

Page 1 of 74

TEST REPORT

Product
Trade mark
Model/Type reference
Serial Number
Report Number
FCC ID
Date of Issue:
Test Standards
Test result

- Wireless monitor
- N/A
- DXR-6
- N/A
- EED32I00275901
- 2AAAM-DXR-6BU
- Nov. 30, 2016
- 47 CFR Part 15 Subpart C (2015)

Prepared for: Standard Merit Industrial Limited 2/A Harrison Court Stage 6, 10 Man Wan Road, Kowloon, Hong Kong

PASS

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By ERNATIC

Date ort Seal

Tom-chen

Compiled by:

Approved by:

even Nan

Kevin lan (Project Engineer)

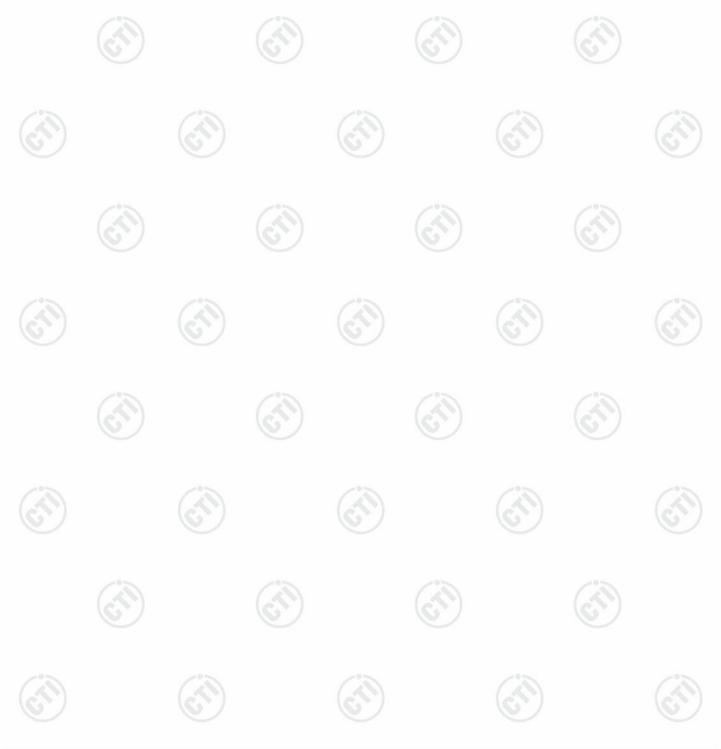
Sheek Luo (Lab supervisor)

Check No.: 2392185320

Tom chen (Test Project)

Kevin yang (Reviewer)

Nov. 30, 2016



2 Version

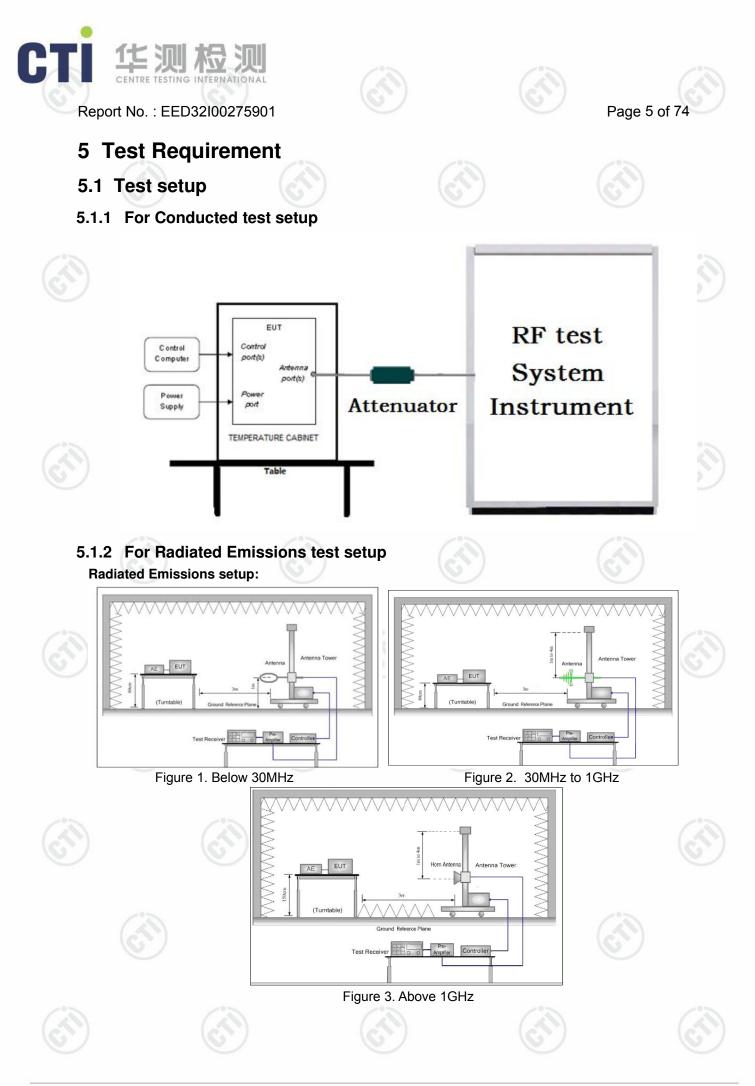
	Version No.	Date	Description	(
	00	Nov. 30 , 2016	Original		$\mathbf{\mathbb{I}}$
2					
D		C	(C)	S	(C)

3 Test Summary

Test Requirement	Test method	Result
47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
	 47 CFR Part 15, Subpart C Section 15.203/15.247 (c) 47 CFR Part 15, Subpart C Section 15.207 47 CFR Part 15, Subpart C Section 15.247 (b)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (b) 47 CFR Part 15, Subpart C Section 15.247 (b) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (b)(4)&TCB Exclusion List (7 July 2002) 47 CFR Part 15, Subpart C Section 15.247(d) 47 CFR Part 15, Subpart C Section 	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)ANSI C63.10-201347 CFR Part 15, Subpart C Section 15.207ANSI C63.10-201347 CFR Part 15, Subpart C Section 15.247 (b)(1)ANSI C63.10-201347 CFR Part 15, Subpart C Section 15.247 (a)(1)ANSI C63.10-201347 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)ANSI C63.10-201347 CFR Part 15, Subpart C Section 15.247(d)ANSI C63.10-201347 CFR Part 15, Subpart C Section 15.247(d)ANSI C63.10-2013

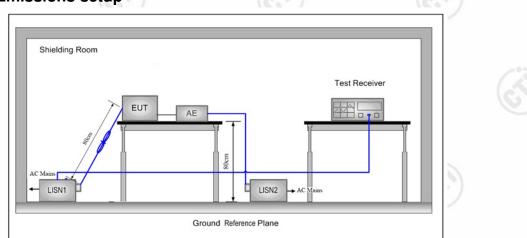
Remark:

The tested samples and the sample information are provided by the client.


- Tx: In this whole report Tx (or tx) means Transmitter.
- Rx: In this whole report Rx (or rx) means Receiver.
- RF: In this whole report RF means Radiated Frequency.
- CH: In this whole report CH means channel.
- Volt: In this whole report Volt means Voltage.
- Temp: In this whole report Temp means Temperature.
- Humid: In this whole report Humid means humidity.
- Press: In this whole report Press means Pressure.
- N/A: In this whole report not application.

4 Content

Page 4 of 74



5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environment:			
Temperature:	22 °C		
Humidity:	53 % RH		
Atmospheric Pressure:	1010mbar	(A) (A)	

5.3 Test Condition

	Test Mode	Тх	RF Channel			
	Test Mode		Low(L)	Middle(M)	High(H)	
\odot	OFOK	2440 975MUL - 2474 C25MUL	Channel 1	Channel 10	Channel19	
	GFSK	2410.875MHz ~2471.625MHz	2410.875MHz	2441.250MHz	2471.625MHz	
	Transmitter mode:	The EUT transmitted the continu channel(s).	ious modulation to	est signal at the s	pecific	
				G	0	

6 General Information

6.1 Client Information

Applicant:	Standard Merit Industrial Limited
Address of Applicant:	2/A Harrison Court Stage 6, 10 Man Wan Road, Kowloon, Hong Kong
Manufacturer:	Foshan Shunde Alford Electronics Co., Ltd,
Address of Manufacturer:	Xinjian Industrial Park, Daliang, Shunde, Foshan City, Guangdong Province, China.

6.2 General Description of EUT

Product Name:	Wireless monitor	
Model No.(EUT):	DXR-6	
Trade mark:	N/A	(S) (S)
EUT Supports Radios application:	2410.875MHz ~2471.62	25MHz
	AC adapter 1(Camera)	Model: BLJ06W059055P1-U Input: 100-240V~50/60Hz, 0.2A Output: 5.9V 550mA
Power Supply:	AC adapter2 (Camera)	Model: CS3B059055FU Input: 100-240V~50/60Hz, 200mA Output: 5.9VDC 550mA
Camera Power Line:	270cm(Unshielded)	
Sample Received Date:	Oct. 26, 2016	
Sample tested Date:	Oct. 26, 2016 to Nov. 30	0, 2016

6.3 Product Specification subjective to this standard

Operation	Frequency:	2410.87	′5MHz ~2471.6	25MHz	13		10		
Modulatio	n Technique:	Frequer	Frequency Hopping Spread Spectrum(FHSS)						
Modulatio	n Type:	GFSK	GFSK						
Number o	f Channel:	19	19						
Hopping C	Channel Type:	Adaptiv	e Frequency H	opping syste	ms				
Sample T	ype:	Mobile p	production		6		0		
Test Powe	er Grade:	N/A		0		6)		
Test Softv	vare of EUT:	N/A	J/A						
Antenna T	уре:	Integral							
Antenna C	Sain:	0dBi	13	N	(3)	\			
Test Volta	ge:	AC 120	V/60Hz, AC 24	0V/50Hz	6)	6		
Operation	Frequency ea	ch of channe	el						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1/1	2410.875	6	2427.750	11	2444.625	16	2461.500		
2	2414.250	7	2431.125	12	2448.000	17	2464.875		
3	2417.625	8	2434.500	13	2451.375	18	2468.250		
4	2421.000	9	2437.875	14	2454.750	19	2471.625		
5	2424.375	10	2441.250	15	2458.125				

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101 Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

