FCC RADIO TEST REPORT FCC ID: 2AAA9-RA320

Product: Smart Access Point

Trade Mark: Relay2

Model No.: RA320

Family Model: N/A

Report No.: S20021801005002

Issue Date: 13 Mar. 2020

Prepared for

Relay2, Inc.

Suite 209, 1525 McCarthy Blvd., Milpitas, CA 95035

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District Shenzhen, Guangdong, China

Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

Version.1.2 Page 1 of 252

TEST RESULT CERTIFICATION

Applicant's name:	Relay2, Inc.
Address:	Suite 209, 1525 McCarthy Blvd., Milpitas, CA 95035
Manufacturer's Name:	Amigo Technology Inc.
Address:	9F5, No.266, Sec. 1, Wenhua 2nd Rd., Linkou Dist., New Taipei City 244, Taiwan (R.O.C.)
Product description	
Product name:	Smart Access Point
Model and/or type reference :	RA320
Family Model:	N/A
Standards:	FCC Part15.407
Test procedure	ANSI C63.10-2013 and KDB 789033 D02 General UNII Test Procedures New Rules v02r01 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 FCC KDB 662911 D02 MIMO With Cross Polarized Antenna V01
equipment under test (EUT) is in requirements And it is applicable	s been tested by NTEK, and the test results show that the n compliance with the FCC requirements/ the Industry Canada ble only to the tested sample identified in the report.
•	ced except in full, without the written approval of NTEK, this ised by NTEK, personnel only, and shall be noted in the revision of
the document.	ised by NTER, personner only, and snall be noted in the revision of
Date of Test	
Date (s) of performance of tests.	18 Feb. 2020 ~ 14 Apr, 2020
Date of Issue	14 Apr, 2020
Test Result	Pass
Testing Engine	eer: Jerry Xie
	(Jerry Xie)
Technical Man	ager: Jason chen
	(Jason Chen)
Authorized Sig	gnatory: Sam. Chew

Version.1.2 Page 2 of 252

(Sam Chen)

Table of Contents

	Page
1 . SUMMARY OF TEST RESULTS	7
	-
1.1 FACILITIES AND ACCREDITATIONS	8
1.2 MEASUREMENT UNCERTAINTY	8
2 . GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT	9
2.2 DESCRIPTION OF TEST MODES	11
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 12
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	13
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	14
3 . EMC EMISSION TEST	16
3.1 CONDUCTED EMISSION MEASUREMENT	16
3.1.1 APPLICABLE STANDARD	16
3.1.2 CONFORMANCE LIMIT	16
3.1.3 TEST CONFIGURATION	16
3.1.4 TEST PROCEDURE	16
3.2 RADIATED EMISSION MEASUREMENT	21
3.2.1 APPLICABLE STANDARD	21
3.2.2 CONFORMANCE LIMIT	21
3.2.3 MEASURING INSTRUMENTS	21
3.2.4 TEST CONFIGURATION 3.2.5 TEST PROCEDURE	22 23
3.2.6 TEST PROCEDURE 3.2.6 TEST RESULTS (9KHZ – 30 MHZ)	23 24
3.2.7 TEST RESULTS (30MHZ – 1GHZ)	2 4 25
3.2.8 TEST RESULTS (1GHZ-18GHZ)	29
3.2.9 TEST RESULTS (18GHZ-40GHZ)	31
4 . POWER SPECTRAL DENSITY TEST	35
4.1 APPLIED PROCEDURES / LIMIT	35
4.2 TEST PROCEDURE	36
4.3 DEVIATION FROM STANDARD	36
4.4 TEST SETUP	36
4.5 EUT OPERATION CONDITIONS	36
4.6 TEST RESULTS	37
5 . 26DB & 99% EMISSION BANDWIDTH	38
5.1 APPLIED PROCEDURES / LIMIT	38
5.2 TEST PROCEDURE	38
5.3 EUT OPERATION CONDITIONS	39
5.4 TEST RESULTS	39

Version.1.2 Page 3 of 252

Table of Contents

	Page
6 . MINIMUM 6 DB BANDWIDTH 6.1 APPLIED PROCEDURES / LIMIT 6.2 TEST PROCEDURE 6.3 DEVIATION FROM STANDARD 6.4 TEST SETUP 6.5 EUT OPERATION CONDITIONS 6.6 TEST RESULTS	40 40 40 40 40 40
7 . MAXIMUM CONDUCTED OUTPUT POWER 7.1 PPLIED PROCEDURES / LIMIT 7.2 TEST RESULTS	42 42 44
8 . OUT OF BAND EMISSIONS 8.1 APPLICABLE STANDARD 8.2 TEST PROCEDURE 8.3 DEVIATION FROM STANDARD 8.4 TEST SETUP 8.5 EUT OPERATION CONDITIONS 8.6 TEST RESULTS	45 45 45 45 45 46 47
8. FREQUENCY STABILITY MEASUREMENT 8.1 LIMIT	48 48
8.2 TEST PROCEDURES	48
8.3 TEST SETUP LAYOUT	48
8.4 EUT OPERATION DURING TEST	48
8.5 TEST RESULTS	49
9. DYNAMIC FREQUENCY SELECTION(DFS)	55
9.1 APPLICABILITY OF DFS REQUIREMENTS	55
9.2 INTERFERENCE THRESHOLD VALUES, MASTER OR CLIENT INCORP	
IN-SERVICE MONITORING	55
9.3 DFS RESPONSE REQUIREMENT VALUES	56
9.4 SHORT PULSE RADAR TEST WAVEFORMS	56
9.5 CALIBRATION SETUP AND DFS TEST RESULTS	57
9.6 CONDUCTED CALIBRATION SETUP	57
9.7 RADAR WAVEFORM CALIBRATION RESULT	58
9.8 IN-SERVICE MONITORING: CHANNEL MOVE TIME, CHANNEL CLOSII	NG
TRANSMISSION TIME AND NON-OCCUPANCY PERIOD	59
9.9 RESULT OF CHANNEL MOVE TIME, CHANNEL CLOSING TRANSMISS	SION TIME
AND NON-OCCUPANCY PERIOD FOR CLIENT BEACON TEST	60

Version.1.2 Page 4 of 252

Table of Contents

	Page
10. ANTENNA REQUIREMENT	61
10.1 STANDARD REQUIREMENT	61
10.2 EUT ANTENNA	61
11. TEST RESULTS	62
11.1 DUTY CYCLE	62
11.2 MAXIMUM CONDUCTED OUTPUT POWER	92
11.3 OCCUPIED CHANNEL BANDWIDTH	94
11.4 -6DB EMISSION BANDWIDTH	152
11.5 MAXIMUM POWER SPECTRAL DENSITY LEVEL	167
11.6 BAND EDGE	197
11.7 CONDUCTED RF SPURIOUS EMISSION	223

Version.1.2 Page 5 of 252

Revision History

Report No.	Version	Description	Issued Date
S20021801005002	Rev.01	Initial issue of report	14 Apr, 2020

Version.1.2 Page 6 of 252

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.407) , Subpart E				
Standard Section	Test Item	Judgment	Remark	
15.207	AC Power Line Conducted Emissions	PASS		
15.209(a), 15.407 (b)(1) 15.407 (b)(2) 15.407 (b)(3) 15.407 (b)(4) 15.407 (b)(6)	Spurious Radiated Emissions	PASS		
15.407 (a)	26 dB and 99% Emission Bandwidth	PASS		
15.407(e)	Minimum 6 dB bandwidth	PASS		
15.407 (a)	Maximum Conducted Output Power	PASS		
15.407 (b)(1) 15.407 (b)(2) 15.407 (b)(3) 15.407 (b)(4)	Band Edge	PASS		
15.407 (a)	Power Spectral Density	PASS		
15.407(b)	Spurious Emissions at Antenna Terminals	PASS		
15.407(g)	Frequency Stability Measurement	PASS		
15.407(h)	Dynamic Frequency Selection(DFS)	N/A		
15.203	Antenna Requirement	PASS		

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) This device operates with a duty cycle greater than 99%

Version.1.2 Page 7 of 252

1.1 FACILITIES AND ACCREDITATIONS

FACILITIES

All measurement facilities used to collect the measurement data are located at 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

CNAS-Lab. : The Laboratory has been assessed and proved to be in compliance with

CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)

The Certificate Registration Number is L5516.

IC-Registration The Certificate Registration Number is 9270A.

CAB identifier: CN0074

FCC- Accredited Test Firm Registration Number: 463705.

Designation Number: CN1184

A2LA-Lab. The Certificate Registration Number is 4298.01

This laboratory is accredited in accordance with the recognized

International Standard ISO/IEC 17025:2005 General requirements for the

competence of testing and calibration laboratories.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Name of Firm : Shenzhen NTEK Testing Technology Co., Ltd.

