

Product Wireless Digital Video Monitoring System

Trade mark Infant Optics

Model/Type reference DXR-8 PRO, DXR8PPZ-A

Serial Number N/A

Report Number : EED32M00082303

FCC ID : 2AAAM-DXR8PPZ-APU

Date of Issue : Jul. 07, 2020

Test Standards 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

STANDARD MERIT INDUSTRIAL LIMITED 2/A Harrison Court Stage 6, 10 Man Wan Road, Kowloon, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Sunlight Sun

Reviewed by:

Mare Xm

Ware Xin

Report Seal

Sunlight Sun

Date:

Jul. 07, 2020

Sam Chuang

Check No: 3320284899

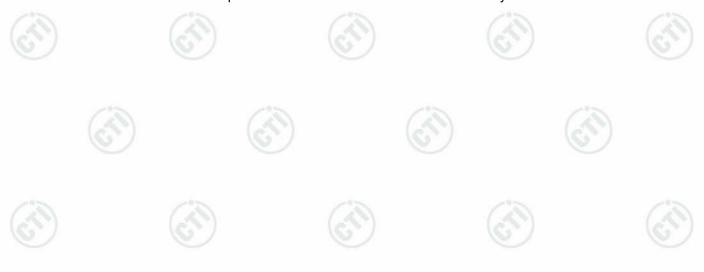
2 Version

Version No.	Date	Description
00	Jul. 07, 2020	Original

Report No.: EED32M00082303 Page 3 of 79

3 Test Summary

1651 Sullillary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	Requirement 47 CFR Part 15 Subpart C Section 15.203/15.247 (c)		PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	·		PASS
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Duty Cycle	ANSI C63.10-2013	ANSI C63.10-2013	PASS


Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

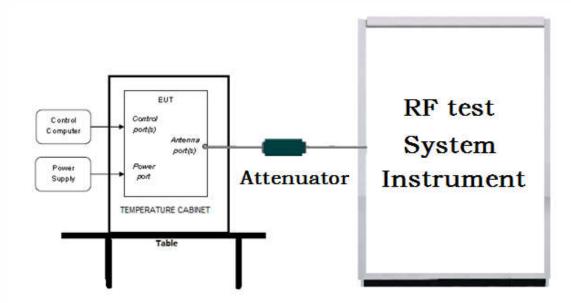
Model No.: DXR-8 PRO, DXR8PPZ-A

Only the model DXR-8 PRO was tested, DXR-8 PRO is the system model of the product that of which consist of one camera unit and one monitor unit with the model DXRBPPZ-A. The model DXR-8 PRO is represent the coverage of one Camera unit and one Monitor with the Model DXR8PPZ-A. For DXR8PPZ-A is the model represent the individual Camera/Monitor unit only

Report No.: EED32M00082303 Page 4 of 79

4 Content

1 COVER PAGE				
2 VERSION				
3 TEST SUMMARY				
4 CONTENT				
5 TEST REQUIREMENT				
5.1 TEST SETUP 5.1.1 For Conducted test 5.1.2 For Radiated Emiss 5.1.3 For Conducted Emi 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION	setupsions test setupssions test setups			
6 GENERAL INFORMATION				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION O 6.3 PRODUCT SPECIFICATION 6.4 DESCRIPTION OF SUPPOR 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDA 6.7 ABNORMALITIES FROM ST 6.8 OTHER INFORMATION REC 6.9 MEASUREMENT UNCERTA	SE EUT SUBJECTIVE TO THIS STAN RT UNITS ARDS ANDARD CONDITIONS	IDARD		
7 EQUIPMENT LIST		•••••		
8 RADIO TECHNICAL REQUI	REMENTS SPECIFICAT	ON		12
Appendix A): 20dB Occup Appendix B): Carrier Free Appendix C): Dwell Time. Appendix D): Hopping Ch Appendix E): Conducted Appendix F): Band-edge Appendix G): RF Conducted Appendix H): Pseudorand Appendix I): Antenna Red Appendix J): AC Power L Appendix K): Restricted by Appendix C): Radiated Sp	nannel Number Peak Output Power for RF Conducted Emissions Emissions Emissions Edom Frequency Hopping Quirement ine Conducted Emission pands around fundamentation our four Emissions	Sequenceal frequency (Radiate	ed)	
PHOTOGRAPHS OF TEST SE	ETUP			50
PHOTOGRAPHS OF EUT CO	NSTRUCTIONAL DETA	ILS		59



Report No.: EED32M00082303 Page 5 of 79

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

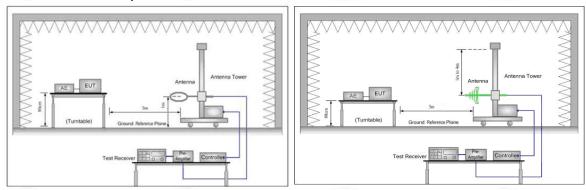


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

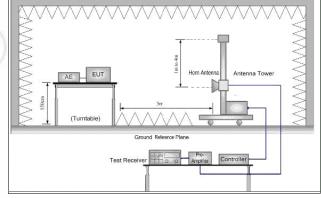
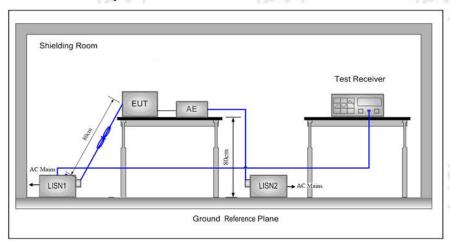
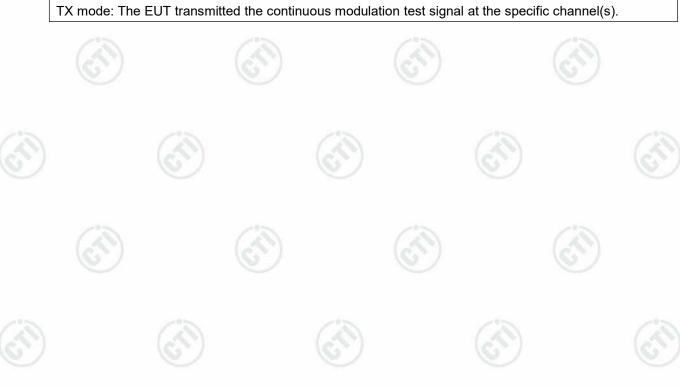



Figure 3. Above 1GHz

Report No.: EED32M00082303 Page 6 of 79

5.1.3 For Conducted Emissions test setup Conducted Emissions setup



5.2 Test Environment

Operating Environment:	0	(6)
Temperature:	23°C	
Humidity:	54% RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test Mode	Tx	RF Channel			
rest wode	IX.	Low(L)	Middle(M)	High(H)	
GFSK	2410MHz ~2477 MHz	Channel 1	Channel 10	Channel 20	
GFSK		2410MHz	2441.5MHz	2477MHz	
TX mode: The EUT transmitted the continuous modulation test signal at the specific channel(s).					