Page 8 of 74

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Page 9 of 74

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563. Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty(95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
		0.31dB (30MHz-1GHz)		
2	RF power, conducted	0.57dB(1GHz-18GHz)		
2	Rediated Courieus emission test	4.5dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)		
4	Conduction emission	3.6dB (9kHz to 150kHz)		
4	Conduction emission	3.2dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	2.8%		
7	DC power voltages	0.025%		

7 Equipment List

	RF test system								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017				
Spectrum Analyze	r Keysight	N9010A	MY54510339	04-01-2016	03-31-2017				
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017				
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017				
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	~	01-12-2016	01-11-2017				
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017				
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017				
BT&WI-FI Automatic contro	R&S	OSP120	101374	04-01-2016	03-31-2017				
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017				
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017				

Conducted disturbance Test								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017			
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017			
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017			
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017			
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017			
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017			
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017			

Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	ТDК	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574 374		06-30-2015	06-28-2018
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-12-2016	01-11-2017

Hotline: 400-6788-333

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

St Results List:				
Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

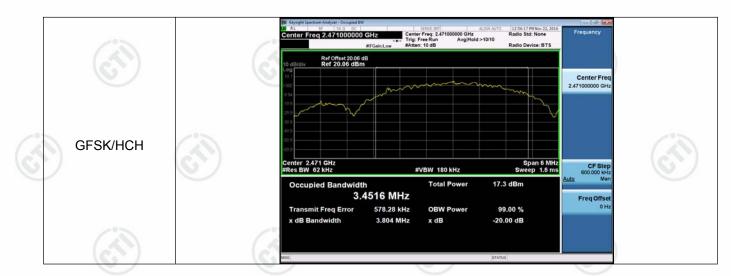
Appendix A): 20dB Occupied Bandwidth

Test Result

					-
Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
GFSK	LCH	3.791	3.4835	PASS	1
GFSK	МСН	3.613	3.4349	PASS	Peak
GFSK	нсн	3.804	3.4516	PASS	detector

Remark : Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

Test Graph



Page 14 of 74

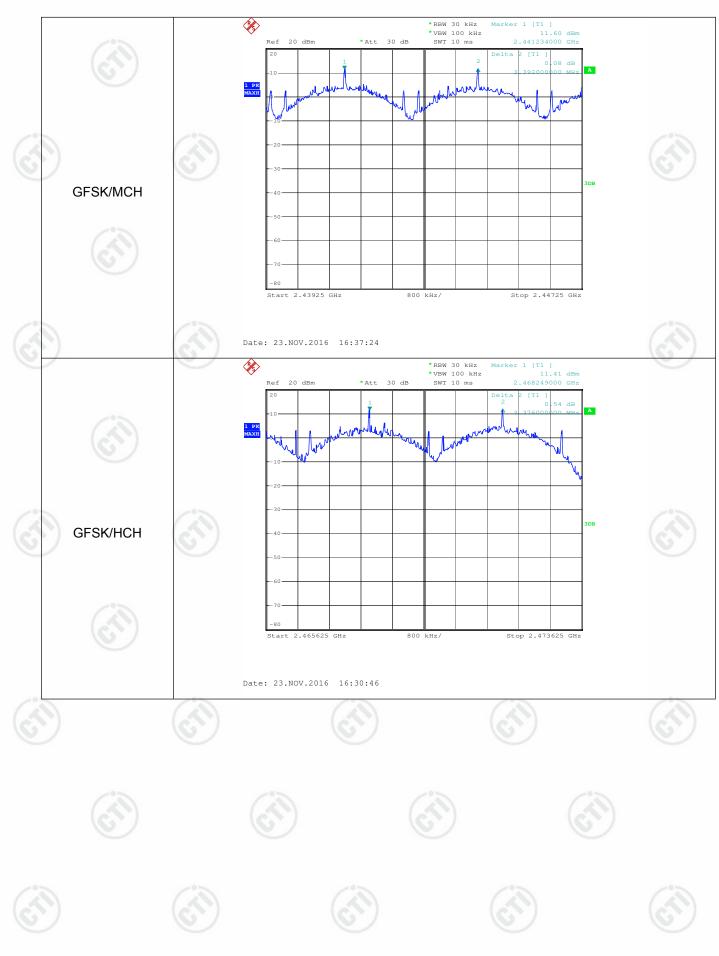
Appendix B): Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	3.392	PASS
GFSK	МСН	3.392	PASS
GFSK	нсн	3.376	PASS

Remark : Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

Test Graph



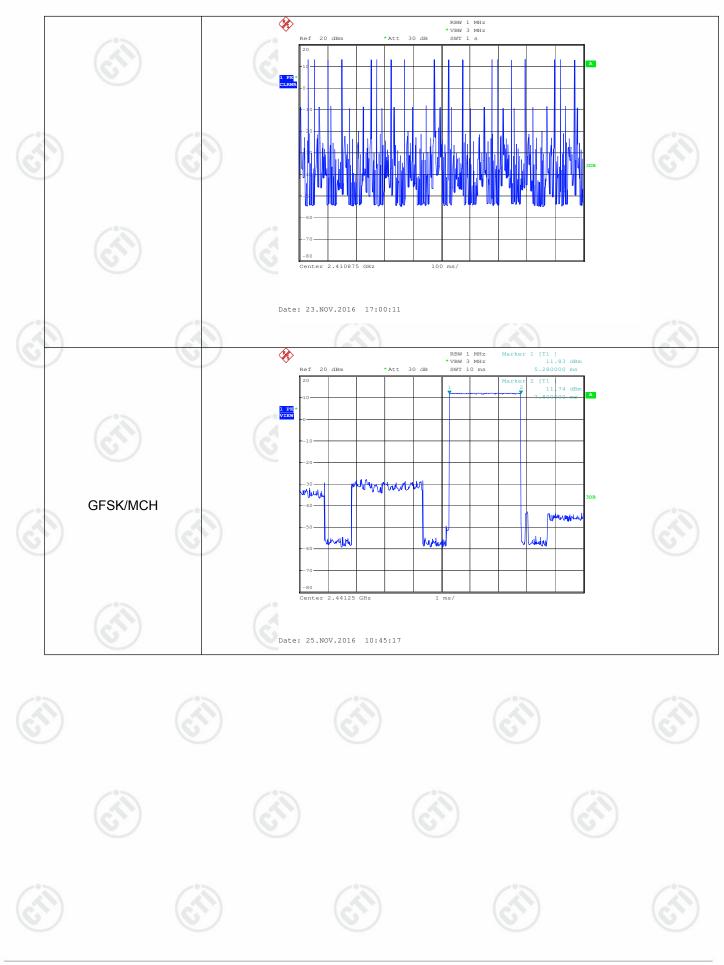
Page 16 of 74

Appendix C): Dwell Time

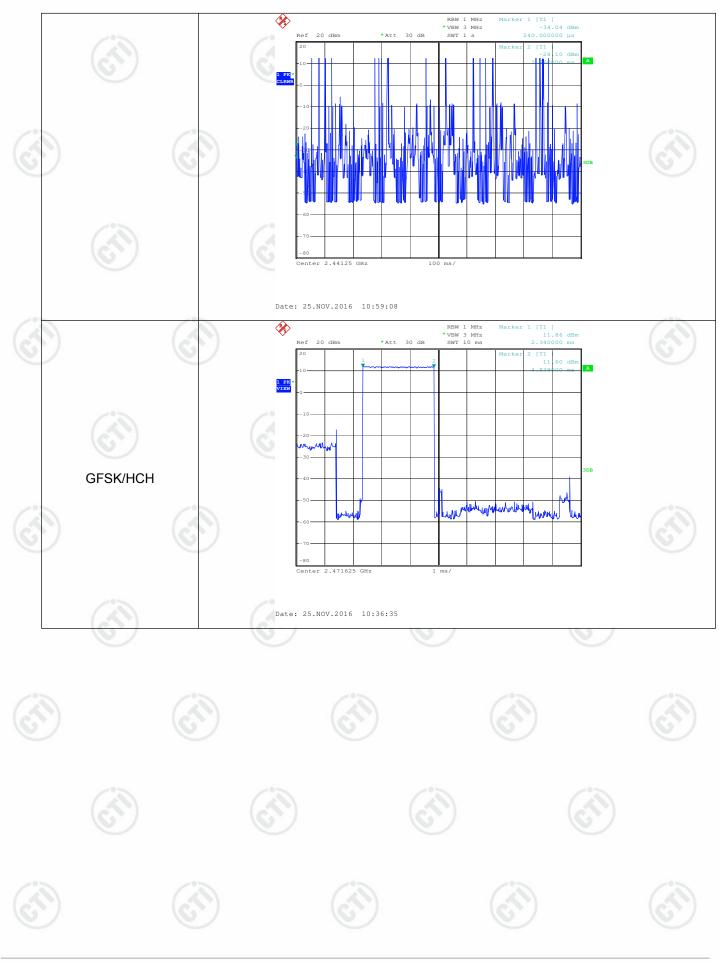
Result Table

Mode	Channel	Observe time[s]	one set of pulses[ms]	pulses within 1s	Dwell Time[s]	Verdict
GFSK	LCH	7.6	2.52	18	0.345	PASS
GFSK	МСН	7.6	2.52	18	0.345	PASS
GFSK	НСН	7.6	2.50	13	0.247	PASS

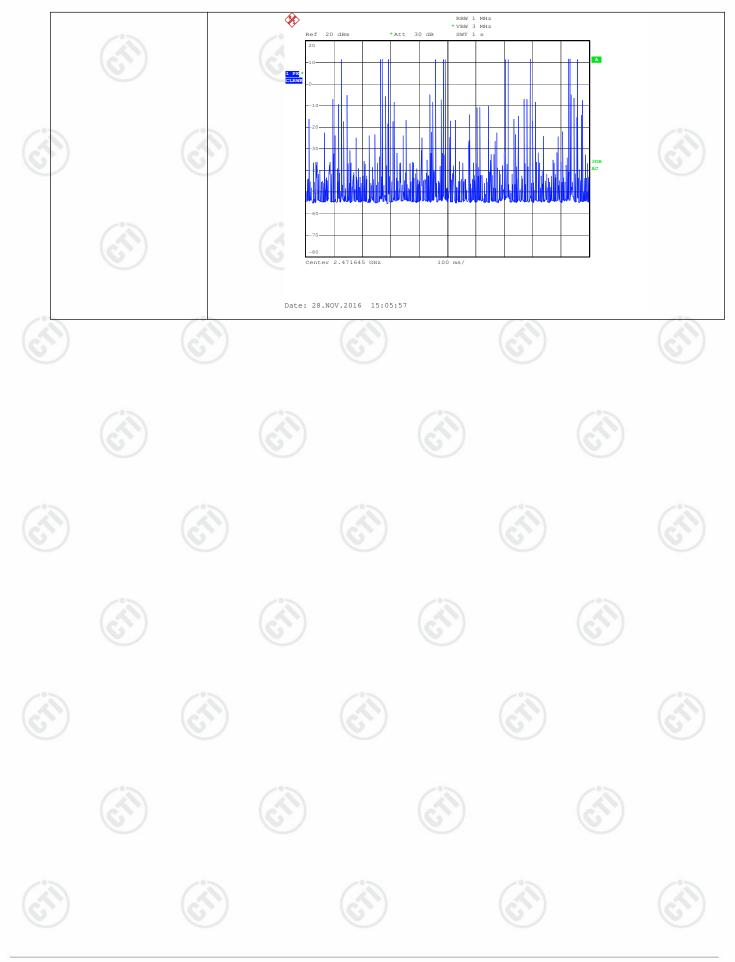
Remark : Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.