Site Location : 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District

Shenzhen, Guangdong, China

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

Version.1.2 Page 8 of 252

2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart Access Point			
Trade Mark	Relay2			
Model Name	RA320			
Family Model	N/A			
Model Difference	N/A			
FCC ID	2AAA9-RA320			
	Mode Supported	 ⊠802.11a ⊠802.11n(HT20) ⊠802.11n(HT40) ∑802.11ac(HT20) ∑802.11ac(HT40) ∑802.11ac(HT40) ∑802.11ac(HT80) 		
	Data Rate	802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40):MCS0-MCS15; 802.11ac(VHT20): NSS1, MCS0-MCS8 802.11ac(VHT40/VHT80):NSS1, MCS0-MCS9		
	Modulation	OFDM with BPSK/QPSK/16QAM/64QAM		
Product Description	Operating Frequency Range	☑ U-NII-1: 5180 MHz ~5240MHz ☐ U-NII-2A: 5260MHz~5320MHz ☐ U-NII-2C: 5500MHz~5700MHz ☑ U-NII-3: 5745 MHz ~5825 MHz		
	Function:	□Outdoor AP □Fixed P2P □Client		
	Support TPC	□YES ⊠NO		
	Antenna Type	Antenna 3: Embedded Antenna Antenna 4: Embedded Antenna		
	Antenna Gain	Antenna 3: 4.17dBi; Antenna 4: 3.59dBi;		
		⊠SISO for 802.11a		
	Smart system	⊠MIMO for 802.11n/ac		
	Based on the application, features, or specification exhibited in User's Manual, More details of EUT technical specification, please refer to the User's Manual.			
Ratings	DC 12V from Adapter			
Adapter	⊠Adapter supply:			
Battery	N/A			
Connecting I/O Port(s)	Please refer to the User's Manual			

Version.1.2 Page 9 of 252

HW Version	1.0
SW Version	2.0.0

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. Frequency and Channel list:

Band	20MHz		40MHz		80MHz	
Bana	Channel	Frequency	Channel	Frequency	Channel	Frequency
	36	5180 MHz	38	5190 MHz	42	5210 MHz
U-NII-1	40	5200 MHz	46	5230 MHz	-	-
U-INII- I	44	5220 MHz				
	48	5240 MHz				
	149	5745 MHz	151	5755 MHz	155	5775 MHz
	153	5765 MHz	159	5795 MHz		
U-NII-3	157	5785 MHz				
	161	5805 MHz				
	165	5825 MHz				

The module for 5G WIFI has two antennas, and different modes support different transmit mode what describe as Following form:

Mode	Tx/Rx
802.11a	1TX, 1RX
802.11n/ac	1TX/2TX, 1RX/2RX

For 5GHz mode, Antenna 3,4 are transmitting, each with the same directional gain. For MIMO mode, Directional gain=[$10\log(10^{G1/20}+10^{G2/20})^2/N_{ANT}$]dBi =6.90 dBi in 5GHz the 802.11n(20/40) ac(20/40/80) 5GHz has MIMO mode.

Note: G1 means antenna gain for ANT 3 in 4.17dBi. G2 means antenna gain for ANT 4 in 3.59dBi. N_{ANT} means the number of Antennas.

Version.1.2 Page 10 of 252

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Normal Link Mode
Mode 2	802.11a / n/ ac 20 CH36/ CH40/ CH 48 802.11a /n/ ac 20 CH149/ CH157/ CH 165
Mode 3	802.11n/ ac40 CH38/ CH 46 802.11n/ ac40 CH 151 / CH 159
Mode 4	802.11 ac80 CH 42/CH 155

For Radiated Emission					
Final Test Mode	Description				
Mode 1	Normal Link Mode				
Mode 2	802.11a / n/ ac 20 CH36/ CH40/ CH 48 802.11a /n/ ac 20 CH149/ CH157/ CH 165				
Mode 3	802.11n/ ac40 CH38/ CH 46 802.11n/ ac40 CH 151 / CH 159				
Mode 4	802.11 ac80 CH 42/CH 155				

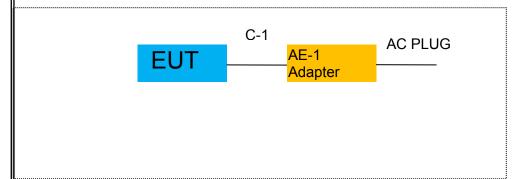
Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

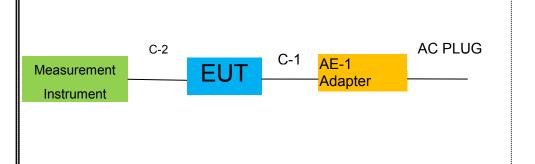
Version.1.2 Page 11 of 252

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

For AC Conducted Emission Mode


C-1

AE-1


Adapter

AC PLUG

For Radiated Test Cases

For Conducted Test Cases

Note: 1. The temporary antenna connector is IPEX on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Version.1.2 Page 12 of 252

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	Y48DE-120-3500	N/A	

Item	Cable Type	Shielded Type	Ferrite Core	Length	Note
C-1	Power Cable	NO	NO	1.0m	
C-2	RF Cable	YES	NO	0.1m	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.

Version.1.2 Page 13 of 252

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2019.05.13	2020.05.12	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2019.08.28	2020.08.27	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2019.08.28	2020.08.27	1 year
4	Test Receiver	R&S	ESPI7	101318	2019.05.13	2020.05.12	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2019.04.15	2020.04.14	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.05.19	2020.05.18	2 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2019.04.15	2020.04.14	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2019.12.11	2020.12.10	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2019.08.06	2020.08.05	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2019.12.11	2020.12.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2019.08.06	2020.08.05	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.21	2020.04.20	3 year
16	Filter	TRILTHIC	2400MHz	29	2017.04.19	2020.04.18	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A
18	MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2019.03.28	2020.03.27	1 year

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Version.1.2 Page 14 of 252

Γ	AC Conduction Test equipment							
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
	1	Test Receiver	R&S	ESCI	101160	2019.05.13	2020.05.12	1 year
	2	LISN	R&S	ENV216	101313	2019.04.15	2020.04.14	1 year
	3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2019.05.13	2020.05.12	1 year
	4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2018.05.19	2020.05.18	2 year
	5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year
	6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year
	7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Test Cable& Aux Equipment which is scheduled for calibration every 3 years.

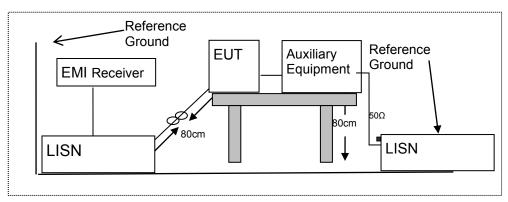
Version.1.2 Page 15 of 252

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 APPLICABLE STANDARD

According to FCC Part 15.207(a)


3.1.2 CONFORMANCE LIMIT

Eroguepov/MHz)	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

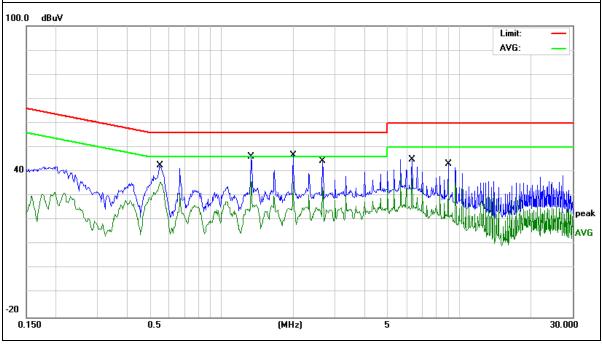
3.1.3 TEST CONFIGURATION

3.1.4 TEST PROCEDURE

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Version.1.2 Page 16 of 252



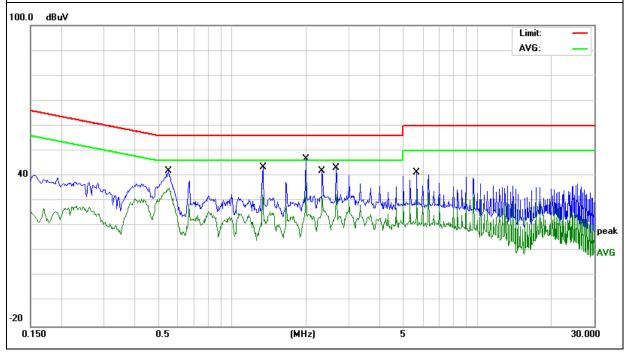
EUT:	Smart Access Point	Model Name :	RA320
Temperature:	26 ℃	Relative Humidity:	56%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 12V from Adapter	Test Mode:	Mode 1(5.2G)

