

FCC - TEST REPORT

Report Number	:	68.950.22.0963.01	Date of Issue: 2023-04-06
Model	:	DXR-8	
Product Type	:	Wireless Digital Video Monit	toring System
Applicant	:	STANDARD MERIT INDUS	TRIAL LIMITED
Address	:	604 Kalok Building, 720 Nat	han Road, Kowloon, Hong Kong
Manufacturer	:	STANDARD MERIT INDUS	TRIAL LIMITED
Address	:	604 Kalok Building, 720 Nat	han Road, Kowloon, Hong Kong
Test Result	:	■ Positive	2
Total pages including Appendices	:	50	

Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and certification regulation, chapter A-3.4.

1 Table of Contents

1	Та	able of Contents	2
2	De	etails about the Test Laboratory	3
3	De	escription of the Equipment Under Test	4
4	Su	ummary of Test Standards	5
5	Su	ummary of Test Results	6
6	Ge	eneral Remarks	7
7	Те	est Setups	8
8	Sy	vstems Test Configuration	
9	Те	echnical Requirement	11
ç	9.1	Conducted Emission	11
ç).2	Conducted Peak Output Power	
ç).3	20 dB Bandwidth and 99% Occupied Bandwidth	19
ç).4	Carrier Frequency Separation	24
ç	9.5	Number of Hopping Frequencies	
ç	9.6	Dwell Time	
ç).7	Spurious RF Conducted Emissions	30
ç	9.8	Band Edge Testing	
ç	9.9	Spurious Radiated Emissions for Transmitter	41
10	Те	est Equipment List	49
11	Sy	ystem Measurement Uncertainty	50

2 Details about the Test Laboratory

Details about the Test Laboratory

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch
	Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu, Nantou, Nanshan District, Shenzhen, Guangdong, China

Telephone:86 755 8828 6998Fax:86 755 828 5299

FCC Registration 514049 No.:

FCC Designation CN5009 Number:

3 Description of the Equipment Under Test

Product:	Wireless Digital Video Monitoring System
Model no.:	DXR-8
FCC ID:	2AAAM-DXR-8BU-3
Rating:	5.9VDC, 1A (powered by adapter)
Adapter	Adapter 1 Model: BLJ06W059100P1-U Input: 100-240VAC 50/60Hz, 0.2A, Output: 5.9VDC,1000mA Manufacturer: Zhongshan Baolijin Electronic Co., Ltd. Adapter 2 Model: HP07Z-0591000-CU Input: 100-240VAC 50/60Hz, 0.3A, Output: 5.9VDC,1000mA Manufacturer: DONGGUAN HP-POWER TECHNOLOGY., LIMITED
RF Transmission Frequency:	2410.875MHz-2471.625MHz
No. of Operated Channel:	19
Modulation:	GFSK
Antenna Type:	Integrated antenna
Antenna Gain:	0 dBi

Operation Fre	Operation Frequency each of channel							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2410.875	6	2427.750	11	2444.625	16	2461.500	
2	2414.250	7	2431.125	12	2448.000	17	2464.875	
3	2417.625	8	2434.500	13	2451.375	18	2468.250	
4	2421.000	9	2437.875	14	2454.750	19	2471.625	
5	2424.375	10	2441.250	15	2458.125			

NOTE 1: The above EUT's information is declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

4 Summary of Test Standards

Test Standards							
FCC Part 15 Subpart C	FCC Part 15 Subpart C PART 15 - RADIO FREQUENCY DEVICES						
10-1-2021 Edition	Subpart C - Intentional Radiators						

All the test methods were according to KDB 558074 D01 15.247 Meas Guidance v05r02 Measurement Guidance and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements				
FCC Part 15 Subpart C				
Test Condition		Test Result		
§15.207	§15.207 Conducted emission AC power port			
§15.247(b)(1)	Conducted peak output power	Pass		
§15.247(e)	Power spectral density	N/A		
§15.247(a)(2)	6dB bandwidth and 99% Occupied Bandwidth	N/A		
§15.247(a)(1)	20dB bandwidth and 99% Occupied Bandwidth	Pass		
§15.247(a)(1)	Min. of Hopping Channel Carrier Frequency Separation	Pass		
§15.247(a)(1)(iii)	Min number of hopping frequencies	Pass		
§15.247(a)(1)(iii)	Dwell Time - Average Time of Occupancy	Pass		
§15.247(d)	Spurious RF conducted emissions	Pass		
§15.247(d)	Band edge	Pass		
§15.247(d) & §15.209 &	Spurious radiated emissions for transmitter	Pass		
§15.203	Antenna requirement	See note 2		

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an integrated antenna, which gain is 0 dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2AAAM-DXR-8BU-3, complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed

The Equipment Under Test

- - **Fulfills** the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date:	2022-10-20
Testing Start Date:	2022-10-20
Testing End Date:	2023-03-28

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Prep

Reviewed by:

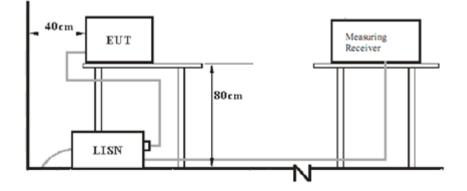
John Zhi

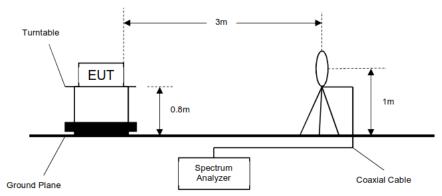
Section Manager

ared by:	
I	ſ.M
t~	Im

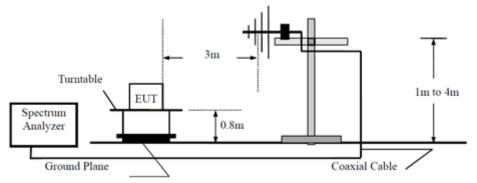
Joe Gu Project Engineer

Tested by: SUD


Carry Cai Test Engineer

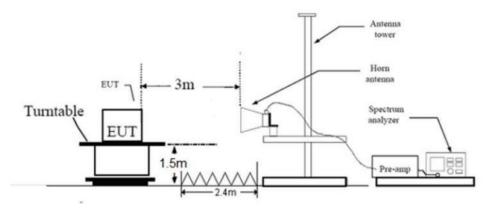

7 Test Setups

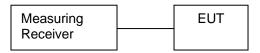
7.1 AC Power Line Conducted Emission test setups



7.2 Radiated test setups

9KHz - 30MHz


Below 1GHz


EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu, Nantou, Nanshan District, Shenzhen, Guangdong, China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Above 1GHz

7.3 Conducted RF test setups

8 Systems Test Configuration

The system was configured to hopping mode and non-hopping mode.