Test Graph

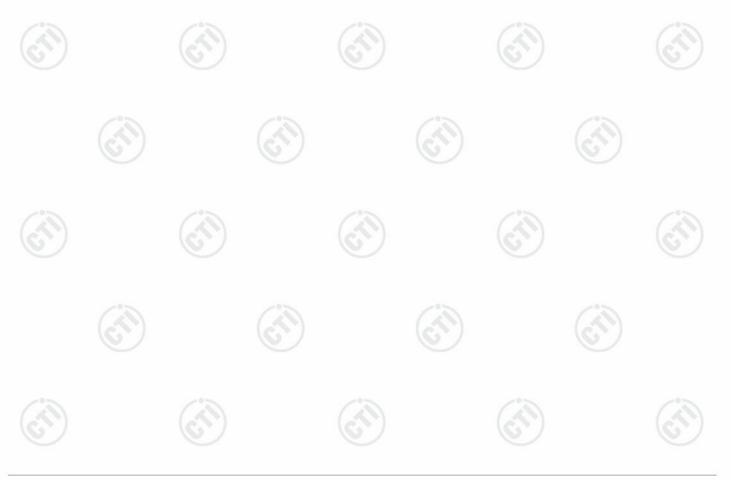
Page 18 of 74



Page 19 of 74



Page 20 of 74


Appendix D): Hopping Channel Number

Result Table

	Mode Channel.		Number of Hopping Channel	Verdict
a l	GFSK	Нор	19	PASS

Test Graph

			Graphs			
		6	BE Knynget Spectram Analyzer - Swegt 54. 26 At. 550 0.00 Contor Froq 2.441750000 GHz PNO:Fast →→ Figer.tow #Atten: 10 dB	ALION ALITO 01:34-48 PM Nov 25, 2014 #Avg Type: RMS TRACE 22.4 Avg[Hold: 100/100 DVP	Frequency	
			Ref Offset 17.06 dB	ΔMkr1 78.740 5 MHz 0.628 dB	Auto Tune	
				MANNAN .	Center Freq 2.441750000 GHz	
2			2229 2329 423	142 MM/142	Start Freq 2.400000000 GHz	
	GFSK/Hop	S	42.9		Stop Freq 2.483500000 GHz	
				Stop 2.48350 GHz Sweep 8.000 ms (1001 pts)	CF Step 8.350000 MHz Auto Man	
			Δ2 1 f (Δ) 78.749 5 MHz (Δ) 0.628 dB 2 F 1 f 2.401 920 5 GHz -32.737 dBm 3 3 4 -32.737 dBm 5 -32.737 dBm -32.737 dBm <th< td=""><td></td><td>Freq Offset 0 Hz</td><td></td></th<>		Freq Offset 0 Hz	
	\sim		wag a	BTATUS		

Appendix E): Conducted Peak Output Power

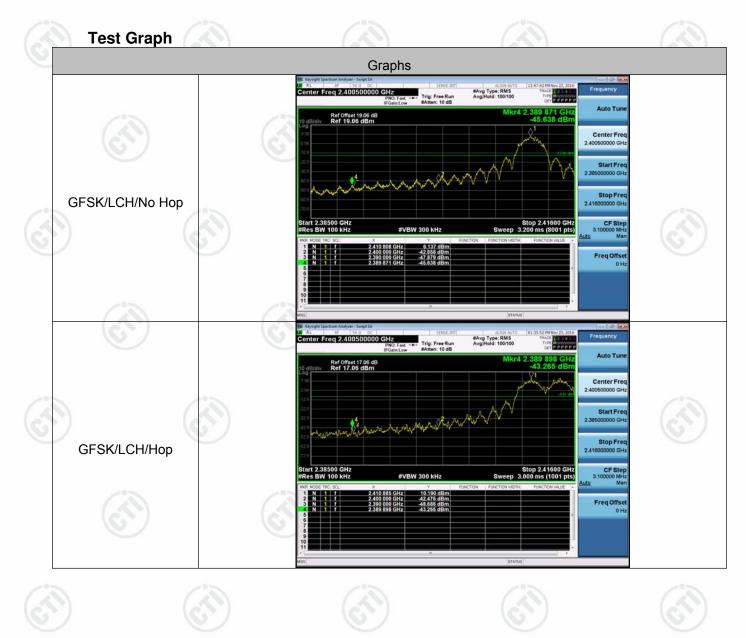
Result Table

	Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
-	GFSK	LCH	13.158	PASS
6	GFSK	МСН	12.530	PASS
C	GFSK	НСН	12.815	PASS

Remark : Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

Test Graph

Page 23 of 74



Page 24 of 74

Appendix F): Band-edge for RF Conducted Emissions

_	Result T	able	(\circ)		(\mathcal{C})	(c^)	
Ċ	Mode	Channel	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
9	9		6.137	Off	-45.638	-13.86	PASS
	GFSK	LCH	10.190	On	-43.265	-9.81	PASS
	OFOK		6.010	Off	-38.048	-13.99	PASS
	GFSK	GFSK HCH		On	-34.994	-9.77	PASS

Remark : Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

Page 25 of 74

Appendix G): RF Conducted Spurious Emissions

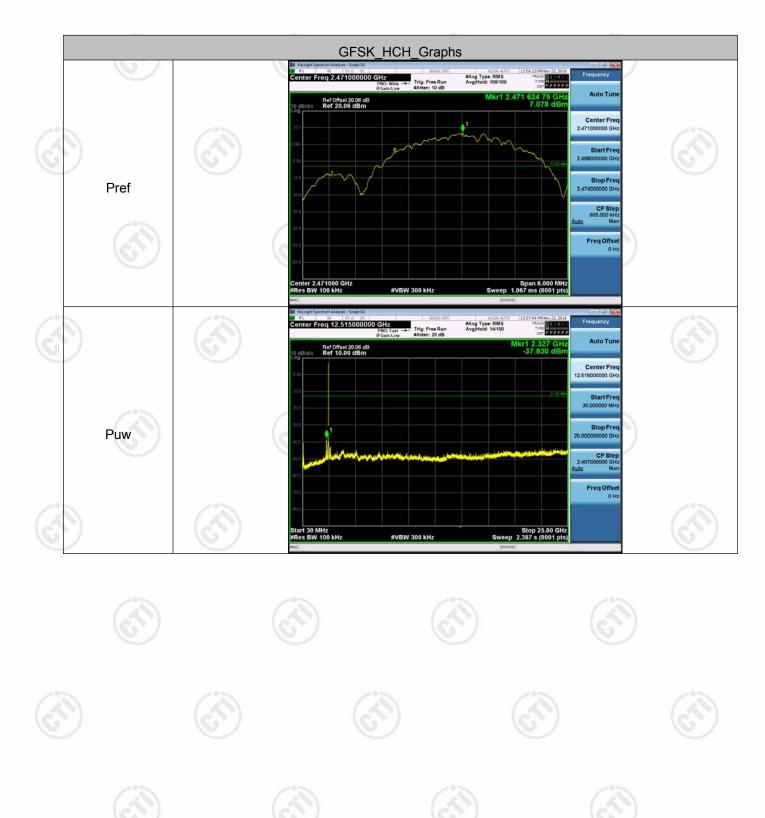
Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	8.187	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	МСН	7.479	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	нсн	7.078	<limit< td=""><td>PASS</td></limit<>	PASS

Remark : Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

Test Graph

Page 27 of 74



Page 28 of 74

Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Page 29 of 74

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The embedded FHSS engine uses 19 hopping frequencies. Each channel frequency is selected from a pseudorandom ordered list of hopping frequencies, from 2410.875MHz to 2471.625MHz with separating in 3.375MHz apart from each of the channels. A single data frame is transmitted on each frequency location before skipping to the next hopping frequency in the list. Each channel is occupied 3.45milliseconds.

Typically, the initiation of an FHSS communication is as follows:

1. The initiating party sends a request via a predefined frequency or control channel.

2. The receiving party sends a number, known as a seed back to the initiating party.

3. The initiating party sends a synchronization signal acknowledging to the receiving party as it has successfully established a transmission link.

4. The communication begins, and both the receiving and the sending party change their frequencies along an unpredictable hopping sequence with pseudorandom properties.

Pseudorandom Frequency Hopping Sequence:

2410.875; 2414.250; 2417.625; 2421.000; 2424.375; 2427.750; 2431.125; 2434.500; 2437.875; 2441.250; 2444.625; 2448.000; 2451.375; 2454.750; 2458.125; 2461.500; 2464.875; 2468.250; 2471.625.

System Receiver Input Bandwidth:

The receiver bandwidth is equal to the receiver bandwidth in the 19 hopping channel mode. The receiver bandwidth was verified during RF hopping to the relative channel.

Receiver Hopping Capability:

The associated receiver has the ability to shift frequencies in synchronization with the transmitted signals, with they start connect with a same channel and then hop to next channel with a same formula among each other.