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demonstr
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.5463	32.76	9.74	42.50	56.00	-13.50	QP
0.5463	22.15	9.74	31.89	46.00	-14.11	AVG
1.3300	36.31	9.75	46.06	56.00	-9.94	QP
1.3300	19.63	9.75	29.38	46.00	-16.62	AVG
1.9979	37.08	9.78	46.86	56.00	-9.14	QP
1.9979	18.43	9.78	28.21	46.00	-17.79	AVG
2.6619	34.65	9.80	44.45	56.00	-11.55	QP
2.6619	16.55	9.80	26.35	46.00	-19.65	AVG
6.3219	35.13	9.88	45.01	60.00	-14.99	QP
6.3219	18.25	9.88	28.13	50.00	-21.87	AVG
8.9859	33.07	9.97	43.04	60.00	-16.96	QP
8.9859	14.24	9.97	24.21	50.00	-25.79	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Version.1.2 Page 17 of 252



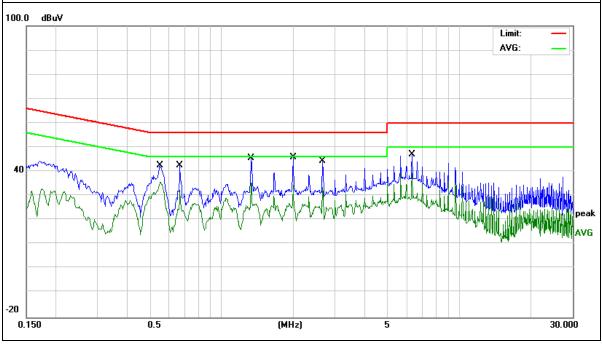
EUT:	Smart Access Point	Model Name :	RA320
Temperature :	26 ℃	Relative Humidity:	56%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 12V from Adapter	Test Mode:	Mode 1(5.2G)

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.5500	32.14	9.75	41.89	56.00	-14.11	QP
0.5500	22.75	9.75	32.50	46.00	-13.50	AVG
1.3340	33.71	9.76	43.47	56.00	-12.53	QP
1.3340	16.87	9.76	26.63	46.00	-19.37	AVG
1.9979	36.95	9.79	46.74	56.00	-9.26	QP
1.9979	20.06	9.79	29.85	46.00	-16.15	AVG
2.3300	32.06	9.81	41.87	56.00	-14.13	QP
2.3300	15.43	9.81	25.24	46.00	-20.76	AVG
2.6619	33.41	9.83	43.24	56.00	-12.76	QP
2.6619	17.63	9.83	27.46	46.00	-18.54	AVG
5.6577	31.42	9.95	41.37	60.00	-18.63	QP
5.6577	17.33	9.95	27.28	50.00	-22.72	AVG

Remark:

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

Page 18 of 252 Version.1.2



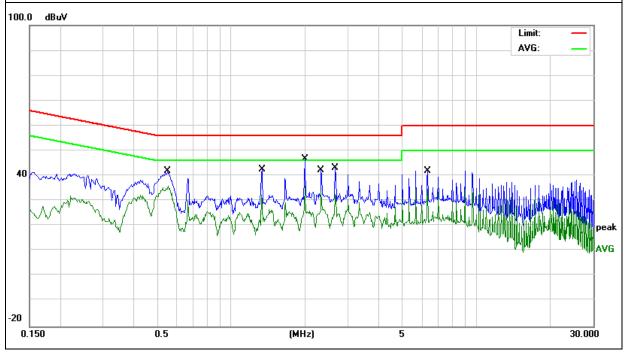
EUT:	Smart Access Point	Model Name :	RA320
Temperature:	26 ℃	Relative Humidity:	56%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 12V from Adapter	Test Mode:	Mode 1(5.8G)

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demonto
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.5463	32.76	9.74	42.50	56.00	-13.50	QP
0.5463	21.37	9.74	31.11	46.00	-14.89	AVG
0.6660	32.76	9.74	42.50	56.00	-13.50	QP
0.6660	18.96	9.74	28.70	46.00	-17.30	AVG
1.3300	35.81	9.75	45.56	56.00	-10.44	QP
1.3300	17.64	9.75	27.39	46.00	-18.61	AVG
1.9979	36.08	9.78	45.86	56.00	-10.14	QP
1.9979	24.71	9.78	34.49	46.00	-11.51	AVG
2.6619	34.65	9.80	44.45	56.00	-11.55	QP
2.6619	20.05	9.80	29.85	46.00	-16.15	AVG
6.3219	37.13	9.88	47.01	60.00	-12.99	QP
6.3219	19.43	9.88	29.31	50.00	-20.69	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Version.1.2 Page 19 of 252



EUT:	Smart Access Point	Model Name :	RA320
Temperature :	26 ℃	Relative Humidity:	56%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 12V from Adapter	Test Mode:	Mode 1(5.8G)

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.5500	32.14	9.75	41.89	56.00	-14.11	QP
0.5500	24.15	9.75	33.90	46.00	-12.10	AVG
1.3340	32.71	9.76	42.47	56.00	-13.53	QP
1.3340	20.22	9.76	29.98	46.00	-16.02	AVG
1.9979	36.95	9.79	46.74	56.00	-9.26	QP
1.9979	18.94	9.79	28.73	46.00	-17.27	AVG
2.3300	32.56	9.81	42.37	56.00	-13.63	QP
2.3300	19.67	9.81	29.48	46.00	-16.52	AVG
2.6619	33.41	9.83	43.24	56.00	-12.76	QP
2.6619	18.43	9.83	28.26	46.00	-17.74	AVG
6.3219	32.10	9.95	42.05	60.00	-17.95	QP
6.3219	19.71	9.95	29.66	50.00	-20.34	AVG

Remark:

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

Page 20 of 252 Version.1.2

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 APPLICABLE STANDARD

According to FCC Part 15.407(d) and 15.209

3.2.2 CONFORMANCE LIMIT

According to FCC Part 15.407(b)(7): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 dr. 13.203, Nestricted baries						
MHz	MHz	GHz				
0 16.42-16.423 399.9-410		4.5-5.15				
16.69475-16.69525	608-614	5.35-5.46				
16.80425-16.80475	960-1240	7.25-7.75				
25.5-25.67	1300-1427	8.025-8.5				
37.5-38.25	1435-1626.5	9.0-9.2				
73-74.6	1645.5-1646.5	9.3-9.5				
74.8-75.2	1660-1710	10.6-12.7				
123-138	2200-2300	14.47-14.5				
149.9-150.05	2310-2390	15.35-16.2				
156.52475-156.52525	2483.5-2500	17.7-21.4				
156.7-156.9	2690-2900	22.01-23.12				
162.0125-167.17	3260-3267	23.6-24.0				
167.72-173.2	3332-3339	31.2-31.8				
240-285	3345.8-3358	36.43-36.5				
322-335.4	3600-4400	(2)				
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHz MHz 16.42-16.423 399.9-410 16.69475-16.69525 608-614 16.80425-16.80475 960-1240 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5-1646.5 74.8-75.2 1660-1710 123-138 2200-2300 149.9-150.05 2310-2390 156.52475-156.52525 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

١,	restricted band specified on 13.203(a), then the 13.203(a) infinit in the table below has to be followed.						
	Restricted Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance			
	0.009~0.490	2400/F(KHz)	20 log (uV/m)	300			
	0.490~1.705	24000/F(KHz)	20 log (uV/m)	30			
	1.705~30.0	30	29.5	30			
	30-88	100	40	3			
	88-216	150	43.5	3			
	216-960	200	46	3			
	Above 960	500	54	3			

Limits of Radiated Emission Measurement(Above 1000MHz)

	Frequency(MHz)	Class B (dBuV	(m) (at 3M)
		PEAK	AVERAGE
	Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

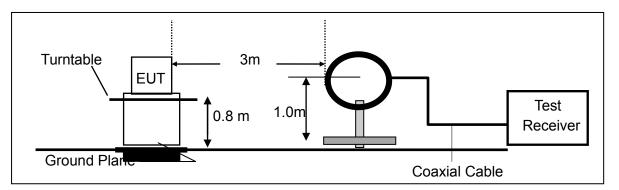
For Frequency above 30MHz:

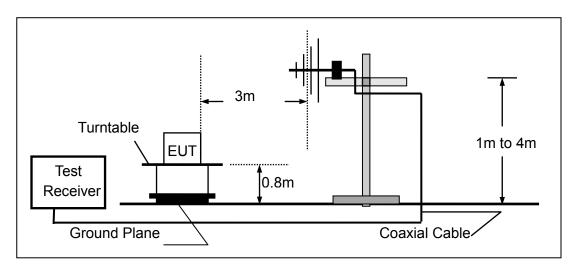
Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

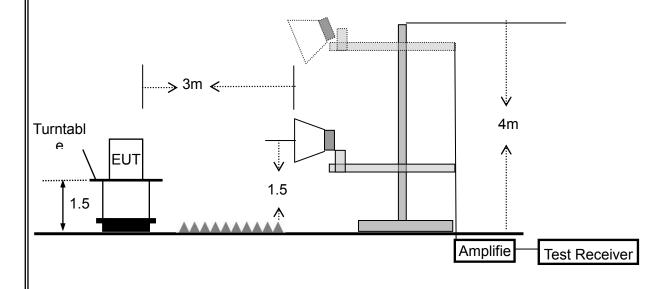
3.2.3 MEASURING INSTRUMENTS

The Measuring equipment is listed in the section 6.3 of this test report.


