

TEST REPORT

Product: Wireless monitor

Trade mark : N/A

Model/Type reference : DXR-6

Serial Number : N/A

Report Number : EED32I00275903 FCC ID : 2AAAM-DXR-6PU

Date of Issue: : Nov. 30 , 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Standard Merit Industrial Limited 2/A Harrison Court Stage 6, 10 Man Wan Road, Kowloon, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Reviewed by:

Reviewed by:

Report Seal

Tom-chen

Compiled by:

Kevin lan (Project Engineer)

Tom chen (Test Project)

Approved by:

Sheek Luo (Lab supervisor)

Nov. 30, 2016

Kevin yang (Reviewer)

Check No.: 2392185320

2 Version

Version No.	Date	Description	
00	Nov. 30 , 2016	Original	

3 **Test Summary**

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

The tested samples and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel. In this whole report Volt means Voltage. Volt:

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

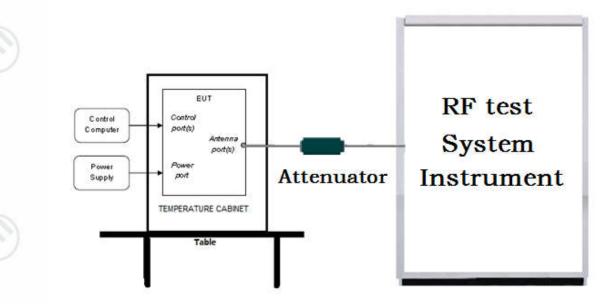
Press: In this whole report Press means Pressure.

N/A: In this whole report not application.

Page 4 of 76

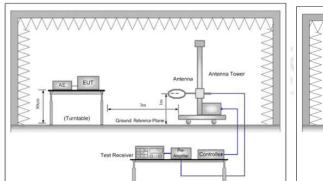
4 Content

2 VERSION				
3 TEST SUMMARY	•••••			
4 CONTENT				4
5 TEST REQUIREME	NT			
5.1.1 For Condu 5.1.2 For Radiate 5.1.3 For Condu 5.2 TEST ENVIRONM	cted test setuped Emissions test setup cted Emissions test setup ENT			(
6 GENERAL INFORM	IATION			
6.2 GENERAL DESCI 6.3 PRODUCT SPECI 6.4 DESCRIPTION OF 6.5 TEST LOCATION. 6.6 TEST FACILITY 6.7 DEVIATION FROM 6.8 ABNORMALITIES 6.9 OTHER INFORMA	TION FICATION OF EUT FICATION SUBJECTIVE TO THIS SUPPORT UNITS I STANDARDS FROM STANDARD CONDITIONS TION REQUESTED BY THE CUS UNCERTAINTY(95% CONFIDER	STANDARD		
	UNCERTAINTY (95 % CONFIDE			
•				
Appendix A): 200 Appendix B): Ca Appendix C): Dw Appendix D): Ho Appendix E): Co Appendix F): Bai Appendix G): RF Appendix H): Ps	REQUIREMENTS SPECIF dB Occupied Bandwidth rrier Frequency Separation vell Time pping Channel Number nducted Peak Output Power nd-edge for RF Conducted E Conducted Spurious Emiss eudorandom Frequency Hop	missionssions		
Appendix J): AC Appendix K): Re	enna Requirement Power Line Conducted Emis stricted bands around fundar diated Spurious Emissions	ssion mental frequency (Radia	ted)	3 <i>°</i>
PHOTOGRAPHS OF	TEST SETUP			5
	EUT CONSTRUCTIONAL D			



Report No.: EED32I00275903 Page 5 of 76

5 Test Requirement


5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Antenna Tower

AE EUT

Ground Reference Plane

Test Receiver

Test Receiver

Test Receiver

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

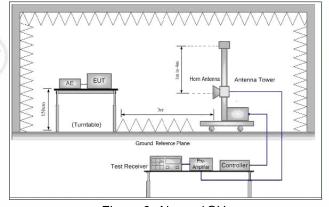
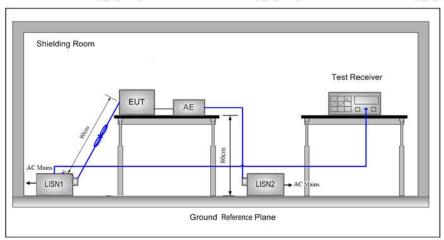
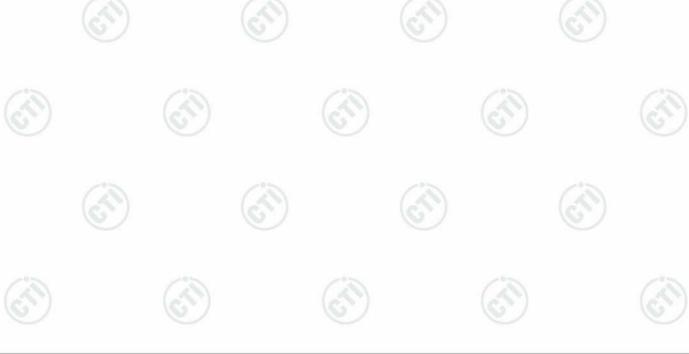



Figure 3. Above 1GHz

Page 6 of 76

5.1.3 For Conducted Emissions test setup Conducted Emissions setup



5.2 Test Environment

Operating Environment:			(6)
Temperature:	22 °C		
Humidity:	53 % RH	-11%	-
Atmospheric Pressure:	1010mbar		(1)

5.3 Test Condition

Test Mode	Tx	RF Channel			
rest wode	IX C	Low(L)	Middle(M)	High(H)	
GFSK	2410.875MHz ~2471.625MHz	Channel 1	Channel 10	Channel19	
Gran	24 IU.07 DIVIDZ ~247 I.025NIDZ	2410.875MHz	2441.250MHz	2471.625MHz	
Transmitter mode:	The EUT transmitted the continuchannel(s).	EUT transmitted the continuous modulation test signal at the specific nnel(s).			

Report No. : EED32I00275903 Page 7 of 76

6 General Information

6.1 Client Information

Applicant:	Standard Merit Industrial Limited
Address of Applicant:	2/A Harrison Court Stage 6, 10 Man Wan Road, Kowloon, Hong Kong
Manufacturer:	Foshan Shunde Alford Electronics Co., Ltd,
Address of Manufacturer:	Xinjian Industrial Park, Daliang, Shunde, Foshan City, Guangdong Province, China.

6.2 General Description of EUT

Product Name:	Wireless monitor	
Model No.(EUT):	DXR-6	
Trade mark:	N/A	(3,2)
EUT Supports Radios application:	2410.875MHz ~2471.6	25MHz
Power Supply:	AC adapter 1(Monitor)	Model: BLJ06W050055P1-U Input: 100-240V~50/60Hz, 0.2A Output: 5V = 550mA
(C.)	AC adapter 2(Monitor)	Model: CS3B050055FU Input: 100-240V~50/60Hz 200mA Output: 5.0VDC 550mA
Power Supply(Monitor):	3.7V 1200mAH(Lithium	-ion Battery)
Monitor Power Line:	270cm(Unshielded)	
Sample Received Date:	Oct. 26, 2016	(0.)
Sample tested Date:	Oct. 26, 2016 to Nov. 3	0, 2016

6.3 Product Specification subjective to this standard

Operation	Frequency:	2410.87	2410.875MHz ~2471.625MHz					
Modulatio	n Technique:	Frequen	Frequency Hopping Spread Spectrum(FHSS)					
Modulatio	n Type:	GFSK	GFSK					
Number o	f Channel:	19	19					
Hopping C	Channel Type:	Adaptive	Adaptive Frequency Hopping systems					
Sample Ty	ype:	Mobile p	Mobile production					
Test Power	er Grade:	N/A	N/A					
Test Softw	vare of EUT:	V05						
Antenna T	ype:	Integral	(3)	\ \	(3)	\ \		
Antenna C	Gain:	0dBi	(6))	(0)		(6,	
Test Volta	ge:	AC 120\	V/60Hz, AC 24	0V/50Hz				
Operation	Frequency ea	ch of channe	I					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2410.875	6	2427.750	11	2444.625	16	2461.500	
2	2414.250	7	2431.125	12	2448.00	17	2464.875	
3	2417.625	8	2434.500	13	2451.375	18	2468.2500	
4	2421.000	9	2437.875	14	2454.750	19	2471.625	
5	2424.375	10	2441.250	15	2458.125			

Report No. : EED32I00275903 Page 8 of 76

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

Report No. : EED32I00275903 Page 9 of 76

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

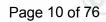
The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.