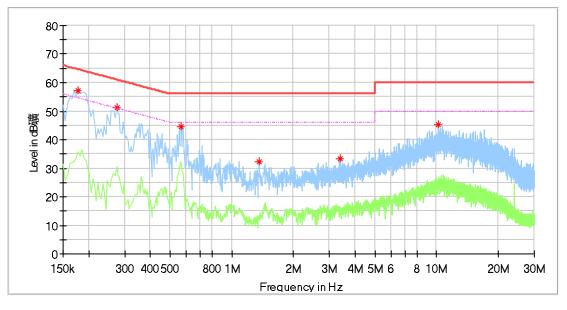
Hopping mode: typical working mode (normal hopping status)

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power

Test Method

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. Both sides of AC line were checked for maximum conducted interference.
- 6. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

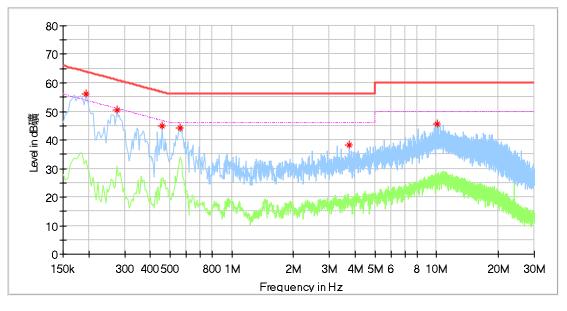
Limit


Frequency MHz	QP Limit dBµV	AV Limit dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

Product Type M/N	:	Wireless Digital Video Monitoring System DXR-8
Operating Condition Test Specification Comment Adapter	:	Transmit Line AC 120V/60Hz (External adapter) BLJ06W059100P1-U

Frequency	MaxPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
0.178000	57.04		64.58	7.54	L1	10.33
0.274000	51.18		61.00	9.81	L1	10.34
0.566000	44.64		56.00	11.36	L1	10.36
1.358000	32.25		56.00	23.75	L1	10.38
3.398000	33.34		56.00	22.66	L1	10.48
10.138000	45.12		60.00	14.88	L1	10.81

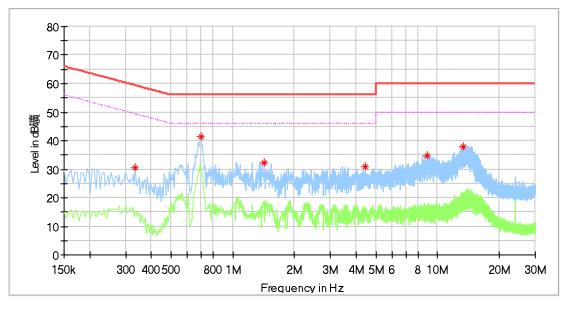

Remark :

Level=Reading Level + Correction Factor

Correction Factor=Cable Loss + LISN Factor

Product Type M/N	:	Wireless Digital Video Monitoring System DXR-8
Operating Condition	÷	Transmit
Test Specification	:	Neutral
Comment	:	AC 120V/60Hz (External adapter)
Adapter	:	BLJ06W059100P1-U

Frequency	MaxPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
0.194000	56.09		63.86	7.77	Ν	10.38
0.274000	50.68		61.00	10.32	Ν	10.42
0.458000	45.07		56.73	11.66	Ν	10.46
0.558000	44.37		56.00	11.63	Ν	10.48
3.754000	38.21		56.00	17.79	Ν	10.65
10.074000	45.53		60.00	14.47	Ν	10.99

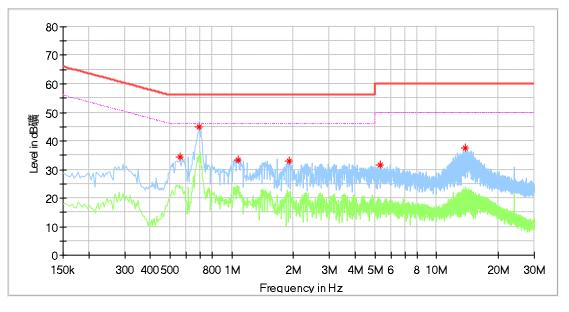

Remark :

Level=Reading Level + Correction Factor

Correction Factor=Cable Loss + LISN Factor

Product Type M/N	:	Wireless Digital Video Monitoring System DXR-8
Operating Condition Test Specification Comment Adapter	:	Transmit Line AC 120V/60Hz (External adapter) HP07Z-0591000-CU

Frequency	MaxPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
0.334000	30.70		59.35	28.65	L1	10.35
0.698000	41.24		56.00	14.76	L1	10.36
1.426000	32.25		56.00	23.75	L1	10.38
4.450000	30.78		56.00	25.22	L1	10.54
8.934000	34.91		60.00	25.09	L1	10.76
13.374000	37.96		60.00	22.04	L1	10.93


Remark :

Level=Reading Level + Correction Factor

Correction Factor=Cable Loss + LISN Factor

Product Type M/N	:	Wireless Digital Video Monitoring System DXR-8
Operating Condition	÷	Transmit
Test Specification	÷	Neutral
Comment		AC 120V/60Hz (External adapter)
Adapter	:	HP07Z-0591000-CU

Frequency	MaxPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
0.558000	34.48		56.00	21.52	Ν	10.48
0.694000	44.84		56.00	11.16	Ν	10.48
1.070000	33.18		56.00	22.82	Ν	10.51
1.914000	32.94		56.00	23.06	Ν	10.54
5.302000	31.47		60.00	28.53	Ν	10.75
13.866000	37.56		60.00	22.44	Ν	11.15

Remark :

Level=Reading Level + Correction Factor

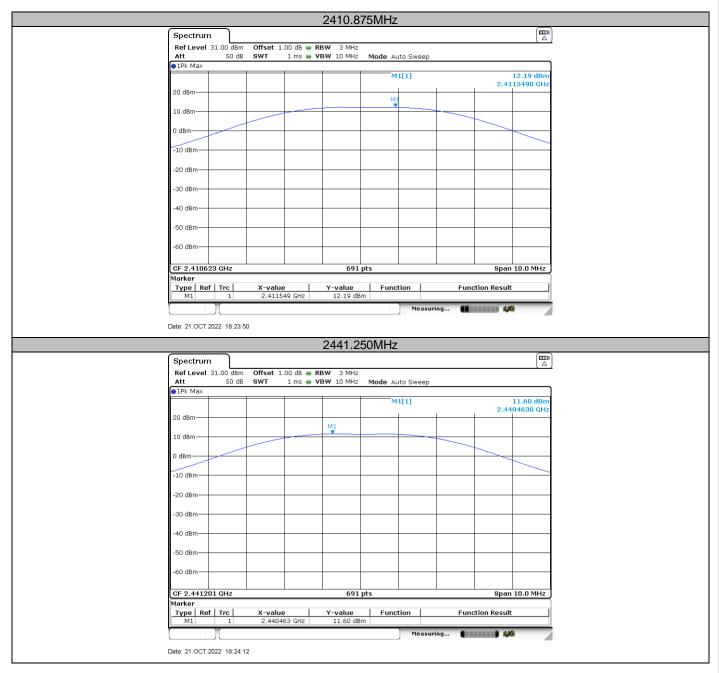
Correction Factor=Cable Loss + LISN Factor

9.2 Conducted Peak Output Power

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following test receiver settings: Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel RBW > the 20dB bandwidth of the emission being measured, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power and record the results in the test report.
- 5. Repeat above procedures until all frequencies measured were complete.