Version.1.2 Page 21 of 252



3.2.4 TEST CONFIGURATION


(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

Version.1.2 Page 22 of 252

3.2.5 TEST PROCEDURE

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

Version.1.2 Page 23 of 252

3.2.6 TEST RESULTS (9KHZ – 30 MHZ)

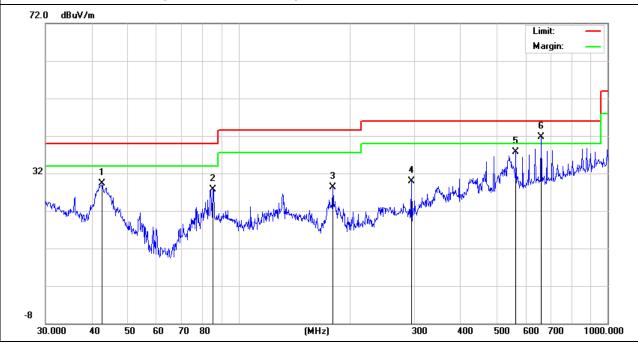
EUT:	Smart Access Point	Model Name :	RA320
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Test Voltage:	DC 12V from Adapter
Test Mode:	TX	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				N/A
				N/A

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Version.1.2 Page 24 of 252


3.2.7 TEST RESULTS (30MHZ - 1GHZ)

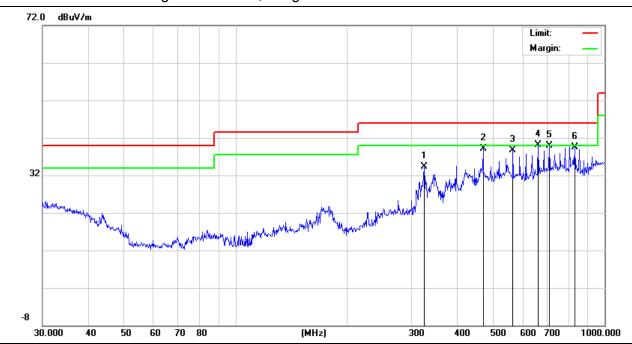
EUT:	Smart Access Point	Model Name :	RA320
Temperature :	26 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Test Voltage :	DC 12V from Adapter
Test Mode :	TX(5.2G)- 802.11a (High CH)		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	42.7496	16.86	12.42	29.28	40.00	-10.72	QP
V	85.2980	18.62	9.07	27.69	40.00	-12.31	QP
V	180.0165	18.22	10.05	28.27	43.50	-15.23	QP
V	294.1136	15.71	14.25	29.96	46.00	-16.04	QP
V	564.6389	15.53	22.12	37.65	46.00	-8.35	QP
V	661.1503	19.15	22.58	41.73	46.00	-4.27	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Version.1.2 Page 25 of 252

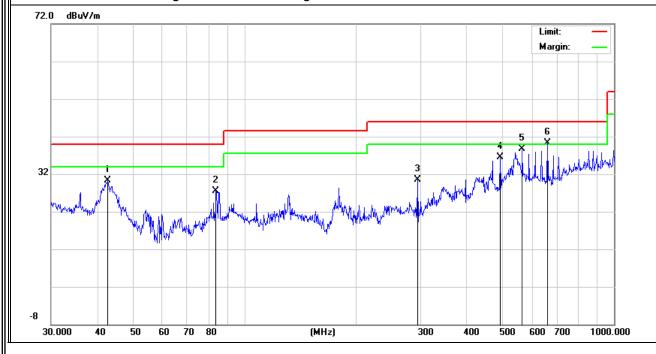


Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	324.4560	19.06	15.17	34.23	46.00	-11.77	QP
Н	468.8761	20.00	19.08	39.08	46.00	-6.92	QP
Н	564.6389	16.50	22.12	38.62	46.00	-7.38	QP
Н	661.1503	17.54	22.58	40.12	46.00	-5.88	QP
Н	709.1823	16.55	23.41	39.96	46.00	-6.04	QP
Н	830.4002	13.89	25.65	39.54	46.00	-6.46	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Version.1.2 Page 26 of 252



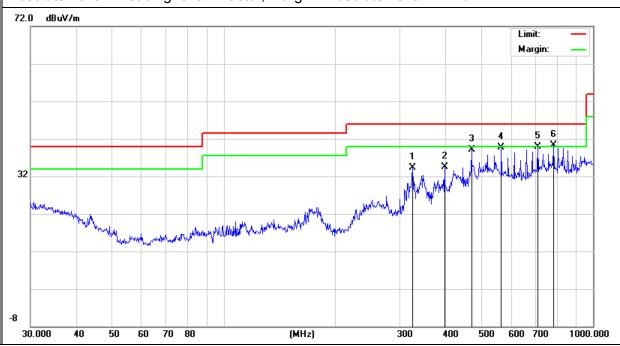
EUT:	Smart Access Point	Model Name :	RA320
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Test Voltage :	DC 12V from Adapter
Test Mode :	TX(5.8G) - 802.11a (High CH)		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	BuV) (dB) (dBuV/m)		(dBuV/m)	(dB)		
V	42.7496	17.86	12.42	30.28	40.00	-9.72	QP	
V	83.8156	18.88	8.57	27.45	40.00	-12.55	QP	
V	294.1136	16.21	14.25	30.46	46.00	-15.54	QP	
V	492.4685	16.60	19.94	36.54	46.00	-9.46	QP	
V	564.6389	16.53	22.12	38.65	46.00	-7.35	QP	
V	661.1503	17.65	22.58	40.23	46.00	-5.77	QP QP QP QP	

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Version.1.2 Page 27 of 252



Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	324.4560	19.06	15.17	34.23	46.00	-11.77	QP
Н	396.2412	16.91	17.68	34.59	46.00	-11.41	QP
Н	468.8761	20.00	19.08	39.08	46.00	-6.92	QP
Н	564.6389	17.50	22.12	39.62	46.00	-6.38	QP
Н	709.1823	16.55	23.41	39.96	46.00	-6.04	QP
Н	782.3451	15.37	24.95	40.32	46.00	-5.68	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Version.1.2 Page 28 of 252

3.2.8 TEST RESULTS (1GHz-18GHz)

EUT:	Smart Access Point	Model Name :	RA320
Temperature :	26 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Test Voltage :	DC 12V from Adapter
Test Mode :	TX(5.2G) - 802.11n20 _5180~52	240MHz	

Polar	Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector Type	
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	71	
			Low Char	nnel (5180	MHz)-Abo	ove 1G				
Vertical	5150.00	54.80	5.94	35.40	44.00	52.14	74.00	-21.86	Pk	
Vertical	10360.75	50.50	8.46	39.75	44.50	54.21	68.20	-13.99	Pk	
Vertical	15540.35	60.54	10.12	38.80	44.10	65.36	74.00	-8.64	Pk	
Horizontal	5150.00	57.87	5.94	35.18	44.00	54.99	74.00	-19.01	Pk	
Horizontal	10360.00	51.10	8.46	38.71	44.50	53.77	68.20	-14.43	Pk	
Horizontal	15540.17	55.24	10.12	38.38	44.10	59.64	74.00	-14.36	Pk	
middle Channel (5200 MHz)-Above 1G										
Vertical	10400.72	52.18	8.47	37.88	44.51	54.02	68.20	-14.18	Pk	
Vertical	15600.05	60.43	10.12	38.80	44.10	65.25	74.00	-8.75	Pk	
Horizontal	10400.46	54.02	8.47	38.64	44.50	56.63	68.20	-11.57	Pk	
Horizontal	15600.97	58.71	10.12	38.38	44.10	63.11	74.00	-10.89	Pk	
			High Cha	nnel (5240	MHz)-Ab	ove 1G				
Vertical	5350.00	58.38	7.10	37.24	43.50	59.22	74.00	-14.78	Pk	
Vertical	10480.73	52.15	8.46	37.68	44.50	53.79	68.20	-14.41	Pk	
Vertical	15720.06	53.80	10.12	38.80	44.10	58.62	74.00	-15.38	Pk	
Horizontal	5350.00	60.14	7.10	37.24	43.50	60.98	74.00	-13.02	Pk	
Horizontal	10480.37	54.54	8.46	38.57	44.50	57.07	68.20	-11.13	Pk	
Horizontal	15720.19	58.79	10.12	38.38	44.10	63.19	74.00	-10.81	Pk	

Note: "802.11n20(5G)" mode is the worst mode. PK value is lower than the Average value limit, So average didn't record.