Page 30 of 74

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

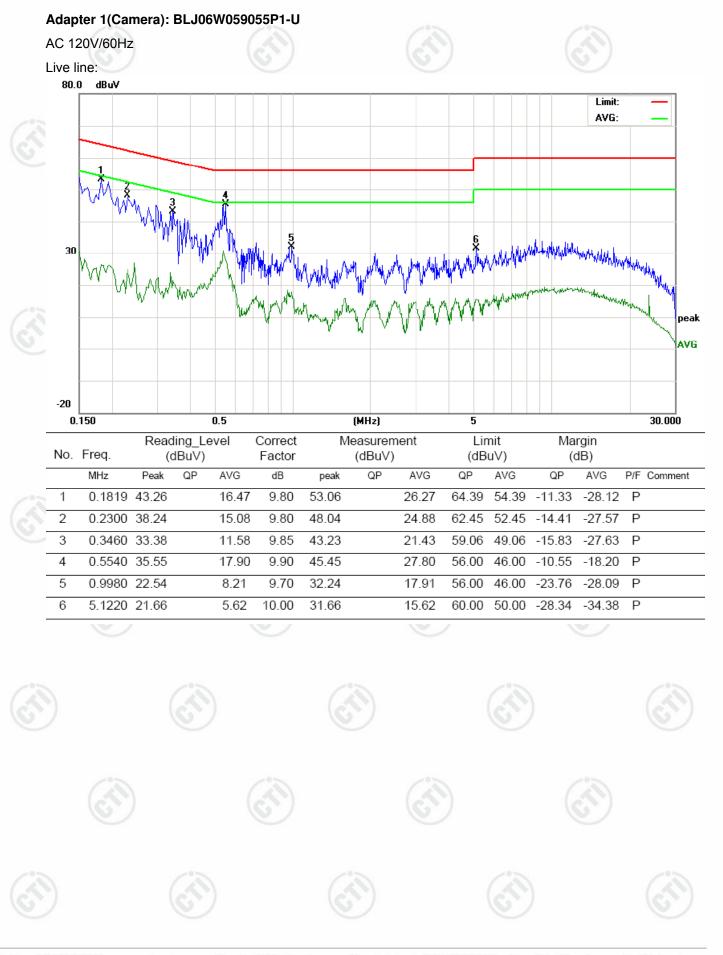
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Appendix J): AC Power Line Conducted Emission

Test Procedure			(S)				
	 The mains terminal disturbation The EUT was connected to Stabilization Network) which power cables of all other under the which was bonded to the g for the unit being measure multiple power cables to a secceeded. 	AC power source thr ch provides a 50Ω/50 nits of the EUT were round reference plane d. A multiple socket of	ough a LISN 1 (Line μ H + 5 Ω linear imper- connected to a sec α in the same way as putlet strip was used	e Impedance edance. Th ond LISN s the LISN d to conne			
		3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the					
	 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 	e vertical ground refered to the horizontal ground the boundary of the u for LISNs mounted of etween the closest po	rence plane. The ver ound reference plan unit under test and l on top of the groun ints of the LISN 1 a	rtical grour e. The LIS bonded to d reference nd the EU			
	5) In order to find the maximulall of the interface cables conducted measurement.		• •	•			
Limit:	Frequency range (MHz)	Limit (c	IBµV)				
		Quasi-peak	Average	_			
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50	67			
	MHz to 0.50 MHz.	 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz. NOTE : The lower limit is applicable at the transition frequency 					
		13	1				

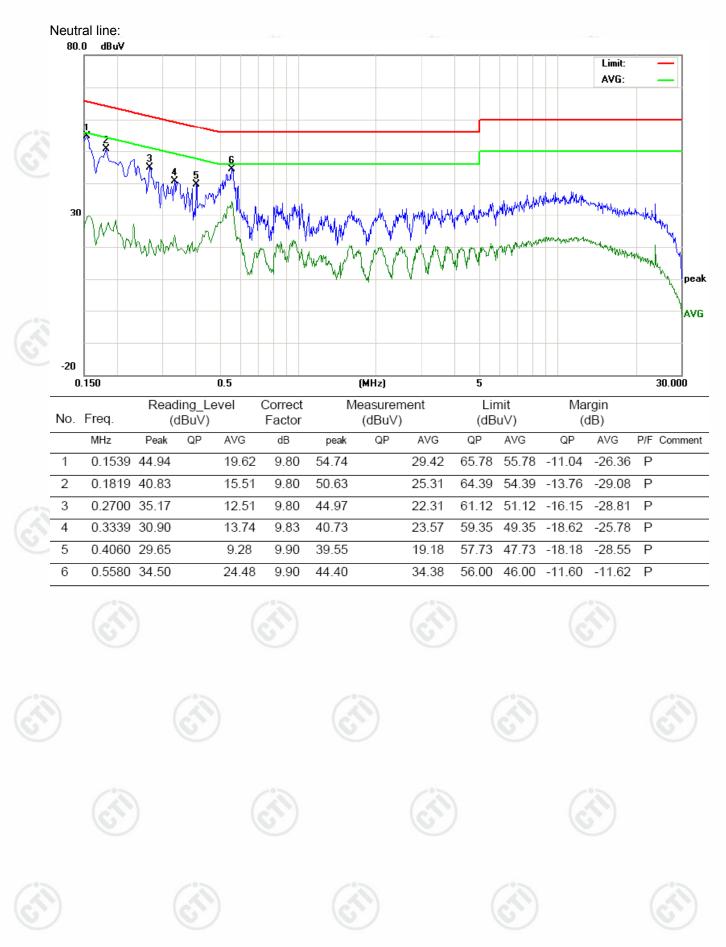
Measurement Data

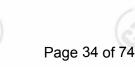

An initial pre-scan was performed on the live and neutral lines with peak detector.

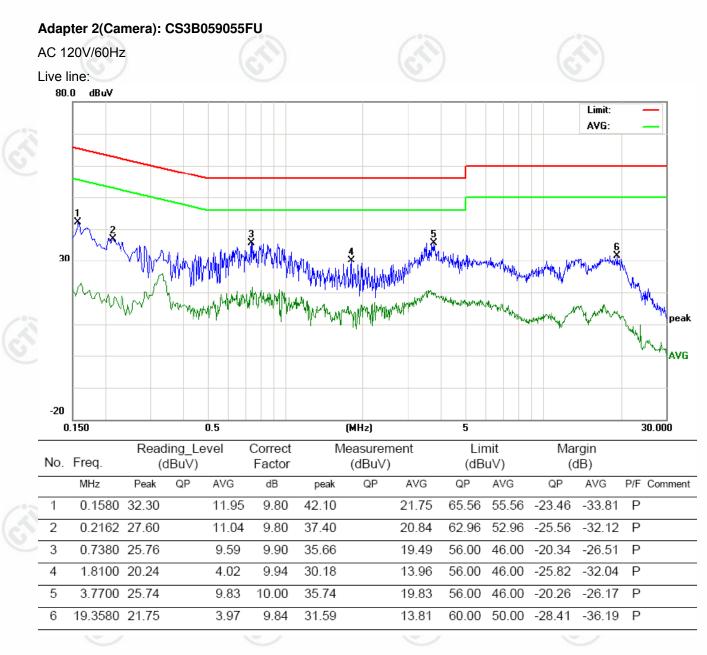
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

(cr

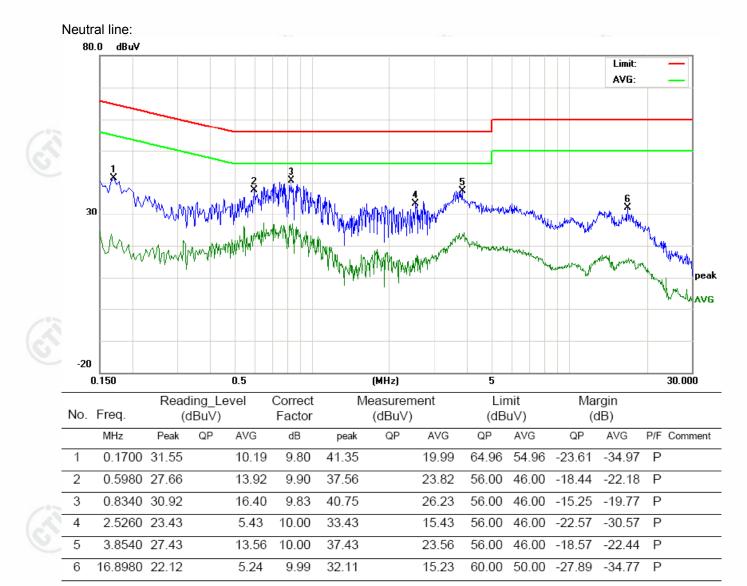
Page 32 of 74





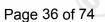


Page 33 of 74

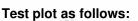


Page 35 of 74

Notes:

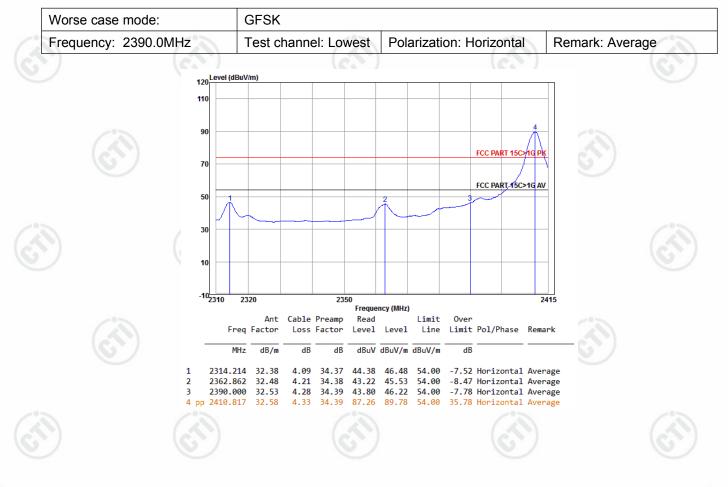

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.



