani Test Location: FT Lab 4A MIMO Device - 5470-5725 MHz Band Mode: n40 Frequency (MHz) Chain Software Setting 0 2 14 5510 2 14 5550 2 16 1 0 1 0 3 16 1 0 0	nd 9/15/2014 d - FCC 26dB BW (MHz) 43.2	Duty Cycle % 90	Cor E Power dBm 12.7 11.6 12.0 12.6 15.0	nfig Change: CUT Voltage: Total mW	None PoE Max Power ¹ dBm	EIRP (mW): FCC Limit dBm	982.6 Max Power	
Test Engineer: M. Birgani Test Location: FT Lab 4A MIMO Device - 5470-5725 MHz Band Mode: n40 Frequency (MHz) Chain Software Setting 0 5510 2 14 1 5550 2 16 1 0	d - FCC 26dB BW (MHz) 43.2	Duty Cycle % 90	Cor E Power dBm 12.7 11.6 12.0 12.6 15.0	nfig Change: CUT Voltage: Total mW	None PoE Max Power ¹ dBm	FCC Limit dBm	Max Power	
Frequency (MHz) Chain Software Setting 0 1 5510 14 1 1 5550 2 5550 16 1 0 1 16 1 0 1 0	(MHz) 43.2	90	dBm 12.7 11.6 12.0 12.6 15.0	mW	Power ¹ dBm	FCC Limit dBm	Max Power	
(MHz) Chain Setting 0 2 14 5510 1 1 1 0 2 5550 2 16 1 0 1 0 1 16 1 0 1	(MHz) 43.2	90	dBm 12.7 11.6 12.0 12.6 15.0	mW	dBm	dBm		
$ \begin{array}{c} 0 \\ 2 \\ 14 \\ \hline 0 \\ 5550 \\ \hline 2 \\ 16 \\ \hline 1 \\ 0 \\ \hline 0 \\ \hline 1 \\ 0 \end{array} $	43.2	90	12.7 11.6 12.0 12.6 15.0					Pass
2 16 3 1 0 0	43.7	90	15.0					1
			14.2 14.0	119.9	20.8	21.0		Pass
5670 <u>2</u> 16 <u>1</u>	43.5	90	14.0 13.8 13.9 14.4	112.1	20.5	21.0	0.123	Pass
802.11ac 40MHz								
UNII-2ext 5710 0 2 17 3 1	36.9	90	14.5 14.4 14.4 14.5	123.4	20.9	21.0		Pass
JNII-3 0			3.8		ſ			
5710 2 17 <u>3</u> 1	10.9	90	2.7 4.5 3.3	10.2	10.1	18.4		Pass


0"	NTS	SUCCESS						EM	C Test	' Data
Client:	Vivint Wirele	31.050505000						Job Number:	J95684	
Model:	SR1420 (4x4	4 5GHz 802.	11 Client)					og Number:		
	Venkat Kalk		,					ect Manager: Coordinator:	Christine Kr	ebill
	FCC 15.B /		Rules)				Појест	Class:		
Mode: requency	e 5470-5725 n40 Chain	Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit	IC Limit	Result
(MHz)		Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	INESUI
5510	0 2 3 1	14	36.3	90	-3.5 -4.6 -4.2 -3.6	1.8	2.5	8.0	-	Pass
5550	0 2 3 1	16	36.3	90	-1.0 -2.3 -2.0 -2.0	2.9	4.7	8.0	-	Pass
5670	0 2 3 1	16	36.3	90	-2.1 -2.4 -2.4 -1.9	2.7	4.3	8.0	-	Pass
02.11ac 40	MHz									
INII-2ext 5710 -	0 2 3 1	17	28.3	90	-0.8 -1.2 -1.0 -0.7	3.6	5.6	8.0	-	Pass
JNII-3	0				17					
5710	0 2 3 1	17	8.6	90	-1.7 -3.1 -1.1 -2.4	2.8	4.5	8.0	-	Pass




	: Vivint Wirele	ess						Job Number:	J95684	
Model	: SR1420 (4x	4 5GHz 802	11 Client)				T-L	og Number:	T95948	
	,						-	-	Christine Kre	ebill
	: Venkat Kalk						Project	Coordinator:		
Standard:	: FCC 15.B /	15.407 (New	Rules)					Class:	N/A	
Te T	Date of Test: est Engineer: est Location:	Jack Liu FT Lab 4A			Cor	onfig. Used: nfig Change: :UT Voltage:	None			
IMO Devi Mode:	ice - 5725-58 : n40	0 MHz Band	- FCC				Max	EIRP (mW):	1820.5777	