6.9 Other Information Requested by the Customer

6.10 Measurement Uncertainty(95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE nover conducted	0.31dB (30MHz-1GHz)	
2	RF power, conducted	0.57dB(1GHz-18GHz)	
3	Dadiated Spurious emission test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)	
4	Conduction emission	3.6dB (9kHz to 150kHz)	
(*	Conduction emission	3.2dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	2.8%	
7	DC power voltages	0.025%	
	1677	163	

7 Equipment List

_qa.po.			to Street		State of the state
		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017

	Conducted disturbance Test						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017		
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017		
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017		
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017		
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017		
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017		

Page 11 of 76

	3M	Semi/full-anec	hoic Chambe	<u>f</u>	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574 374		06-30-2015	06-28-2018
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	<u> </u>	01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(07)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-12-2016	01-11-2017

Report No.: EED32I00275903 Page 12 of 76

8 Radio Technical Requirements Specification

Reference documents for testing:

NIa	lala matita .	Description of Title
No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	PASS	Appendix F)	
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

Report No.: EED32I00275903 Page 13 of 76

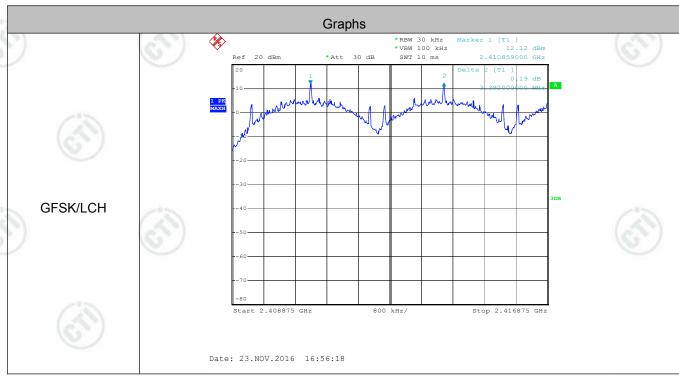
Appendix A): 20dB Occupied Bandwidth

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
GFSK	LCH	3.818	3.4343	PASS	
GFSK	MCH	3.613	3.4111	PASS	Peak
GFSK	HCH	3.822	3.4312	PASS	detector

Remark : Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

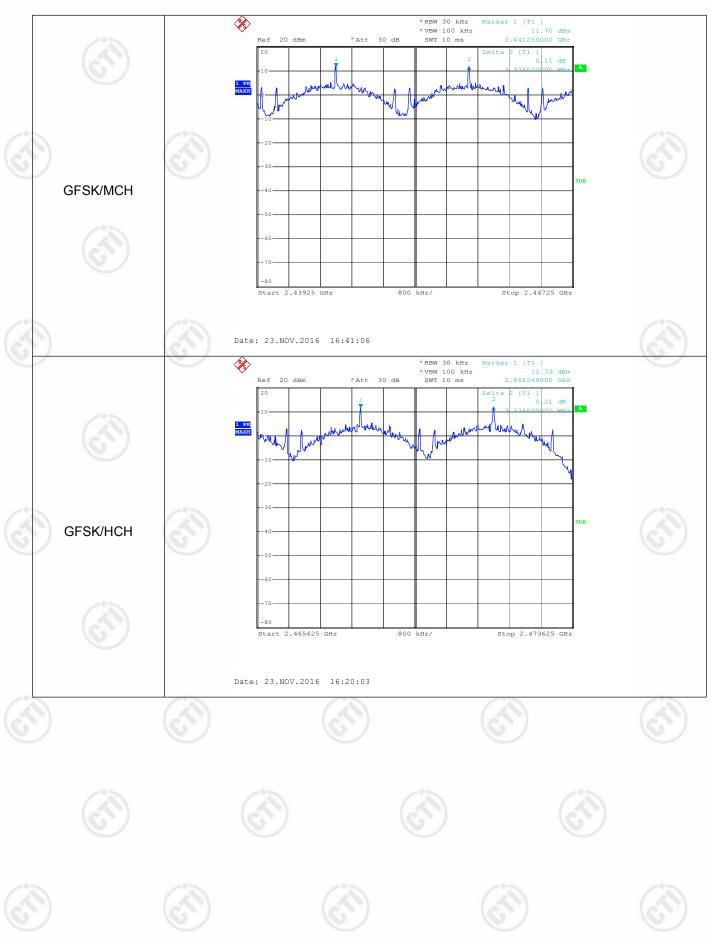
Test Graph


Report No.: EED32l00275903 Page 15 of 76

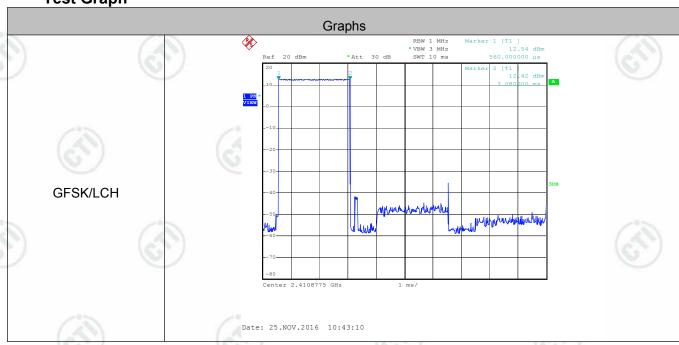
Appendix B): Carrier Frequency Separation Result Table

	Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
	GFSK	LCH	3.392	PASS
	GFSK	MCH	3.376	PASS
4	GFSK	НСН	3.376	PASS

Remark: Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.


Test Graph

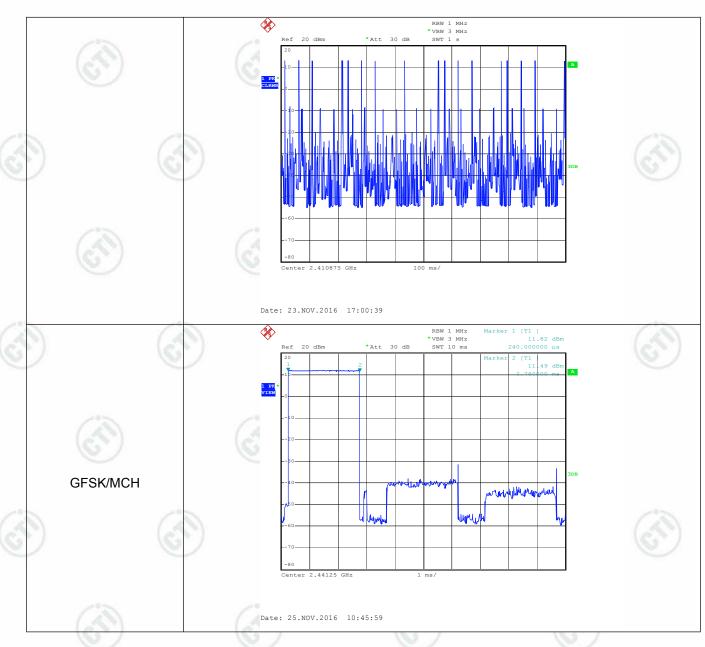
Report No.: EED32I00275903 Page 17 of 76

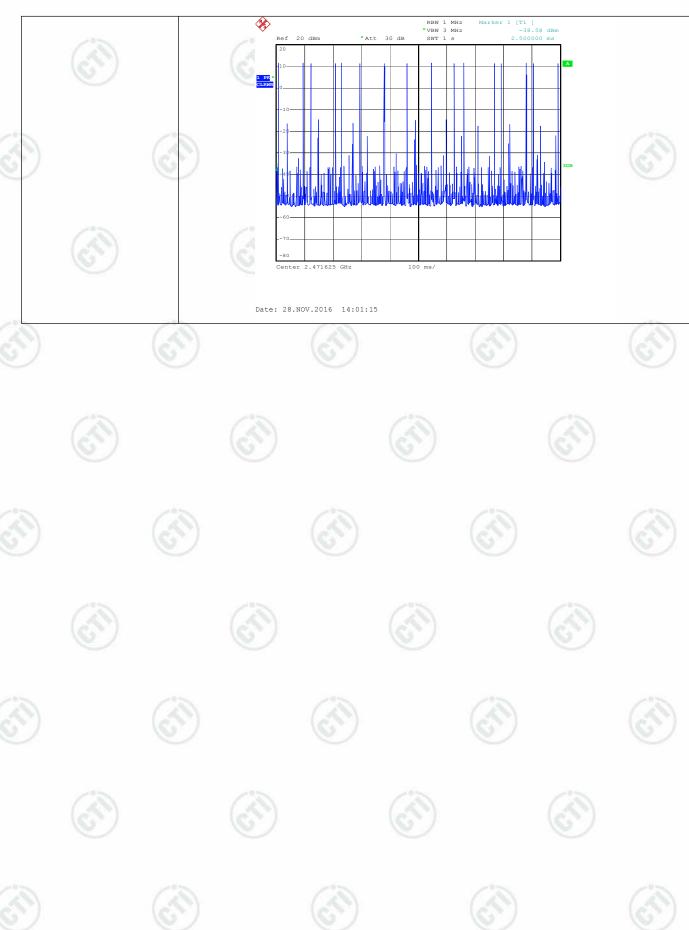

Appendix C): Dwell Time

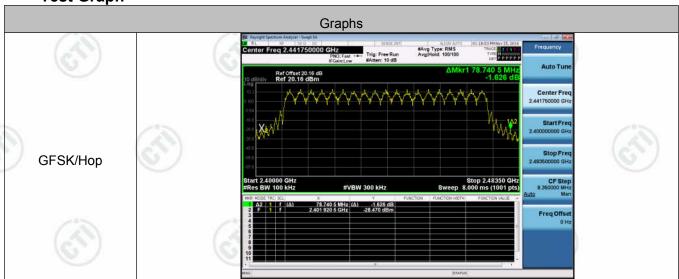
Result Table

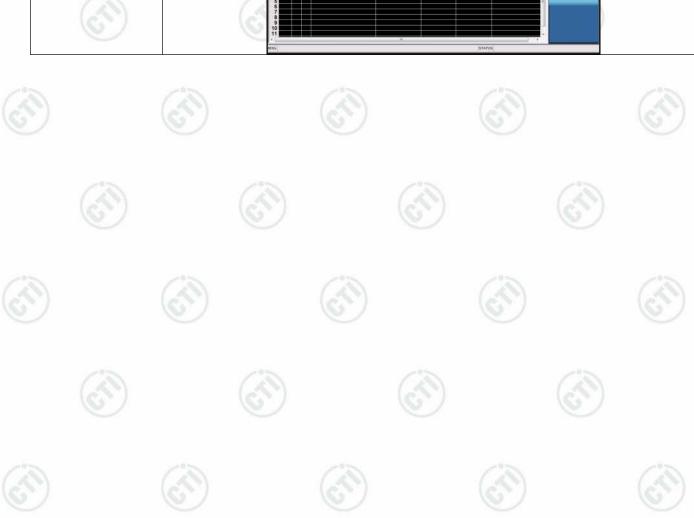
Mode	Channel	Observe time[s]	one set of pulses[ms]	pulses within 1s	Dwell Time[s]	Verdict
GFSK	LCH	7.6	2.52	17	0.326	PASS
GFSK	MCH	7.6	2.52	18	0.345	PASS
GFSK	НСН	7.6	2.52	16	0.306	PASS

Remark : Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.


