

Page 1 of 78

Product		Wireless Digital Video Monitoring System	
Trade mark	:	N/A	
Model/Type reference	:	DXR-8 PRO, DXR8PPZ-A	
Serial Number	:	N/A	
Report Number	:	EED32M00082301	
FCC ID	:	2AAAM-DXR8PPZ-ABU	
Date of Issue	:	Jul. 07, 2020	
Test Standards	:	47 CFR Part 15 Subpart C	
Test result	:	PASS	

Prepared for: STANDARD MERIT INDUSTRIAL LIMITED 2/A Harrison Court Stage 6, 10 Man Wan Road, Kowloon, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Nove Xm Compiled by: sunlight sun Reviewed by: Sunlight Sun Ware Xin an (lucery proved b Date: Jul. 07, 2020 Sam Chuang Check No: 3320284899 Report Sea

2 Version

Page 2 of 78

Version No.	Date	Description	
00	Jul. 07, 2020	Original	
60			

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Duty Cycle	ANSI C63.10-2013	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Model No.: DXR-8 PRO, DXR8PPZ-A

Only the model DXR-8 PRO was tested, DXR-8 PRO is the system model of the product that of which consist of one camera unit and one monitor unit with the model DXRBPPZ-A. The model DXR-8 PRO is represent the coverage of one Camera unit and one Monitor with the Model DXR8PPZ-A. For DXR8PPZ-A is the model represent the individual Camera/Monitor unit only

)

4 Content				
1 COVER PAGE				
2 VERSION	<u> </u>	<u> </u>	<u> </u>	
3 TEST SUMMARY				
4 CONTENT	~	-		4
E TEST DECUIDEMENT	(2			5
5 TEST REQUIREMENT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\cup		
5.1 IEST SETUP 5.1.1 For Conducted test s	etun			
5.1.2 For Radiated Emissio	ons test setup			
5.1.3 For Conducted Emiss	sions test setup	2955		
5.2 TEST ENVIRONMENT	·····			6
5.3 TEST CONDITION			<u> </u>	6
6 GENERAL INFORMATION				7
6.1 CLIENT INFORMATION				7
6.2 GENERAL DESCRIPTION OF	EUT			7
6.3 PRODUCT SPECIFICATION S	SUBJECTIVE TO THIS S	STANDARD		7
6.4 DESCRIPTION OF SUPPORT	UNITS			
6.5 TEST LOCATION				
6.6 DEVIATION FROM STANDAR	DS			
6.7 ABNORMALITIES FROM STAI	NDARD CONDITIONS.		·····	8
6.0 MEASUDEMENT UNCEDTAIN	JESTED BY THE CUST			8 o
	TTY (95 % CONFIDENC	$J \in LEVELS, K-Z \dots$	V	
7 EQUIPMENT LIST				
8 RADIO TECHNICAL REQUIR	EMENTS SPECIFI	CATION		12
Appendix A): 20dB Occupi	ed Bandwidth			14
Appendix B): Carrier Frequ	ency Separation			17
Appendix C): Dwell Time				
Appendix D): Hopping Cha	innel Number			
Appendix E): Conducted P	eak Output Power			
Appendix F): Band-edge id	or RF Conducted Er	nissions		
Appendix B): RF Conducte	m Frequency Hopr			
Appendix I): Antenna Regi	irement	ning Sequence	<u> </u>	
Appendix I): AC Power Lin	e Conducted Emiss	sion		38
Appendix K): Restricted ba	inds around fundam	nental frequency (Rad	ated)	
Appendix L): Radiated Spu	rious Emissions	······	,	
PHOTOGRAPHS OF TEST SET	TUP	2		54
PHUTUGRAPHS OF EUT CON	STRUCTIONAL DE			

5.1.3 For Conducted Emissions test setup

5.2 Test Environment

Operating Environment:		S	(e)	6
Temperature:	23°C			
Humidity:	54% RH			
Atmospheric Pressure:	1010mbar	C.		
		100		A 3

5.3 Test Condition

Test Made	Ти	RF Channel					
rest mode	IX	Low(L)	Middle(M)	High(H)			
CESK		Channel 1	Channel 10	Channel 20			
Gran		2410MHz	2441.5MHz	2477MHz			
TX mode: The EUT transmitted the continuous modulation test signal at the specific channel(s).							