requency		Software	6dB BW	Duty Cycle	Power	Total F	Power ¹	FCC Limit	Max Power	
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
5755	0 2 3 1	15	35.6	90	13.0 12.6 12.9 12.7	84.6	19.3	27.0		Pass
5795	0 2 3 1	20	35.6	90	17.4 17.0 17.3	228.7	23.6	27.0	0.229	Pass
					16.7					
Mode: requency	ice 5725-5850 n40	Software	99% BW	Duty Cycle	PSD	Total mW/MHz		FCC Limit		Result
Mode:	ice 5725-5850 n40			Duty Cycle % 90		Total mW/MHz 2.1	PSD ¹ dBm/MHz 3.2		IC Limit /MHz -	Result

	NTS VE ENGINEER SUCCESS				EMO	C Test Data
Client:	Vivint Wireless				Job Number:	J95684
Madalı		11 Oliont)		T	-Log Number:	T95948
Model:	SR1420 (4x4 5GHz 802.	TT Client)		Pro	ject Manager:	Christine Krebill
	Venkat Kalkunte			Projec	t Coordinator:	
Standard:	FCC 15.B / 15.407 (New	Rules)			Class:	В
	(Ei	Conducte	d Emissions Facility, Semi-An	-	ber)	
Test Spec		e of this test session is to per listed above.	form final qualifica	tion testing of	the EUT with r	espect to the
	Date of Test: 8/20/2014		Config. Use			
	st Engineer: Jack Liu		Config Chang			
Te	est Location: Fremont Ch	amber #4	EUT Voltaç	ge: PoE		
Conoral T	est Configuration					
	Conditions	Temperature:	a. °O			
Ampient	Conditions:	Rel. Humidity:	24 °C 38 %			
	of Results					
Summary	n #	Rel. Humidity:	38 %	Result	Margin	
Summary Ru	n #	Rel. Humidity: est Performed Power,120V/60Hz	38 %	Result Pass		@ 0.151 MHz (-5.9 dB

v		SUCCESS					EM	C Test Data
Client:	Vivint Wirele	ess					Job Number:	J95684
Madali	004400 /4		44 Oli				T-Log Number:	T95948
Wodel:	SR1420 (4x	4 5GHz 802.	11 Client)				Project Manager:	Christine Krebill
Contact:	Venkat Kalk	unte					Project Coordinator:	-
Standard:	FCC 15.B /	15.407 (New	Rules)				Class:	
Preliminary	peak readii	ngs captured	d during pre	-scan (peak	readings v	s. average lim	nit)	
Frequency	Level	AC		207	Detector	Comments	,	
MHz	dBμV	Line	Limit	Margin	QP/Ave			
11.114	45.0	Line	50.0	-5.0	Average			
4.617	49.3	Line	46.0	3.3	Average			
0.151	62.8	Line	56.0	6.8	Average			
0.190	56.0	Line	54.0	2.0	Average			
0.244	49.2	Line	52.0	-2.8	Average			
0.162	54.1	Line	55.4	-1.3	Average	ļ		
0.153	61.8	Neutral	55.9	5.9	Average	 		
0.167	56.8	Neutral	55.1	1.7	Average			
0.172	56.6	Neutral	54.9	1.7	Average			
0.187 4.551	55.6 52.2	Neutral	54.2 46.0	1.4 6.2	Average	-		
15.838	45.6	Neutral Neutral	46.0 50.0	-4.4	Average Average			
	-peak and a Level	verage readi AC		207	Detector	Comments		
Frequency MHz	dBµV	Line	Limit	Margin	QP/Ave	Comments		
0.151	60.0			margin				
0.101	00.0	i ine	65 9	-59		OP (1.00s)		
		Line Line	65.9 50.0	-5.9 -6.1	QP	QP (1.00s) AVG (0.10s)		
11.114	43.9	Line	50.0	-6.1	QP Average	AVG (0.10s)		
11.114 4.551	43.9 39.3	Line Neutral	50.0 46.0	-6.1 -6.7	QP Average Average	AVG (0.10s) AVG (0.10s)		
11.114 4.551 4.551	43.9	Line	50.0	-6.1	QP Average Average QP	AVG (0.10s) AVG (0.10s) QP (1.00s)		