Test Graph




Report No. : EED32I00275903 Page 21 of 76


Appendix D): Hopping Channel Number

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	19	PASS

Test Graph

Report No.: EED32l00275903 Page 22 of 76

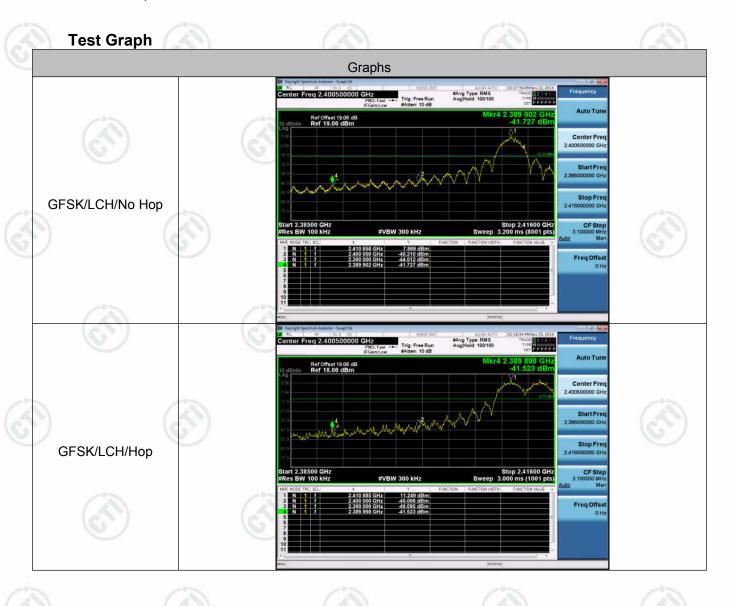
Appendix E): Conducted Peak Output Power

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	13.269	PASS
GFSK	MCH	12.751	PASS
GFSK	НСН	12.547	PASS

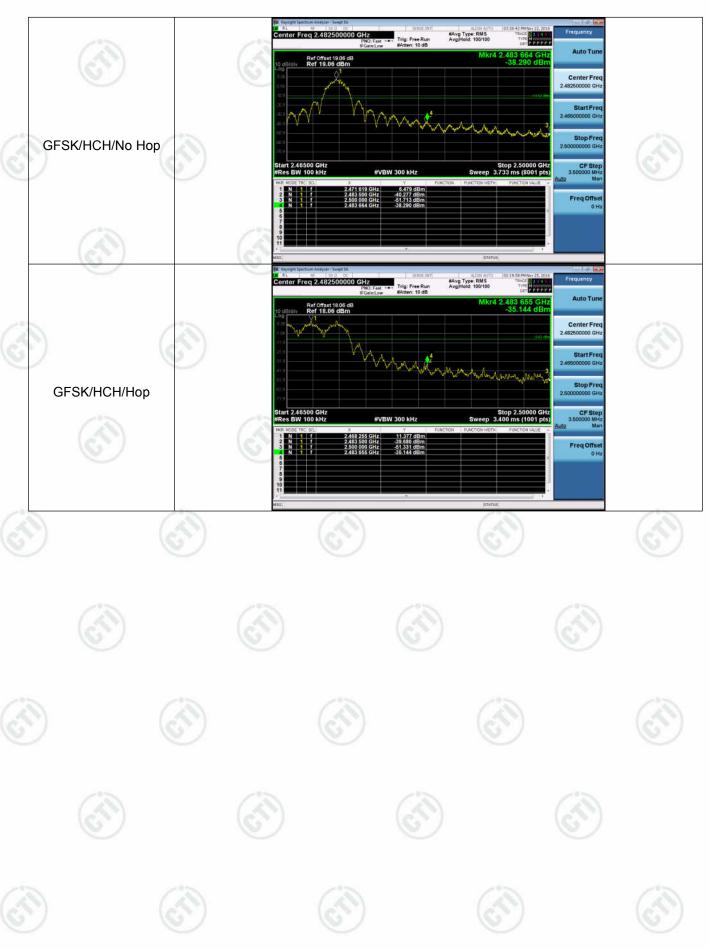
Remark : Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

Test Graph


Report No. : EED32I00275903 Page 24 of 76

Appendix F): Band-edge for RF Conducted Emissions

Result Table


Mode	Channel	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
05014	(6)	7.869	Off	-41.727	-12.13	PASS
GFSK	LCH	11.249	On	-41.523	-8.75	PASS
GFSK	11011	6.479	Off	-38.290	-13.52	PASS
	HCH	11.377	On	-35.144	-8.62	PASS

Remark: Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

Page 25 of 76

Report No.: EED32I00275903 Page 26 of 76

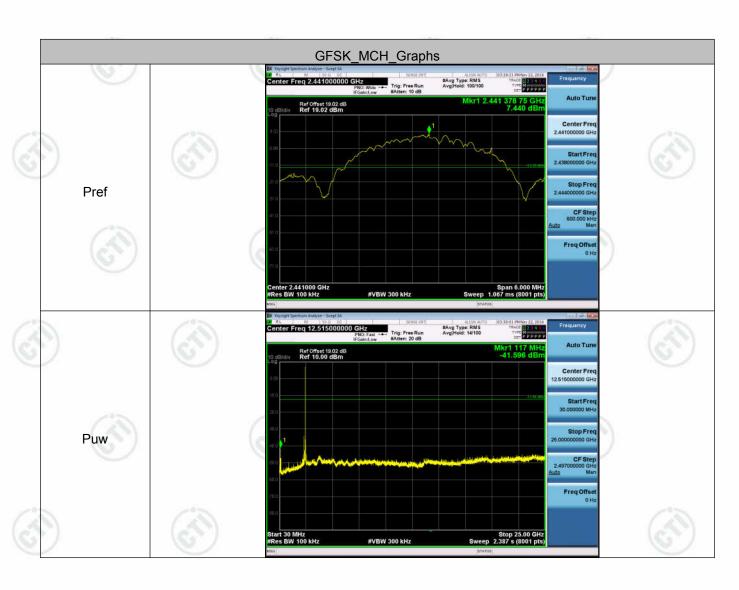
Appendix G): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	7.304	<limit< th=""><th>PASS</th></limit<>	PASS
GFSK	MCH	7.44	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	6	<limit< td=""><td>PASS</td></limit<>	PASS

Remark : Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

Test Graph



Page 27 of 76

Page 28 of 76

Report No.: EED32I00275903 Page 29 of 76

Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15**C Section 15.247 (a)(1) requirement:**

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The embedded FHSS engine uses 19 hopping frequencies. Each channel frequency is selected from a pseudorandom ordered list of hopping frequencies, from 2410.875MHz to 2471.625MHz with separating in 3.375MHz apart from each of the channels.A single data frame is transmitted on each frequency location before skipping to the next hopping frequency in the list. Each channel is occupied 3.45milliseconds.

Typically, the initiation of an FHSS communication is as follows:

- 1. The initiating party sends a request via a predefined frequency or control channel.
- 2. The receiving party sends a number, known as a seed back to the initiating party.
- 3. The initiating party sends a synchronization signal acknowledging to the receiving party as it has successfully established a transmission link.
- 4. The communication begins, and both the receiving and the sending party change their frequencies along ar unpredictable hopping sequence with pseudorandom properties.

Pseudorandom Frequency Hopping Sequence:

2410.875; 2414.250; 2417.625; 2421.000; 2424.375; 2427.750; 2431.125; 2434.500; 2437.875; 2441.250; 2444.625; 2448.000; 2451.375; 2454.750; 2458.125; 2461.500; 2464.875; 2468.250; 2471.625.

System Receiver Input Bandwidth:

The receiver bandwidth is equal to the receiver bandwidth in the 19 hopping channel mode. The receiver bandwidth was verified during RF hopping to the relative channel.

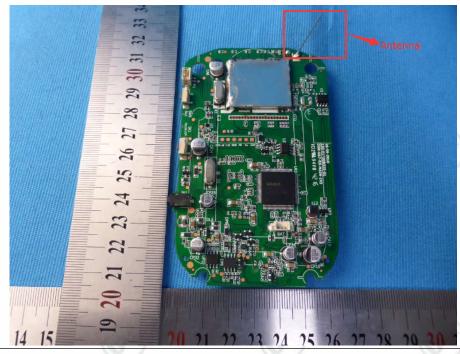
Receiver Hopping Capability:

The associated receiver has the ability to shift frequencies in synchronization with the transmitted signals, with they start connect with a same channel and then hop to next channel with a same formula among each other.

Report No.: EED32I00275903 Page 30 of 76

Appendix I): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

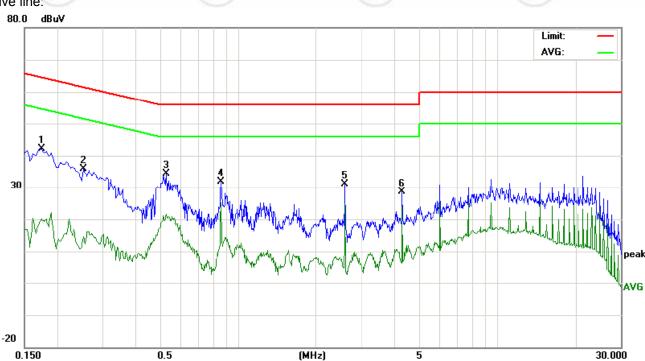
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.