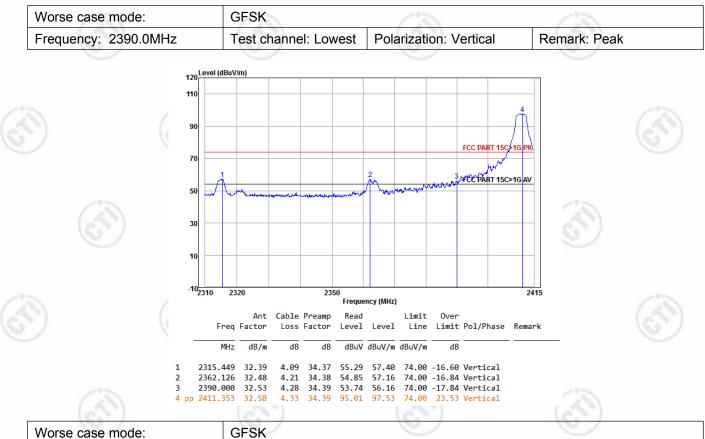
Appendix K): Restricted bands around fundamental frequency (Radiated)

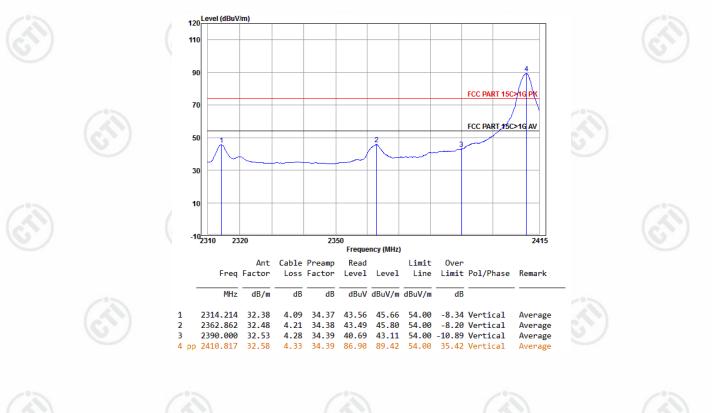
_(Па	idialed)			-			_
	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
			Peak	1MHz	3MHz	Peak	
		Above 1GHz	Peak	1MHz	10Hz	Average	12
9	Test Procedure:	Below 1GHz test procedu	ire as below:	G			S
		 at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximu polarizations of the ant d. For each suspected er the antenna was tuned table was turned from e. The test-receiver syste Bandwidth with Maxim f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest 	of the highest ra eters away from op of a variable-l varied from one m value of the fi tenna are set to nission, the EUT I to heights from 0 degrees to 360 em was set to Pe um Hold Mode. end of the restrict opliance. Also m rum analyzer plo	adiation. the interfer neight ante meter to fo eld strengti make the r T was arrar 1 meter to 0 degrees eak Detect cted band o neasure any	rence-receinna tower. bur meters h. Both houneasurement of a meters of a meters to find the Function a closest to the y emission	iving antenna, above the gro rizontal and ve ent. worst case an and the rotata maximum read nd Specified he transmit s in the restric	whi ound ertica d the ble ding
0		 Above 1GHz test proceder g. Different between above to fully Anechoic Chan metre(Above 18GHz the h. b. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above procedure 	ve is the test site ober and change he distance is 1 lowest channel ments are perfo d found the X as	e form table meter and , the Highe ormed in X, xis position	e 0.8 metre table is 1.5 st channel Y, Z axis p ing which i	to 1.5 metre). positioning for t is worse cas	
	Limit:	205	201			285	
		Frequency	Limit (dBuV		-	mark	
		30MHz-88MHz	40.0		· ·	eak Value	
		88MHz-216MHz	43.		· ·	eak Value	
		216MHz-960MHz	46.		· ·	eak Value	
		960MHz-1GHz	54.0			eak Value	
0							
		Above 1GHz	54.0 74.0			ge Value	



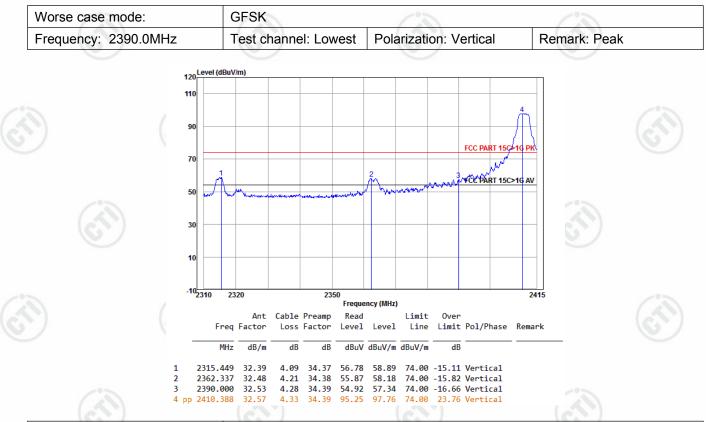
Report No. : EED32I00275901

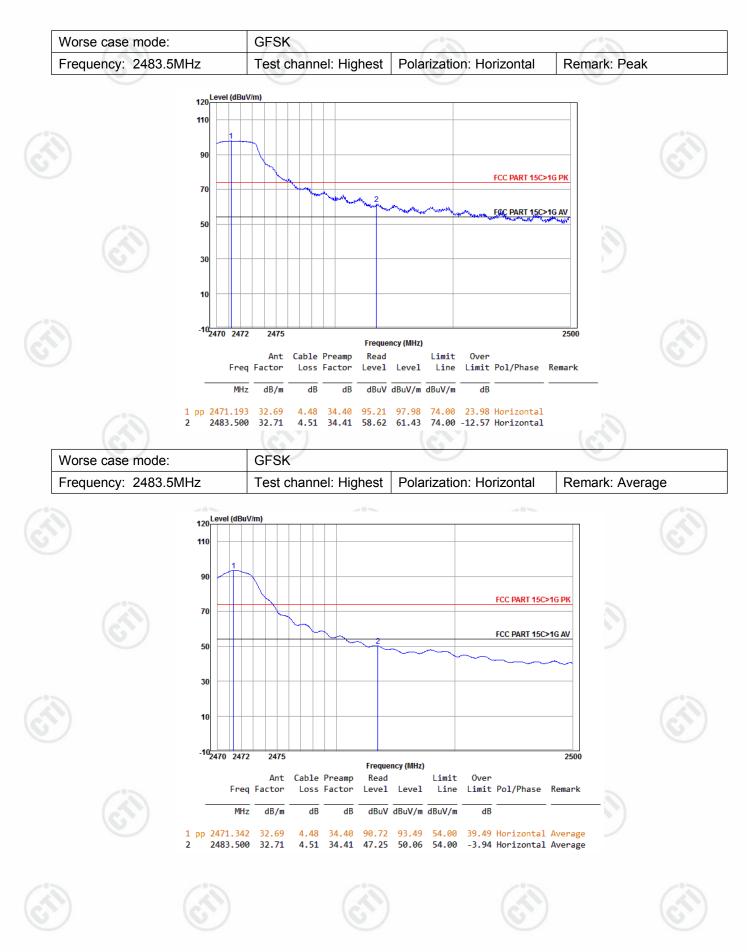
Norse case mode:			GF	=SK)				C	/			U.	
requency: 2390.0	MHz		Te	est cl	hanne	el: Lov	vest	Pola	arizati	on: H	orizontal		Remark: Pea	k
	12	Level	(dBuV/m)										_	
	11													
												4		
	ç	0										卅		
	7	'o 📃									FCC PART 15C	•1G PK		
			1					2		3	FCC PART 15C>	1G AV	n and a start	
	ŧ	i0	home		Alexandra (Mariana)	even make	and the second second	- hayots	mound	V.****			37)	
		0												
	1	0												
	-	2310	2320			23		ncy (MHz)			241	5	
			Freq Fa			Preamp Factor	Read	Level	Limit		Pol/Phase	Remar	k	
				dB/m		dB			dBuV/m	dB				
	1 2		.552 3 .337 3		4.09						Horizontal Horizontal			
	3		.000 3								Horizontal			
	4 pp	2411	.031 3	32.58	4.33	34.39	95.14	97.66	74.00	23.66	Horizontal			

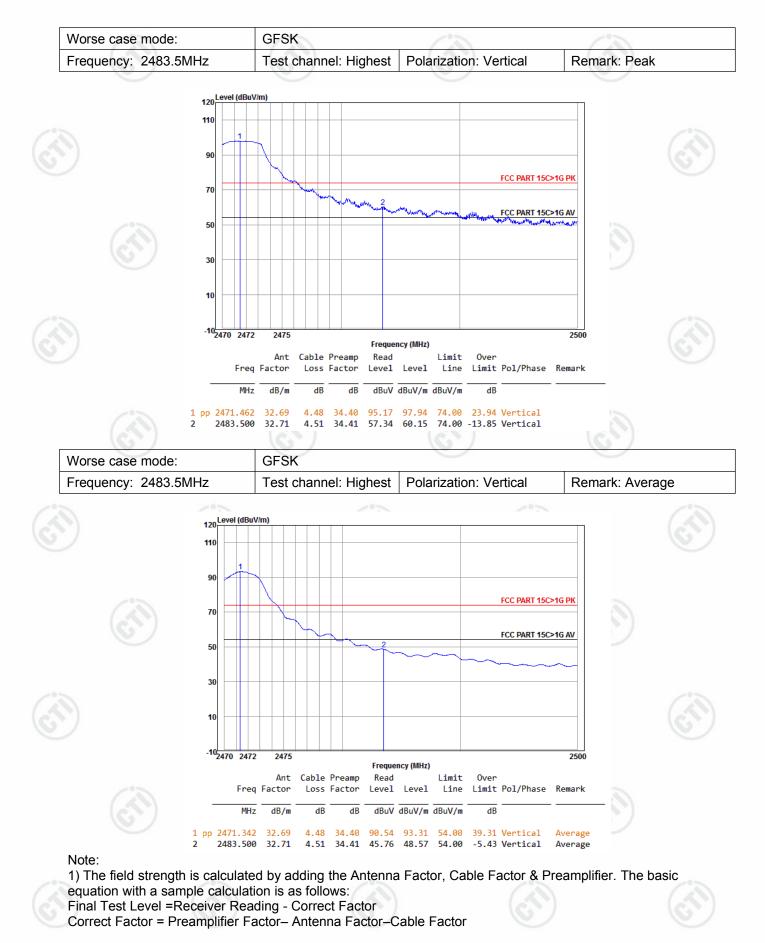




v	voise case mode.	GFSK		
F	Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average