11.114 4.551	43.9 39.3 47.8	Line Neutral Neutral	50.0 46.0 56.0	-6.1 -6.7 -8.2	QP Average Average	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s)		
11.114 4.551 4.551 15.838	43.9 39.3 47.8 41.7	Line Neutral Neutral Neutral	50.0 46.0 56.0 50.0	-6.1 -6.7 -8.2 -8.3	QP Average Average QP Average	AVG (0.10s) AVG (0.10s) QP (1.00s)		
11.114 4.551 4.551 15.838 0.153	43.9 39.3 47.8 41.7 57.3	Line Neutral Neutral Neutral Neutral	50.0 46.0 56.0 50.0 65.8	-6.1 -6.7 -8.2 -8.3 -8.5	QP Average QP Average QP	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
11.114 4.551 4.551 15.838 0.153 4.617	43.9 39.3 47.8 41.7 57.3 36.4	Line Neutral Neutral Neutral Neutral Line	50.0 46.0 56.0 50.0 65.8 46.0 64.0 56.0	-6.1 -6.7 -8.2 -8.3 -8.5 -9.6	QP Average QP Average QP Average QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s)		
11.114 4.551 4.551 15.838 0.153 4.617 0.190	43.9 39.3 47.8 41.7 57.3 36.4 54.0	Line Neutral Neutral Neutral Line Line	50.0 46.0 56.0 50.0 65.8 46.0 64.0	-6.1 -6.7 -8.2 -8.3 -8.5 -9.6 -10.0	QP Average QP Average QP Average QP	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
11.114 4.551 4.551 15.838 0.153 4.617 0.190 4.617 0.186 0.151	43.9 39.3 47.8 41.7 57.3 36.4 54.0 45.7 52.0 41.6	Line Neutral Neutral Neutral Line Line Line Neutral Line	50.0 46.0 56.0 50.0 65.8 46.0 64.0 56.0 64.2 55.9	-6.1 -6.7 -8.2 -8.3 -8.5 -9.6 -10.0 -10.3 -12.2 -14.3	QP Average QP Average QP Average QP QP QP QP QP Average	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
11.114 4.551 4.551 15.838 0.153 4.617 0.190 4.617 0.186 0.151 0.190	43.9 39.3 47.8 41.7 57.3 36.4 54.0 45.7 52.0 41.6 39.3	Line Neutral Neutral Neutral Line Line Line Neutral Line Line	50.0 46.0 56.0 65.8 46.0 64.0 56.0 64.2 55.9 54.0	-6.1 -6.7 -8.2 -8.3 -8.5 -9.6 -10.0 -10.3 -12.2 -14.3 -14.7	QP Average QP Average QP Average QP QP QP QP Average Average	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
11.114 4.551 4.551 15.838 0.153 4.617 0.190 4.617 0.186 0.151 0.190 11.114	43.9 39.3 47.8 41.7 57.3 36.4 54.0 45.7 52.0 41.6 39.3 44.9	Line Neutral Neutral Neutral Line Line Line Line Line Line Line	50.0 46.0 56.0 50.0 65.8 46.0 64.0 56.0 64.2 55.9 54.0 60.0	-6.1 -6.7 -8.2 -8.3 -8.5 -9.6 -10.0 -10.3 -12.2 -14.3 -14.7 -15.1	QP Average QP Average QP Average QP QP QP QP Average Average QP	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s)		
11.114 4.551 4.551 15.838 0.153 4.617 0.190 4.617 0.186 0.151 0.190 11.114 0.244	43.9 39.3 47.8 41.7 57.3 36.4 54.0 45.7 52.0 41.6 39.3 44.9 45.9	Line Neutral Neutral Neutral Line Line Line Line Line Line Line Line	$\begin{array}{r} 50.0\\ 46.0\\ 56.0\\ 50.0\\ 65.8\\ 46.0\\ 64.0\\ 56.0\\ 64.2\\ 55.9\\ 54.0\\ 60.0\\ 62.0\\ \end{array}$	-6.1 -6.7 -8.2 -8.3 -8.5 -9.6 -10.0 -10.3 -12.2 -14.3 -14.7 -15.1 -16.1	QP Average QP Average QP Average QP QP QP Average Average QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