6 General Information

6.1 Client Information

Applicant:	STANDARD MERIT INDUSTRIAL LIMITED
Address of Applicant:	2/A Harrison Court Stage 6, 10 Man Wan Road, Kowloon, Hong Kong
Manufacturer:	Foshan Shunde Alford Electronics Co., Ltd
Address of Manufacturer:	Xinjian Industrial Park, Daliang, Shunde, Foshan City, Guangdong Province, China

Page 7 of 78

6.2 General Description of EUT

Product Name:	Wireless Digita	Wireless Digital Video Monitoring System					
Model No.(EUT):	DXR-8 PRO, [DXR-8 PRO, DXR8PPZ-A					
Test Model No:	DXR-8 PRO	DXR-8 PRO					
Trade mark:	N/A						
EUT Supports Radios application:	2410MHz - 24	77MHz	1				
Power Supply:	AC adapter 1	Model: BI12T-059100-BdU Input:100-240V~50/60Hz 0.5A Output: DC 5.9V1A					
	AC adapter 2	Model: BLJ05K059100P-U Input:100-240V~50/60Hz 0.2A Output: 5.9V1000mA					
Sample Received Date:	Apr.13, 2020	· ·					
Sample tested Date:	Apr.13, 2020 t	o May 22, 2020	~~~				
6.3 Product Specifi	cation subj	ective to this standard	(2)				
Operation Frequency:	2410MHz - 24	77MHz	V				
Modulation Technique:	Frequency Ho	pping Spread Spectrum(FHSS)					
Modulation Type:	GFSK	245	215				
Number of Channel:	20		20				
Hopping Channel Type:	Adaptive Freq	uency Hopping systems					
Test Power Grade:	Defualt						
Test Software of EUT:	Defualt						
Antenna Type:	Dipole Antenn	a					
Antenna Gain:	0 dBi	C) C)	6				
Test Voltage:	DC 5.9V						

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2410MHz	6	2427.5MHz	11	2445MHz	16	2462.5MHz
2	2413.5MHz	7	2431MHz	12	2448.5MHz	17	2466MHz
3	2417MHz	8	2434.5MHz	13	2452MHz	18	2469.5MHz
4	2420.5MHz	9	2438MHz	14	2455.5MHz	19	2473MHz
5	2424MHz	10	2441.5MHz	15	2459MHz	20	2477MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
0		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
	Conduction omission	3.5dB (9kHz to 150kHz)
54)	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List

RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021	
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020	
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	$\underline{\circ}$	``	9	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4				
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021	
PC-1	Lenovo	R4960d		6-2	6	
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021	
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	(\mathbf{C})	(S	

201				14		
Conducted disturbance Test						
Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
R&S	ESCI	100435	05-20-2019 04-28-2020	05-19-2020 04-27-2021		
Defu	TH128	Ŷ	06-14-2019	06-13-2020		
R&S	ENV216	100098	03-05-2020	03-04-2021		
changchun	DYM3	1188	06-20-2019	06-19-2020		
	Manufacturer R&S Defu R&S changchun	Conducted distManufacturerModel No.R&SESCIDefuTH128R&SENV216changchunDYM3	Conducted disturbance TestManufacturerModel No.Serial NumberR&SESCI100435DefuTH128/R&SENV216100098changchunDYM31188	Conducted disturbance Test Manufacturer Model No. Serial Number Cal. date (mm-dd-yyyy) R&S ESCI 100435 05-20-2019 04-28-2020 Defu TH128 / 06-14-2019 R&S ENV216 100098 03-05-2020 changchun DYM3 1188 06-20-2019		

	3M -	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	трк	SAC-3		05-24-2019	05-23-2022
RILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	<u>-</u>		
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A		
Cable line	Fulai(3M)	SF106	5217/6A	(

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019 05-20-2020	05-21-2020 05-19-2021
Preamplifier	EMCI	EMC001330	980563	05-08-2019 04-22-2020	05-07-2020 04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019 04-27-2020	04-29-2020 04-26-2021
Fully Anechoic Chamber	TDK	FAC-3	12	01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		<u> </u>
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	<pre></pre>	
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		C)
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

	Test requirement	Test method	Test item	Verdict	Note
	Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
J	Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
	Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
	Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
	Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
	Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
	Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
0	Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	N/A	Appendix J)
	Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
	Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

Duty Cycle

	(5)		
	Duty	Cycle	
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
GFSK	8.078	10.004	80.75%

Appendix A): 20dB Occupied Bandwidth

Test Limit

According to §15.247(a) (1),

20 dB Bandwidth : For reporting purposes only.