Page 31 of 76 Report No.: EED32I00275903

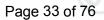
Tes	t Procedure:	Test frequency range :150KHz	-30MHz	(37)						
	C.	 The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not 								
(c.	(1)	exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,								
		 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on 								
Lim	t:	Francisco (MILE)	Limit (c	IBμV)						
		Frequency range (MHz)	Quasi-peak	Average						
		0.15-0.5	66 to 56*	56 to 46*						
1	12	0.5-5	56	46	(3)					
/	(6)	5-30	60	50	(0,)					
		* The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency								
Measurem An initial pr		formed on the live and neutral I	(11)	(11)						

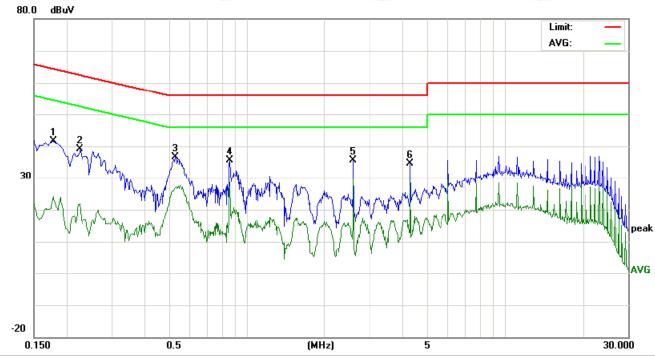


Page 32 of 76

Adapter 1: BLJ06W050055P1-U

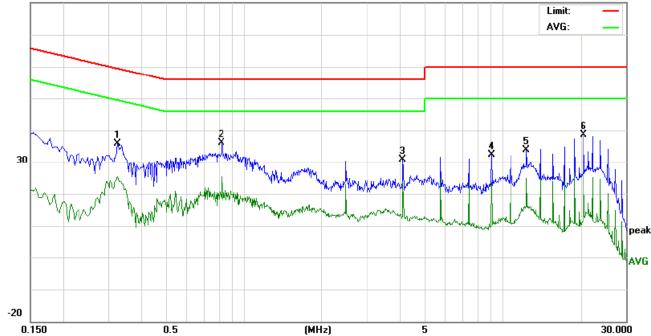
AC 120V/60Hz


Live line:

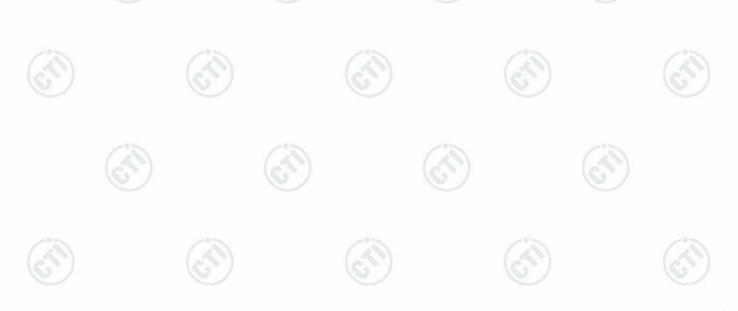

-	No.	Freq.	Reading_Level q. (dBuV)		vel	Correct Factor	Measurement (dBuV)			Limit (dBu∀)		Margin (dB)			
_		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
-	1	0.1740	32.29		10.28	9.80	42.09		20.08	64.76	54.76	-22.67	-34.68	Р	
	2	0.2540	26.06		4.79	9.80	35.86		14.59	61.62	51.62	-25.76	-37.03	Р	
	3	0.5299	24.44		11.67	9.90	34.34		21.57	56.00	46.00	-21.66	-24.43	Р	
	4	0.8620	22.18		15.40	9.78	31.96		25.18	56.00	46.00	-24.04	-20.82	Р	
	5	2.5860	21.03		15.00	10.00	31.03		25.00	56.00	46.00	-24.97	-21.00	Р	
	6	4.3100	18.59		13.78	10.00	28.59		23.78	56.00	46.00	-27.41	-22.22	Р	

Neutral line:

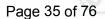
No	. Freq.	Reading_Level (dBuV)			Correct Factor	Measurement (dBuV)			Limit (dBuV)		Margin (dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1780	31.80		14.36	9.80	41.60		24.16	64.57	54.57	-22.97	-30.41	Р	
2	0.2260	29.33		11.97	9.80	39.13		21.77	62.59	52.59	-23.46	-30.82	Р	
3	0.5299	26.64		17.09	9.90	36.54		26.99	56.00	46.00	-19.46	-19.01	Р	
4	0.8620	25.84		18.81	9.78	35.62		28.59	56.00	46.00	-20.38	-17.41	Р	
5	2.5860	25.62		19.67	10.00	35.62		29.67	56.00	46.00	-20.38	-16.33	Р	
6	4.3060	24.73		18.67	10.00	34.73	·	28.67	56.00	46.00	-21.27	-17.33	Р	

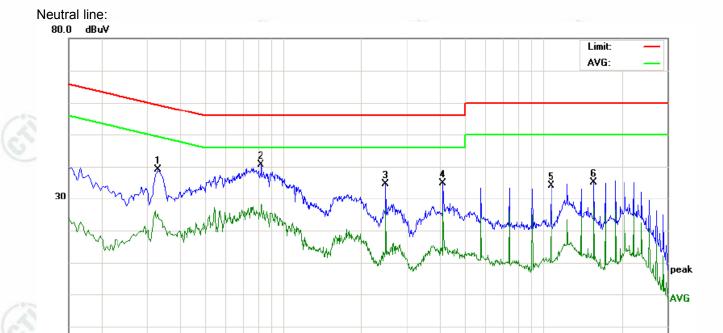

Page 34 of 76

Adapter 2: CS3B050055FU


AC 120V/60Hz

Live line:




Ī	No.	Freq.	Reading_Level (dBuV)			Correct Factor	Measurement (dBuV)			Limit (dBu∀)		Margin (dB)			
-		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
2	1	0.3260	26.05		15.46	9.83	35.88		25.29	59.55	49.55	-23.67	-24.26	Р	
	2	0.8260	26.34		15.46	9.85	36.19		25.31	56.00	46.00	-19.81	-20.69	Р	
	3	4.1340	20.95		13.64	10.00	30.95		23.64	56.00	46.00	-25.05	-22.36	Р	
	4	9.0900	22.33		13.74	10.00	32.33		23.74	60.00	50.00	-27.67	-26.26	Р	
	5	12.3979	23.85		14.88	10.05	33.90		24.93	60.00	50.00	-26.10	-25.07	Р	
-	6	20.6660	28.80		16.84	9.80	38.60		26.64	60.00	50.00	-21.40	-23.36	Р	

30.000

	No.	Freq.	Reading_Level (dBuV)		evel	Correct Factor	Measurement (dBuV)		Limit (dBuV)		Margin (dB)				
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.3300	29.26		15.30	9.83	39.09		25.13	59.45	49.45	-20.36	-24.32	Р	
	2	0.8260	30.67		18.33	9.85	40.52		28.18	56.00	46.00	-15.48	-17.82	Р	
3	3	2.4780	24.74		16.85	10.00	34.74		26.85	56.00	46.00	-21.26	-19.15	Р	
3	4	4.1340	24.89		16.38	10.00	34.89		26.38	56.00	46.00	-21.11	-19.62	Р	
	5	10.7460	24.15		16.15	10.01	34.16		26.16	60.00	50.00	-25.84	-23.84	Ρ	
	6	15.7060	25.06		16.96	10.06	35.12		27.02	60.00	50.00	-24.88	-22.98	Р	

(MHz)

5

Notes:

0.150

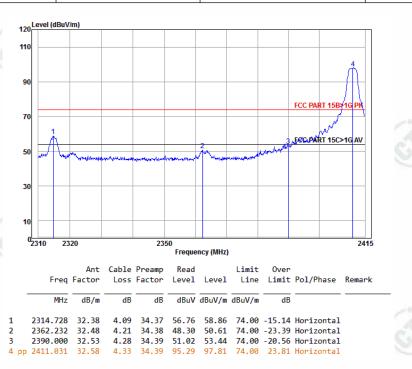
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

0.5

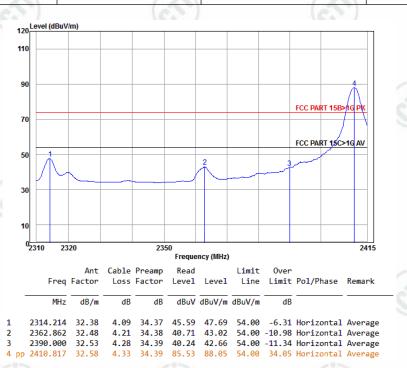
Report No. : EED32I00275903 Page 36 of 76

Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak			
	A1 4011	Peak	1MHz	3MHz	Peak			
	Above 1GHz	Peak	1MHz	10Hz	Average			
Test Procedure:	 Below 1GHz test procedure as below: a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation. 							
	for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char metre(Above 18GHz h. b. Test the EUT in the i. The radiation measure	lure as below: ove is the test site mber and change the distance is 1 lowest channel	e form table meter and , the Highe	0.8 metre table is 1.5 st channel	to 1.5 metre).			
	Transmitting mode, ar i. Repeat above proced	nd found the X a	xis position	ing which i	t is worse case.			
Limit:	j. Repeat above proced	nd found the X as ures until all freq	xis position uencies me	ing which i	t is worse case.			
Limit:	_	nd found the X as ures until all freq Limit (dBuV	xis position uencies me /m @3m)	ing which is easured wa	t is worse case. as complete.			
Limit:	j. Repeat above proced Frequency 30MHz-88MHz	Limit (dBuV	xis position uencies me /m @3m)	ng which is easured was Rer	t is worse case. as complete. mark eak Value			
Limit:	j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	Limit (dBuV	xis position uencies me /m @3m) 0	Rer Quasi-pe	t is worse case. as complete. mark eak Value eak Value			
Limit:	j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	Limit (dBuV 40. 43.	xis position uencies me /m @3m) 0 5	Rer Quasi-pe Quasi-pe	t is worse case. as complete. mark eak Value eak Value eak Value			
Limit:	j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	Limit (dBuV	xis position uencies me /m @3m) 0 5 0	Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe	t is worse case. as complete. mark eak Value eak Value			

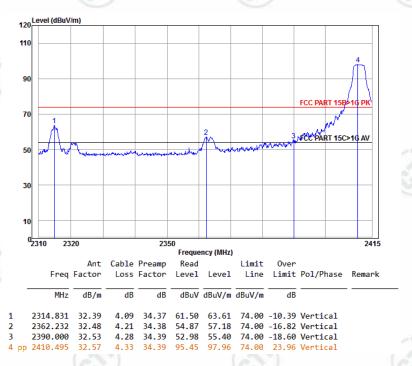


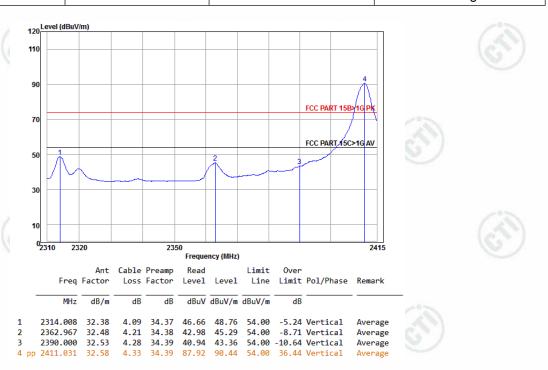
Report No.: EED32I00275903 Page 37 of 76


Test plot as follows:

Adapter 1: BLJ06W050055P1-U

Worse case mode:	GFSK		0.)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

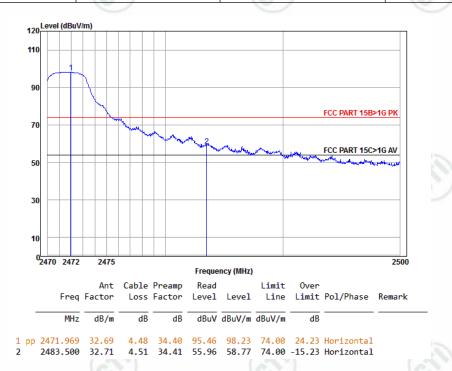

Worse case mode:	GFSK		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

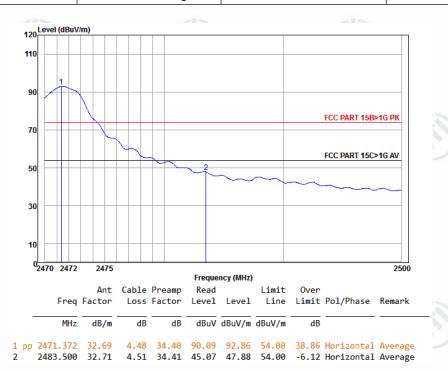


Page	$^{\circ}$	-170	
Pane	.30	ot /n	

Worse case mode:	GFSK	(3)	(3)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

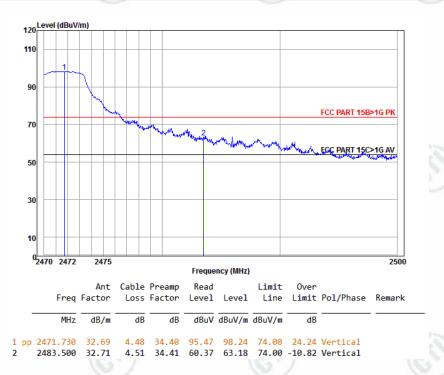
Worse case mode:	GFSK		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

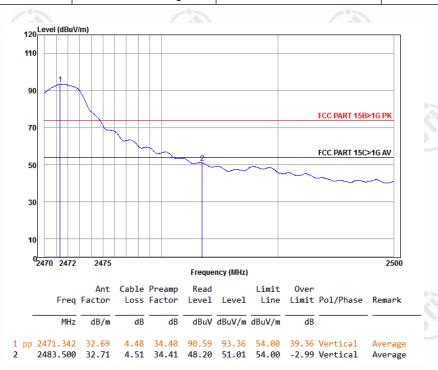




Page	39	of	76
------	----	----	----

Worse case mode:	GFSK	(3)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak


Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

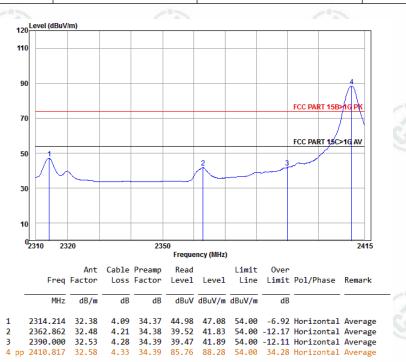


Page -	40	of	76
--------	----	----	----

Worse case mode:	GFSK			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

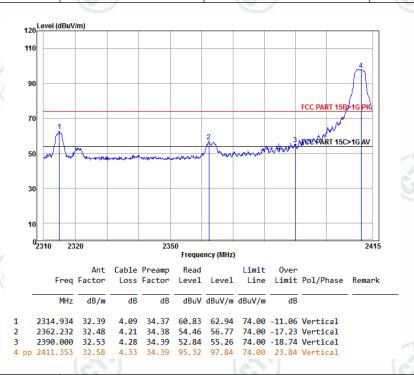
Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

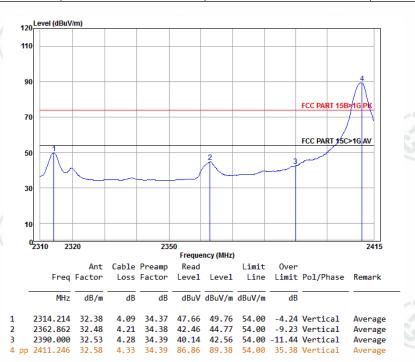



Page 41 of 76

Adapter 2: CS3B050055FU

Worse case mode:	GFSK	GFSK		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

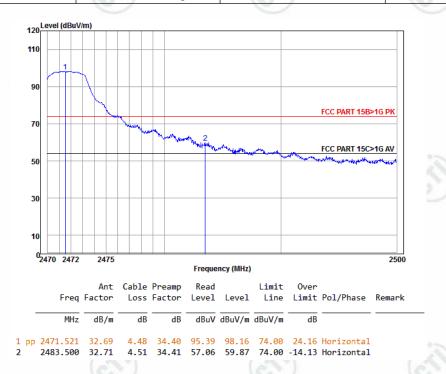

Worse case mode:	GFSK		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

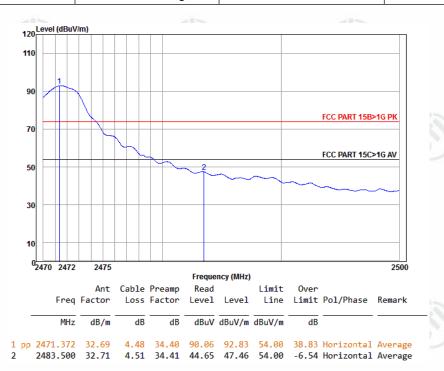


	Page	42	of	76
--	------	----	----	----

Worse case mode:	GFSK	(3)	(3)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

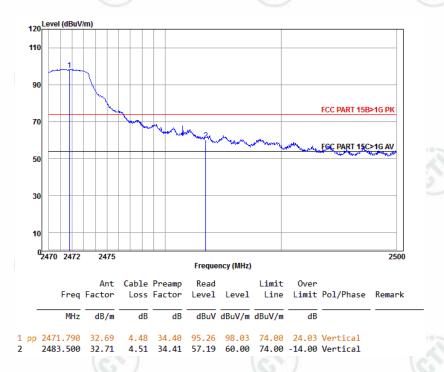
Worse case mode:	GFSK		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

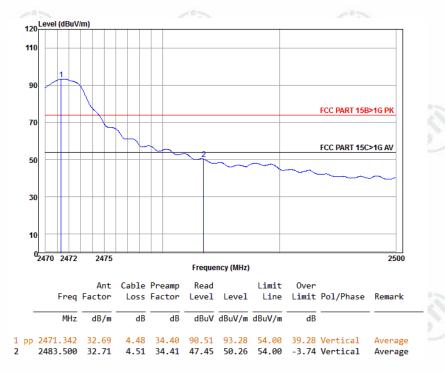




Page	13	_of	76
raue	40	UΙ	10

Worse case mode:	GFSK	(3)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak


Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average



I ago TT OI 10	Page	44	of	76
----------------	------	----	----	----

Worse case mode:	GFSK	(3)	(3)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32I00275903 Page 45 of 76

Appendix L): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1CUz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