Report No.: EED32M00082303 Page 7 of 79

6 General Information

6.1 Client Information

Applicant:	STANDARD MERIT INDUSTRIAL LIMITED
Address of Applicant:	2/A Harrison Court Stage 6, 10 Man Wan Road, Kowloon, Hong Kong
Manufacturer:	Foshan Shunde Alford Electronics Co., Ltd
Address of Manufacturer:	Xinjian Industrial Park, Daliang, Shunde, Foshan City, Guangdong Province, China

6.2 General Description of EUT

Product Name:	Wireless Digital Video Monitoring System				
Model No.(EUT):	DXR-8 PRO, D	DXR-8 PRO, DXR8PPZ-A			
Test Model No:	DXR-8 PRO				
Trade mark:	Infant Optics				
EUT Supports Radios application:	2410MHz - 247	77MHz			
Power Supply:	AC adapter 1	MODEL: BLJ05K050 150P-U LNPUT:100-240V~50/60Hz 0.2A OUTPUT: 5.0V1500mA		0	
	AC adapter 2	MODEL: BL12T-050150-BdU LNPUT:100-240V~50/60Hz 0.5A OUTPUT: DC 5.0V1.5A	(3)		
0.)	LITHIUM-ION BATTERY 1	Model:JD 504478 Nominal Voltage:3.85V Rated Capacity:2800mAh/10.78Wh Limited Charge Voltage:4.4V	(6.)		
	LITHIUM-ION BATTERY 2	3.85V 2800mAh/10.78Wh Sp 554478		(3)	
Sample Received Date:	Apr.13, 2020			6	
Sample tested Date:	Apr.13, 2020 to May 22, 2020				

6.3 Product Specification subjective to this standard

Operation Frequency:	2410MHz - 2477MHz	183
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	5")
Modulation Type:	GFSK	
Number of Channel:	20	
Hopping Channel Type:	Adaptive Frequency Hopping systems	(3)
Test Power Grade:	Defualt	(67)
Test Software of EUT:	Defualt	
Antenna Type:	Dipole Antenna	
Antenna Gain:	0 dBi	'S
Test Voltage:	DC 5.0V	(2)

Report No.: EED32M00082303 Page 8 of 79

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
10	2410MHz	6	2427.5MHz	11	2445MHz	16	2462.5MHz
2	2413.5MHz	7	2431MHz	12	2448.5MHz	17	2466MHz
3	2417MHz	8	2434.5MHz	13	2452MHz	18	2469.5MHz
4	2420.5MHz	9	2438MHz	14	2455.5MHz	19	2473MHz
5	2424MHz	10	2441.5MHz	15	2459MHz	20	2477MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

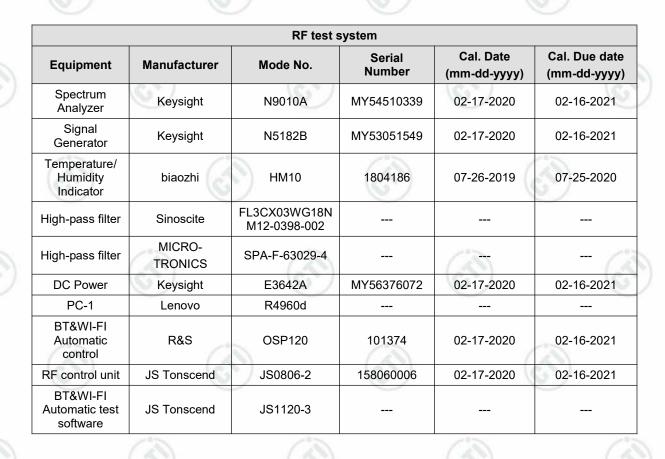
6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)


No.	Item	Measurement Uncertainty
1)	Radio Frequency	7.9 x 10 ⁻⁸
2	DE power conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dadiated Churique emission test	4.3dB (30MHz-1GHz)
3 Radiat	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32M00082303 Page 9 of 79

7 Equipment List


Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-20-2019 04-28-2020	05-19-2020 04-27-2021		
Temperature/ Humidity Indicator	Defu	TH128	1	06-14-2019	06-13-2020		
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021		
Barometer	changchun	DYM3	1188	06-20-2019	06-19-2020		

Page 10 of 79

3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021	
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020	
Multi device Controller	maturo	NCD/070/107 11112			(c/12)	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A			
Cable line	Fulai(3M)	SF106	5216/6A	- Comp.		
Cable line	Fulai(3M)	SF106	5217/6A	(K)		

Report No. : EED32M00082303 Page 11 of 79

3M full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020	
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021	
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021	
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019 05-20-2020	05-21-2020 05-19-2021	
Preamplifier	EMCI	EMC001330	980563	05-08-2019 04-22-2020	05-07-2020 04-21-2021	
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019 04-27-2020	04-29-2020 04-26-2021	
Fully Anechoic Chamber	TDK	FAC-3	730	01-17-2018	01-16-2021	
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		_	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003			
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001			
Cable line	Times	EMC104-NMNM- 1000	SN160710			
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		(2)	
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		(C)	
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001			
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	70-		

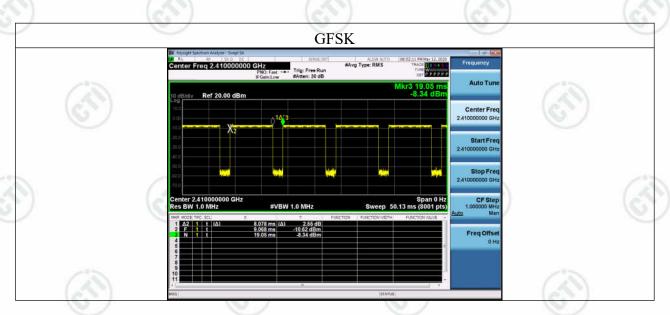
Report No. : EED32M00082303 Page 12 of 79

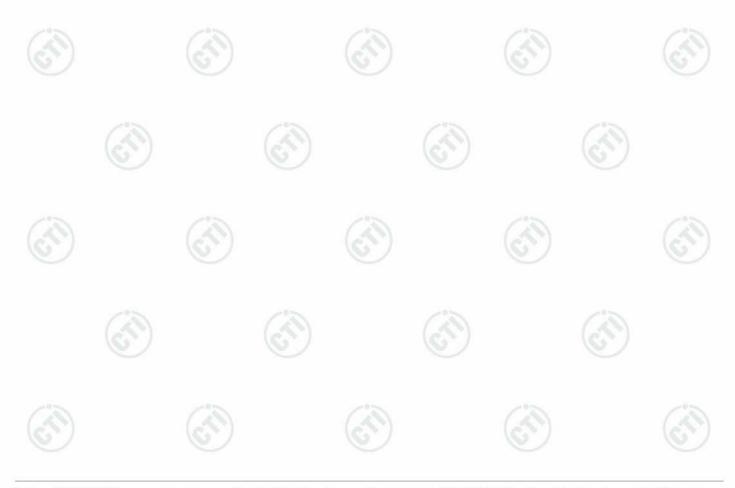
8 Radio Technical Requirements Specification

Reference documents for testing:

10.0.0		50g.
No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:


est vesuits Fist.	1.20	(- 40,000)	1.00	* 1
Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)



Report No. : EED32M00082303 Page 13 of 79

Duty Cycle

		Duty Cycle	
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
GFSK	8.078	9.982	80.93%