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as Section 8.1 and ANSI C63.10: 2013 clause 7.8.7,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =100kHz, VBW = 300kHz and Detector = Peak, to measurement 20dB Bandwidth.
- SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

Page 15 of 78

Test Result

	Mode GFSK GFSK GFSK	Channel. LCH MCH HCH	20dB Bandwidth 4.576 4.579 4.619	[MHz]	99% OBW 4.5094 4.5342 4.5603	[MHz]	Verdict PASS PASS PASS
S		(SP)			S)		(SC)

Test Graph

Page 17 of 78

Appendix B): Carrier Frequency Separation

Test Limit

According to §15.247(a)(1),

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit	> two-th	irds of the 20 dB bar	ndwidth
(2.8)	(27)	(25)	(2)

Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- Set the spectrum analyzer as RBW = 130kHz, VBW = 390kHz, Sweep = auto.
 Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

9

Result Table

 (1)				
Mode	Channel.	Carrier Freq	uency Separation [MH	Iz] Verdict
GFSK	MCH		3.51	PASS
GFSK	HCH		3.99	PASS

Test Graph

Test Limit

According to §15.247(a)(1)(iii),

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW=1MHz, VBW=3MHz,Sweep = auto

Result Table

Page 21	of 78

Mode	Channel	Observe time[s]	one set of pulses[ms]	pulses within 2s	Dwell Time[s]	Verdict
GFSK	LCH	8	3.263	17	0.222	PASS
GFSK	MCH	8	3.263	17	0.222	PASS
GFSK	HCH	8	3.263	16	0.209	PASS

			Graphs		
	(S)	S	Bit Royart Sentari Melater: Sent 34 150.0 150.0 60 Bit Royart Sentari Melater: Sent 34 PHO: Fast	Ация Анто (91.64.24 ККНи, 27.200) Nyg Type: RMS тичес раз а станки станки Станки станки с	rker
					Delta
S		(I)	00 00<	142 Marine and the Albert State for the State Span 0 Hz	xed>
			Res BW 1.0 MHz #VBW 3.0 MHz Mode Tricl ScL 3: Y FloatChild A 22 F 1 t J.263 ms J.263 ms 2 F 1 t J.263 ms -64.72 dBm 3 4 J.572 ms -64.72 dBm	Sweep 10.13 ms (8001 pts)	on nties>
		S			More 1 of 2
	GFSK/LCH			ji kj	
Ś			Bit Monaget Spectrum Analyzer Sweet SA. 18442.1941 Dif AL NV 35.0 05 PMCS Fast Trig: Free Rum #Atten: 20.00 10 dSIdiv Ref 10.00 dBm 00 00 00 00 00	ALION AUTO 013514 PRIMA; 27, 2020 Traduent Total 12.3 4 Total 12.3 4	Tune Freq 0 0 Hz
		ć	40 40 40 40 40 40 40 40 40 40	2.4100000 2.4100000 2.4100000 2.4100000 2.4100000 2.4100000 2.4100000 2.4100000 2.4100000 2.41000000 2.41000000 2.41000000	Freq 0 GHz Freq 0 GHz Step Man Man
)	3		Trans	0 Hz

Appendix D): Hopping Channel Number

Test Limit

According to §15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =100KHz, VBW = 300KHz.
- 4.Max hold, view and count how many channel in the band.

Test Setup

Ì

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	20	PASS

Page 26 of 78

Appendix E): Conducted Peak Output Power

Test Limit According to §15.247(b)(1).

Peak output power :

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Average output power : For reporting purposes only.

Test Procedure

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows :
 - a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - b) RBW > 20 dB bandwidth of the emission being measured.
 - c) VBW \geq RBW.
 - d) Sweep: Auto.
 - e) Detector function: Peak.
 - f) Trace: Max hold.
 - g) Allow trace to stabilize.
 - h) Use the marker-to-peak function to set the marker to the peak of the emission
- 4. Measure and record the result in the test report.

Ì

Result Table

	Mode GFSK GFSK GFSK	Channel. LCH MCH HCH	Maximum Pe	eak Output Pow 14.222 14.474 13.712	er [dBm]	Verc PAS PAS PAS	lict SS SS SS
(L)		(A)	(SA)		(A)		(A)