Limits


According to §15.247 (b) (1), conducted peak output power limit as below:

	Frequency Range	Limit	Limit
_	MHz	W	dBm
	2400-2483.5	≤1	≤30

Conducted Peak Output Power

Test	Result Conducted Peak	
Frequency	Output Power	Result
MHz	dBm	
Low channel 2410.875MHz	12.19	Pass
Middle channel 2441.250MHz	11.60	Pass
High channel 2471.625MHz	10.76	Pass

		2471.625	MHz			
	31.00 dBm Offset 1.00 dB	● RBW 3 MHz				
Att	50 dB SWT 1 ms	VBW 10 MHz M	lode Auto Sweep			
			M1[1]	2.4	10.76 dBm 709000 GHz	
20 dBm						
10 dBm		M1				
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
CF 2.4715	51 GHz	691 pts		Spa	n 10.0 MHz	
Marker Type Re	f Trc X-value	Y-value	Function	Function Resu		
	1 2.4709 GHz		Function	Function Resu	n	
)[Measu	ring 🚺 🚺 🕯	X	
Date: 21.0CT.	2022 18:23:18					
Date: 21.001.	2022 10.23.10					

9.3 20 dB Bandwidth and 99% Occupied Bandwidth

Test Method

20dB bandwidth test:

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following test receiver settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 1% of the 20 dB bandwidth, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth. Record the results.
- 5. Repeat above procedures until all frequencies measured were complete.

Occupied Bandwidth test:

- 1. Connect EUT test port to test receiver.
- Use the following spectrum analyzer settings: RBW=1% to 5% of the actual occupied, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 3. Use the occupied bandwidth measurement capability of test receiver.
- 4. Allow the trace to stabilize, record the occupied bandwidth value.

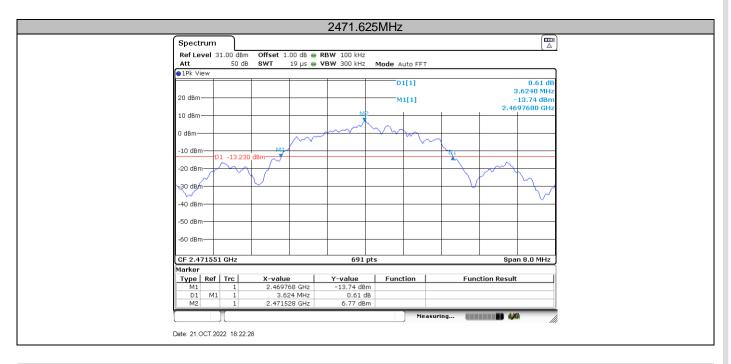
Limit

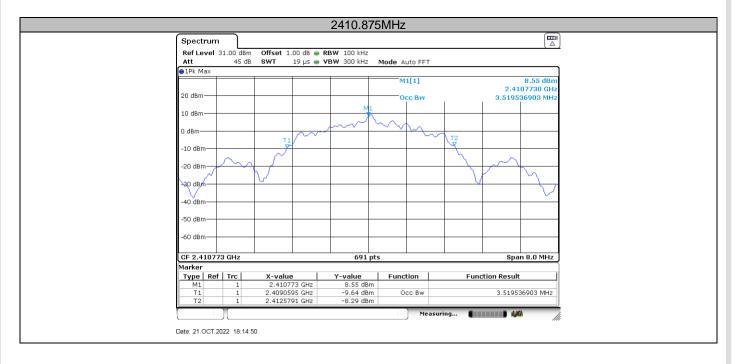
Limit [kHz]

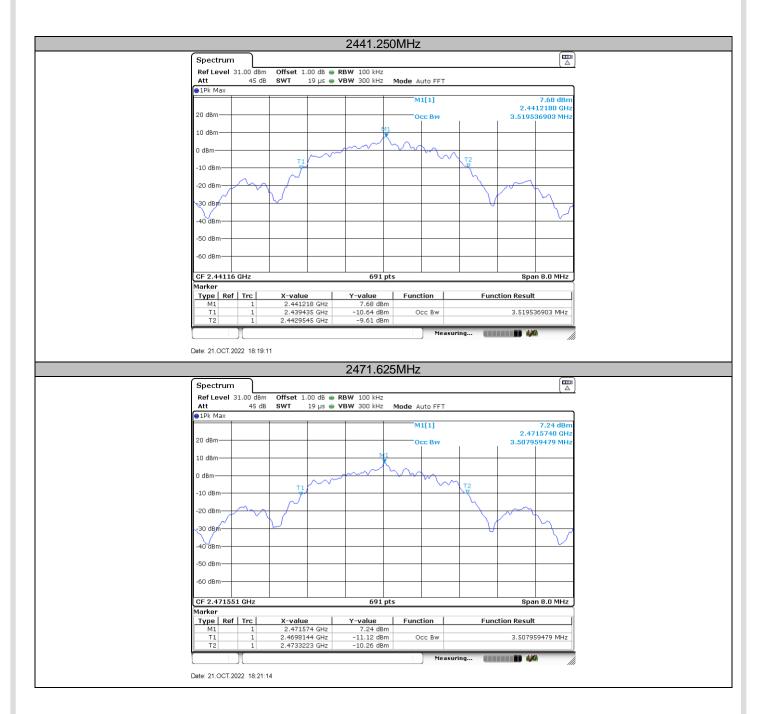
N/A


20 dB bandwidth and 99% Occupied Bandwidth

Test result


Frequency	20 dB Bandwidth	99% Bandwidth	Limit	Result
MHz	MHz	MHz	MHz	
2410.875MHz	3.601	3.520		Pass
2441.250MHz	3.635	3.520		Pass
2471.625MHz	3.624	3.508		Pass


20 dB Bandwidth



99% Occupied Bandwidth

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu, Nantou, Nanshan District, Shenzhen, Guangdong, China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 22 of 50

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu, Nantou, Nanshan District, Shenzhen, Guangdong, China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

9.4 Carrier Frequency Separation

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 4. By using the Max-Hold function record the separation of two adjacent channels.
- 5. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function. Record the results.
- 6. Repeat above procedures until all frequencies measured were complete.

Limit

Limit kHz ≥25KHz or 2/3 of the 20 dB bandwidth which is greater

Limit

Frequency	2/3 of 20 dB Bandwidth
MHz	kHz
2410.875MHz	2400

Carrier Frequency Separation

Test result: The measurement was performed with the typical configuration (normal hopping status).