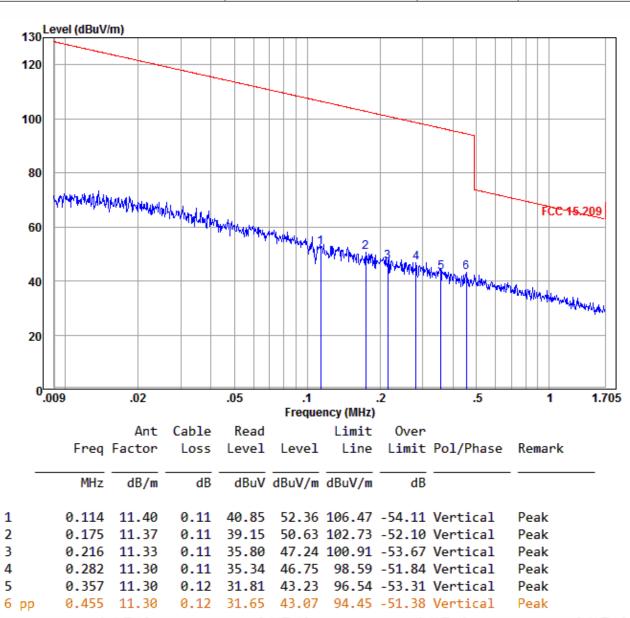
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

	n		

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	/05	30
1.705MHz-30MHz	30	-	(6.5)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

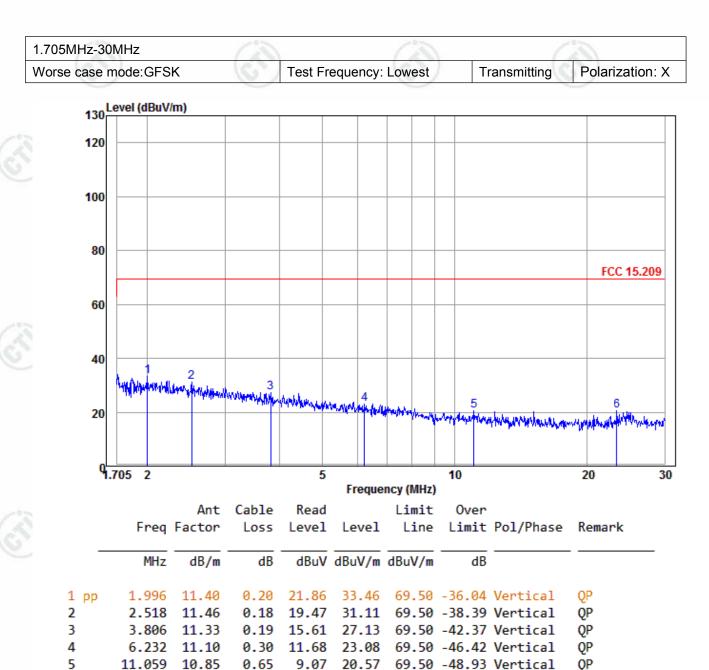


Report No.: EED32I00275903 Page 46 of 76

Radiated Spurious Emissions test Data:

Radiated Emission below 30MHz

9KHz-1.705MHz		(6	3 ³)
Worse case mode:GFSK	Test Frequency: Lowest	Transmitting	Polarization: X


23.376

9.68

0.96

9.89

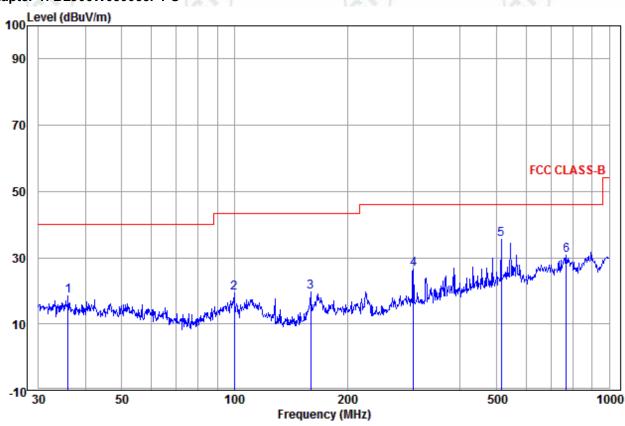
Page 47 of 76

Remark: For 9kHz~30MHz test, The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case X axis with Adapter 1 is shown in the report. Adapter 1 and Adapter 2, lowest,middle,highest channel are tested, only show worst data in the report.

20.53

69.50 -48.97 Vertical

QΡ

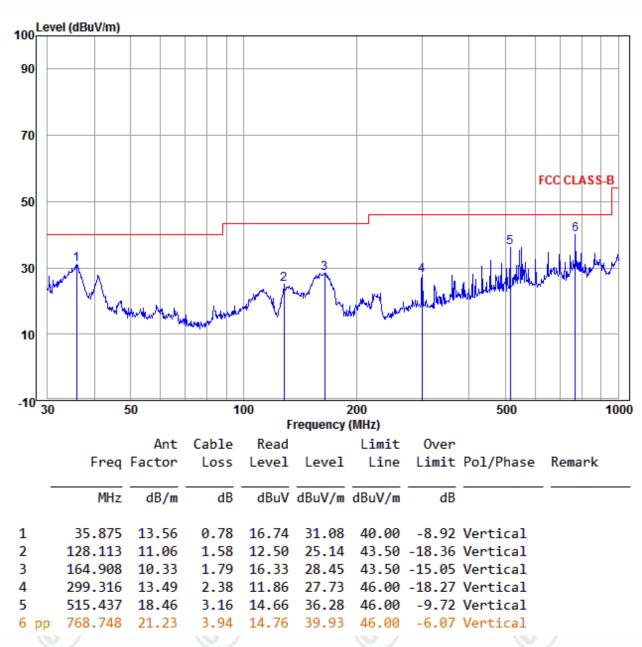


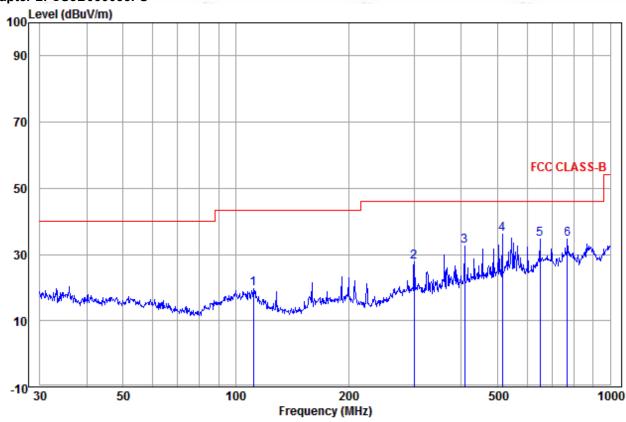
Page 48 of 76

Radiated Emission 30MHz-1GHz

Adapter 1: BLJ06W050055P1-U

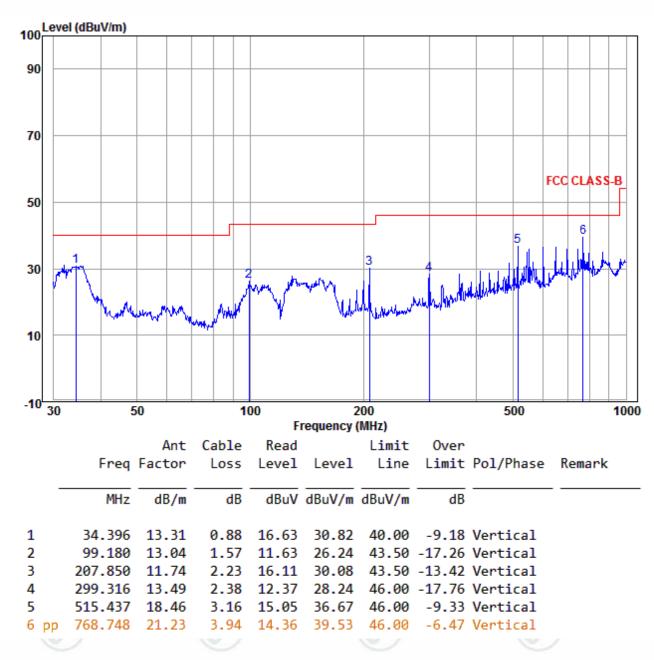
		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
		•			•	•			
1	36.001	13.58	0.77	4.08	18.43	40.00	-21.57	Horizontal	
2	99.878	13.18	1.57	4.48	19.23	43.50	-24.27	Horizontal	
3	159.784	10.12	1.72	7.89	19.73	43.50	-23.77	Horizontal	
4	300.367	13.51	2.38	10.78	26.67	46.00	-19.33	Horizontal	
5 pp	515.437	18.46	3.16	13.84	35.46	46.00	-10.54	Horizontal	
6	768.748	21.23	3.94	5.67	30.84	46.00	-15.16	${\it Horizontal}$	





Adapter 2: CS3B050055FU

		Ant	Cable	Read		Limit	Over		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	_								
-	MHz	dR/m		dRuV	dRuV/m	dBuV/m	dB		
	11112	ub/ III	u D	abav	abav/ III	abav/ iii	u b		
1	111.347	12.27	1.57	5.90	19.74	43.50	-23./6	Horizontal	
2	299.316	13.49	2.38	11.75	27.62	46.00	-18.38	Horizontal	
3	408.946	16.45	2.84	13.34	32.63	46.00	-13.37	Horizontal	
4 pp	515.437	18.46	3.16	14.61	36.23	46.00	-9.77	Horizontal	
5	649.660	19.59	3.57	11.50	34.66	46.00	-11.34	Horizontal	
6	768.748	21.23	3.94	9.54	34.71	46.00	-11.29	Horizontal	