Test Graph

Appendix F): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

Limit		-20 dBc	
	67		6

Test Procedure

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

Result Table

		-			10 m m	
Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdic
I C.H	2402	3.830	Off	-56.145	-16.17	PASS
	2702	9.535	On	-52.534	-10.47	PASS
HCH	2480	8.443	Off	-30.914	-11.56	PASS
		9.357	On	-30.433	-10.64	PASS
		G	raphs			
		er Freq 2.40000000	PNC: Fast +++ Trig: Free Run #Atten: 10 dB	ALISH AUTO 07:27:18 PM Nay 12, 2020 #Avg Type: RMS TRACE 12:14 Avg[Hold: 100/100 TVPE DET PPPPPP	Frequency	
	10 48	Ref Offset 19.5 dB		Mkr4 2.389 860 00 GHz -56.145 dBm	Auto Tune	
	eso.			& '	Center Freq	
	0.90				2.40000000 GHz	
	- 201-55 - 383-81		A ²	MAN M	Start Freq 2.38500000 GHz	
12	40.5 40.5	<u></u>	- nnm			
Нор	-06.5	mannenter			Stop Freq 2.415000000 GHz	
	Start	2.38500 GHz		Stop 2.41500 GHz	CF Step	
	#Res MRE M	BW 100 KHz	#VBW 300 kHz	Sweep 3.200 ms (8001 pts)	3.000000 MHz Auto Man	
	1 2 3	N 1 f 2408 9 N 1 f 2400 0 N 1 f 2390 0	896 25 GHz 3,830 dBm 000 00 GHz -39,532 dBm 000 00 GHz -56,583 dBm		Freq Offset	
	4 5 6	N 1 f 2.389 8	560 00 GHz -56.145 dBm		0 Hz	
	7 8 9					
	10					
	Missi Bill Keys	ight Spectrum Analyzer - Swept SA		STATUS		
	Cent	er Freq 2.40250000	GHZ SENSE INT	ALLON AUTO 07:44:35 PM May 12, 2020 #Avg Type: RMS TRACE 04:00 TO AvgHold: 100/100 ToPE 04:00 TOPE	Frequency	
		Pat Offert 10 Feb	IFGain:Low #Atten: 10 dB	Mkr4 2.385 525 GHz	Auto Tune	
12	10 dB	Idiv Ref 19.50 dBm		-52.534 dBm		
(2)	0.50			Man Idan Mark	2.402500000 GHz	
E.	-10.5				Start Freq	
	-30.5		2 MV	¥	2.385000000 GHz	
-n	-60-51	hadrest marthater	wy v v		Stop Freq	
ייי ו	70.5 J				2.42000000 GHz	
	Start #Res	2.38500 GHz BW 100 kHz	#VBW 300 kHz	Stop 2.42000 GHz Sweep 3.400 ms (1001 pts)	CF Step 3 500000 MHz	
	MOR M	ODE TRC: SCL X	Y FUNC 16 955 GHz 9,535 dBm	TION FUNCTION WOTH FUNCTION VALUE +	Auto Man	
	2	N 1 f 2.40 N 1 f 2.35 N 1 f 2.35	00 000 GHz -40.569 dBm 90 000 GHz -54.902 dBm 85 525 GHz -52.534 dBm		Freq Offset	
	5 6 7					
	8 9 10					
225	11			STATUS -		
	ed and	1.2	e.	123	S.	65
	Channel LCH HCH	Channel Carrier LCH 2402 HCH 2480	Channel Carrier Frequency [MH2] Carrier Power [dBm] LCH 2402 3.830 9.535 8.443 HCH 2480 9.535 HCH 2480 9.357 Image: state stat	Channel Carrier Frequency [IBHz] Carrier IgBm] Frequency Hopping LCH 2402 3.830 Off HCH 2480 9.535 On HCH 2480 9.357 On HOP Image: State	Channel Carrier Frequency [MHz] Carrier Power (dBm) Frequency Hopping Max Spurious Level [dBm] LCH 2402 3.830 Off -52.534 HCH 2480 8.443 Off -30.914 HCH 2480 9.357 On -30.433 Supervision of the second secon	Channel Carrier INHz) Carrier Power INHz) Frequency Hopping Max Spurious Level [dBm] Limit [dBm] LCH 2402 3.830 Off -56.145 -16.17 HCH 2480 9.335 On -52.534 -10.47 HCH 2480 9.357 On -30.433 -10.64 Graphs

Page 31 of 78

Appendix G): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d),

R	Limit		-20 dBc		D
0)	0		0	0

Test Procedure

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	9.178	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	8.053	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	9.055	<limit< td=""><td>PASS</td></limit<>	PASS

Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

Hopping Mechanism

VA-IH006BU family use adaptive frequency hopping. There are at 20 radio non-overlap channels (above 20dBc) in the 2.4GHz ISM band. The channel transmission bandwidth is about 3.5MHz. We can allocate 20 non-overlap channels between 2410MHz to 2477MHz. Like AFH of Bluetooth, VA-IH006BU provide smart channel selection algorithm to avoid radio interference from other 2.4GHz devices.

The system will generate a pseudorandom ordered list base on:

1) A 8 bit factory ID(8 bit)

2) A 6 bit set number ID(6 bit)

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

dBi.