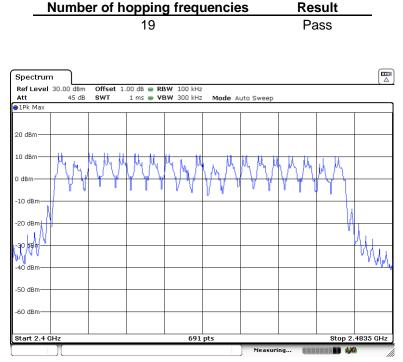
le Auto FFT	Pass
D1[1]	
D1[1]	
D1[1]	
	0.04 dB
	0.04 dB
	3.3690 MHz 11.50 dBm
- Mun pi	2.4108220 GHz
	Span 8.0 MHz
	apan 6.0 MHz
unction Function	n Result
F	Function Functio

Date: 21.OCT.2022 18:02:04

9.5 Number of Hopping Frequencies

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- Use the following spectrum analyzer settings: Span = the frequency band of operation, RBW ≥ 1% of the span, VBW ≥RBW, Sweep = auto, Detector function = peak
- 4. Set the spectrum analyzer on Trace = max hold
- 5. Allow the trace to stabilize. It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).


Limit

Limit <u>number</u> ≥ 15

Number of Hopping Frequencies

Test result: The measurement was performed with the typical configuration (normal hopping status).

Date: 21.OCT.2022 16:17:24

9.6 Dwell Time

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- 3. Span: Zero span, centered on a hopping channel.
- 4. RBW shall be \ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 5. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- 6. Detector function: Peak.
- 7. Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Limit

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Dwell Time

The maximum dwell time shall be 0.4 s.

The Dwell Time = Burst Width * Total Hops. The burst width, which is directly measured, refers to the duration on one channel hop.

Cł	hannel	Burst Width (ms)	Total Hops	Result (s)	Limit (s)	Verdict
	Нор	0.11	582	0.064	<=0.4	PASS

					Н	ор				
Spectro	um									
Ref Le	/el 30.00 dBm			BW 1						(×.
Att SGL TRG		👄 SWT 1	0 ms 🖷 V	BW 3	MHz					
IPk Cin										
						М	1[1]			7.86 dBm
20 dBm-				_		D	2[1]			250 ns 0.84 dB
								1	1	110.01 µs
10 dBm-	TRG 6.700	12 IBm		+						
0 dBm										
-10 dBm-				+						
00 -10										
-20 dBm-										
-30 dBm-				_						
-40 dBm-	ما الديمية م	a colociat (dir. care	. Inda	d. I. and		وليانين المراو	and hade		l. Lindhar i
hard a track of the	old i berdeden delater	a dala sumali	ohe of the old	an de	it to an it was	ediale foliale.	and the state of the	and but the first of the state	allese texchine	Allen Lane Landel
a far her an	andre i ster ster	4 th bit	1946	NP HAA	d di di ta	Apple Mappe	a Manana.	10120	ne hello	a selonita este
-60 dBm-	. 1	. 19.19	1.1			1.1.1	the state	e le su re	1.16.64	
CF 2.44	l GHz				8000	pts			1	1.0 ms/
							Rea	dy 🛄		- ///
Spectre	um									
	el 30.00 dBm				500 kHz					
SGL TRO	40 dB	● SWT 7	60 ms 😑	vbw	3 MHz					
1Pk Cin										
20 dBm-				_						
10 dBm-	TRG 6.700 0	JBm								
0 dBm—										
o ubii										
-10 dBm-			+						+	
-20 dBm				+						
-30 dBm-										
-30 4511							111			
-40 dsm-										
Mar (Alden Kild)	(DALASI))-UQUQUUUU	(POPUL), AUST		illentin	4000	(Maningko)	NINININI	101.444.01.000	Hallova Hall	the And Mall Man
a <mark>llen a</mark> tter atter	nlyselvyselvysery	สสมสะหารได้สะเ	a di talanganga	a subset	allant print	angedagoddae	enpiritation ((paning the part of the	a nitin kanlan	and provide the fillence of
-60 dBm-										
50 dbm										
CF 2.44	L GHz				3000	0 pts				76.0 ms/
0.2.11					0000		Rea	dy 🚺		
							,			///

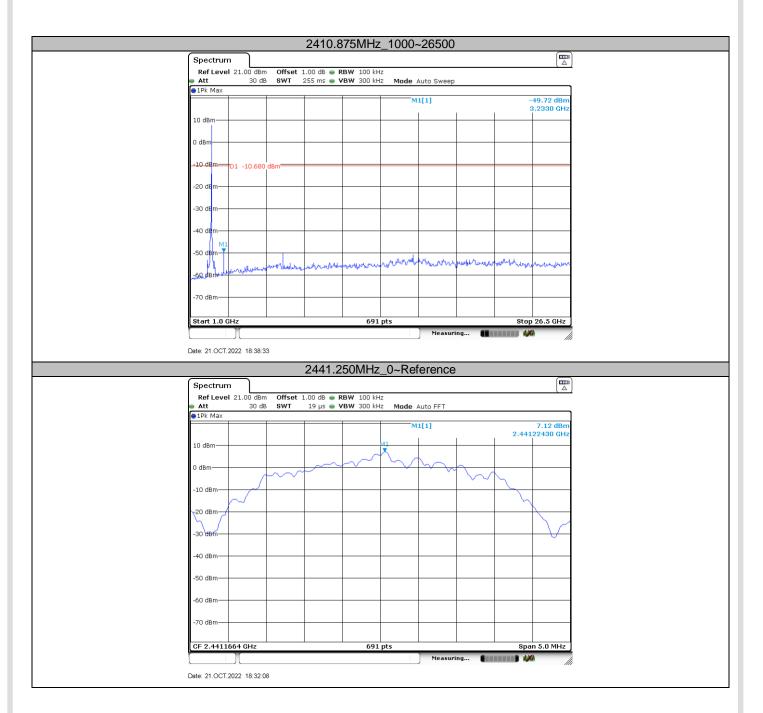
TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu, Nantou, Nanshan District, Shenzhen, Guangdong, China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