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value

has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

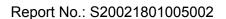
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Version.1.2 Page 29 of 252

EUT:	Smart Access Point	Model Name :	RA320
		Relative Humidity:	1 1 10 - 10
	1010 hPa	,	DC 12V from Adapter
- 10000.0	TX (5.8G) 802.11n20 5745~5	J	DO 121 Holli Adaptor

Polar	Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector Type
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
			Low Char	nel (5745	MHz)-Abo	ve 1G			
Vertical	5460.00	62.99	5.94	35.40	44.00	60.33	74.00	-13.67	Pk
Vertical	11490.00	51.95	8.46	39.75	44.50	55.66	74.00	-18.34	Pk
Vertical	17235.00	55.32	10.12	38.80	44.10	60.14	68.20	-8.06	Pk
Horizontal	5460.00	60.52	5.94	35.18	44.00	57.64	74.00	-16.36	Pk
Horizontal	11490.00	58.98	8.46	38.71	44.50	61.65	74.00	-12.35	Pk
Horizontal	17235.00	55.18	10.12	38.38	44.10	59.58	68.20	-8.62	Pk
			middle Cha	annel (578	5 MHz)-Ab	ove 1G			
Vertical	11570.00	54.19	8.47	37.88	44.51	56.03	74.00	-17.97	Pk
Vertical	17355.00	51.80	10.12	38.8	44.10	56.62	68.20	-11.58	Pk
Horizontal	11570.00	58.18	8.47	38.64	44.50	60.79	74.00	-13.21	Pk
Horizontal	17355.00	63.28	10.12	38.38	44.10	67.68	74.00	-6.32	Pk
			High Char	nel (5825	MHz)-Abo	ve 1G			
Vertical	11650.00	64.95	8.46	37.68	44.50	66.59	74.00	-7.41	Pk
Vertical	17475.00	59.95	10.12	38.8	44.10	64.77	68.20	-3.43	Pk
Horizontal	11650.00	59.42	8.46	38.57	44.50	61.95	74.00	-12.05	Pk
Horizontal	17475.00	58.09	10.12	38.38	44.10	62.49	68.20	-5.71	Pk

Note:"802.11n20(5G)" mode is the worst mode. PK value is lower than the Average value limit, So average didn't record.

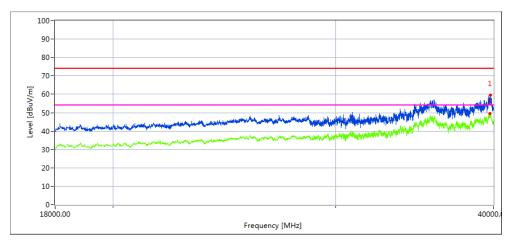

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value

has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

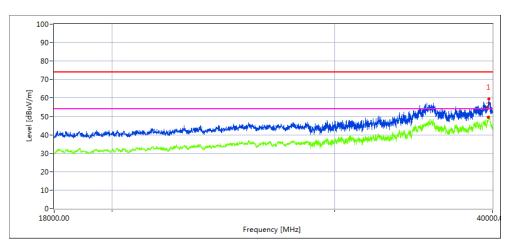
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Version.1.2 Page 30 of 252



3.2.9 TEST RESULTS (18GHz-40GHz)

EUT:	Smart Access Point	Model Name :	RA320
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1010 hPa	Test Voltage :	DC 12V from Adapter
Test Mode :	TX (5.2G)-802.11a 5180MHz~5 TX (5.8G)-802.11a 5745MHz~5	•	

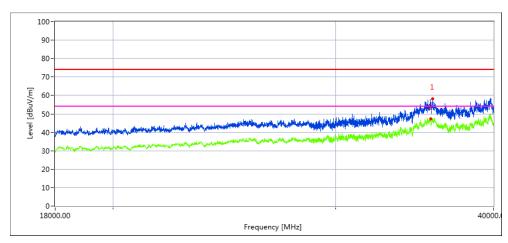

All the modulation modes have been tested, and the worst result was report as below: Low Channel (5180 MHz)-Above 1G

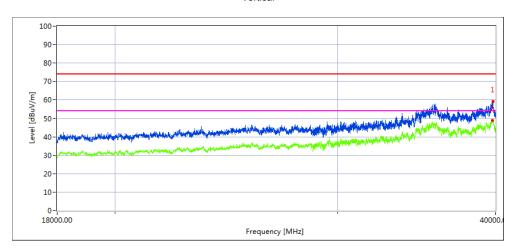
Horizontal

	Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin dB	Detector Type
	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Ī	39755.62	38.56	20.09	44.07	43.48	58.81	68.2	9.39	Peak

Vertical

Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin dB	Detector Type
(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
39769.433	34.16	20.09	44.07	43.48	54.84	68.2	13.36	Peak


Version.1.2 Page 31 of 252

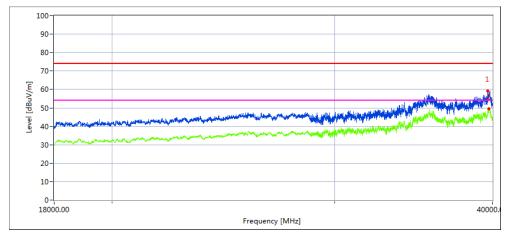

High Channel (5240 MHz)-Above 1G

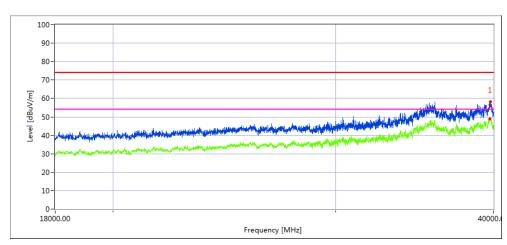
Horizontal

Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin dB	Detector Type
(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
35628.298	39.54	19.11	42.73	44.61	56.77	68.2	11.43	Peak

Vertical

	Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin dB	Detector Type
	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Ī	39693.17	37.09	20.09	44.07	43.48	57.77	68.2	10.43	Peak


Version.1.2 Page 32 of 252

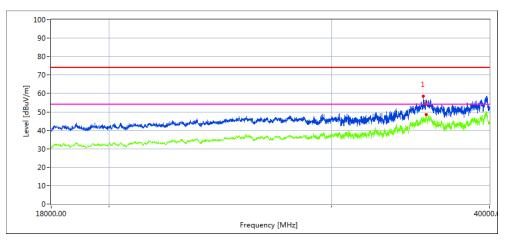

Low Channel (5745 MHz)-Above 1G

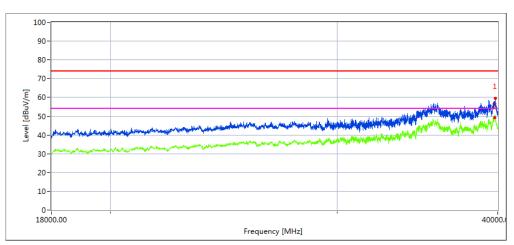
Horizontal

Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin dB	Detector Type
(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
39461.17	39.55	20.09	44.16	43.48	60.32	68.2	7.88	Peak

Vertical

Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin dB	Detector Type
(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
39744.51	36.76	20.06	44.07	43.21	57.68	68.2	10.52	Peak


Version.1.2 Page 33 of 252


High Channel (5825 MHz)-Above 1G

Horizontal

Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin dB	Detector Type
(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
35629.24	39.81	19.11	42.63	43.48	58.07	68.2	10.13	Peak

Vertical

Frequenc	y Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin dB	Detector Type
(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
39815.11	36.76	20.1	44.1	43.22	57.74	68.2	10.46	Peak

Version.1.2 Page 34 of 252

4. POWER SPECTRAL DENSITY TEST

4.1 APPLIED PROCEDURES / LIMIT

According to FCC §15.407(a)

For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz

(3)For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Version.1.2 Page 35 of 252

4.2 TEST PROCEDURE

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:


- a) Set RBW \geq 1/T, where T is defined in section II.B.I.a).
- b) Set VBW ≥ 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

4.3 DEVIATION FROM STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

Version.1.2 Page 36 of 252

4.6 TEST RESULTS

EUT:	Smart Access Point	Model Name :	RA320		
Temperature :	26 ℃	Relative Humidity:	54%		
Pressure:	1010 hPa	Test Voltage :	DC 12V from Adapter		
Test Mode :	TX Frequency Band 1 (5150-5250MHz), Band 3 (5745-5825MHz)				

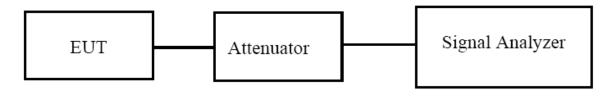
Note: Band1 For 802.11n/ac 5GHz has MIMO mode.Directional gain=6.90dbi 6.90dbi>6.0dbi so power density limit= 11-(6.90-6)=10.1 in dBm Band3 For 802.11n/ac 5GHz has MIMO mode.Directional gain=6.90dbi 6.90dbi>6.0dbi so power density limit= 30-(6.90-6)=29.1 in dBm

Test data reference attachment.