Appendix J): AC Power Line Conducted Emission

Test Procedure:				
	Test frequency range :150KHz	-30MHz		
	1)The mains terminal disturbar	nce voltage test was co	onducted in a shield	ded room
	2) The EUT was connected to	AC power source thro	ough a LISN 1 (Lin	e Impeda
	Stabilization Network) which	ch provides a 50Ω/50μ	H + 5Ω linear imp	edance.
	power cables of all other u	nits of the EUT were	connected to a sec	cond LIS
	which was bonded to the g	round reference plane	In the same way a	is the LIS
	multiple power cables to a s	single LISN provided th	ne rating of the LIS	N was no
	exceeded.			
	3)The tabletop EUT was place	ed upon a non-metalli	c table 0.8m abov	e the gro
	reference plane. And for flo	oor-standing arrangeme	ent, the EUT was p	placed or
	horizontal ground reference	e plane,	6	
	4) The test was performed wi	th a vertical ground re	eference plane. Th	e rear of
	EUT Shall be 0.4 m from in reference plane was bonde	e venical ground references of the the horizontal arc	und reference plane	rucai gro ne The I
	1 was placed 0.8 m from t	the boundary of the u	nit under test and	bonded
	ground reference plane for	or LISNs mounted or	top of the groui	nd refere
	plane. This distance was b	etween the closest poi	nts of the LISN 1 a	and the E
	All other units of the EUT a	ind associated equipm	ent was at least ().	X m from
	LISN 2			
	LISN 2.	emission the relative	positions of equin	ment and
	LISN 2. 5) In order to find the maximum of the interface cables mus	n emission, the relative t be changed according	positions of equip to ANSI C63.10 of	ment and
	LISN 2. 5) In order to find the maximun of the interface cables mus- conducted measurement.	n emission, the relative t be changed according	e positions of equip g to ANSI C63.10 o	ment and
Limit:	LISN 2. 5) In order to find the maximum of the interface cables musi conducted measurement.	n emission, the relative t be changed according	e positions of equip g to ANSI C63.10 o	ment and
Limit:	LISN 2. 5) In order to find the maximum of the interface cables musi conducted measurement.	n emission, the relative t be changed according Limit (d	e positions of equip g to ANSI C63.10 α ΒμV)	ment and
Limit:	LISN 2. 5) In order to find the maximum of the interface cables musi- conducted measurement. Frequency range (MHz)	n emission, the relative t be changed accordin Limit (d Quasi-peak	e positions of equip g to ANSI C63.10 α ΒμV) Average	ment and
Limit:	LISN 2. 5) In order to find the maximum of the interface cables musi- conducted measurement. Frequency range (MHz) 0.15-0.5	n emission, the relative t be changed according Limit (d Quasi-peak 66 to 56*	e positions of equip g to ANSI C63.10 α BμV) Average 56 to 46*	
Limit:	LISN 2. 5) In order to find the maximum of the interface cables musi- conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5	n emission, the relative t be changed according Limit (d Quasi-peak 66 to 56* 56	e positions of equip g to ANSI C63.10 o BμV) Average 56 to 46* 46	
Limit:	LISN 2. 5) In order to find the maximum of the interface cables musi- conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30	n emission, the relative t be changed according Limit (d Quasi-peak 66 to 56* 56 60	e positions of equip g to ANSI C63.10 o BμV) Average 56 to 46* 46 50	
Limit:	LISN 2. 5) In order to find the maximum of the interface cables musi- conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly	n emission, the relative t be changed according Limit (d Quasi-peak 66 to 56* 56 60 with the logarithm of t	e positions of equip g to ANSI C63.10 o BμV) Average 56 to 46* 46 50 he frequency in th	ment and
Limit:	LISN 2. 5) In order to find the maximum of the interface cables musi- conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly for MHz to 0.50 MHz.	n emission, the relative t be changed according Limit (d Quasi-peak 66 to 56* 56 60 with the logarithm of t	e positions of equip g to ANSI C63.10 of BμV) Average 56 to 46* 46 50 he frequency in th	ment and

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.3255	28.41	10.04	38.45	49.57	-11.12	AVG	
	2		0.4740	28.86	10.01	38.87	46.44	-7.57	AVG	
	3		0.5685	38.77	10.00	48.77	56.00	-7.23	QP	
	4	*	0.5775	33.70	10.00	43.70	46.00	-2.30	AVG	
5	5		0.9825	32.42	9.74	42.16	56.00	-13.84	QP	
9.	6		1.0095	26.97	9.74	36.71	46.00	-9.29	AVG	
ä.	7		1.6800	24.29	9.77	34.06	46.00	-11.94	AVG	
	8		1.6845	31.18	9.77	40.95	56.00	-15.05	QP	
	9		2.4900	23.98	9.79	33.77	46.00	-12.23	AVG	
	10		2.5170	30.41	9.79	40.20	56.00	-15.80	QP	
	11		3.2415	30.43	9.78	40.21	56.00	-15.79	QP	
	12		4.6905	29.67	9.77	39.44	56.00	-16.56	QP	