9.7 Spurious RF Conducted Emissions

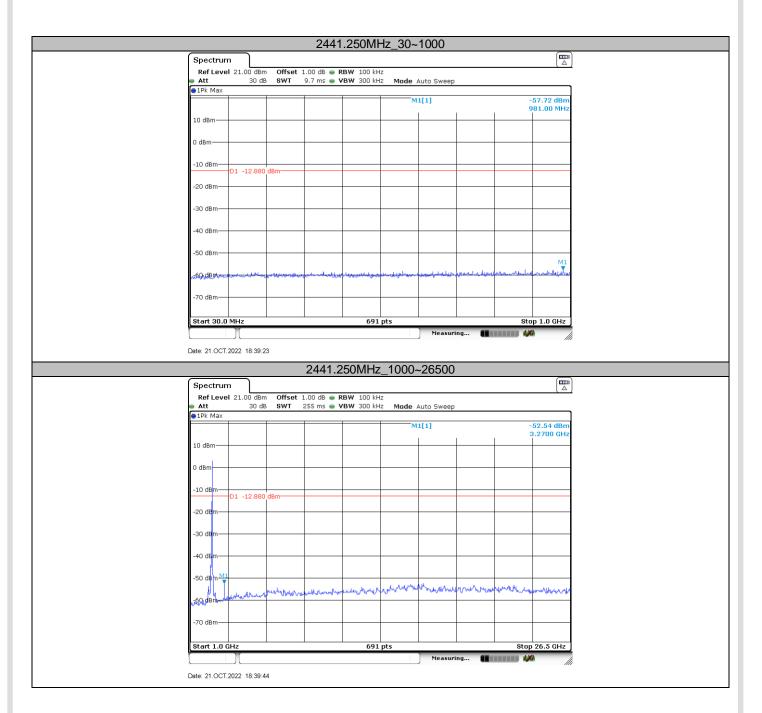
Test Method

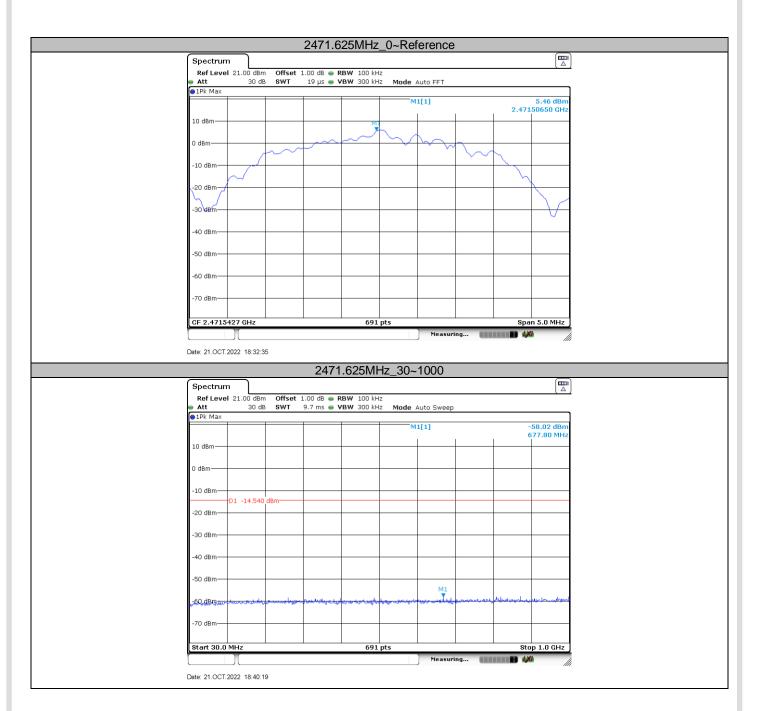
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency

Limit


Frequency Range MHz	Limit (dBc)				
30-25000	-20				

Spurious RF Conducted Emissions




TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu, Nantou, Nanshan District, Shenzhen, Guangdong, China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 32 of 50

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu, Nantou, Nanshan District, Shenzhen, Guangdong, China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu, Nantou, Nanshan District, Shenzhen, Guangdong, China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

2471.625MHz_1000~26500
Spectrum Image: Constraint of the section
●1Pk Max
M1[1] -50.98 dBm 3.2700 GHz
10 dBm
-10 dBm
-20 dBm
-30 dBm
-40 dBm
-50 den
-70 dBm
Start 1.0 GHz 691 pts Stop 26.5 GHz
Measuring 🚺 🖬 🚧
Date: 21.OCT.2022 18:40:48

9.8 Band Edge Testing

Test Method

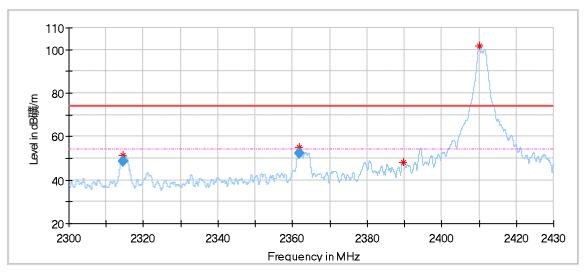
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency
- 6. Set to the maximum power setting and enable the EUT hopping mode, repeat the test.

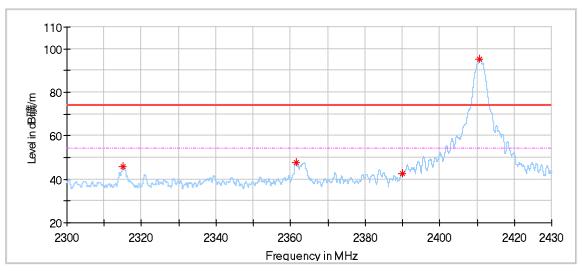
Limit:

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

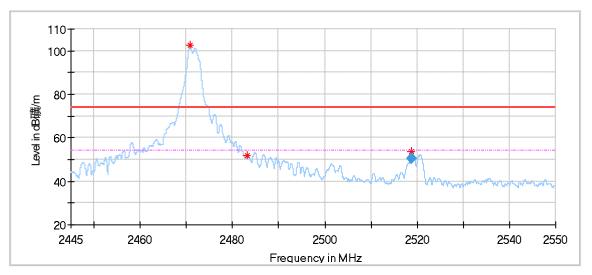
Band Edge

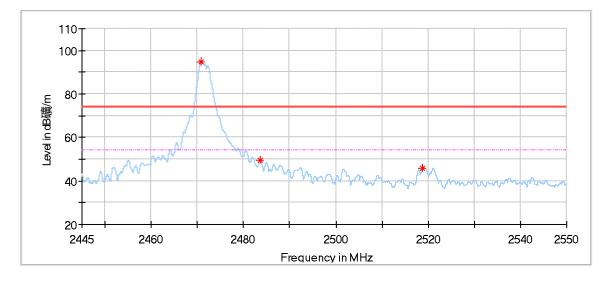
			Lo	ow_2410	.875MF	Ηz			
Spectrum	,								
	31.00 dBm								()
Att Pk Max	50 dB	SWT 1	l ms 😑 🕻	VBW 3 MHz	Mode Auto	Sweep			
					M1	[1]			12.28 dBm
20 dBm					M2	[1]			10090 GHz 25.66 dBm
					171Z	141		2.4	25.66 dBm 00000 GHz
10 dBm									$-\uparrow$
0 dBm		-							\vdash
-10 dBm	D1 -7.720 c	Bm							$ \rightarrow $
				T	T				/
-20 dBm				+ +			MO	M2	
1=30 to 10	and a produce		بالاركار كالك		mender	thank Phane	M3	M2 M2	
-40 dBm									
-50 dBm									
-60 dBm									
-00 0011					T				
Start 2.3 G	Hz	· · · · ·		691 p	pts			Stop 2	2.415 GHz
Marker		V uslu-	1	V uslue	Fur -1	ion I	F 1	tion Docult]
Type Re M1	1	X-value 2.41009		Y-value 12.28 dBn			Func	tion Result	
M2 M3	1	2.4 2.39	GHz	-25.66 dBn -28.91 dBn	n				
	<u> </u>	2.39		-20.91 UDI		Measur		····•	•
Date: 21.OCT.	2022 18:13:0	2	H	igh 2471	.625Mł	Hz			
Date: 21.OCT.2	2022 18:13:0	2							
	_	2	Hi	igh_2471	I.625Mł	Hz			
Spectrum	ı]				I.625MI	Hz	_		
Spectrum Ref Level Att	ı]	Offset 1.00) dB 👄 🛙						
Spectrum Ref Level	31.00 dBm	Offset 1.00) dB 👄 🛙	RBW 1 MHz	Mode Auto	Sweep			
Spectrum Ref Level Att 9 1Pk Max	31.00 dBm	Offset 1.00) dB 👄 🛙	RBW 1 MHz		Sweep	_		10.53 dBm
Spectrum Ref Level Att	31.00 dBm 50 dB	Offset 1.00) dB 👄 🛙	RBW 1 MHz	Mode Auto	Sweep		2.4	10.53 dBm 70880 GHz 26.72 dBm
Spectrum Ref Level Att 9 1Pk Max	31.00 dBm	Offset 1.00) dB 👄 🛙	RBW 1 MHz	Mode Auto	Sweep		2.4	10.53 dBm 70880 GHz
Spectrum Ref Level Att P 1Pk Max 20 dBm 10 dBm	31.00 dBm 50 dB	Offset 1.00) dB 👄 🛙	RBW 1 MHz	Mode Auto	Sweep		2.4	10.53 dBm 70880 GHz 26.72 dBm
Spectrum Ref Level Att PIPk Max 20 dBm 10 dBm 0 dBm	31.00 dBm 50 dB	Offset 1.00 SWT 1) dB 👄 🛙	RBW 1 MHz	Mode Auto	Sweep		2.4	10.53 dBm 70880 GHz 26.72 dBm
Spectrum Ref Level Att PIPk Max 20 dBm 10 dBm 0 dBm	31.00 dBm 50 dB	Offset 1.00 SWT 1) dB 👄 🛙	RBW 1 MHz	Mode Auto	Sweep		2.4	10.53 dBm 70880 GHz 26.72 dBm
Spectrum Ref Level Att PIPk Max 20 dBm 10 dBm 0 dBm	31.00 dBm 50 dB	Offset 1.00 SWT 1) dB 👄 🛙	RBW 1 MHz VBW 3 MHz	Mode Auto	Sweep		2.4	10.53 dBm 70880 GHz 26.72 dBm
Spectrum Ref Level Att PIPk Max 20 dBm- 10 dBm- 0 dBm-	31.00 dBm 50 dB	Offset 1.00 SWT 1) dB 👄 🛙	RBW 1 MHz	Mode Auto	Sweep	M4	2.4	10.53 dBm 70880 GHz 26.72 dBm
Spectrum Ref Level Att IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	31.00 dBm 50 dB	Offset 1.00 SWT 1) dB 👄 🛙	RBW 1 MHz VBW 3 MHz	Mode Auto	1 Sweep	M4	2.4	10.53 dBm 70880 GHz 26.72 dBm
Spectrum Ref Level Att IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	31.00 dBm 50 dB	Offset 1.00 SWT 1) dB 👄 🛙	RBW 1 MHz VBW 3 MHz	Mode Auto	1 Sweep	M4	2.4	10.53 dBm 70880 GHz 26.72 dBm
Spectrum Ref Level Att IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	31.00 dBm 50 dB	Offset 1.00 SWT 1) dB 👄 🛙	RBW 1 MHz VBW 3 MHz	Mode Auto	1 Sweep	M4	2.4	10.53 dBm 70880 GHz 26.72 dBm
Spectrum Ref Level Att PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	31.00 dBm 50 dB	Offset 1.00 SWT 1) dB 👄 🛙	RBW 1 MHz VBW 3 MHz	Mode Auto	1 Sweep	M4	2.4	10.53 dBm 70880 GHz 26.72 dBm
Spectrum Ref Level Att 10 dBm 10 dBm 10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	M1 01 -9,470 c	Offset 1.00 SWT 1) dB 👄 🛙	RBW 1 MHz VBW 3 MHz	Mode Auto	1 Sweep	M4	2.4 - 2.4	10.53 dBm 70880 GHz 83500 GHz
Spectrum Ref Level Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm	M1 01 -9,470 c	Offset 1.00 SWT 1) dB 👄 🛙	RBW 1 MHz VBW 3 MHz	Mode Auto	1 Sweep	M4	2.4 - 2.4	10.53 dBm 70880 GHz 26.72 dBm
Spectrum Ref Level Att PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm	M1 01 -9,470 c	Offset 1.00 SWT 1) dB 👄 🛙	RBW 1 MHz VBW 3 MHz	Mode Auto M1 M2	Sweep [1] [1]		2.4 	10.53 dBm 70800 GHz 83500 GHz
Spectrum Ref Level Att 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70	31.00 dBm 50 dB 01 -9.470 c	Offset 1.00 SWT 1 		RBW 1 MHz VBW 3 MHz M3 M3 691 g Y-value 10.53 dBn	Mode Auto M1 M2	Sweep [1] [1]		2.4 - 2.4	10.53 dBm 70800 GHz 83500 GHz
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm Start 2.466 Marker Type Re' M1 M2	31.00 dBm 50 dB 50 dB 01 -9.470 c GHz f Trc 1 1	Offset 1.00 SWT 1 Bm M2 X-value 2.47088 2.4788	O dB • F ms • V	RBW 1 MHz VBW 3 MHz M3 M3 691 g Y-value 10.53 dBn -26.72 dBn	Mode Auto M1 M2 www.glucki pts Function	Sweep [1] [1]		2.4 	10.53 dBm 70800 GHz 83500 GHz
Spectrum Ref Level Att 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70	31.00 dBm 50 dB 01 -9.470 c	Offset 1.00 SWT 1 Bm M2 X-value 2.47088 2.4788	O dB • F ms • V	RBW 1 MHz VBW 3 MHz M3 M3 691 g Y-value 10.53 dBn	Mode Auto M1 M2 m2 pts pts	Sweep [1] [1]	Func	2.4 2.4 Stop	10.53 dBm 706:072 dBm 83500 GHz 2.55 GHz
Spectrum Ref Level Att ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm Start 2.46 Marker Type Ret M1 M2	31.00 dBm 50 dB 01 -9.470 c	Offset 1.00 SWT 1 Bm M2 M2 M2 C 2.47088 2.4375 2.5 2.5	O dB • F ms • V	RBW 1 MHz VBW 3 MHz VBW 3 MHz M3 691 g Y-value 10.53 dBn -26.72 dBn -28.26 dBn	Mode Auto M1 M2 m2 pts pts	Sweep [1] [1]	Func	2.4 	10.53 dBm 706:072 dBm 83500 GHz 2.55 GHz


Report Number: 68.950.22.0963.01



Radiated Emissions Band Edge: 2410.875MHzMHz:


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2314.586000	51.53	74.00	22.47	150.0	Н	0.0	-3.62
2361.737000	55.27	74.00	18.73	150.0	Н	356.0	-3.09
2389.791000	47.96	74.00	26.04	150.0	Н	316.0	-2.94
2410.097000	101.70	74.00	-27.70	150.0	Н	316.0	-2.74
Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2314.586000	48.53	54.00	5.47	150.0	Н	0.0	-3.62
2361.737000	52.27	54.00	1.73	150.0	Н	356.0	-3.09