Report No.: EED32M00082303 Page 14 of 79

Appendix A): 20dB Occupied Bandwidth

Test Limit

According to §15.247(a) (1),

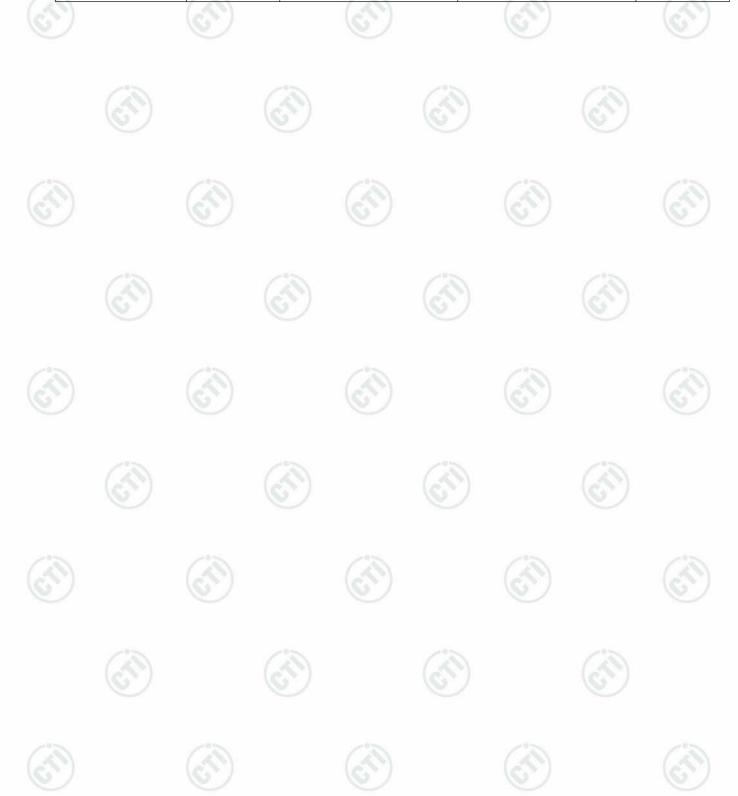
20 dB Bandwidth : For reporting purposes only.

Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as Section 8.1 and ANSI C63.10: 2013 clause 7.8.7,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =100kHz, VBW = 300kHz and Detector = Peak, to measurement 20dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.


Test Setup EUT Spectrum Analyzer

Page 15 of 79

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	4.447	4.4949	PASS
GFSK	MCH	4.526	4.5567	PASS
GFSK	HCH	4.451	4.4879	PASS

Report No. : EED32M00082303 Page 16 of 79

Test Graph

Report No.: EED32M00082303 Page 17 of 79

Appendix B): Carrier Frequency Separation

Test Limit

According to §15.247(a)(1),

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit	> two-thirds of the 20 dB bandwidth
-------	-------------------------------------

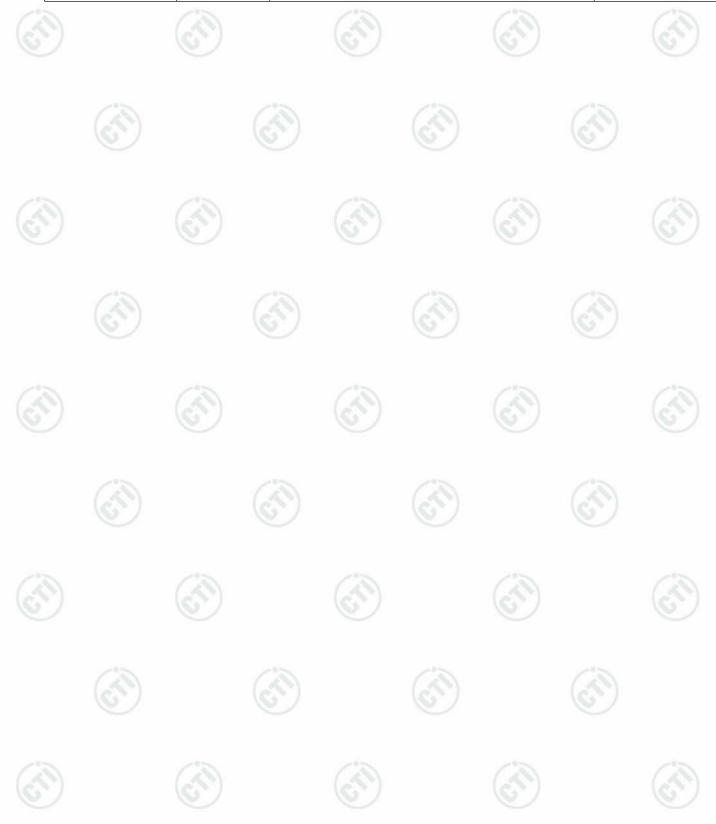
Test Procedure

Test Setup

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 130kHz, VBW = 390kHz, Sweep = auto.

 Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

EUT Spectrum Analyzer



Report No. : EED32M00082303 Page 18 of 79

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	3.51	PASS
GFSK	MCH	3.501	PASS
GFSK	HCH	4.005	PASS

Report No. : EED32M00082303 Page 19 of 79

Test Graph

Report No.: EED32M00082303 Page 20 of 79

Appendix C): Dwell Time

Test Limit

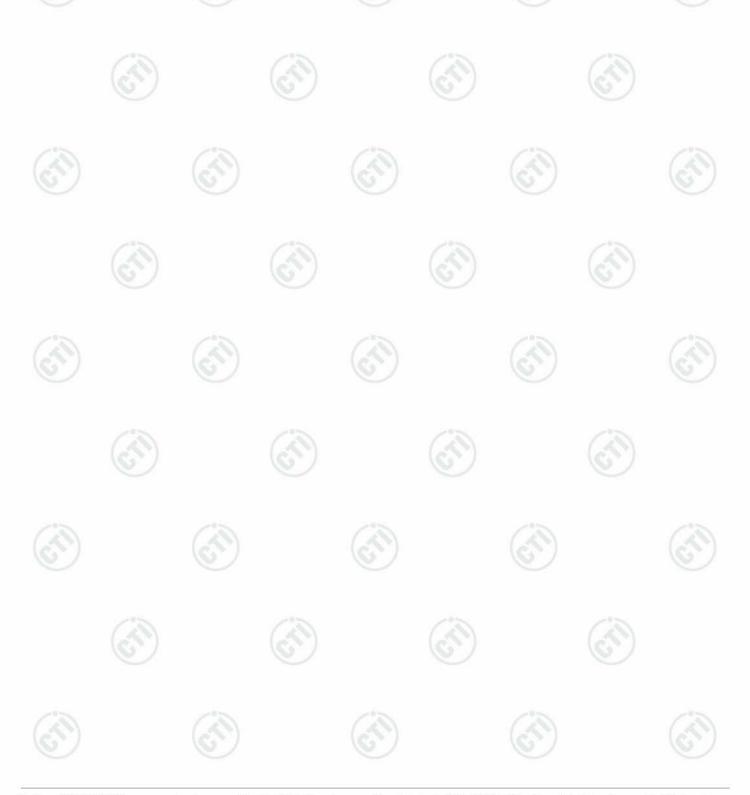
According to §15.247(a)(1)(iii),

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Sweep = auto

Test Setup



Report No. : EED32M00082303 Page 21 of 79

Result Table

Mode	Channel	Observe time[s]	one set of pulses[ms]	pulses within 1s	Dwell Time[s]	Verdict
GFSK	LCH	8	0.397	20	0.064	PASS
GFSK	MCH	8	0.391	20	0.063	PASS
GFSK	HCH	8	0.400	20	0.064	PASS

Report No. : EED32M00082303 Page 22 of 79

Test Graph

Report No.: EED32M00082303 Page 24 of 79

Appendix D): Hopping Channel Number Test Limit

According to §15.247(a)(1)(iii)

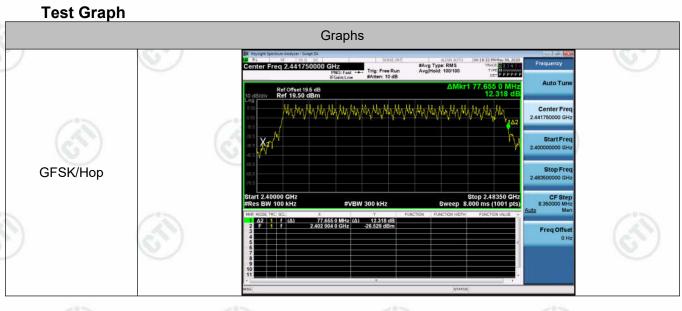
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =100KHz, VBW = 300KHz.
- 4.Max hold, view and count how many channel in the band.

