

RF Exposure Report Report No.: SABCKS-WTW-P21123397 FCC ID: 2AAAS-BB02 Test Model: BB02 Received Date: 2021/12/10 Test Date: 2022/2/1 Issued Date: 2022/3/16 Applicant: Vivint. Inc. Address: 4931 N. 300 W. Provo, UT 84604 USA Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan FCC Registration / 723255 / TW2022 **Designation Number:**

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of raise. A failure to raise such issue within the prescribed time shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Releas	se Control Record	. 3
1	Certificate of Conformity	. 4
	RF Exposure	
2.2 2.3 2.4	Limits for Maximum Permissible Exposure (MPE) MPE Calculation Formula Classification Antenna Gain Calculation Result	. 5 . 5 . 6

Release Control Record Issue No. Description Date Issued SABCKS-WTW-P21123397 Original release. 2022/3/16

1	Certificate of Co	ertificate of Conformity				
	Product:	Vivint Air Tower				
	Brand:	Vivint, Inc.				
	Test Model:	BB02				
	Sample Status:	Engineering sample				
	Applicant:	Vivint. Inc.				
	Test Date:	2022/2/1				
	FCC Rule Part:	FCC Part 2 (Section 2.1091)				
	Standards:	KDB 447498 D01 General RF Exposure Guidance v06				

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

_____, Date:____

Claire Kuan / Specialist

Date:

2022/3/16

2022/3/16

Approved by :

Clark Lin / Technical Manager

Report No.: SABCKS-WTW-P21123397

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time (minutes)				
	Limits For General Population / Uncontrolled Exposure							
0.3-1.34	614	1.63	(100)*	30				
1.34-30	824/f	2.19/f	(180/f²)*	30				
30-300	27.5	0.073	0.2	30				
300-1500			f/1500	30				
1500-100,000			1.0	30				

f = Frequency in MHz ; *Plane-wave equivalent power density

2.2 MPE Calculation Formula

 $Pd = (Pout^{*}G) / (4^{*}pi^{*}r^{2})$

where

 $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 27cm away from the body of the user. So, this device is classified as **Mobile Device**.

2.4 Antenna Gain

Antenna No.	RF Chain No.	Model	Antenna Net Gain (dBi)	Frequency Range (GHz)	Antenna Type	Connector Type
5G1	0	WHVA1	4.5	5.15~5.35 (Scanning, RX only)	PIFA	None
5G2	1	WHVA1	4.5	5.47~5.85 (Scanning, RX only)	PIFA	None
	2G	48XKAB18	3.5	2.4~2.4835	Dinala	ipex(MHF)
ANT 2 (2a)	5GL	40/1AD10	3.1	5.15~5.35	Dipole	
ANT 2 (2b)	5GH	48XKAB18	3.6	5.47~5.85	Dipole	ipex(MHF)
	2G		2.7	2.4~2.4835	Dinala	
ANT 3 (3a)	5GL	48XKAB19	3.7	5.15~5.35	Dipole	ipex(MHF)
ANT 3 (3b)	TO (OL) BT		2.9	2.4~2.4835 (BT)	Dipole	
	5GH	48XKAB19	3.5	5.47~5.85	Dipole	ipex(MHF)

Note: The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.5 Calculation Result

Bluetooth

Operation Mode	Evaluation Frequency (MHz)	Max. Average Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
BT-EDR	2402~2480	7.43	2.90	27	0.00158	1
BT-LE	2402~2480	8.017	2.90	27	0.00171	1

WLAN

CDD mode:

Operation Mode	Evaluation Frequency (MHz)	Max. Average Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
WLAN (2.4GHz)	2412~2462	537.07	3.50	27	0.13125	1
WLAN (U-NII-1)	5180~5240	691.186	3.70	27	0.17687	1
WLAN U-NII-2A	5260~5320	248.521	3.70	27	0.0636	1
WLAN U-NII-2C	5500~5720	236.067	3.60	27	0.05903	1
WLAN (U-NII-3)	5745~5825	779.328	3.60	27	0.19489	1

Beamforming mode:

Operation Mode	Evaluation Frequency (MHz)	Max. Average Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
WLAN (2.4GHz)	2412~2462	443.178	6.12	27	0.19799	1
WLAN (U-NII-1)	5180~5240	679.555	6.42	27	0.32530	1
WLAN U-NII-2A	5260~5320	221.341	6.42	27	0.10596	1
WLAN U-NII-2C	5500~5720	211.507	6.56	27	0.10457	1
WLAN (U-NII-3)	5745~5825	737.75	6.56	27	0.36473	1

NOTE:

1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2. 2.4GHz: Directional gain = $10 \log[(10^{Chain0/20} + 10^{Chain1/20})^2 / 2] = 6.12 dBi$

3. 5GHz:

For U-NII-1, U-NII-2A: Directional gain = $10 \log[(10^{Chain0/20} + 10^{Chain1/20})^2 / 2] = 6.42 \text{ dBi}$ For U-NII-2C, U-NII-3: Directional gain = $10 \log[(10^{Chain0/20} + 10^{Chain1/20})^2 / 2] = 6.56 \text{ dBi}$

Conclusion:

The formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Simultaneously transmission condition.

Condition	Technology						
1	WLAN 2.4GHz WLAN 5GHz (Low Band) WLAN 5GHz (High Band)						
2	WLAN 5GHz (Low Band)	WLAN 5GHz (High Band)	Bluetooth				
Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.							

CDD mode:

Condition 1: 0.13125 / 1 + 0.17687 / 1 + 0.19489 / 1 = 0.50301

Condition 2: 0.17687 / 1 + 0.19489 / 1 + 0.00171 / 1 = 0.37347

Beamforming mode:

Condition 1: 0.19799 / 1 + 0.32530 / 1 + 0.36473 / 1 = 0.88802 Condition 2: 0.32530 / 1 + 0.36473 / 1 + 0.00171 / 1 = 0.69174

Therefore the maximum calculations of above situations are less than the "1" limit.

--- END ---