Adapter 2(Camera): CS3B059055FU Worse case mode: GFSK Polarization: Horizontal Remark: Peak Frequency: 2390.0MHz Test channel: Lowest 120 Level (dBuV/m) 110 90 FCC PA 70 VICE PART 15C>16 AV 50 30 10 -10<mark>_____</mark>2310 2320 2350 2415 Frequency (MHz) Ant Cable Preamp Read Limit 0ver Freq Factor Loss Factor Level Level Line Limit Pol/Phase Remark MHz dB/m dB dBuV dBuV/m dBuV/m dB dB 2315.449 32.39 4.09 34.37 56.40 58.51 74.00 -15.49 Horizontal 56 71 2 2362 442 32.48 4.21 34 38 54 40 74.00 -17.29 Horizontal 2390.000 54.64 74.00 -19.36 Horizontal 3 32.53 4.28 34.39 52.22 2410.388 32.57 4.33 34.39 95.28 97.79 74.00 23.79 Horizontal Worse case mode: GFSK Frequency: 2390.0MHz Test channel: Lowest Polarization: Horizontal Remark: Average 120 Level (dBuV/m) 110 90 FCC PART 15C>1G PI 70 FCC PART 15C>1G 50 30 10 -10<mark>_____</mark>2310 2415 2320 2350 Frequency (MHz) Ant Cable Preamp Read Limit 0ver Line Limit Pol/Phase Freq Factor Loss Factor Level Level Remark dBuV dBuV/m dBuV/m MHz dB/m dB dB dB 2314.214 32.38 4.09 34.37 45.04 47.14 54.00 -6.86 Horizontal Average 2362.862 2390.000 32.48 32.53 2 3 4.21 34.38 43.24 45.55 54.00 -8.45 Horizontal Average 34.39 45.45 54.00 4.28 43.03 -8.55 Horizontal Average 2410.817 32.58 4.33 34.39 87.49 90.01 54.00 36.01 Horizontal Average


Worse case mode:	GFSK		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average



Report No. : EED32I00275901

Page 45 of 74

Appendix L): Radiated Spurious Emissions

Receiver Setup:		6	2		
(C)).	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
C.	Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Limit:

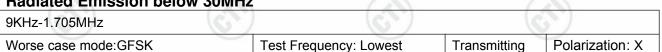
Below 1GHz test procedure as below:

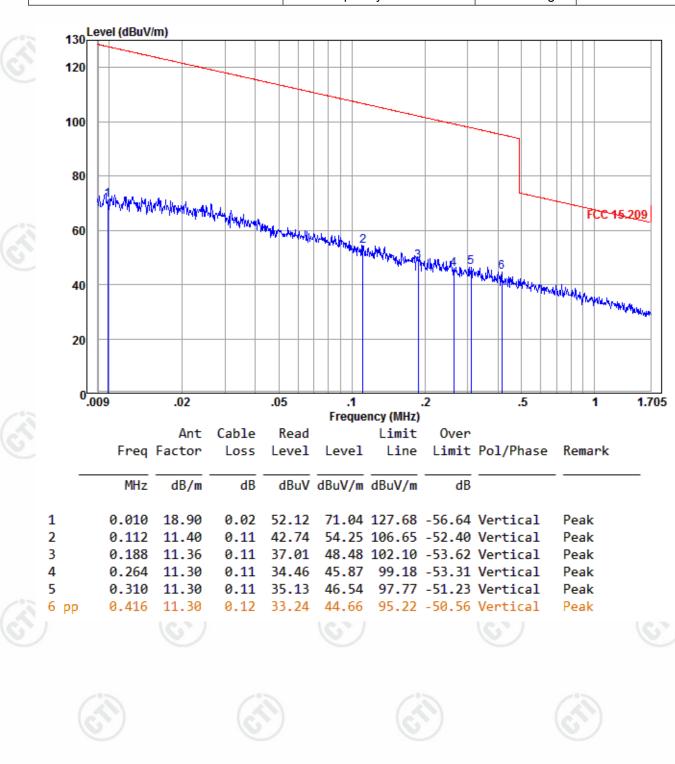
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

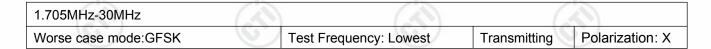
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

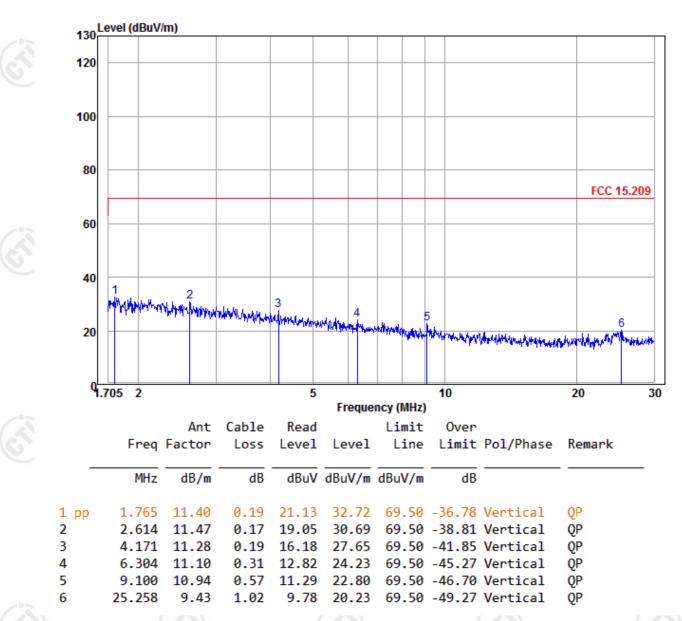
Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	13	30
1.705MHz-30MHz	30	-	$(c^{(n)})$	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

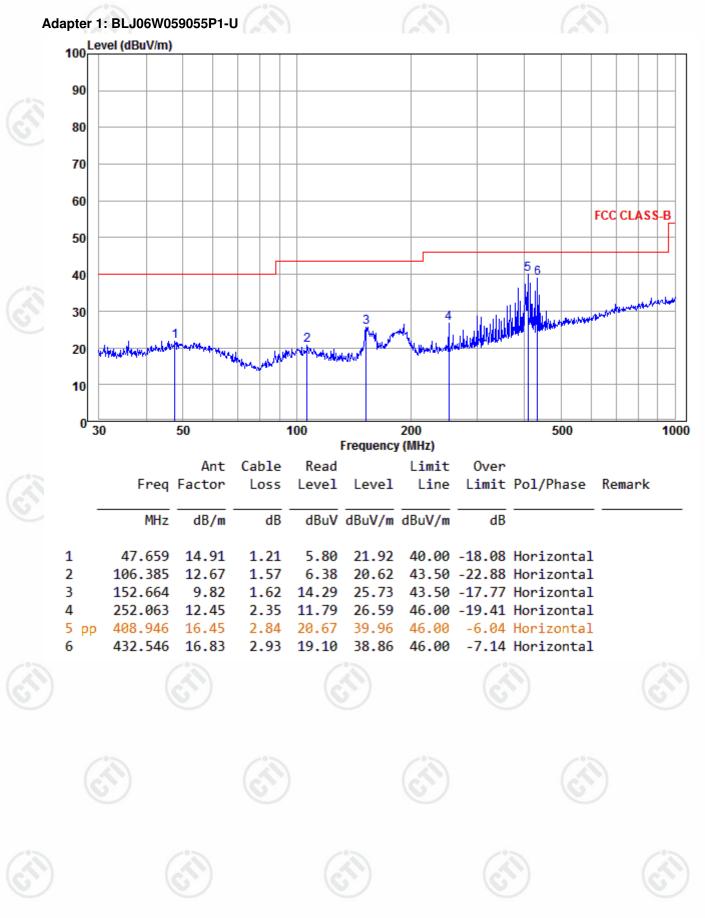

ote: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

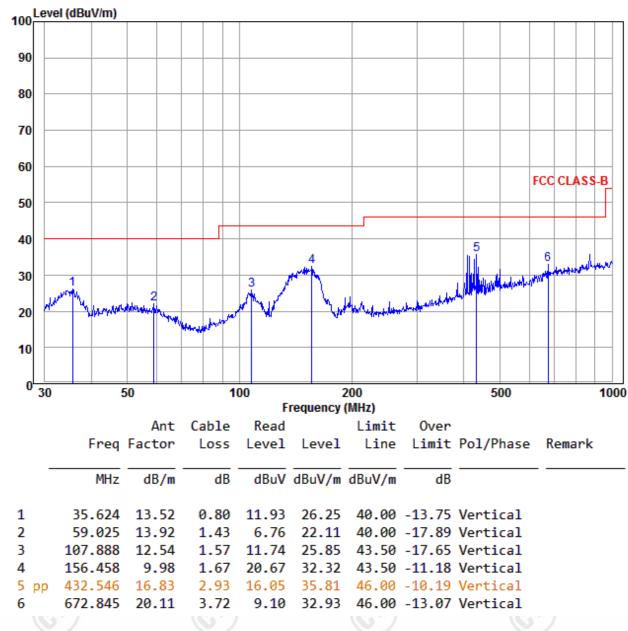


Radiated Spurious Emissions test Data: Radiated Emission below 30MHz






Remark: For 9kHz~30MHz test, The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case X axis with Adapter 1 is shown in the report. Adapter 1 and Adapter 2, lowest,middle,highest channel are tested, only show worst data in the report.