Version.1.2 Page 37 of 252

5. 26DB & 99% EMISSION BANDWIDTH

5.1 APPLIED PROCEDURES / LIMIT


The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

5.2 TEST PROCEDURE

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW ≥ 3 · RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
 - 6. Use the 99 % power bandwidth function of the instrument (if available).
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

Version.1.2 Page 38 of 252

5.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.4 TEST RESULTS

EUT:	Smart Access Point	Model Name :	RA320			
Temperature :	26 ℃	Relative Humidity:	54%			
Pressure:	1010 hPa Test Voltage : DC 12V from Adapter					
Test Mode :	TX Frequency Band 1 (5150-5250MHz), Band 3(5725-5850MHz)					

Test data reference attachment.

Version.1.2 Page 39 of 252

6. MINIMUM 6 DB BANDWIDTH

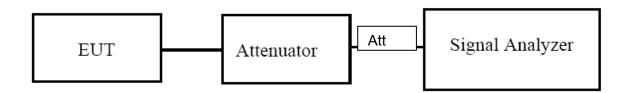
6.1 APPLIED PROCEDURES / LIMIT

According to FCC §15.407(e)

(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Certificate #4298.01

6.2 TEST PROCEDURE


Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Version.1.2 Page 40 of 252

6.6 TEST RESULTS

EUT:	Smart Access Point	Model Name :	RA320		
Temperature :	26 ℃	Relative Humidity:	54%		
Pressure:	1010 hPa	Test Voltage :	DC 12V from Adapter		
Test Mode :	TX (5G) Mode Frequency Band 3 (5725-5850MHz)				

Test data reference attachment.

Version.1.2 Page 41 of 252

7. MAXIMUM CONDUCTED OUTPUT POWER

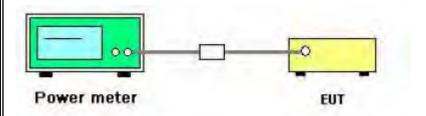
7.1 PPLIED PROCEDURES / LIMIT

According to FCC §15.407

The maximum conduced output power should not exceed:

Frequency Band(MHz)	Limit
5150~5250	250mW
5250~5350	250mW
5470~5725	250mW
5725~5850	1W

6.2 TEST PROCEDURE


- · Method PM is Measurement using an RF average power meter. The procedure for this method is as follows:
- a) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:
- 1) The EUT is configured to transmit continuously, or to transmit with a constant duty cycle.
- 2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
- 3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- b) If the transmitter does not transmit continuously, measure the duty cycle D of the transmitter output signal as described in 12.2.
- c) Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter.
- d) Adjust the measurement in dBm by adding [10 log (1 / D)], where D is the duty cycle {e.g., [10 log (1 / 0.25)], if the duty cycle is 25%}.

Version.1.2 Page 42 of 252

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Version.1.2 Page 43 of 252

7.2 TEST RESULTS

EUT:	Smart Access Point	Model Name :	RA320
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1010 hPa	Test Voltage :	DC 12V from Adapter
Test Mode :	TX (5G) Mode Frequency Band	d 1 (5150-5250MHz),	Band 3 (5725-5850MHz)

Note: Band1&Band2A&Band2C For 802.11n/ac 5GHz has MIMO mode. Directional gain=6.90dbi 6.90dbi>6.0dbi so power limit= 24-(6.90-6)=23.1 in dBm Band3 For 802.11n/ac 5GHz has MIMO mode. Directional gain=6.90dbi

Test data reference attachment.

6.90dbi>6.0dbi so power limit= 30-(6.90-6)=29.1 in dBm

Version.1.2 Page 44 of 252

8. OUT OF BAND EMISSIONS

8.1 APPLICABLE STANDARD

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of −17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of −27 dBm/MHz.

8.2 TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

Version.1.2 Page 45 of 252

EUT				SPECTRUM
			Att	ANALYZER
	J		ļ	73171221
5 EUT OPERAT	ION CONDITIONS	S urad as the stat	omanta of	FO 4 Unloss otherwise a aposial
erating condition	ystem was conligi i is specified in the	e follows during	the testing	f 2.4 Unless otherwise a special g.

Version.1.2 Page 46 of 252

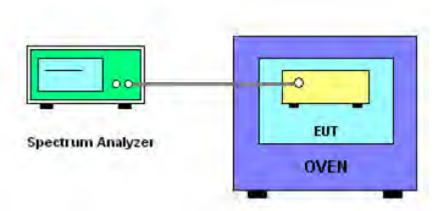
8.6 TEST RESULTS

EUT:	Smart Access Point	Model Name :	RA320
Temperature :	26 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Test Voltage :	DC 12V from Adapter

Test data reference attachment.

Version.1.2 Page 47 of 252

B. Frequency Stability Measurement


8.1 LIMIT

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

8.2 TEST PROCEDURES

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10_6$ ppm and the limit is less than ± 20 ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature is -30°C~80°C.
- 8.3 TEST SETUP LAYOUT

8.4 EUT OPERATION DURING TEST

- 1. The EUT was programmed to be in continuously un-modulation transmitting mode.
- 2. The module has two antennas, and the worst data is Antenna 3, only shown Antenna 3 Plot.

Version.1.2 Page 48 of 252

8.5 TEST RESULTS

	_				
EUT:	Smart Access Point	Model Name :	RA320		
Temperature :	26 ℃	Relative Humidity:	54%		
Pressure:	1010 hPa	Test Voltage :	DC 12V from Adapter		
Test Mode :	TX Frequency Band I (5150-5250MHz)				

Voltage vs. Frequency Stability

			Reference Frequency: 5180MHz				
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
T nom		V nom (V)	12.00	5179.9707	5180	-0.0293	-5.6658
(°C)	20	V max (V)	13.80	5179.9000	5180	-0.1000	-19.3050
(C)		V min (V)	10.20	5179.9981	5180	-0.0019	-0.3758
Limits			Within 5150-5250MHz			Hz	
	Re	esult		Complies			

Temperature vs. Frequency Stability

			Reference Frequency: 5180MHz				
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
		T (°C)	-30	5179.9032	5180	-0.0968	-18.690
		T (°C)	-20	5180.0227	5180	0.0227	4.384
		T (°C)	-10	5179.9843	5180	-0.0157	-3.033
		T (°C)	0	5180.0367	5180	0.0367	7.089
		T (°C)	10	5180.0342	5180	0.0342	6.596
V nom	12	T (°C)	20	5180.0142	5180	0.0142	2.744
(V)	12	T (°C)	30	5179.9690	5180	-0.0310	-5.985
		T (°C)	40	5180.0282	5180	0.0282	5.448
		T (°C)	50	5179.9810	5180	-0.0190	-3.668
		T (°C)	60	5180.0104	5180	0.0104	2.011
		T (°C)	70	5180.0001	5180	0.0001	0.024
		T (°C)	80	5179.9757	5180	-0.0243	-4.694
Limits			Within 5150-5250MHz				
	Re	sult			Со	mplies	

Version.1.2 Page 49 of 252

Voltage vs. Frequency Stability

				Reference Frequency: 5200MHz			
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
T nom		V nom (V)	12.00	5199.9949	5200	-0.0051	-0.971
(°C)	20	V max (V)	13.80	5199.9795	5200	-0.0205	-3.943
(C)		V min (V)	10.20	5199.9809	5200	-0.0191	-3.672
	Limits			Within 5150-5250MHz			
	Re	esult			Co	mplies	