Test Setup



Report No.: EED32M00082303 Page 25 of 79

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	20	PASS

Report No.: EED32M00082303 Page 26 of 79

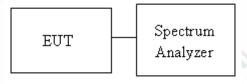
Appendix E): Conducted Peak Output Power Test Limit

According to §15.247(b)(1).

Peak output power:

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


(%) (%)	⊠ Antenna not exceed 6 dBi ∶ 21dBm
Limit	☐ Antenna with DG greater than 6 dBi:21dBm
	[Limit = 30 – (DG – 6)]

Average output power: For reporting purposes only.

Test Procedure

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - b) RBW > 20 dB bandwidth of the emission being measured.
 - c) VBW ≥ RBW.
 - d) Sweep: Auto.
 - e) Detector function: Peak.
 - f) Trace: Max hold.
 - g) Allow trace to stabilize.
 - h) Use the marker-to-peak function to set the marker to the peak of the emission
- 4. Measure and record the result in the test report.

Test Setup



Report No. : EED32M00082303 Page 27 of 79

Result Table


Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	13.979	PASS
GFSK	MCH	14.021	PASS
GFSK	HCH	13.372	PASS

Report No. : EED32M00082303 Page 28 of 79

Test Graph

Report No.: EED32M00082303 Page 29 of 79

Appendix F): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

_		-0-	_0_
Limit	-20 dBc		
ATT.	20 000		120

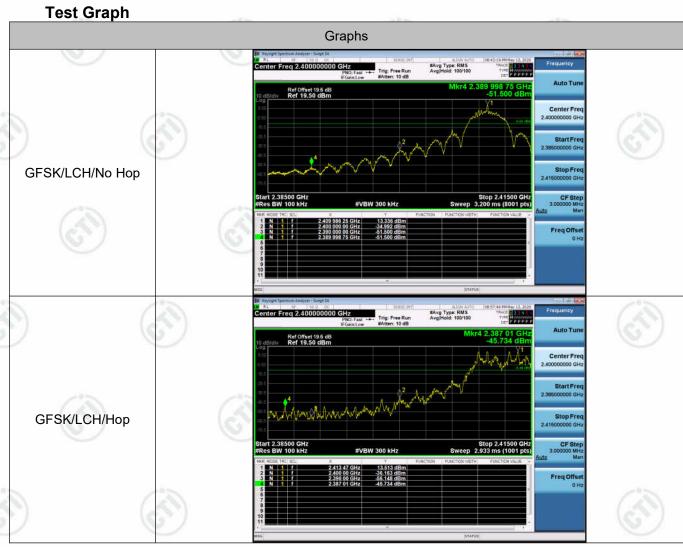
Test Procedure

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

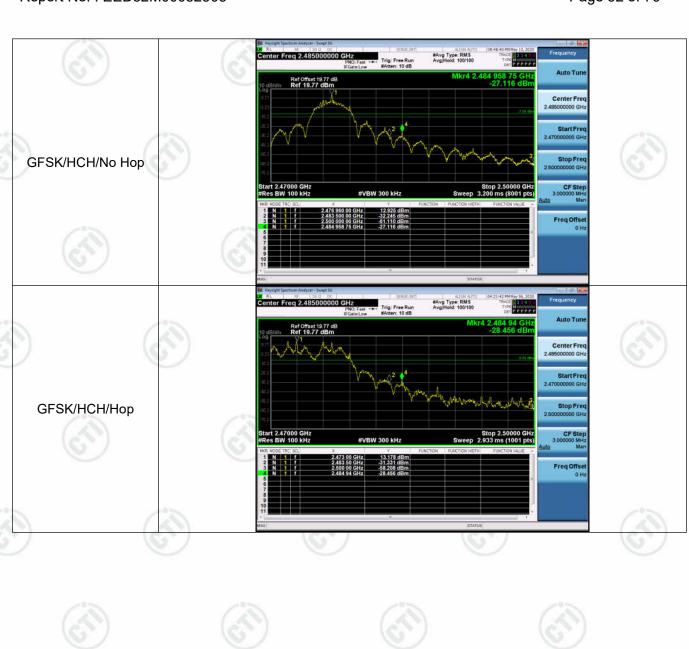
Test Setup

Page 30 of 79

Result Table


Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequenc y Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
GFSK	LCH	2402	13.336	Off	-51.500	-6.66	PASS
			13.513	On	-45.734	-6.49	PASS
GFSK	нсн	2480	12.925	Off	-27.116	-7.08	PASS
			13.178	On	-28.456	-6.82	PASS

Page 31 of 79



Report No.: EED32M00082303 Page 33 of 79

Appendix G): RF Conducted Spurious Emissions

Test Limit According to §15.247(d),

200	 20%	70
Limit	-20 dBc	
9 7		

Test Procedure

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.


Test Setup Spectrum EUT Analyzer

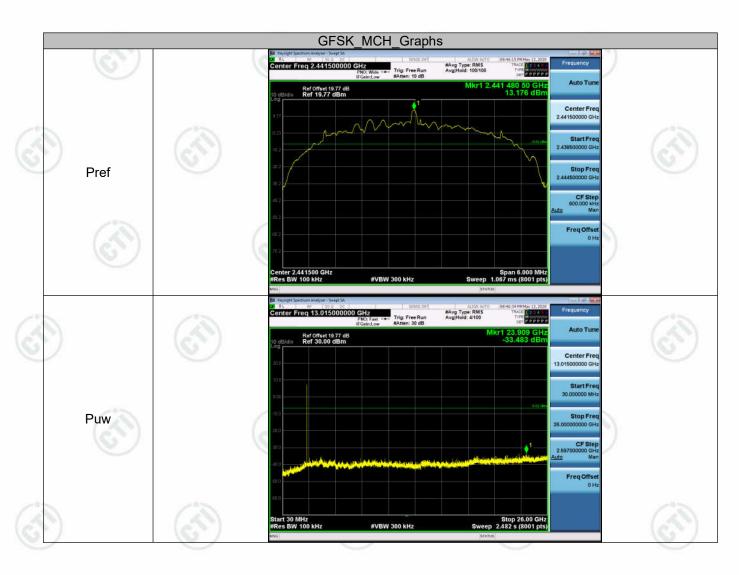
Page 34 of 79

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	13.309	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	13.176	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	10.302	<limit< th=""><th>PASS</th></limit<>	PASS

Report No. : EED32M00082303 Page 35 of 79

Test Graph





Page 37 of 79

Page 38 of 79

Report No.: EED32M00082303

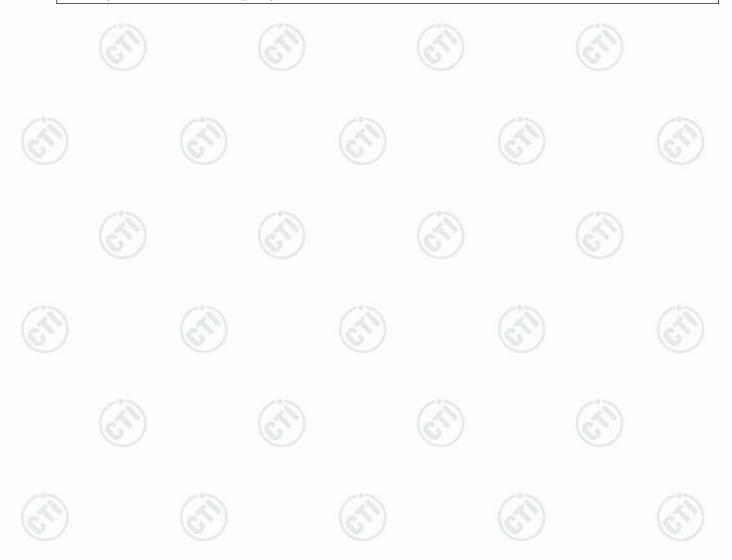
Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