	No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin				
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment		
-	1	0.1635	30.28	9.87	40.15	65.28	-25.13	QP		 	
	2	0.1635	19.03	9.87	28.90	55.28	-26.38	AVG		 	
1	3	0.5639	34.49	10.01	44.50	56.00	-11.50	QP			
1	4 *	0.5639	28.10	10.01	38.11	46.00	-7.89	AVG			
	5	0.9915	26.74	9.74	36.48	56.00	-19.52	QP			
	6	0.9915	19.64	9.74	29.38	46.00	-16.62	AVG			
	7	1.6845	24.77	9.77	34.54	56.00	-21.46	QP			
	8	1.7115	18.37	9.78	28.15	46.00	-17.85	AVG			
	9	2.4539	24.47	9.79	34.26	56.00	-21.74	QP			
	10	2.4539	18.64	9.79	28.43	46.00	-17.57	AVG			
	11	24.0000	26.23	9.93	36.16	60.00	-23.84	QP			
1	12	24.0000	12.48	9.93	22.41	50.00	-27.59	AVG			

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector RB	W VBW	Remark
	30MHz-1GHz	Quasi-peak 120k	Hz 300kHz	Quasi-peak
-		Peak 1MI	Hz 3MHz	Peak
J)	Above IGH2	Peak 1MI	Hz 10Hz	Average
Test Procedure:	Below 1GHz test procedu	ire as below:	0	
CT)	 a. The EUT was placed of at a 3 meter semi-aner determine the position b. The EUT was set 3 meter semi-aner was mounted on the tot of the antenna height is determine the maximul polarizations of the antenna was tuned from d. For each suspected er the antenna was tuned table was turned from e. The test-receiver syster Bandwidth with Maxim f. Place a marker at the frequency to show combands. Save the spect for lowest and highest 	on the top of a rotating choic camber. The table of the highest radiation eters away from the int op of a variable-height varied from one meter m value of the field stru- tenna are set to make nission, the EUT was a l to heights from 1 met 0 degrees to 360 degrees m was set to Peak De um Hold Mode. end of the restricted ban pliance. Also measure rum analyzer plot. Rep channel ure as below:	table 0.8 mete e was rotated a n. erference-rece antenna tower, to four meters ength. Both ho the measurem arranged to its er to 4 meters ees to find the tect Function a and closest to t e any emission peat for each pe	rs above the gro 360 degrees to iving antenna, w above the groun rizontal and verti ent. worst case and t and the rotatable maximum readin and Specified he transmit s in the restricted ower and modula
Ì	 g. Different between above to fully Anechoic Chan meter(Above 18GHz the b. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above procedulation and the statement of the st	ve is the test site, char ber and change form he distance is 1 meter lowest channel , the H ments are performed i d found the X axis pos ires until all frequencie	ige from Semi- table 0.8 meter and table is 1.5 ighest channel n X, Y, Z axis p itioning which s measured wa	Anechoic Cham to 1.5 meter). positioning for it is worse case. as complete.
Limit:	Frequency	Limit (dBµV/m @3	m) Re	mark
(\mathbf{G}^{*})	30MHz-88MHz	40.0	Quasi-p	eak Value
	88MHz-216MHz	43.5	Quasi-p	eak Value
	216MHz-960MHz	46.0	Quasi-p	eak value
	216MHz-960MHz 960MHz-1GHz	46.0	Quasi-p Quasi-p	eak Value
3	216MHz-960MHz 960MHz-1GHz	46.0 54.0 54.0	Quasi-p Quasi-p Averag	eak Value eak Value ge Value

Test plot as follows:

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.54	50.04	74.00	23.96	Pass	Horizontal
2	2411.0611	32.28	13.35	-43.12	84.11	86.62	74.00	-12.62	Pass	Horizontal

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.88	50.38	74.00	23.62	Pass	Vertical
2	2408.9219	32.27	13.34	-43.11	94.14	96.64	74.00	-22.64	Pass	Vertical

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.13	38.63	54.00	15.37	Pass	Horizontal
2	2409.9187	32.27	13.35	-43.12	70.93	73.43	54.00	-19.43	Pass	Horizontal

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.46	38.96	54.00	15.04	Pass	Vertical
2	2409.9953	32.27	13.35	-43.12	79.73	82.23	54.00	-28.23	Pass	Vertical

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2475.9262	32.37	13.41	-43.11	83.34	86.01	74.00	-12.01	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	53.14	55.79	74.00	18.21	Pass	Horizontal

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2475.9825	32.37	13.41	-43.11	93.73	96.40	74.00	-22.40	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	60.78	63.43	74.00	10.57	Pass	Vertical