Radiated Emission 30MHz-1GHz

Page 49 of 74

Ì

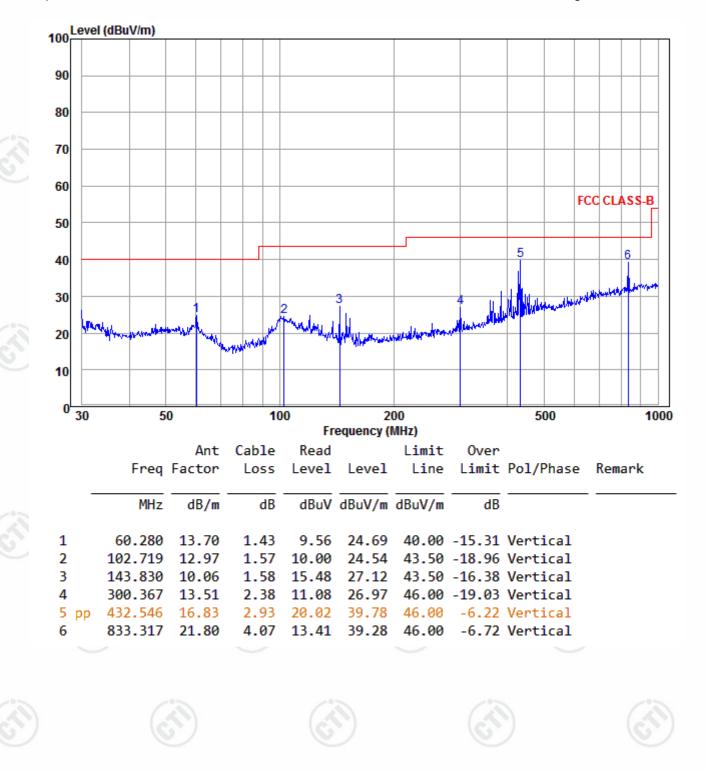
827.493

21.77

4.03

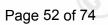
Adapter 2: CS3B059055FU 100 Level (dBuV/m) 90 80 70 60 FCC CLASS-B 50 40 30 2 20 Mr.M. 10 0 30 50 100 200 500 1000 Frequency (MHz) Ant Cable Read Limit 0ver Level Limit Pol/Phase Freq Factor Loss Level Line Remark dB/m MHz dBuV dBuV/m dBuV/m dB dB 49.014 15.02 1.32 22.13 40.00 -17.87 Horizontal 1 5.79 2 103.080 12.94 1.57 5.57 20.08 43.50 -23.42 Horizontal 3 317.701 13.98 2.50 29.22 46.00 -16.78 Horizontal 12.74 4 34.97 360.448 15.13 2.73 17.11 46.00 -11.03 Horizontal 5 432.546 16.83 2.93 18.20 37.96 46.00 -8.04 Horizontal 6 pp

12.39


38.19

46.00

-7.81 Horizontal



Page 51 of 74

Report No. : EED32I00275901

Transmitter Emission above 1GHz

Worse case	mode:	GFSK		Test cha	nnel:	Lowest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	34.97	48.27	46.03	74.00	-27.97	Pass	H
1450.122	30.77	2.78	34.72	47.35	46.18	74.00	-27.82	Pass	Ч
1842.139	31.46	3.11	34.41	47.46	47.62	74.00	-26.38	Pass	Н
4821.750	34.73	5.11	34.35	41.75	47.24	74.00	-26.76	Pass	Н
7232.625	36.42	6.69	34.90	40.04	48.25	74.00	-25.75	Pass	Н
9643.500	37.92	7.70	35.07	39.06	49.61	74.00	-24.39	Pass	Н
1204.210	30.24	2.52	34.96	48.25	46.05	74.00	-27.95	Pass	V
1424.511	30.72	2.76	34.74	47.48	46.22	74.00	-27.78	Pass	V
1630.264	31.11	2.94	34.57	46.18	45.66	74.00	-28.34	Pass	V
4821.750	34.73	5.11	34.35	40.62	46.11	74.00	-27.89	Pass	S V
7232.625	36.42	6.69	34.90	38.55	46.76	74.00	-27.24	Pass	V
9643.500	37.92	7.70	35.07	37.57	48.12	74.00	-25.88	Pass	V


Worse case	mode:	GFSK		Test chai	nnel:	Middle	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1201.149	30.23	2.52	34.96	48.52	46.31	74.00	-27.69	Pass	Н
1634.419	31.12	2.95	34.56	46.67	46.18	74.00	-27.82	Pass	Śн
1856.261	31.48	3.13	34.40	47.04	47.25	74.00	-26.75	Pass	Н
4882.500	34.85	5.08	34.33	42.76	48.36	74.00	-25.64	Pass	Н
7323.750	36.43	6.77	34.90	39.61	47.91	74.00	-26.09	Pass	Н
9765.000	38.05	7.60	35.05	37.87	48.47	74.00	-25.53	Pass	Н
1198.095	30.22	2.51	34.97	48.26	46.02	74.00	-27.98	Pass	V
1659.574	31.16	2.97	34.54	46.57	46.16	74.00	-27.84	Pass	V
2081.550	31.89	3.47	34.32	46.81	47.85	74.00	-26.15	Pass	V
4882.500	34.85	5.08	34.33	41.26	46.86	74.00	-27.14	Pass	V
7323.750	36.43	6.77	34.90	38.35	46.65	74.00	-27.35	Pass	v
9765.000	38.05	7.60	35.05	37.80	48.40	74.00	-25.60	Pass	V

Worse case	mode:	GFSK		Test chan	nel:	Highest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1216.534	30.27	2.53	34.95	47.69	45.54	74.00	-28.46	Pass	Н
1621.985	31.10	2.94	34.57	47.76	47.23	74.00	-26.77	Pass	Н
1851.542	31.48	3.12	34.40	47.03	47.23	74.00	-26.77	Pass	SH/
4943.250	34.98	5.06	34.32	41.90	47.62	74.00	-26.38	Pass	Н
7414.875	36.44	6.85	34.90	38.89	47.28	74.00	-26.72	Pass	н
9886.500	38.18	7.50	35.02	38.41	49.07	74.00	-24.93	Pass	н
1213.441	30.26	2.53	34.95	47.70	45.54	74.00	-28.46	Pass	V
1464.963	30.80	2.79	34.70	47.38	46.27	74.00	-27.73	Pass	V
1865.735	31.50	3.13	34.39	46.99	47.23	74.00	-26.77	Pass	V
4943.250	34.98	5.06	34.32	42.32	48.04	74.00	-25.96	Pass	V
7414.875	36.44	6.85	34.90	38.72	47.11	74.00	-26.89	Pass	V
9886.500	38.18	7.50	35.02	38.43	49.09	74.00	-24.91	Pass	V

Adapter 2: CS3B059055FU

riduptor Er										
Worse case	mode:	GFSK		Test cha	nnel:	Lowest	Remark: Po	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1204.210	30.24	2.52	34.96	47.89	45.69	74.00	-28.31	Pass	H	
1424.511	30.72	2.76	34.74	46.74	45.48	74.00	-28.52	Pass	θ H	
1663.803	31.17	2.97	34.54	47.08	46.68	74.00	-27.32	Pass	H	
4821.750	34.73	5.11	34.35	42.28	47.77	74.00	-26.23	Pass	н	
7232.625	36.42	6.69	34.90	39.67	47.88	74.00	-26.12	Pass	н	
9643.500	37.92	7.70	35.07	37.98	48.53	74.00	-25.47	Pass	н	
1204.210	30.24	2.52	34.96	48.26	46.06	74.00	-27.94	Pass	V	
1392.247	30.65	2.72	34.77	46.92	45.52	74.00	-28.48	Pass	V	
1642.761	31.13	2.95	34.56	47.38	46.90	74.00	-27.10	Pass	V	
4821.750	34.73	5.11	34.35	42.34	47.83	74.00	-26.17	Pass	V	
7232.625	36.42	6.69	34.90	40.89	49.10	74.00	-24.90	Pass	V	
9643.500	37.92	7.70	35.07	38.45	49.00	74.00	-25.00	Pass	V	


Hotline: 400-6788-333

Worse case	mode:	GFSK		Test cha	nnel:	Middle	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1204.210	30.24	2.52	34.96	48.46	46.26	74.00	-27.74	Pass	Н
1410.080	30.69	2.74	34.75	46.98	45.66	74.00	-28.34	Pass	(KH)
1651.146	31.15	2.96	34.55	46.72	46.28	74.00	-27.72	Pass	ŚН
4882.500	34.85	5.08	34.33	41.43	47.03	74.00	-26.97	Pass	Н
7323.750	36.43	6.77	34.90	38.76	47.06	74.00	-26.94	Pass	Н
9765.000	38.05	7.60	35.05	37.64	48.24	74.00	-25.76	Pass	Н
1222.743	30.28	2.54	34.94	47.66	45.54	74.00	-28.46	Pass	V
1642.761	31.13	2.95	34.56	46.95	46.47	74.00	-27.53	Pass	V
2070.980	31.86	3.44	34.32	46.59	47.57	74.00	-26.43	Pass	V
4882.500	34.85	5.08	34.33	41.41	47.01	74.00	-26.99	Pass	V
7323.750	36.43	6.77	34.90	40.37	48.67	74.00	-25.33	Pass	V
9765.000	38.05	7.60	35.05	38.04	48.64	74.00	-25.36	Pass	v

Worse case	mode:	GFSK		Test chan	nel:	Highest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1188.980	30.20	2.50	34.98	48.38	46.10	74.00	-27.90	Pass	Н
1634.419	31.12	2.95	34.56	47.00	46.51	74.00	-27.49	Pass	н
1851.542	31.48	3.12	34.40	47.00	47.20	74.00	-26.80	Pass	CH)
4943.250	34.98	5.06	34.32	40.77	46.49	74.00	-27.51	Pass	Н
7414.875	36.44	6.85	34.90	40.14	48.53	74.00	-25.47	Pass	Н
9886.500	38.18	7.50	35.02	38.33	48.99	74.00	-25.01	Pass	Н
1207.279	30.24	2.52	34.96	48.03	45.83	74.00	-28.17	Pass	V
1668.044	31.18	2.98	34.54	46.75	46.37	74.00	-27.63	Pass	V
4943.250	34.98	5.06	34.32	40.95	46.67	74.00	-27.33	Pass	V
5971.290	35.88	7.37	34.30	40.73	49.68	74.00	-24.32	Pass	V
7414.875	36.44	6.85	34.90	38.90	47.29	74.00	-26.71	Pass	V
9886.500	38.18	7.50	35.02	38.16	48.82	74.00	-25.18	Pass	V

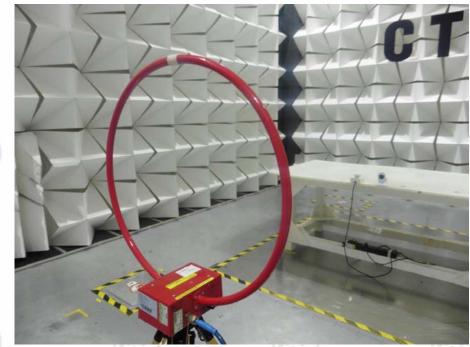
Note:

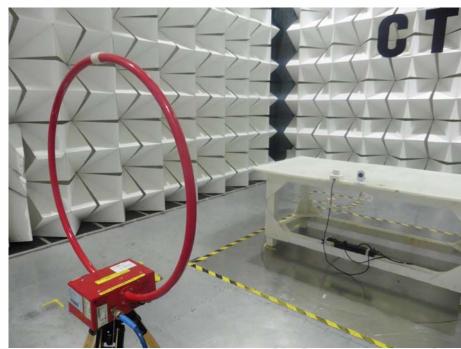
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

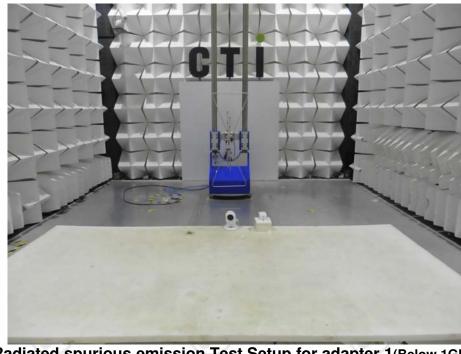


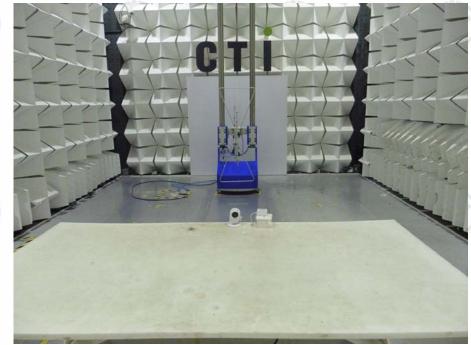


PHOTOGRAPHS OF TEST SETUP

Test Model No.: DXR-6

Radiated spurious emission Test Setup for adapter 1(Below 30MHz)


Radiated spurious emission Test Setup for adapter 2(Below 30MHz)



Page 56 of 74

Radiated spurious emission Test Setup for adapter 1(Below 1GHz)

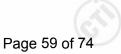


Radiated spurious emission Test Setup for adapter 2(Below 1GHz)

Radiated spurious emission Test Setup for adapter 1(Above 1GHz)

Radiated spurious emission Test Setup for adapter 2(Above 1GHz)

Conducted Emission for adapter 1

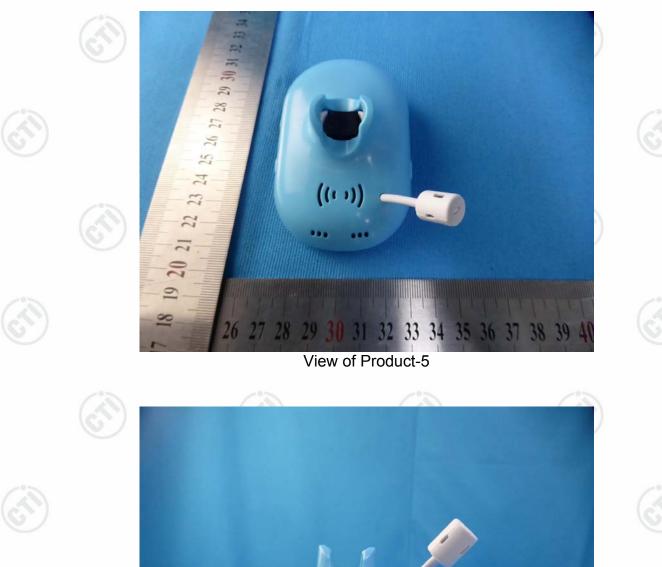


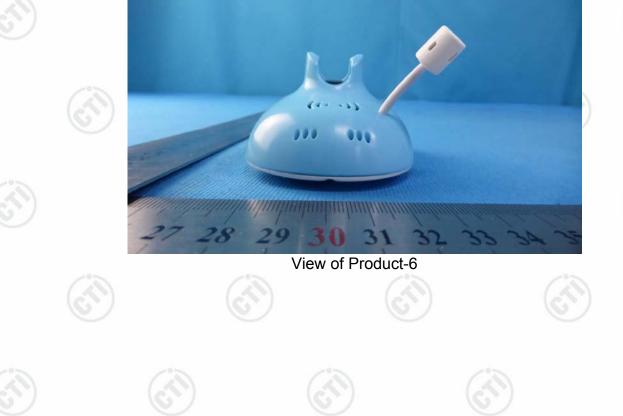
Conducted Emission for adapter 2

PHOTOGRAPHS OF EUT Constructional Details

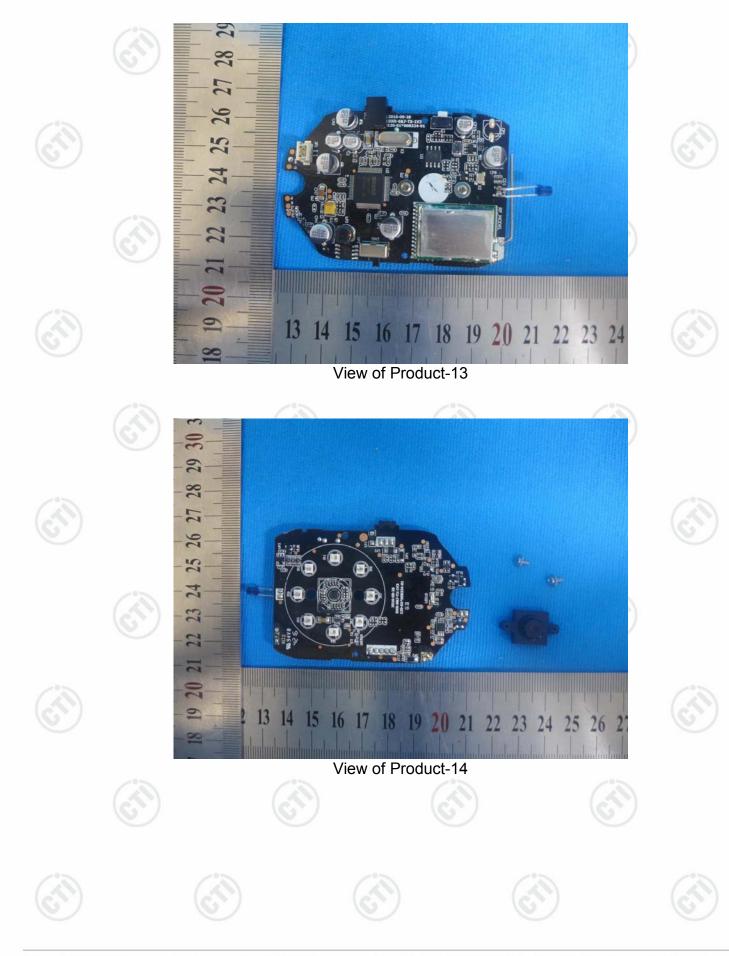
Test Model No.: DXR-6

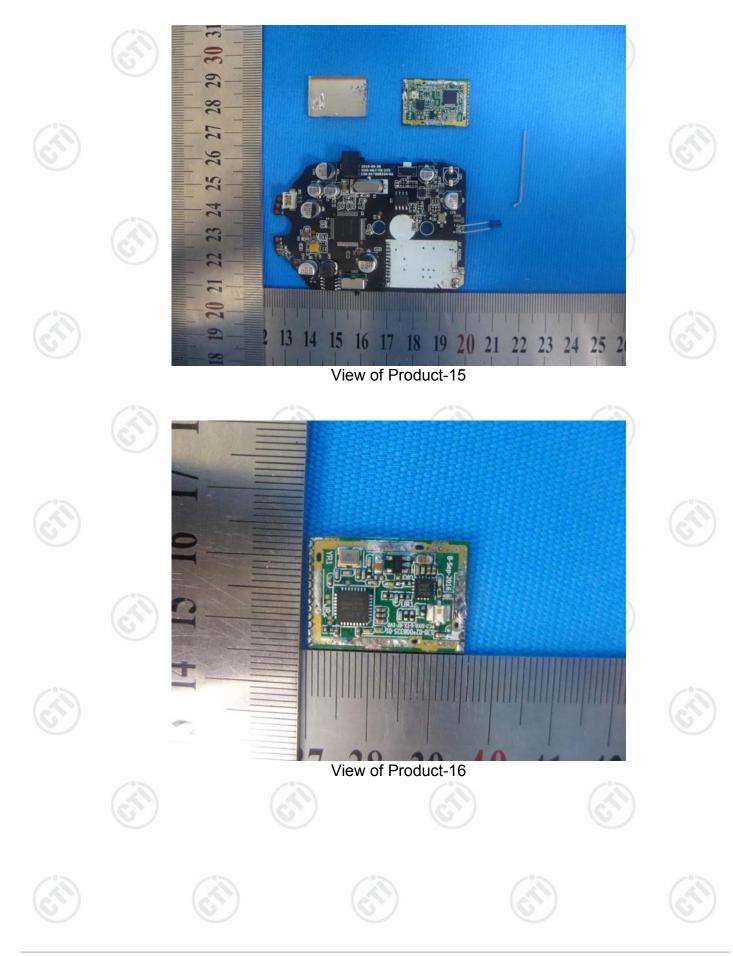
View of Product-1





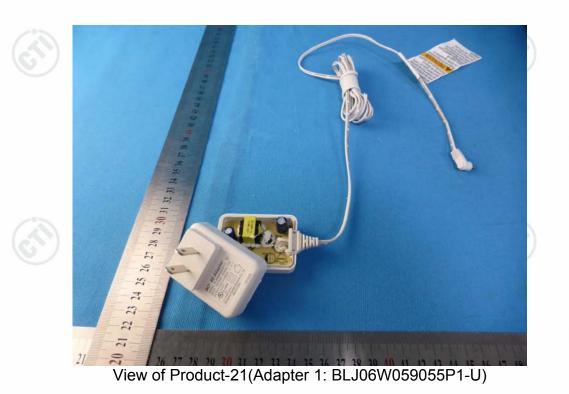
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com





Page 68 of 74

View of Product-19(Adapter 1: BLJ06W059055P1-U)


View of Product-20(Adapter 1: BLJ06W059055P1-U)

View of Product-22(Adapter 1: BLJ06W059055P1-U)



View of Product-24(Adapter 1: BLJ06W059055P1-U)

View of Product-30(Adapter 2: CS3B059055FU)

View of Product-31(Adapter 2: CS3B059055FU)

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