Temperature vs. Frequency Stability

				Refer	ence Fred	quency: 5	200MHz
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
		T (°C)	-30	5200.0238	5200	0.0238	4.581
		T (°C)	-20	5199.9776	5200	-0.0224	-4.304
		T (°C)	-10	5199.9491	5200	-0.0509	-9.798
		T (°C)	0	5200.0426	5200	0.0426	8.189
		T (°C)	10	5200.0139	5200	0.0139	2.669
V nom	12	T (°C)	20	5200.0183	5200	0.0183	3.510
(V)	12	T (°C)	30	5199.9953	5200	-0.0047	-0.913
		T (°C)	40	5200.0355	5200	0.0355	6.828
		T (°C)	50	5199.9859	5200	-0.0141	-2.703
		T (°C)	60	5199.9637	5200	-0.0364	-6.990
		T (°C)	70	5200.0230	5200	0.0230	4.418
		T (°C)	80	5199.9882	5200	-0.0118	-2.272
	Limits			Within 5150-5250MHz			
	Re	sult		Complies			

Version.1.2 Page 50 of 252

Voltage vs. Frequency Stability

				Reference Frequency: 5240MHz			
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
T nom		V nom (V)	12.00	5239.9912	5240	-0.0088	-1.679
	20	V max (V)	13.80	5240.0133	5240	0.0133	2.538
(0)	(°C) V min (V) 10.20			5239.9884	5240	-0.0116	-2.210
Limits			Within 5150-5250MHz				
	Re	esult		Complies			

Temperature vs. Frequency Stability

				Refer	rence Fred	quency: 52	240MHz		
TI	EST CO	NDITIONS	8	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)		
		T (°C)	-30	5239.9724	5240	-0.0276	-5.266		
		T (°C)	-20	5240.0298	5240	0.0298	5.685		
		T (°C)	-10	5239.9722	5240	-0.0278	-5.308		
		T (°C)	0	5240.0164	5240	0.0164	3.130		
		T (°C)	10	5239.9807	5240	-0.0193	-3.677		
V nom	12	T (°C)	20	5240.0185	5240	0.0185	3.538		
(V)	12	12	12	T (°C)	30	5239.9548	5240	-0.0452	-8.621
		T (°C)	40	5239.9871	5240	-0.0129	-2.471		
		T (°C)	50	5239.9561	5240	-0.0439	-8.385		
		T (°C)	60	5239.9603	5240	-0.0397	-7.583		
		T (°C)	70	5239.9621	5240	-0.0379	-7.224		
	T (°C) 80			5239.9530	5240	-0.0470	-8.963		
Limits			Within 5150-5250MHz						
	Re	sult		Complies					

Version.1.2 Page 51 of 252

EUT:	Panoramic Camera	Model Name. :	PIONA1925/A
Temperature:	25 ℃	Relative Humidity:	56%
Pressure:	1012 hPa	Test Voltage :	DC 3.8V
Test Mode :	TX Frequency(5745-5850MHz)		

				Reference Frequency: 5745MHz			
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
T nom (°		V nom (V)	12.00	5744.9763	5745	-0.0237	-4.125
II	20	V max (V)	13.80	5744.9956	5745	-0.0044	-0.774
()	C) V min (V) 10.20			5744.9851	5745	-0.0149	-2.598
Limits			Within 5745-5850MHz				
	Re	sult		Complies			

Voltage vs. Frequency Stability

Temperature vs. Frequency Stability

					rence Fred	quency: 5	745MHz
ТІ	TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-30	5745.0127	5745	0.0127	2.205
		T (°C)	-20	5744.9976	5745	-0.0024	-0.417
		T (°C)	-10	5745.0294	5745	0.0294	5.117
		T (°C)	0	5744.9521	5745	-0.0479	-8.331
		T (°C)	10	5745.0354	5745	0.0354	6.158
V nom	12	T (°C)	20	5744.9754	5745	-0.0246	-4.282
(V)	12	T (°C)	30	5744.9464	5745	-0.0536	-9.326
		T (°C)	40	5744.9823	5745	-0.0177	-3.088
		T (°C)	50	5745.0170	5745	0.0170	2.955
		T (°C)	60	5744.9850	5745	-0.0150	-2.613
		T (°C)	70	5744.9825	5745	-0.0175	-3.052
	T (°C) 80		5745.0357	5745	0.0357	6.222	
Limits			Within 5745-5850MHz				
	Re	sult			Со	mplies	

Version.1.2 Page 52 of 252

Voltage vs. Frequency Stability

				Refe	Reference Frequency: 5785MHz			
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)		
Tnom	V nom (V) 12.00			5784.9804	5785	-0.0196	-3.380	
T nom	20	V max (V) 13.8	30	5784.9717	5785	-0.0283	-4.887	
(0)	(°C) V min (V) 10.20			5784.9701	5785	-0.0299	-5.169	
Limits			Within 5745-5850MHz			Hz		
	R	esult		Complies				

Temperature vs. Frequency Stability

			-	Refe	ence Fred	quency: 5	785MHz
T	EST CO	NDITIONS	8	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-30	5784.9947	5785	-0.0053	-0.920
		T (°C)	-20	5784.9702	5785	-0.0298	-5.147
		T (°C)	-10	5785.0040	5785	0.0040	0.697
		T (°C)	0	5785.0128	5785	0.0128	2.206
		T (°C)	10	5784.9747	5785	-0.0253	-4.377
V nom	12	T (°C)	20	5784.9954	5785	-0.0046	-0.790
(V)	12	T (°C)	30	5784.9969	5785	-0.0031	-0.534
		T (°C)	40	5785.0373	5785	0.0373	6.447
		T (°C)	50	5784.9805	5785	-0.0195	-3.378
		T (°C)	60	5784.9770	5785	-0.0230	-3.969
		T (°C)	70	5785.0491	5785	0.0491	8.492
	T (°C) 80			5784.9854	5785	-0.0146	-2.531
	Limits			Within 5745-5850MHz			
	Re	sult		Complies			

Version.1.2 Page 53 of 252

Voltage vs. Frequency Stability

	_			Reference Frequency: 5825MHz			
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
T nom		V nom (V) 12.00		5824.9880	5825	-0.0120	-2.056
	20	V max (V)	13.80	5824.9798	5825	-0.0202	-3.464
(0)	(°C) V min (V) 10.20			5824.9989	5825	-0.0011	-0.186
Limits			Within 5745-5850MHz				
	Re	esult	·	Complies			

Temperature vs. Frequency Stability

				Refe	erence Fred	quency: 58	25MHz
Т	TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-30	5824.9975	5825	-0.0025	-0.429
		T (°C)	-20	5824.9773	5825	-0.0227	-3.902
		T (°C)	-10	5825.0118	5825	0.0118	2.023
		T (°C)	0	5824.9864	5825	-0.0136	-2.335
		T (°C)	10	5825.0191	5825	0.0191	3.279
V nom	19	T (°C)	20	5824.9845	5825	-0.0155	-2.655
(V)	19	T (°C)	30	5824.9840	5825	-0.0160	-2.752
		T (°C)	40	5824.9693	5825	-0.0307	-5.278
		T (°C)	50	5824.9806	5825	-0.0194	-3.327
		T (°C)	60	5825.0278	5825	0.0278	4.779
		T (°C)	70	5824.9884	5825	-0.0116	-1.985
	T (°C) 80		5824.9816	5825	-0.0184	-3.159	
Limits			Within 5745-5850MHz				
	Re	sult			Complies		

Version.1.2 Page 54 of 252

9. DYNAMIC FREQUENCY SELECTION(DFS) 9.1 APPLICABILITY OF DFS REQUIREMENTS

EUT is client and operates as client without radar detection function.

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode					
Requirement	Master	Client Without Radar	Client With Radar			
	waster	Detection	Detection			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Table 2: Applicability of DFS requirements during normal operation

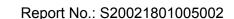
	Operational Mode					
Requirement	Master	Client Without Radar	Client With Radar			
	waster	Detection	Detection			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Closing	Yes	Yes	Yes			
Transmission Time	168	165	165			
Channel Move Time	Yes	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not required	Yes			
Client Beacon Test	N/A	Yes	Yes			

Additional requirements for	Operational Mode			
devices with multiple bandwidth modes	Master or Client With Radar Detection	Client Without Radar Detection		
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required		
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link		
All other tests	Any single BW mode	Not required		

Note

Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

9.2 INTERFERENCE THRESHOLD VALUES, MASTER OR CLIENT INCORPORATING IN-SERVICE MONITORING


Maximum Transmit Power	Value (see notes 1, 2, and 3)			
EIRP ≥ 200 milliwatt	-64 dBm			
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm			
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm			

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 3: EIRP is based on the highest antenna gain.