Page 52 of 76

Transmitter Emission above 1GHz

Adapter 1: BLJ06W050055P1-U

Worse case	mode:	GFSK		Test char	nnel:	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1192.011	30.21	2.51	34.97	48.35	46.10	74.00	-27.90	Pass	H
1617.862	31.09	2.93	34.58	47.35	46.79	74.00	-27.21	Pass	H
4821.750	34.73	5.11	34.35	45.27	50.76	74.00	-23.24	Pass	Н
5747.586	35.71	6.87	34.30	41.31	49.59	74.00	-24.41	Pass	Н
7232.625	36.42	6.69	34.90	41.94	50.15	74.00	-23.85	Pass	Н
9643.500	37.92	7.70	35.07	37.85	48.40	74.00	-25.60	Pass	Н
1182.943	30.18	2.50	34.98	48.54	46.24	74.00	-27.76	Pass	V
1428.142	30.73	2.76	34.74	47.73	46.48	74.00	-27.52	Pass	V
1846.834	31.47	3.12	34.40	46.86	47.05	74.00	-26.95	Pass	V
4821.750	34.73	5.11	34.35	44.77	50.26	74.00	-23.74	Pass	V
7232.625	36.42	6.69	34.90	39.40	47.61	74.00	-26.39	Pass	V
9643.500	37.92	7.70	35.07	38.31	48.86	74.00	-25.14	Pass	V

Worse case	mode:	GFSK		Test char	nnel:	Middle	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1182.943	30.18	2.50	34.98	48.64	46.34	74.00	-27.66	Pass	Н
1406.496	30.68	2.74	34.76	47.30	45.96	74.00	-28.04	Pass	S H
1642.761	31.13	2.95	34.56	46.86	46.38	74.00	-27.62	Pass	Н
4882.500	34.85	5.08	34.33	45.11	50.71	74.00	-23.29	Pass	Н
7323.750	36.43	6.77	34.90	41.69	49.99	74.00	-24.01	Pass	Н
9765.000	38.05	7.60	35.05	38.32	48.92	74.00	-25.08	Pass	Н
1201.149	30.23	2.52	34.96	47.70	45.49	74.00	-28.51	Pass	V
1446.435	30.77	2.78	34.72	47.11	45.94	74.00	-28.06	Pass	V
1846.834	31.47	3.12	34.40	46.58	46.77	74.00	-27.23	Pass	V
4882.500	34.85	5.08	34.33	44.22	49.82	74.00	-24.18	Pass	V
7323.750	36.43	6.77	34.90	41.74	50.04	74.00	-23.96	Pass	V
9765.000	38.05	7.60	35.05	36.87	47.47	74.00	-26.53	Pass	V

Worse case	mode:	GFSK		Test chani	nel:	Highest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1201.149	30.23	2.52	34.96	47.74	45.53	74.00	-28.47	Pass	Н
1659.574	31.16	2.97	34.54	46.51	46.10	74.00	-27.90	Pass	Н
1851.542	31.48	3.12	34.40	47.65	47.85	74.00	-26.15	Pass	ЭН
4943.250	34.98	5.06	34.32	44.03	49.75	74.00	-24.25	Pass	Н
7414.875	36.44	6.85	34.90	41.55	49.94	74.00	-24.06	Pass	Н
9886.500	38.18	7.50	35.02	37.54	48.20	74.00	-25.80	Pass	Н
1210.356	30.25	2.53	34.95	47.99	45.82	74.00	-28.18	Pass	V
1659.574	31.16	2.97	34.54	46.58	46.17	74.00	-27.83	Pass	V
2060.463	31.84	3.41	34.31	45.45	46.39	74.00	-27.61	Pass	V
4943.250	34.98	5.06	34.32	45.24	50.96	74.00	-23.04	Pass	V
7414.875	36.44	6.85	34.90	40.99	49.38	74.00	-24.62	Pass	V
9886.500	38.18	7.50	35.02	40.34	51.00	74.00	-23.00	Pass	V

Adapter 2: CS3B050055FU

Worse case	mode:	GFSK		Test char	nnel:	Lowest	Remark: Pe	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1207.279	30.24	2.52	34.96	47.65	45.45	74.00	-28.55	Pass	/° H
1417.277	30.71	2.75	34.75	47.35	46.06	74.00	-27.94	Pass	(H)
1870.490	31.51	3.14	34.39	46.71	46.97	74.00	-27.03	Pass	H
4821.750	34.73	5.11	34.35	41.47	46.96	74.00	-27.04	Pass	Н
7232.625	36.42	6.69	34.90	41.45	49.66	74.00	-24.34	Pass	Н
9643.500	37.92	7.70	35.07	39.44	49.99	74.00	-24.01	Pass	Н
1185.958	30.19	2.50	34.98	47.95	45.66	74.00	-28.34	Pass	V
1589.289	31.04	2.91	34.60	46.12	45.47	74.00	-28.53	Pass	V
1846.834	31.47	3.12	34.40	46.47	46.66	74.00	-27.34	Pass	V
4882.500	34.85	5.08	34.33	41.48	47.08	74.00	-26.92	Pass	V
7323.750	36.43	6.77	34.90	42.27	50.57	74.00	-23.43	Pass	V
9765.000	38.05	7.60	35.05	38.84	49.44	74.00	-24.56	Pass	V

D	- 4		70
Page	54	OT	10

Worse case	mode:	GFSK		Test char	nnel:	Middle	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1213.441	30.26	2.53	34.95	47.64	45.48	74.00	-28.52	Pass	Н
1435.431	30.74	2.77	34.73	46.53	45.31	74.00	-28.69	Pass	Н
1597.401	31.05	2.92	34.59	47.07	46.45	74.00	-27.55	Pass	₩
4882.500	34.85	5.08	34.33	45.24	50.84	74.00	-23.16	Pass	Н
7323.750	36.43	6.77	34.90	42.60	50.90	74.00	-23.10	Pass	Н
9765.000	38.05	7.60	35.05	37.16	47.76	74.00	-26.24	Pass	Н
1207.279	30.24	2.52	34.96	47.77	45.57	74.00	-28.43	Pass	V
1439.090	30.75	2.77	34.73	47.39	46.18	74.00	-27.82	Pass	V
4213.211	33.34	5.35	34.53	43.63	47.79	74.00	-26.21	Pass	V
4883.519	34.86	5.08	34.33	44.30	49.91	74.00	-24.09	Pass	V
7323.750	36.43	6.77	34.90	41.72	50.02	74.00	-23.98	Pass	V
9765.000	38.05	7.60	35.05	38.24	48.84	74.00	-25.16	Pass	V

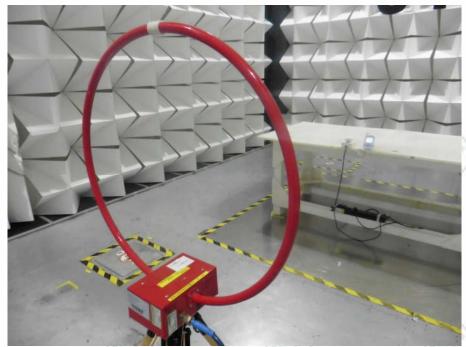
Worse case	mode:	GFSK		Test chani	nel:	Highest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1204.210	30.24	2.52	34.96	48.25	46.05	74.00	-27.95	Pass	Н
1651.146	31.15	2.96	34.55	46.99	46.55	74.00	-27.45	Pass	H
1860.992	31.49	3.13	34.39	46.38	46.61	74.00	-27.39	Pass	C H
4943.250	34.98	5.06	34.32	43.67	49.39	74.00	-24.61	Pass	Н
7414.875	36.44	6.85	34.90	39.95	48.34	74.00	-25.66	Pass	Н
9886.500	38.18	7.50	35.02	38.69	49.35	74.00	-24.65	Pass	Н
1204.210	30.24	2.52	34.96	48.47	46.27	74.00	-27.73	Pass	V
1663.803	31.17	2.97	34.54	47.57	47.17	74.00	-26.83	Pass	V
2065.715	31.85	3.42	34.32	46.29	47.24	74.00	-26.76	Pass	V
4943.250	34.98	5.06	34.32	44.78	50.50	74.00	-23.50	Pass	V
7414.875	36.44	6.85	34.90	40.82	49.21	74.00	-24.79	Pass	V
9886.500	38.18	7.50	35.02	39.01	49.67	74.00	-24.33	Pass	V

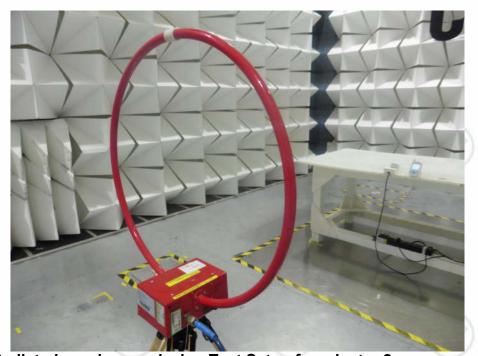
Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor


2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


Report No.: EED32I00275903 Page 55 of 76

PHOTOGRAPHS OF TEST SETUP

Test Model No.: DXR-6

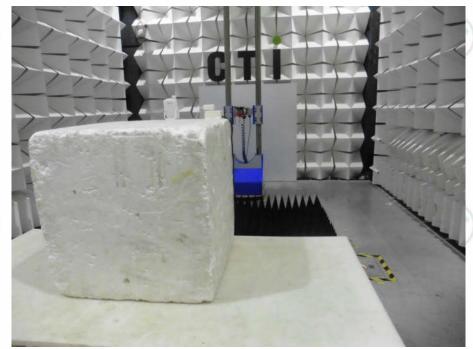
Radiated spurious emission Test Setup for adapter 1(Below 30MHz)

Radiated spurious emission Test Setup for adapter 2(Below 30MHz)

Radiated spurious emission Test Setup for adapter 1(Below 1GHz)

Radiated spurious emission Test Setup for adapter 2(Below 1GHz)