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2315.015000	45.97	74.00	28.03	150.0	V	96.0	-3.62
2361.477000	47.90	74.00	26.10	150.0	V	71.0	-3.09
2389.999000	42.58	74.00	31.42	150.0	V	46.0	-2.94
2410.786000	95.12	74.00	-21.12	150.0	V	96.0	-2.73

2471.625MHzMHz:

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2470.798500	102.65	74.00	-28.65	150.0	Н	338.0	-2.25
2483.272500	51.88	74.00	22.12	150.0	Н	303.0	-2.20
2518.815000	53.48	74.00	20.52	150.0	Н	343.0	-2.17
Frequency	Average	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	_	(deg)	(dB/m)
2518.815000	50.48	54.00	3.52	150.0	Н	343.0	-2.17

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2470.830000	94.94	74.00	-20.94	150.0	V	91.0	-2.25
2483.524500	49.46	74.00	24.54	150.0	V	91.0	-2.20
2518.783500	46.03	74.00	27.97	150.0	V	111.0	-2.17

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu, Nantou, Nanshan District, Shenzhen, Guangdong, China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

9.9 Spurious Radiated Emissions for Transmitter

Test Method

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. Use the following spectrum analyzer settings According to C63.10:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz to 120KHz for f < 1 GHz; VBW RBW; Sweep = auto; Detector function = QP; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement.

For average measurement:

The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)).

The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

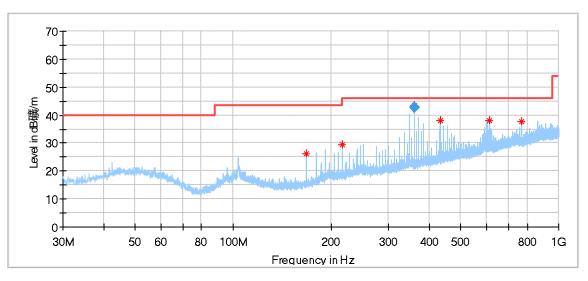
7. Repeat above procedures until all frequencies measured were complete.

Spurious Radiated Emissions for Transmitter

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Detector
QP
QP
QP
QP
AV
PK

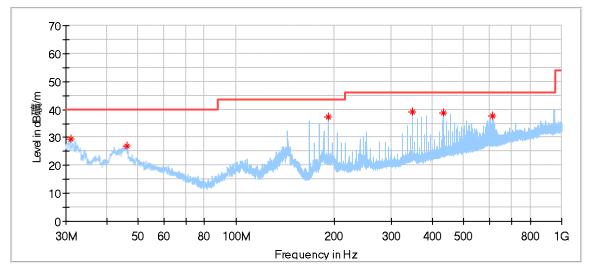


Spurious radiated emissions for transmitter

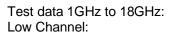
According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

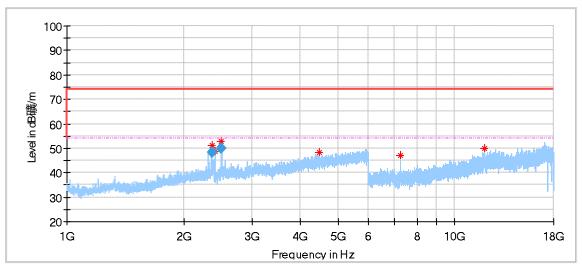
Transmitting spurious emission test result as below:

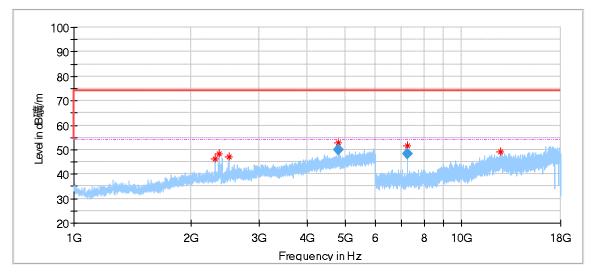
Test data_30MHz to 1000MHz


Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
167.955556	26.31	43.50	17.19	200.0	Н	74.0	15.93
215.970556	29.31	43.50	14.19	200.0	Н	292.0	18.38
359.998756	43.51	46.00	2.49	100.0	Н	99.0	22.03
432.011111	38.08	46.00	7.92	100.0	Н	122.0	24.25
612.000000	37.94	46.00	8.06	100.0	Н	159.0	27.62
768.008333	37.83	46.00	8.17	100.0	Н	86.0	29.85

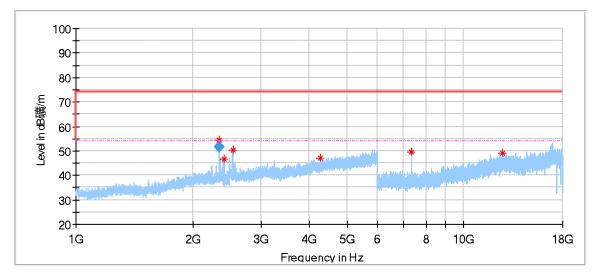

Final_Result


Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
359.998756	42.83	46.00	3.17	100.0	н	99.0	22.02

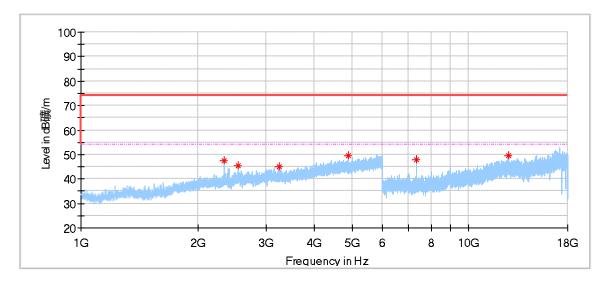


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
31.023889	29.41	40.00	10.59	100.0	V	151.0	16.56
46.058889	26.96	40.00	13.04	100.0	V	0.0	20.91
191.990000	37.40	43.50	6.10	100.0	V	86.0	18.12
347.998333	39.13	46.00	6.87	100.0	V	123.0	22.61
432.011111	38.63	46.00	7.37	100.0	V	168.0	24.25
612.000000	37.71	46.00	8.29	100.0	V	203.0	27.62

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2364.000000*	51.16	(dDµ1/iii) 74.00	22.84	150.0	н	330.0	-3.23
2412.000000	48.92	74.00	25.08	150.0	н	209.0	-2.65
2506.000000	52.85	74.00	21.15	150.0	Н	316.0	-2.19
4483.000000*	48.48	74.00	25.52	150.0	Н	343.0	3.15
7234.500000*	47.11	74.00	26.89	150.0	Н	106.0	9.53
11970.000000*	49.85	74.00	24.15	150.0	Н	269.0	17.14
Frequency	Average	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	1.01	(deg)	(dB/m)
2364.000000*	48.16	54.00	5.84	150.0	Н	330.0	-3.23
2506.000000	49.85	54.00	4.15	150.0	Н	316.0	-2.19