EUT Pseudorandom Frequency Hopping Sequence

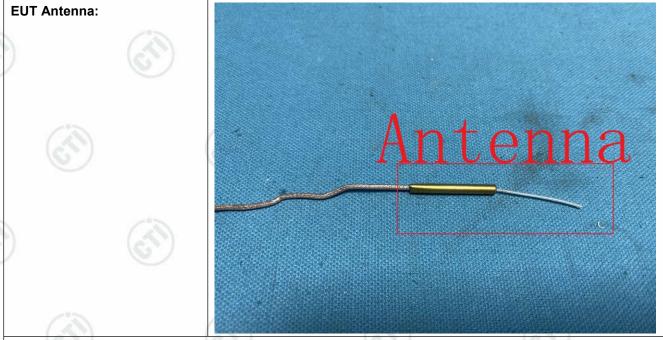
Hopping Mechanism

VA-IH006PU family use adaptive frequency hopping. There are at 20 radio non-overlap channels (above 20dBc) in the 2.4GHz ISM band. The channel transmission bandwidth is about 3.5MHz. We can allocate 20 non-overlap channels between 2410MHz to 2477MHz. Like AFH of Bluetooth, VA-IH006PU provide smart channel selection algorithm to avoid radio interference from other 2.4GHz devices.

The system will generate a pseudorandom ordered list base on:

- 1) A 8 bit factory ID(8 bit)
- 2) A 6 bit set number ID(6 bit)

Report No.: EED32M00082303 Page 39 of 79


Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

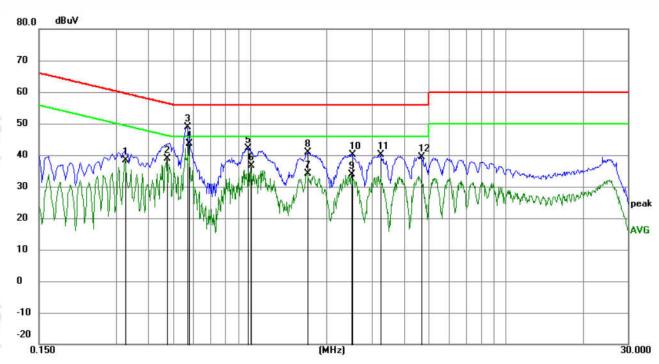
The antenna is External antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No. : EED32M00082303 Page 40 of 79

Appendix J): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-30MHz 1)The mains terminal disturbance voltage test was conducted in a shielded room								
	1)The mains terminal disturbance voltage test was conducted in a shielded room.								
	2) The EUT was connected to AC power source through a LISN 1 (Line Impeda Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. power cables of all other units of the EUT were connected to a second LISI which was bonded to the ground reference plane in the same way as the LISI for the unit being measured. A multiple socket outlet strip was used to con- multiple power cables to a single LISN provided the rating of the LISN was no exceeded.								
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangeme							
	4) The test was performed wit EUT shall be 0.4 m from the reference plane was bonde 1 was placed 0.8 m from t ground reference plane for plane. This distance was be	e vertical ground refer d to the horizontal gro he boundary of the u or LISNs mounted or	ence plane. The ve ound reference plan nit under test and n top of the groun	ertical ground ne. The LISN bonded to a nd reference					
	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must	n emission, the relative	ent was at least 0. positions of equip	8 m from the ment and all					
Limit	All other units of the EUT a LISN 2. 5) In order to find the maximum	nd associated equipm	ent was at least 0. positions of equip	8 m from the ment and all					
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must conducted measurement.	nd associated equipm n emission, the relative be changed according	ent was at least 0. positions of equipg to ANSI C63.10 o	8 m from the ment and all					
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must	nd associated equipm	ent was at least 0. positions of equipg to ANSI C63.10 o	.8 m from the ment and all					
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must conducted measurement.	nd associated equipm n emission, the relative be changed according Limit (d	ent was at least 0. e positions of equip g to ANSI C63.10 o	.8 m from the ment and all					
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must conducted measurement. Frequency range (MHz)	nd associated equipm n emission, the relative be changed according Limit (d	ent was at least 0. e positions of equip g to ANSI C63.10 o BµV) Average	.8 m from the ment and all					
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables must conducted measurement. Frequency range (MHz) 0.15-0.5	nd associated equipm n emission, the relative be changed according Limit (d Quasi-peak 66 to 56*	ent was at least 0. e positions of equip g to ANSI C63.10 of BµV) Average 56 to 46*	.8 m from the ment and all					

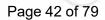
Report No. : EED32M00082303 Page 41 of 79

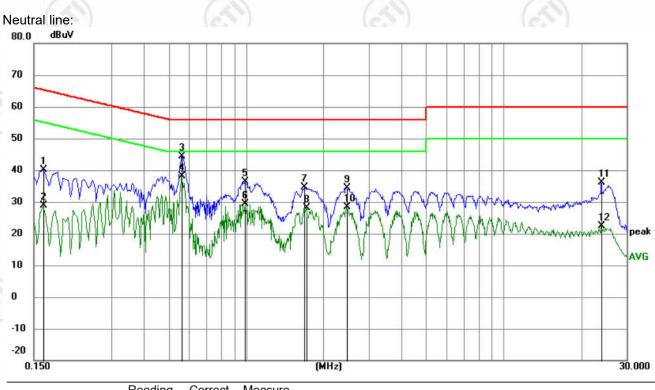

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Product : Wireless Digital Video Monitoring System Model/Type reference : DXR-Pro


Live line:



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3255	28.41	10.04	38.45	49.57	-11.12	AVG	
2		0.4740	28.86	10.01	38.87	46.44	-7.57	AVG	
3		0.5685	38.77	10.00	48.77	56.00	-7.23	QP	
4	*	0.5775	33.70	10.00	43.70	46.00	-2.30	AVG	
5		0.9825	32.42	9.74	42.16	56.00	-13.84	QP	
6		1.0095	26.97	9.74	36.71	46.00	-9.29	AVG	
7		1.6800	24.29	9.77	34.06	46.00	-11.94	AVG	
8		1.6845	31.18	9.77	40.95	56.00	-15.05	QP	
9		2.4900	23.98	9.79	33.77	46.00	-12.23	AVG	
10		2.5170	30.41	9.79	40.20	56.00	-15.80	QP	
11		3.2415	30.43	9.78	40.21	56.00	-15.79	QP	
12		4.6905	29.67	9.77	39.44	56.00	-16.56	QP	

No).	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	1		0.1635	30.28	9.87	40.15	65.28	-25.13	QP	
- 2	2		0.1635	19.03	9.87	28.90	55.28	-26.38	AVG	
-3	3		0.5639	34.49	10.01	44.50	56.00	-11.50	QP	
	1	*	0.5639	28.10	10.01	38.11	46.00	-7.89	AVG	
- 5	5		0.9915	26.74	9.74	36.48	56.00	-19.52	QP	
- 6	3		0.9915	19.64	9.74	29.38	46.00	-16.62	AVG	
7	7		1.6845	24.77	9.77	34.54	56.00	-21.46	QP	
- 8	3		1.7115	18.37	9.78	28.15	46.00	-17.85	AVG	
- 6	9		2.4539	24.47	9.79	34.26	56.00	-21.74	QP	
10)		2.4539	18.64	9.79	28.43	46.00	-17.57	AVG	
11	1		24.0000	26.23	9.93	36.16	60.00	-23.84	QP	
12	2		24.0000	12.48	9.93	22.41	50.00	-27.59	AVG	