Radiated spurious emission Test Setup for adapter 1(Above 1GHz)

Radiated spurious emission Test Setup for adapter 2(Above 1GHz)

Conducted Emission for adapter 1

Conducted Emission for adapter 2

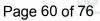
Report No. : EED32I00275903 Page 59 of 76

PHOTOGRAPHS OF EUT Constructional Details

Test Model No.: DXR-6

View of Product-1

View of Product-2



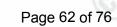
View of Product-3

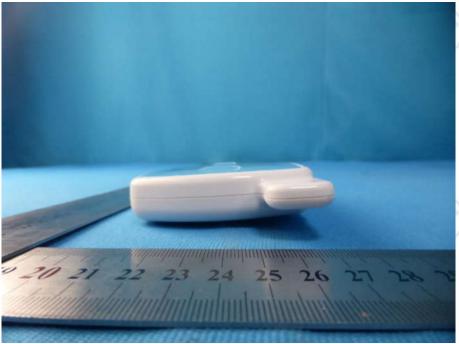
View of Product-4

View of Product-5

View of Product-6







View of Product-7

View of Product-8



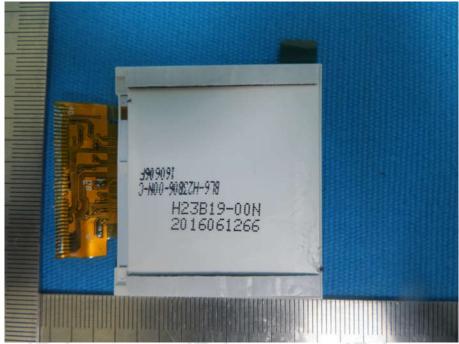
View of Product-9

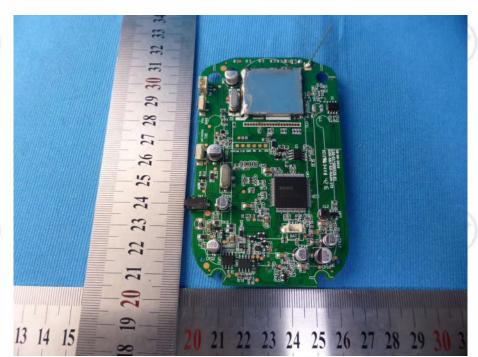
View of Product-10

View of Product-11

View of Product-13

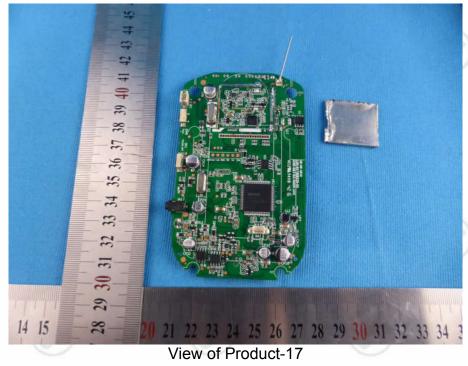
View of Product-14

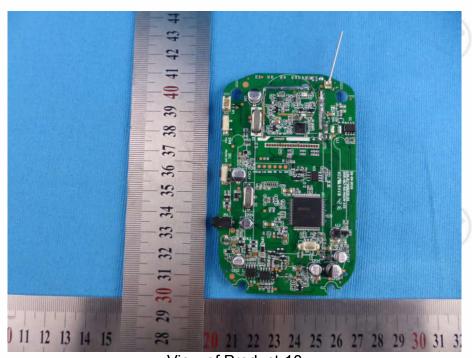




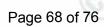
View of Product-15

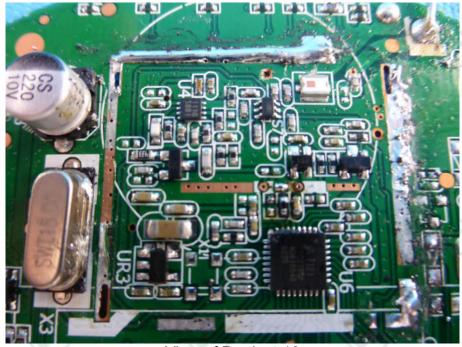
View of Product-16

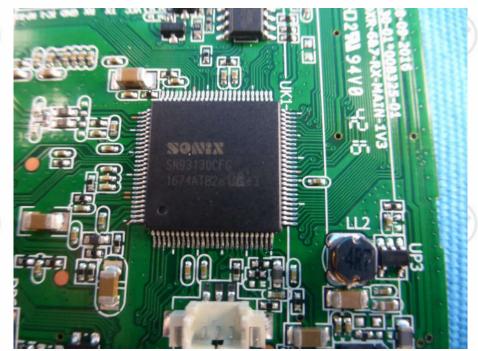




View of Product-18

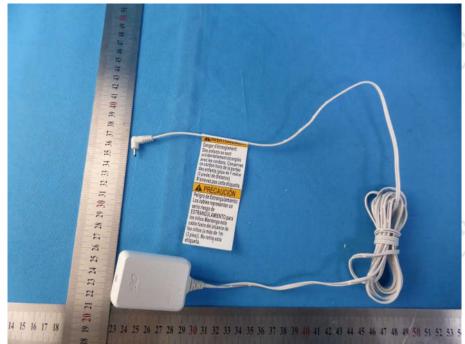






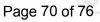
View of Product-19

View of Product-20



View of Product-21(Adapter 1: BLJ06W050055P1-U)

View of Product-22(Adapter 1: BLJ06W050055P1-U)

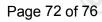


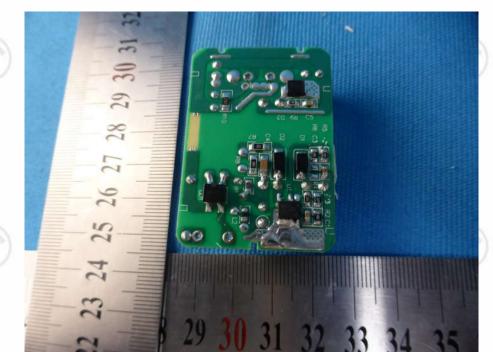
View of Product-23(Adapter 1: BLJ06W050055P1-U)

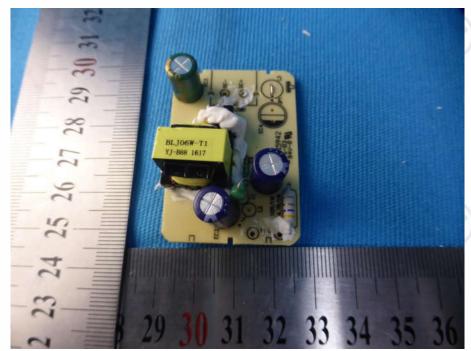
View of Product-24(Adapter 1: BLJ06W050055P1-U)

View of Product-25(Adapter 1: BLJ06W050055P1-U)

View of Product-26(Adapter 1: BLJ06W050055P1-U)

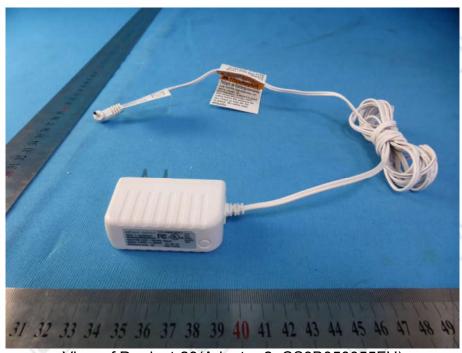






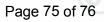
View of Product-27(Adapter 1: BLJ06W050055P1-U)

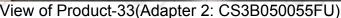
View of Product-28(Adapter 1: BLJ06W050055P1-U)

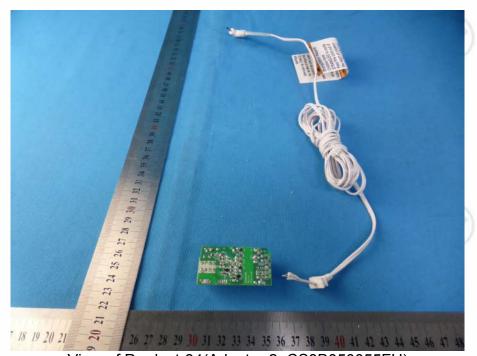


View of Product-29(Adapter 2: CS3B050055FU)

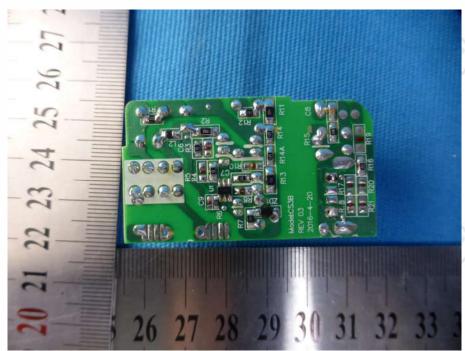
View of Product-32(Adapter 2: CS3B050055FU)

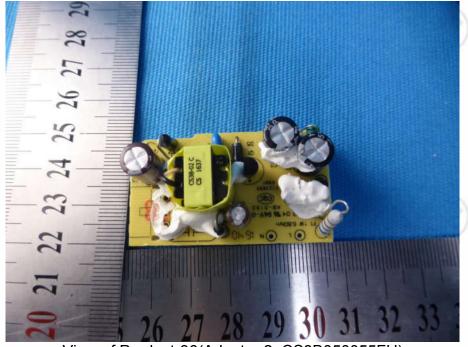






View of Product-34(Adapter 2: CS3B050055FU)





Report No.: EED32I00275903 Page 76 of 76

View of Product-35(Adapter 2: CS3B050055FU)

View of Product-36(Adapter 2: CS3B050055FU)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.