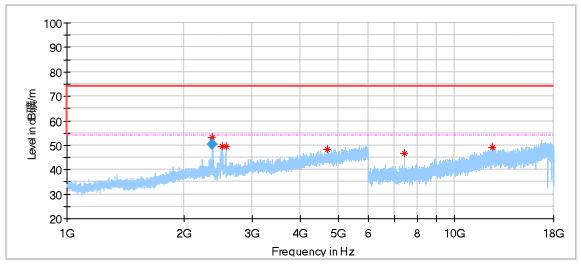


Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB/m)
2314.500000*	46.46	74.00	27.54	150.0	V	15.0	-3.39
2364.000000*	48.11	74.00	25.89	150.0	V	42.0	-3.23
2506.500000	47.13	74.00	26.87	150.0	V	89.0	-2.19
4820.500000*	52.90	74.00	21.10	150.0	V	359.0	3.79
7234.500000*	51.47	74.00	22.53	150.0	V	5.0	9.53
12625.000000*	49.03	74.00	24.97	150.0	V	311.0	18.46
Frequency	Average	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	1 01	(dea)	(dB/m)
4820.500000*	49.90	54.00	4.10	150.0	V	359.0	3.79
7234.500000*	48.47	54.00	5.53	150.0	V	5.0	9.53

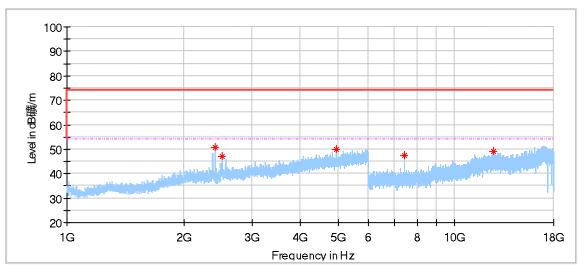

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu, Nantou, Nanshan District, Shenzhen, Guangdong, China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Middle Channel:

Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB/m)
2345.500000*	54.61	74.00	19.39	150.0	Н	344.0	-3.32
2412.500000	46.81	74.00	27.19	150.0	Н	22.0	-2.65
2536.500000	50.16	74.00	23.84	150.0	Н	317.0	-2.21
4258.000000	47.25	74.00	26.75	150.0	Н	48.0	2.16
7321.000000	49.36	74.00	24.64	150.0	Н	290.0	9.65
12606.000000*	49.24	74.00	24.76	150.0	Н	206.0	18.26
Frequency	Average	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	FUI	(deg)	(dB/m)
2345.500000*	51.61	54.00	2.39	150.0	Н	344.0	-3.32



Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2344.500000*	47.47	74.00	26.53	150.0	V	55.0	-3.32
2537.500000	45.35	74.00	28.65	150.0	V	68.0	-2.21
3255.000000	45.14	74.00	28.86	150.0	V	0.0	-0.55
4881.500000*	49.59	74.00	24.41	150.0	V	336.0	3.89
7326.000000*	47.73	74.00	26.27	150.0	V	5.0	9.65
12651.000000*	49.45	74.00	24.55	150.0	V	102.0	18.60


EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu, Nantou, Nanshan District, Shenzhen, Guangdong, China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Hight Channel:

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2375.500000*	53.41	74.00	20.59	150.0	Н	354.0	-3.15
2519.500000	49.64	74.00	24.36	150.0	Н	336.0	-2.20
2568.000000	49.43	74.00	24.57	150.0	Н	336.0	-2.28
4680.500000*	48.38	74.00	25.62	150.0	Н	216.0	3.58
7412.500000*	46.71	74.00	27.29	150.0	Н	311.0	9.59
12511.000000*	49.01	74.00	24.99	150.0	Н	290.0	17.36
Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2375.500000*	50.41	54.00	3.59	150.0	Н	354.0	-3.15

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2413.000000	50.57	74.00	23.43	150.0	V	22.0	-2.65
2519.000000	46.96	74.00	27.04	150.0	V	115.0	-2.20
4945.000000	49.97	74.00	24.03	150.0	v	15.0	4.12
7412.500000	47.51	74.00	26.49	150.0	V	66.0	9.59
12598.500000	48.95	74.00	25.05	150.0	V	290.0	18.18

Remark:

(1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.

- (2) Data of measurement within frequency range 9kHz-30MHz, 18-26GHz are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured, so test data does not present in this report.
- (3) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) Corrected Amplitude = Read level + Corrector factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

Radiated Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	68-4-74-14-002	101269	1	2023-5-28
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9162	68-4-80-19-003	284	1	2023-7-12
Wave Guide Antenna	ETS	3117	68-4-80-19-001	00218954	1	2023-5-9
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19-001	100745	1	2023-5-28
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19-002	100746	1	2023-5-28
Sideband Horn Antenna	Q-PAR	QWH-SL- 18-40-K-SG	68-4-80-14-008	12827	1	2023-7-12
Loop Antenna	Rohde & Schwarz	HFH2-Z2	68-4-80-14-006	100398	1	2023-8-17
Pre-amplifier	Rohde & Schwarz	SCU 40A	68-4-29-14-002	100432	1	2023-7-27
Attenuator	Mini-circuits	UNAT-6+	68-4-81-21-002	15542	1	2023-5-27
3m Semi-anechoic chamber	TDK	SAC-3 #2	68-4-90-19-006		2	2023-5-28
Test software	Rohde & Schwarz	EMC32	68-4-90-19-006- A01	Version10.3 5.02	N/A	N/A

List of Test Instruments

Conducted Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	68-4-74-19-002	102590	1	2023-5-27
LISN	Rohde & Schwarz	ENV216	68-4-87-19-001	102472	1	2023-5-27
Attenuator	Shanghai Huaxiang	TS2-26-3	68-4-81-16-003	080928189	1	2023-5-27
Test software	Rohde & Schwarz	EMC32	68-4-90-19-005- A01	Version10.35. 02	N/A	N/A
Shielding Room	TDK	CSR #2	68-4-90-19-005		3	2025-10-15

Conducted RF Test System

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL INTERVAL (YEAR)	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14-004	101030	1	2023-5-27
Test software	Tonscend	System for BT/WIFI	68-4-74-14-006- A13	Version 2.6.77.0518	N/A	N/A
Shielding Room	TDK	TS8997	68-4-90-19-003		3	2025-10-15

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement	Uncertainty
Test Items	Extended Uncertainty
Uncertainty for Conducted Emission 150kHz-30MHz (for test using AMN ENV432 or ENV4200)	3.57dB
Uncertainty for Radiated Emission in 3m chamber (68-4-90- 14-001) 9kHz-30MHz	4.70dB
Uncertainty for Radiated Emission in new 3m chamber (68- 4-90-19-006) 30MHz-1000MHz	Horizontal: 4.59dB; Vertical: 4.75dB
Uncertainty for Radiated Emission in new 3m chamber (68- 4-90-19-006) 1000MHz-18000MHz	Horizontal: 5.08dB; Vertical: 5.09dB;
Uncertainty for Radiated Emission 18000MHz-40000MHz	Horizontal: 4.52dB; Vertical: 4.51dB
Uncertainty for Conducted RF test	RF Power Conducted: 1.31dB Frequency test involved: 0.6×10 ⁻⁸ or 1%

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2021, clause 4.4.3 and 4.5.1.

THE END