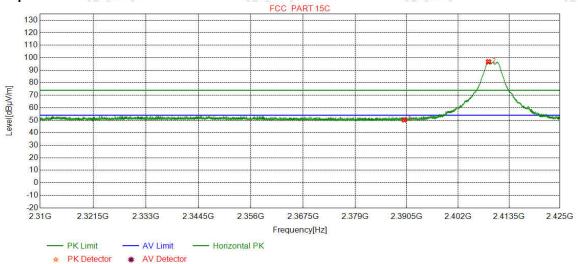
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

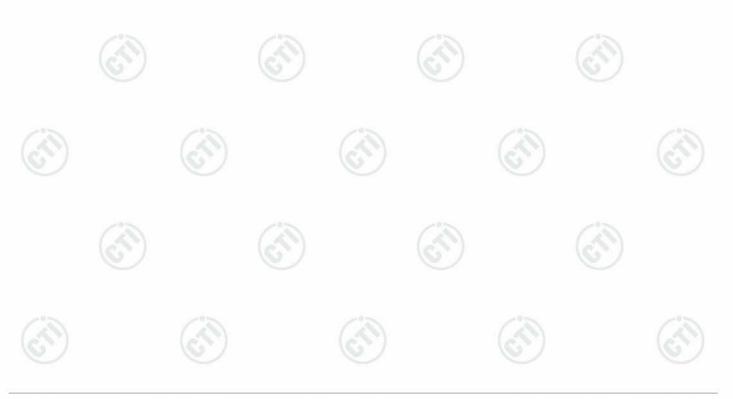
Report No.: EED32M00082303 Page 43 of 79

Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:		Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	-	Al 4011	Peak	1MHz	3MHz	Peak	-0
		Above 1GHz	Peak	1MHz	10Hz	Average	ŝ
Test Procedure:	Belo	w 1GHz test proced	dure as below:				
	b. T v c. T	The EUT was placed t a 3 meter semi-and etermine the position The EUT was set 3 mass mounted on the The antenna height is etermine the maximal electronic after a second to the second the second to the second the second to the	echoic camber. The nof the highest rancters away from top of a variable-top of a variable-top of a varied from one tom value of the fi	he table wa adiation. the interfer neight ante meter to fo eld strengtl	ence-receinna tower. bur meters h. Both hor	of the grees to the group of th	wh und
	d. F tl e. T E f. F fi	colarizations of the a for each suspected on the antenna was tuned able was turned from the test-receiver system and and the marker at the requency to show coloring. Save the spec- ands. Save the spec-	emission, the EUT ed to heights from n 0 degrees to 360 tem was set to Per mum Hold Mode. e end of the restrict ompliance. Also me ctrum analyzer plo	was arran I meter to O degrees to eak Detect cted band co easure any	aged to its of the second of t	worst case and and the rotatal maximum read and Specified he transmit in the restrict	ble dinç ted
		or lowest and highes re 1GHz test proce					
	g. E to h. b i. T	Different between about fully Anechoic Chaneter (Above 18GHz). Test the EUT in the radiation measure fransmitting mode, as Repeat above process.	ove is the test site mber and change the distance is 1 elowest channel rements are perfound found the X ax	e form table meter and , the Highe rmed in X, kis position	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). cositioning for t is worse case	
Limit:		Frequency	Limit (dBµV	/m @3m)	Rei	mark	
		30MHz-88MHz	40.0	0	Quasi-pe	eak Value	
		88MHz-216MHz	43.5	5	Quasi-pe	eak Value	
		216MHz-960MHz	46.0	0	Quasi-pe	eak Value	
	1	960MHz-1GHz	54.0	0	Quasi-pe	eak Value	
	1 1 1 1 1 1						
		Above 1GHz	54.0 74.0			je Value Value	



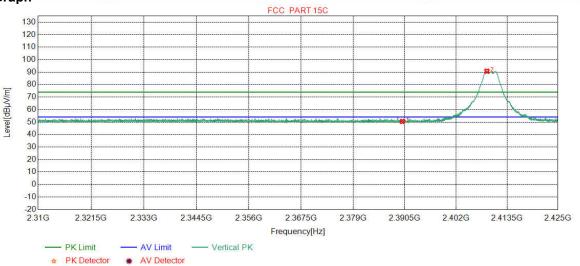
Page 44 of 79

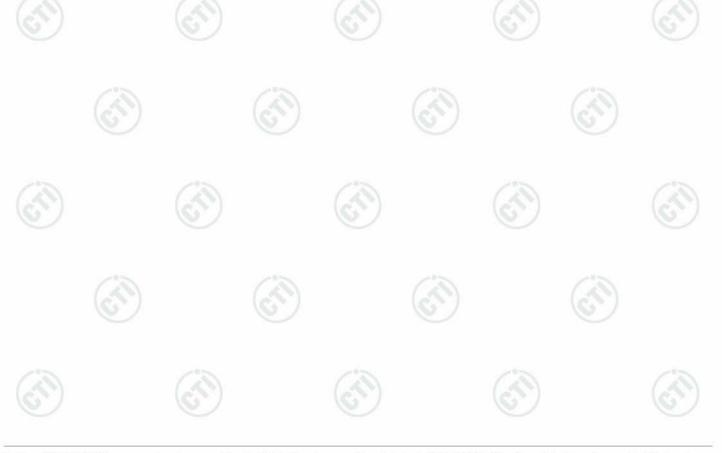

Test plot as follows:

Mode:	GFSK	Channel:	2410
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.80	50.30	74.00	23.70	Pass	Horizontal
2	2408.8913	32.27	13.34	-43.11	94.22	96.72	74.00	-22.72	Pass	Horizontal

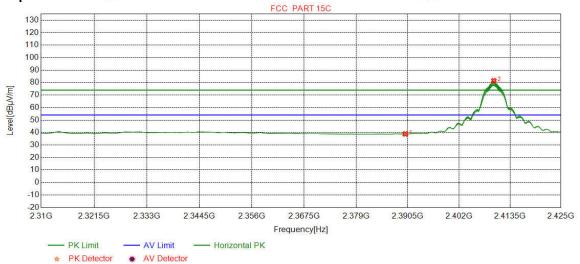


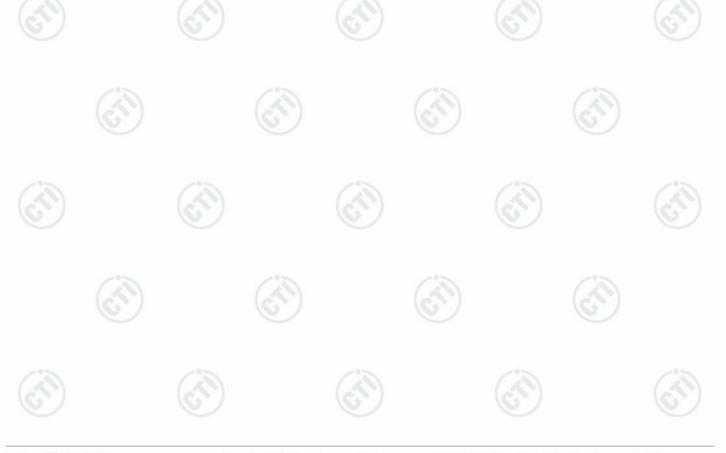

D = =: =	4 -	- 5	70
Page	40	OI	79

		L-907	(200
Mode:	GFSK	Channel:	2410
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.97	50.47	74.00	23.53	Pass	Vertical
2	2408.9603	32.27	13.34	-43.11	88.20	90.70	74.00	-16.70	Pass	Vertical