11.114 4.551 4.551 15.838 0.153 4.617 0.190 4.617 0.186 0.151 0.190 11.114 0.244 15.838	43.9 39.3 47.8 41.7 57.3 36.4 54.0 45.7 52.0 41.6 39.3 44.9 45.9 43.7	Line Neutral Neutral Neutral Line Line Neutral Line Line Line Line Line Neutral	$\begin{array}{r} 50.0\\ 46.0\\ 56.0\\ 50.0\\ 65.8\\ 46.0\\ 64.0\\ 56.0\\ 64.2\\ 55.9\\ 54.0\\ 60.0\\ 62.0\\ 60.0\\ \end{array}$	-6.1 -6.7 -8.2 -8.3 -8.5 -9.6 -10.0 -10.3 -12.2 -14.3 -14.7 -15.1 -16.1 -16.3	QP Average QP Average QP Average QP QP QP Average Average QP QP QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
11.114 4.551 4.551 15.838 0.153 4.617 0.190 4.617 0.186 0.151 0.190 11.114 0.244 15.838 0.162	43.9 39.3 47.8 41.7 57.3 36.4 54.0 45.7 52.0 41.6 39.3 44.9 45.9 43.7 48.5	Line Neutral Neutral Neutral Line Line Line Line Line Line Line Line	$\begin{array}{r} 50.0\\ 46.0\\ 56.0\\ 50.0\\ 65.8\\ 46.0\\ 64.0\\ 56.0\\ 64.2\\ 55.9\\ 54.0\\ 60.0\\ 62.0\\ 60.0\\ 65.4\end{array}$	-6.1 -6.7 -8.2 -8.3 -8.5 -9.6 -10.0 -10.3 -12.2 -14.3 -12.2 -14.3 -14.7 -15.1 -16.1 -16.3 -16.9	QP Average QP Average QP Average QP QP QP Average Average QP QP QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
11.114 4.551 4.551 15.838 0.153 4.617 0.190 4.617 0.186 0.151 0.190 11.114 0.244 15.838 0.162 0.153	43.9 39.3 47.8 41.7 57.3 36.4 54.0 45.7 52.0 41.6 39.3 44.9 45.9 43.7 48.5 37.7	Line Neutral Neutral Neutral Line Line Line Line Line Line Line Line	$\begin{array}{r} 50.0\\ 46.0\\ 56.0\\ 50.0\\ 65.8\\ 46.0\\ 64.0\\ 56.0\\ 64.2\\ 55.9\\ 54.0\\ 60.0\\ 62.0\\ 60.0\\ 65.4\\ 55.8\end{array}$	-6.1 -6.7 -8.2 -8.3 -9.6 -10.0 -10.3 -12.2 -14.3 -14.7 -15.1 -16.1 -16.3 -16.9 -18.1	QP Average QP Average QP Average QP QP QP Average Average QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
11.114 4.551 4.551 15.838 0.153 4.617 0.190 4.617 0.186 0.151 0.190 11.114 0.244 15.838 0.162 0.153 0.186	43.9 39.3 47.8 41.7 57.3 36.4 54.0 45.7 52.0 41.6 39.3 44.9 45.9 43.7 48.5 37.7 34.5	Line Neutral Neutral Line Line Line Line Line Line Line Line	$\begin{array}{r} 50.0\\ 46.0\\ 56.0\\ 50.0\\ 65.8\\ 46.0\\ 64.0\\ 56.0\\ 64.2\\ 55.9\\ 54.0\\ 60.0\\ 62.0\\ 60.0\\ 65.4\\ 55.8\\ 54.2\\ \end{array}$	-6.1 -6.7 -8.2 -8.3 -9.6 -10.0 -10.3 -12.2 -14.3 -14.7 -15.1 -16.1 -16.1 -16.3 -16.9 -18.1 -19.7	QP Average QP Average QP Average QP QP QP QP Average QP QP QP QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