Hotline: 400-6788-333

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2476.8273	32.37	13.41	-43.11	71.31	73.98	54.00	-19.98	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	42.54	45.19	54.00	8.81	Pass	Horizontal

Hotline: 400-6788-333

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2476.9962	32.37	13.41	-43.11	80.35	83.02	54.00	-29.02	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	51.36	53.86	54.00	0.14	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

Appendix L): Radiated Spurious Emissions

		5	-		
Frequency	Detector	RBW	VBW	Remark	
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	12
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	6
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Peak	1MHz	3MHz	Peak	
Above 1GHz	Peak	1MHz	10Hz	Average	
	Frequency 0.009MHz-0.090MHz 0.009MHz-0.090MHz 0.090MHz-0.110MHz 0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz -30MHz 30MHz-1GHz Above 1GHz	FrequencyDetector0.009MHz-0.090MHzPeak0.009MHz-0.090MHzAverage0.090MHz-0.110MHzQuasi-peak0.110MHz-0.490MHzPeak0.110MHz-0.490MHzAverage0.490MHz -30MHzQuasi-peak30MHz-1GHzQuasi-peakAbove 1GHzPeak	FrequencyDetectorRBW0.009MHz-0.090MHzPeak10kHz0.009MHz-0.090MHzAverage10kHz0.009MHz-0.110MHzQuasi-peak10kHz0.110MHz-0.490MHzPeak10kHz0.110MHz-0.490MHzAverage10kHz0.110MHz-0.490MHzAverage10kHz0.490MHz -30MHzQuasi-peak10kHz30MHz-1GHzQuasi-peak120kHzAbove 1GHzPeak1MHzPeak1MHz	FrequencyDetectorRBWVBW0.009MHz-0.090MHzPeak10kHz30kHz0.009MHz-0.090MHzAverage10kHz30kHz0.090MHz-0.110MHzQuasi-peak10kHz30kHz0.110MHz-0.490MHzPeak10kHz30kHz0.110MHz-0.490MHzAverage10kHz30kHz0.110MHz-0.490MHzQuasi-peak10kHz30kHz0.490MHz -30MHzQuasi-peak10kHz30kHz30MHz-1GHzQuasi-peak120kHz300kHzAbove 1GHzPeak1MHz3MHzPeak1MHz10Hz	FrequencyDetectorRBWVBWRemark0.009MHz-0.090MHzPeak10kHz30kHzPeak0.009MHz-0.090MHzAverage10kHz30kHzAverage0.090MHz-0.110MHzQuasi-peak10kHz30kHzQuasi-peak0.110MHz-0.490MHzPeak10kHz30kHzPeak0.110MHz-0.490MHzAverage10kHz30kHzPeak0.490MHz -30MHzQuasi-peak10kHz30kHzQuasi-peak30MHz-1GHzQuasi-peak120kHz300kHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeakPeak1MHz10HzAverage

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	- (20-	30
	1.705MHz-30MHz	30	-)	<u>.</u>	30 🔍
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	otherwise specified 3 above the maximi equipment under te vel radiated by the d	l, the limit or um permitted st. This pea device	n peak radio fr d average emi k limit applies	equency ssion limit to the total

j. Repeat above procedures until all frequencies measured was complete.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

	Mode	:	GFSK				Channel:		2441.5		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
S	1	129.0469	7.84	1.33	-32.02	39.55	16.70	43.50	26.80	Pass	Н
-	2	240.0260	11.94	1.84	-31.90	39.12	21.00	46.00	25.00	Pass	Н
	3	319.9620	13.64	2.12	-31.83	39.25	23.18	46.00	22.82	Pass	Н
	4	439.9630	16.04	2.48	-31.88	40.09	26.73	46.00	19.27	Pass	Н
	5	519.9960	17.40	2.73	-31.93	38.19	26.39	46.00	19.61	Pass	Н
	6	600.0290	19.00	2.96	-31.50	39.18	29.64	46.00	16.36	Pass	Н
	7	129.4349	7.78	1.33	-32.02	38.53	15.62	43.50	27.88	Pass	V
	8	240.0260	11.94	1.84	-31.90	39.10	20.98	46.00	25.02	Pass	V
100	9	319.9620	13.64	2.12	-31.83	38.72	22.65	46.00	23.35	Pass	V
	10	439.9630	16.04	2.48	-31.88	39.24	25.88	46.00	20.12	Pass	V
6	11	600.0290	19.00	2.96	-31.50	39.10	29.56	46.00	16.44	Pass	V
	12	812.5773	21.05	3.43	-31.99	35.14	27.63	46.00	18.37	Pass	V