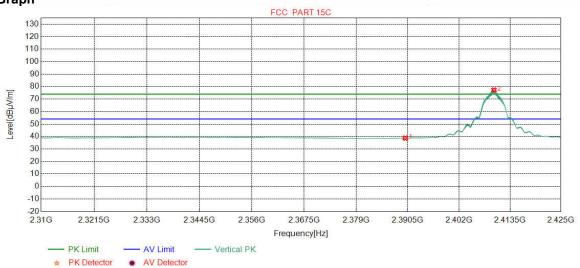


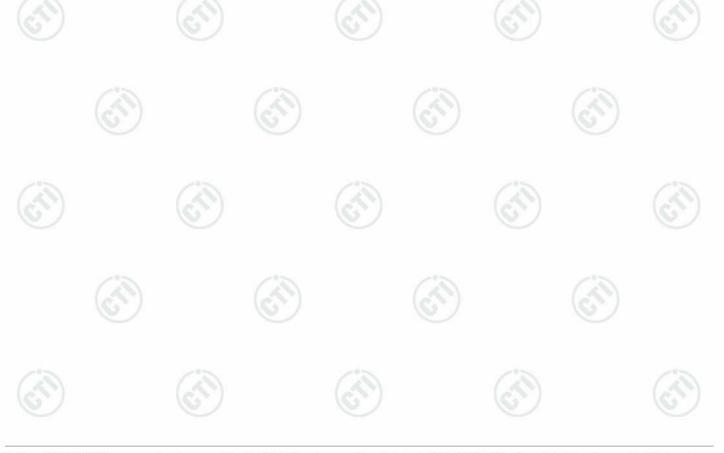

Page 46 of 79

A 201	(-50)	(20)	(50
Mode:	GFSK	Channel:	2410
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.35	38.85	54.00	15.15	Pass	Horizontal
2	2409.8573	32.27	13.35	-43.12	78.94	81.44	54.00	-27.44	Pass	Horizontal

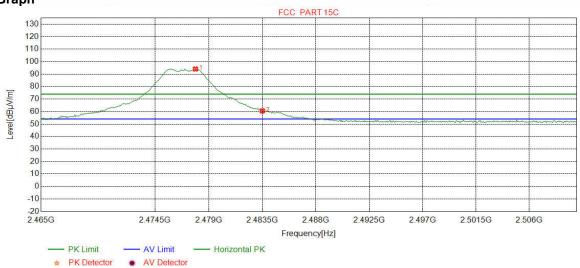


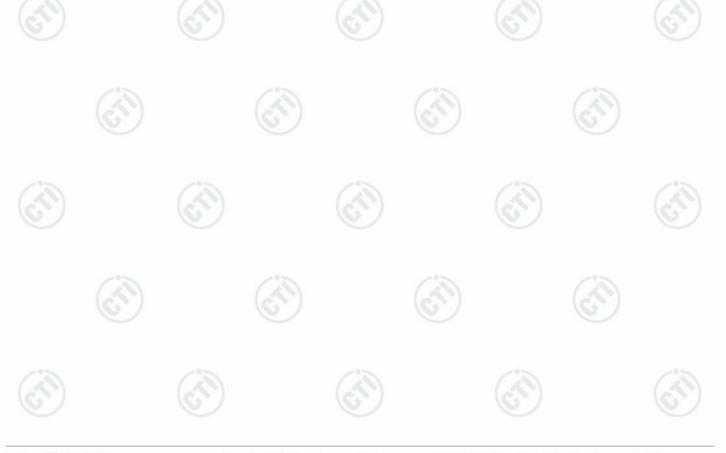

Page 47 of 79

	(-0.7)	(_30)	
Mode:	GFSK	Channel:	2410
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.19	38.69	54.00	15.31	Pass	Vertical
2	2409.8803	32.27	13.35	-43.12	74.75	77.25	54.00	-23.25	Pass	Vertical

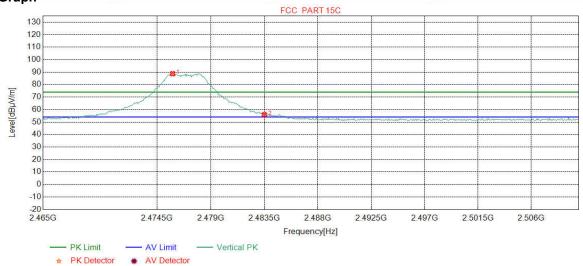


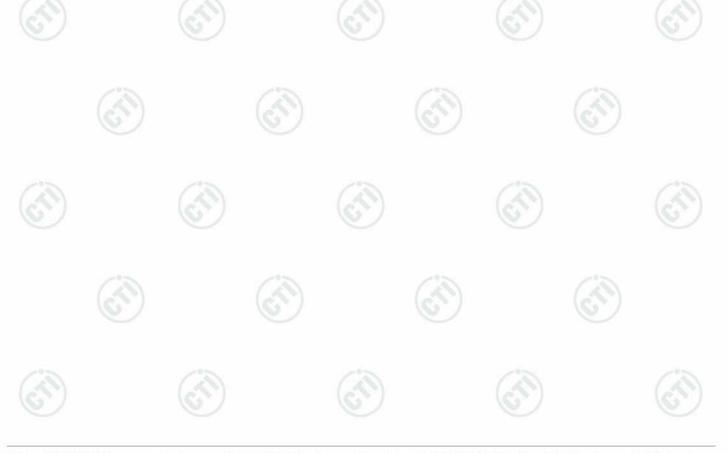

_		-	
Page	48	ΩŤ	79

		(-9.3)	(200
Mode:	GFSK	Channel:	2477
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2477.8974	32.37	13.40	-43.10	91.37	94.04	74.00	-20.04	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	57.86	60.51	74.00	13.49	Pass	Horizontal

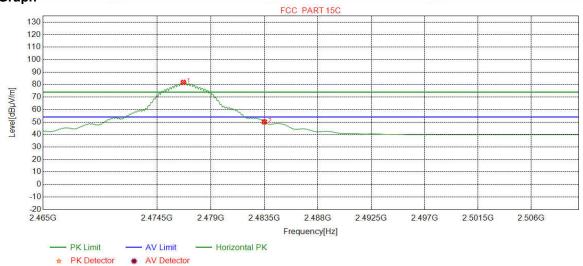


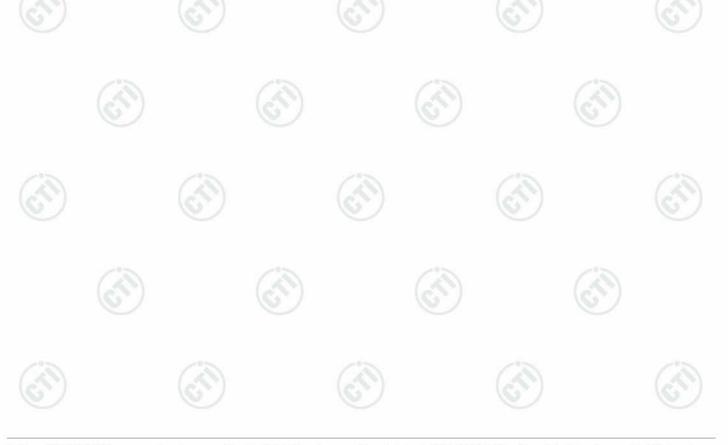

Page	40	~ £	70
Pane	44	m	74

200		1.20.21	1.20.71
Mode:	GFSK	Channel:	2477
Remark:	PK		

Test Graph

N	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2475.8135	32.37	13.41	-43.11	86.06	88.73	74.00	-14.73	Pass	Vertical
	2	2483.5000	32.38	13.38	-43.11	53.23	55.88	74.00	18.12	Pass	Vertical