11.114 4.551 4.551 15.838 0.153 4.617 0.190 4.617 0.186 0.151 0.190 11.114 0.244 15.838 0.162 0.153 0.186 0.153 0.162	43.9 39.3 47.8 41.7 57.3 36.4 54.0 45.7 52.0 41.6 39.3 44.9 45.9 43.7 48.5 37.7 34.5 45.1	Line Neutral Neutral Line Line Line Line Line Line Line Line	$\begin{array}{r} 50.0\\ 46.0\\ 56.0\\ 50.0\\ 65.8\\ 46.0\\ 64.0\\ 56.0\\ 64.2\\ 55.9\\ 54.0\\ 60.0\\ 62.0\\ 60.0\\ 62.0\\ 65.4\\ 55.8\\ 54.2\\ 65.1\\ \end{array}$	-6.1 -6.7 -8.2 -8.3 -9.6 -10.0 -10.3 -12.2 -14.3 -14.7 -15.1 -16.1 -16.1 -16.3 -16.9 -18.1 -19.7 -20.0	QP Average QP Average QP Average QP QP QP Average QP QP QP QP QP QP QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s)		
11.114 4.551 4.551 15.838 0.153 4.617 0.190 4.617 0.186 0.151 0.190 11.114 0.244 15.838 0.162 0.186 0.162 0.186 0.162 0.186 0.162 0.163 0.164	43.9 39.3 47.8 41.7 57.3 36.4 54.0 45.7 52.0 41.6 39.3 44.9 45.9 43.7 48.5 37.7 34.5 45.1 31.8	Line Neutral Neutral Neutral Line Line Line Line Line Line Line Line	$\begin{array}{r} 50.0\\ 46.0\\ 56.0\\ 50.0\\ 65.8\\ 46.0\\ 64.0\\ 56.0\\ 64.2\\ 55.9\\ 54.0\\ 60.0\\ 62.0\\ 60.0\\ 62.0\\ 60.0\\ 65.4\\ 55.8\\ 54.2\\ 65.1\\ 52.0\\ \end{array}$	-6.1 -6.7 -8.2 -8.3 -8.5 -9.6 -10.0 -10.3 -12.2 -14.3 -12.2 -14.3 -14.7 -15.1 -16.1 -16.1 -16.3 -16.9 -18.1 -19.7 -20.0 -20.2	QP Average QP Average QP Average QP QP QP Average Average QP QP QP QP QP QP QP QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
11.114 4.551 4.551 15.838 0.153 4.617 0.190 4.617 0.186 0.151 0.190 11.114 0.244 15.838 0.162 0.153 0.186 0.167 0.244 0.172	43.9 39.3 47.8 41.7 57.3 36.4 54.0 45.7 52.0 41.6 39.3 44.9 45.9 43.7 48.5 37.7 34.5 45.1 31.8 44.4	Line Neutral Neutral Neutral Line Line Line Line Line Line Line Line	$\begin{array}{r} 50.0\\ 46.0\\ 56.0\\ 50.0\\ 65.8\\ 46.0\\ 64.0\\ 56.0\\ 64.2\\ 55.9\\ 54.0\\ 60.0\\ 62.0\\ 60.0\\ 62.0\\ 60.0\\ 65.4\\ 55.8\\ 54.2\\ 65.1\\ 52.0\\ 64.9\\ \end{array}$	-6.1 -6.7 -8.2 -8.3 -8.5 -9.6 -10.0 -10.3 -12.2 -14.3 -12.2 -14.3 -14.7 -15.1 -16.1 -16.1 -16.3 -16.9 -18.1 -19.7 -20.0 -20.2 -20.5	QP Average QP Average QP Average QP QP QP Average QP QP QP QP QP QP QP QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
11.114 4.551 4.551 15.838 0.153 4.617 0.190 4.617 0.186 0.151 0.190 11.114 0.244 15.838 0.162 0.153 0.162 0.153 0.162 0.153 0.162 0.163 0.167 0.244	43.9 39.3 47.8 41.7 57.3 36.4 54.0 45.7 52.0 41.6 39.3 44.9 45.9 43.7 48.5 37.7 34.5 45.1 31.8	Line Neutral Neutral Neutral Line Line Line Line Line Line Line Line	$\begin{array}{r} 50.0\\ 46.0\\ 56.0\\ 50.0\\ 65.8\\ 46.0\\ 64.0\\ 56.0\\ 64.2\\ 55.9\\ 54.0\\ 60.0\\ 62.0\\ 60.0\\ 62.0\\ 60.0\\ 65.4\\ 55.8\\ 54.2\\ 65.1\\ 52.0\\ \end{array}$	-6.1 -6.7 -8.2 -8.3 -8.5 -9.6 -10.0 -10.3 -12.2 -14.3 -12.2 -14.3 -14.7 -15.1 -16.1 -16.1 -16.3 -16.9 -18.1 -19.7 -20.0 -20.2	QP Average QP Average QP Average QP QP QP Average Average QP QP QP QP QP QP QP QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		

End of Report

This page is intentionally blank and marks the last page of this test report.