Transmitter Emission above 1GHz

Mode	Mode:						Channel:		2410		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1080.0080	27.98	2.54	-43.02	62.44	49.94	74.00	24.06	Pass	Н	PK
2	1296.0296	28.20	2.74	-42.79	59.17	47.32	74.00	26.68	Pass	Н	PK
3	3198.0132	33.28	4.65	-43.10	49.83	44.66	74.00	29.34	Pass	Н	PK
4	4818.1212	34.50	4.59	-42.80	64.42	60.71	74.00	13.29	Pass	Н	PK
5	7570.3047	36.57	5.95	-42.11	49.78	50.19	74.00	23.81	Pass	Н	PK
6	9212.4142	37.66	6.48	-42.05	49.42	51.51	74.00	22.49	Pass	Н	PK
7	4818.1203	34.50	4.59	-42.80	53.37	49.66	54.00	4.34	Pass	Н	AV
8	1079.8080	27.98	2.54	-43.02	58.13	45.63	74.00	28.37	Pass	V	PK
9	1319.6320	28.22	2.78	-42.77	55.54	43.77	74.00	30.23	Pass	V	PK
10	3024.0016	33.21	4.88	-43.10	51.81	46.80	74.00	27.20	Pass	V	PK
11	4822.1215	34.50	4.60	-42.80	57.46	53.76	74.00	20.24	Pass	V	PK
12	6453.2302	35.89	5.52	-42.51	49.88	48.78	74.00	25.22	Pass	V	PK
13	9180.4120	37.66	6.44	-42.03	49.20	51.27	74.00	22.73	Pass	V	PK

Mode	Mode:						Channel:		2441.5		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1079.8080	27.98	2.54	-43.02	61.77	49.27	74.00	24.73	Pass	Н	PK
2	1295.8296	28.20	2.74	-42.79	58.87	47.02	74.00	26.98	Pass	Н	PK
3	3951.0634	33.76	4.34	-43.01	50.58	45.67	74.00	28.33	Pass	Н	PK
4	4881.1254	34.50	4.80	-42.80	65.50	62.00	74.00	12.00	Pass	Н	PK
5	6088.2059	35.82	5.25	-42.59	49.81	48.29	74.00	25.71	Pass	Н	PK
6	9161.4108	37.67	6.45	-42.04	49.65	51.73	74.00	22.27	Pass	Н	PK
7	4881.1251	34.50	4.80	-42.80	54.25	50.75	54.00	3.25	Pass	Н	AV
8	1080.4080	27.98	2.54	-43.01	57.09	44.60	74.00	29.40	Pass	V	PK
9	1319.8320	28.22	2.78	-42.77	55.29	43.52	74.00	30.48	Pass	V	PK
10	1924.6925	31.20	3.42	-43.01	53.49	45.10	74.00	28.90	Pass	V	PK
11	4881.1254	34.50	4.80	-42.80	57.58	54.08	74.00	19.92	Pass	V	PK
12	7614.3076	36.55	6.11	-42.11	49.18	49.73	74.00	24.27	Pass	V	PK
13	9282.4188	37.64	6.63	-42.06	50.15	52.36	74.00	21.64	Pass	V	PK
14	4881.1262	34.50	4.80	-42.80	46.11	42.61	54.00	11.39	Pass	V	AV

									0.477		
Mode	e:		GFSK				Channel:		2477		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1080.2080	27.98	2.54	-43.02	61.98	49.48	74.00	24.52	Pass	Н	PK
2	1296.0296	28.20	2.74	-42.79	59.65	47.80	74.00	26.20	Pass	Н	PK
3	4012.0675	33.82	4.33	-43.00	50.60	45.75	74.00	28.25	Pass	Н	PK
4	4956.1304	34.50	4.82	-42.80	66.34	62.86	74.00	11.14	Pass	Н	PK
5	6910.2607	36.06	5.87	-42.25	49.99	49.67	74.00	24.33	Pass	Н	PK
6	9296.4198	37.64	6.64	-42.06	49.32	51.54	74.00	22.46	Pass	Н	PK
7	4956.1300	34.50	4.82	-42.80	53.77	50.29	54.00	3.71	Pass	Н	AV
8	1080.2080	27.98	2.54	-43.02	56.61	44.11	74.00	29.89	Pass	V	PK
9	1319.8320	28.22	2.78	-42.77	55.77	44.00	74.00	30.00	Pass	V	PK
10	3940.0627	33.75	4.34	-43.01	50.10	45.18	74.00	28.82	Pass	V	PK
11	4952.1301	34.50	4.82	-42.80	56.19	52.71	74.00	21.29	Pass	V	PK
12	6971.2648	36.09	5.75	-42.21	49.35	48.98	74.00	25.02	Pass	V	PK
13	9289.4193	37.64	6.63	-42.05	49.63	51.85	74.00	22.15	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