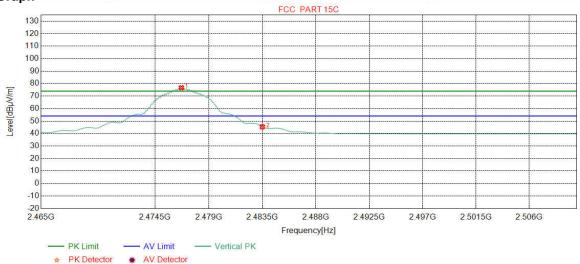



Page 50 of 79

71		(-50)	(30)
Mode:	GFSK	Channel:	2477
Remark:	AV		

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
Γ	1	2476.7146	32.37	13.41	-43.11	79.07	81.74	54.00	-27.74	Pass	Horizontal
	2	2483.5000	32.38	13.38	-43.11	47.44	50.09	54.00	3.91	Pass	Horizontal



Page 51 of 79	
	١
Page of or 73	,

Mode:	GFSK	Channel:	2477
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2476.7146	32.37	13.41	-43.11	73.97	76.64	54.00	-22.64	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	42.71	45.36	54.00	8.64	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32M00082303 Page 52 of 79

Appendix L): Radiated Spurious Emissions

Above 1GHz

Receiver Setup:					
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
b)	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
(12)	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
(0)		Peak	1MHz	3MHz	Peak

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

Peak

1MHz

10Hz

Average

- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

:	:1.
ım	IT.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300	
0.490MHz-1.705MHz	24000/F(kHz)	- (A1)-	30	
1.705MHz-30MHz	30	- \	9)-	30	
30MHz-88MHz	100	40.0	Quasi-peak	3	
88MHz-216MHz	150	43.5	Quasi-peak	3	
216MHz-960MHz	200	46.0	Quasi-peak	3	
960MHz-1GHz	500	54.0	Quasi-peak	3	
Above 1GHz	500	54.0	Average	3	

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32M00082303 Page 53 of 79

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode	e:	GFSK				Channel:		2441.5		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	129.4349	7.78	1.33	-32.02	38.86	15.95	43.50	27.55	Pass	Н
2	240.0260	11.94	1.84	-31.90	39.57	21.45	46.00	24.55	Pass	Н
3	319.9620	13.64	2.12	-31.83	39.50	23.43	46.00	22.57	Pass	Н
4	433.2693	15.93	2.46	-31.84	40.20	26.75	46.00	19.25	Pass	Н
5	600.0290	19.00	2.96	-31.50	38.37	28.83	46.00	17.17	Pass	Н
6	812.5773	21.05	3.43	-31.99	35.98	28.47	46.00	17.53	Pass	Н
7	129.0469	7.84	1.33	-32.02	38.75	15.90	43.50	27.60	Pass	V
8	240.0260	11.94	1.84	-31.90	39.17	21.05	46.00	24.95	Pass	V
9	319.9620	13.64	2.12	-31.83	39.54	23.47	46.00	22.53	Pass	V
10	433.2693	15.93	2.46	-31.84	40.05	26.60	46.00	19.40	Pass	V
11	600.0290	19.00	2.96	-31.50	37.30	27.76	46.00	18.24	Pass	V
12	812.5773	21.05	3.43	-31.99	36.57	29.06	46.00	16.94	Pass	V

Report No. : EED32M00082303 Page 54 of 79

Transmitter Emission above 1GHz

Mode:			GFSK				Channel:		2410		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1218.6219	28.12	2.67	-42.87	53.84	41.76	74.00	32.24	Pass	Н	PK
2	1937.8938	31.29	3.42	-43.05	51.26	42.92	74.00	31.08	Pass	Н	PK
3	3919.0613	33.74	4.34	-43.02	50.03	45.09	74.00	28.91	Pass	Н	PK
4	5011.1341	34.51	4.83	-42.79	50.58	47.13	74.00	26.87	Pass	Н	PK
5	7939.3293	36.42	6.12	-42.19	49.66	50.01	74.00	23.99	Pass	Н	PK
6	9097.4065	37.68	6.44	-42.02	49.27	51.37	74.00	22.63	Pass	Н	PK
7	1218.2218	28.12	2.67	-42.88	53.58	41.49	74.00	32.51	Pass	V	PK
8	3071.0047	33.23	4.78	-43.10	50.50	45.41	74.00	28.59	Pass	V	PK
9	4817.1211	34.50	4.59	-42.80	52.37	48.66	74.00	25.34	Pass	V	PK
10	6530.2353	35.91	5.40	-42.48	50.01	48.84	74.00	25.16	Pass	V	PK
11	7232.2822	36.33	5.79	-42.15	49.77	49.74	74.00	24.26	Pass	V	PK
12	9195.4130	37.66	6.44	-42.04	49.69	51.75	74.00	22.25	Pass	V	PK

Mode:			GFSK				Channel:		2441.5		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1066.0066	27.97	2.53	-43.04	54.89	42.35	74.00	31.65	Pass	Н	PK
2	1218.4218	28.12	2.67	-42.87	53.42	41.34	74.00	32.66	Pass	Н	PK
3	3050.0033	33.22	4.83	-43.10	51.27	46.22	74.00	27.78	Pass	Н	PK
4	3767.0511	33.61	4.36	-43.05	50.83	45.75	74.00	28.25	Pass	Н	PK
5	4885.1257	34.50	4.82	-42.80	50.78	47.30	74.00	26.70	Pass	Н	PK
6	6878.2586	36.05	5.71	-42.27	49.80	49.29	74.00	24.71	Pass	Н	PK
7	1218.0218	28.12	2.67	-42.88	53.26	41.17	74.00	32.83	Pass	V	PK
8	3062.0041	33.22	4.80	-43.09	50.18	45.11	74.00	28.89	Pass	V	PK
9	4880.1253	34.50	4.80	-42.80	53.34	49.84	74.00	24.16	Pass	V	PK
10	6024.2016	35.80	5.28	-42.59	49.55	48.04	74.00	25.96	Pass	V	PK
11	7321.2881	36.42	5.85	-42.13	52.20	52.34	74.00	21.66	Pass	V	PK
12	9096.4064	37.68	6.44	-42.02	49.22	51.32	74.00	22.68	Pass	V	PK

_		-	70
Page	55	ΟĪ	79

Mode:			GFSK				Channel:		2477		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1219.0219	28.12	2.67	-42.87	53.41	41.33	74.00	32.67	Pass	Н	PK
2	3932.0621	33.75	4.34	-43.02	50.08	45.15	74.00	28.85	Pass	Н	PK
3	5000.1333	34.50	4.82	-42.80	50.79	47.31	74.00	26.69	Pass	Н	PK
4	6917.2612	36.07	5.86	-42.26	50.33	50.00	74.00	24.00	Pass	Н	PK
5	9158.4106	37.67	6.45	-42.04	49.34	51.42	74.00	22.58	Pass	Н	PK
6	10290.486	38.21	6.85	-42.04	49.92	52.94	74.00	21.06	Pass	Н	PK
7	1218.8219	28.12	2.67	-42.87	53.20	41.12	74.00	32.88	Pass	V	PK
8	1598.6599	29.05	3.07	-42.90	52.42	41.64	74.00	32.36	Pass	V	PK
9	3067.0045	33.23	4.79	-43.10	50.50	45.42	74.00	28.58	Pass	V	PK
10	4951.1301	34.50	4.82	-42.80	54.45	50.97	74.00	23.03	Pass	V	PK
11	7433.2956	36.53	5.85	-42.11	51.23	51.50	74.00	22.50	Pass	V	PK
12	9237.4158	37.65	6.56	-42.05	49.35	51.51	74.00	22.49	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