Version.1.2 Page 55 of 252

9.3 DFS RESPONSE REQUIREMENT VALUES

Parameter	Value			
Non-occupancy period	Minimum 30 minutes			
Channel Availability Check Time	60 seconds			
Channel Move Time	10 seconds See Note 1.			
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.			
U-NII Detection Bandwidth	Minimum 100% of the 99% power bandwidth See Note 3.			

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short pulse radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

9.4 SHORT PULSE RADAR TEST WAVEFORMS

As the EUT is a Client Device with no Radar Detection, only one type radar pulse is required for the testing. Radar Pulse type 0 was used in the evaluation of the Client device for the purpose of measuring the Channel Move Time and the Channel Closing Transmission Time.

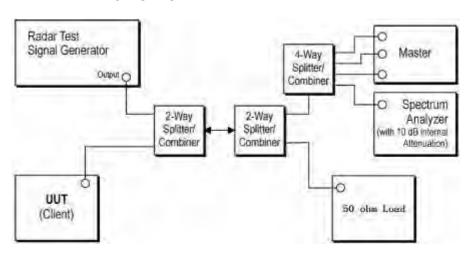
Radar Type	Pulse Width (µsec)	PRI (µsec) Number of Pulses		Minimum Percentage of Successful Detection	Minimum Trials
0	1	1428	18	60%	30
1	1	Test A Test B	Roundup $ \begin{bmatrix} \frac{1}{360} \\ \frac{19 \cdot 10^6}{PRI_{seas}} \end{bmatrix} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Aggrega	80%	120		

Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test A

A minimum of 30 unique waveforms are required for each of the short pulse radar types 2 through 4. For short pulse radar type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for short pulse radar types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms.

If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

Version.1.2 Page 56 of 252



9.5 CALIBRATION SETUP AND DFS TEST RESULTS

Radar Waveform Calibration Procedure

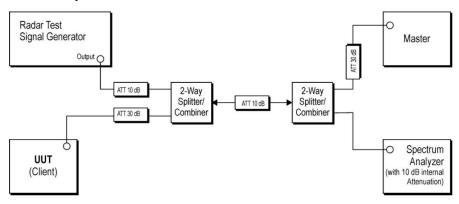
- 1) A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to place of the master
- 2) The interference Radar Detection Threshold Level is -62dBm + 0dBi +1dB = -61dBm that had been taken into account the output power range and antenna gain.
- 3) The following equipment setup was used to calibrate the conducted radar waveform. A vector signal generator was utilized to establish the test signal level for radar type 0. During this process there were no transmissions by either the master or client device. The spectrum analyzer was switched to the zero spans (time domain) at the frequency of the radar waveform generator. Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz. The spectrum analyzer had offset -1.0dB to compensate RF cable loss 1.0dB.
- 4) The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was -62dBm + 0dBi +1dB = -61dBm. Capture the spectrum analyzer plots on short pulse radar waveform.

9.6 CONDUCTED CALIBRATION SETUP

	Manufacturer	LINKSYS LLC
Wireless AP	Model NO.	WRT32X
	FCC ID	Q87-WRT3200ACM

Version.1.2 Page 57 of 252

9.7 RADAR WAVEFORM CALIBRATION RESULT
Not applicable.


Version.1.2 Page 58 of 252

9.8 IN-SERVICE MONITORING: CHANNEL MOVE TIME, CHANNEL CLOSING TRANSMISSION TIME AND NON-OCCUPANCY PERIOD

TEST CONFIGURATION:

Setup for Client with injection at the Master

TEST PROCEDURE:

- 1. The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.
- 2. The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device
- 3. A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.
- 4. EUT will associate with the master at channel. The file "iperf.exe" specified by the FCC is Streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.
- 5. When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.
- 6. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom In 600ms plot of the Short Pulse Radar Type
- 7. Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) =S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.
- 8. Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

TEST MODE:

Please refer to the clause 2.2

Version.1.2 Page 59 of 252

9.9 RESULT OF CHANNEL MOVE TIME, CHANNEL CLOSING TRANSMISSION TIME AND NON-OCCUPANCY PERIOD FOR CLIENT BEACON TEST
Not applicable.

Version.1.2 Page 60 of 252

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

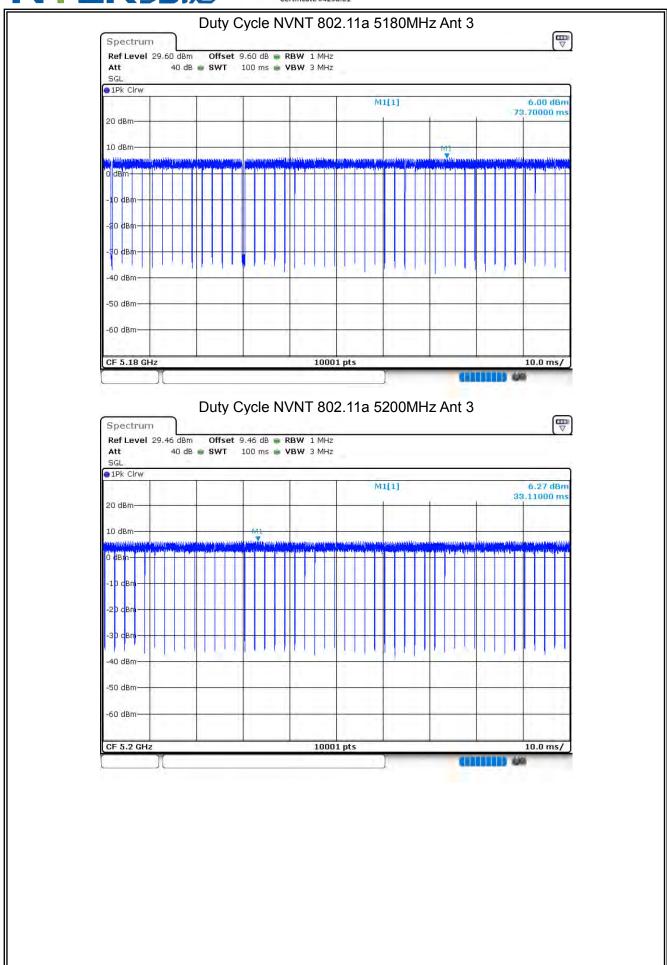
10.2 EUT ANTENNA

The EUT	antenna is	permanent	attached	Embedded	antenna(aı	ntenna ga	in: 4.17dBi	(Antenna3)
3.39 dBi	(Antenna4)). It comply	with the s	tandard red	uirement.			,

Version.1.2 Page 61 of 252

11. TEST RESULTS

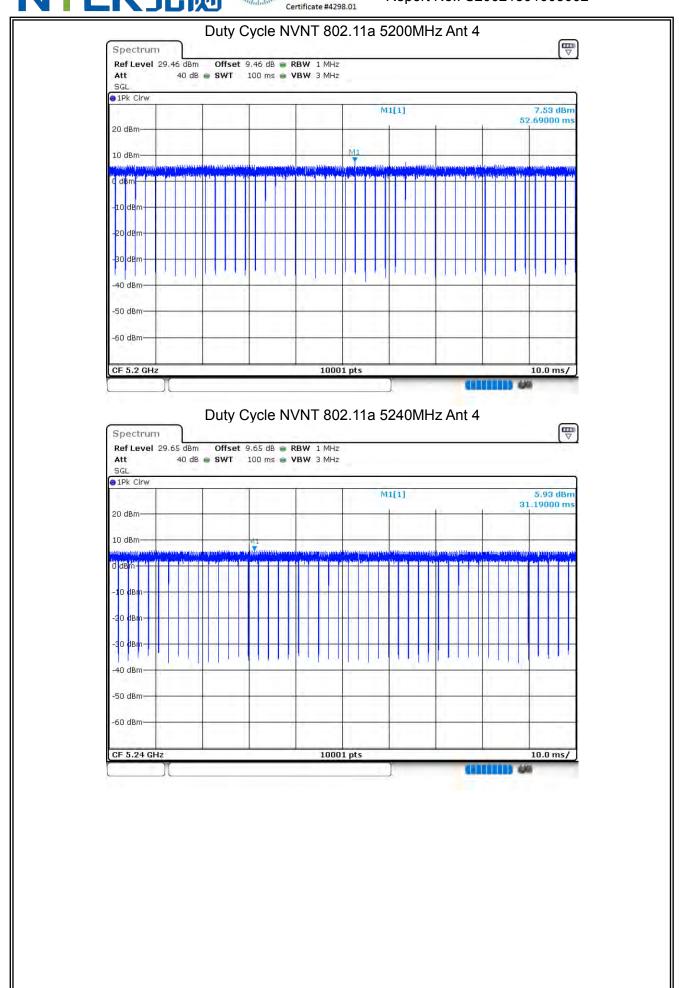
11.1 DUTY CYCLE


5.2G:

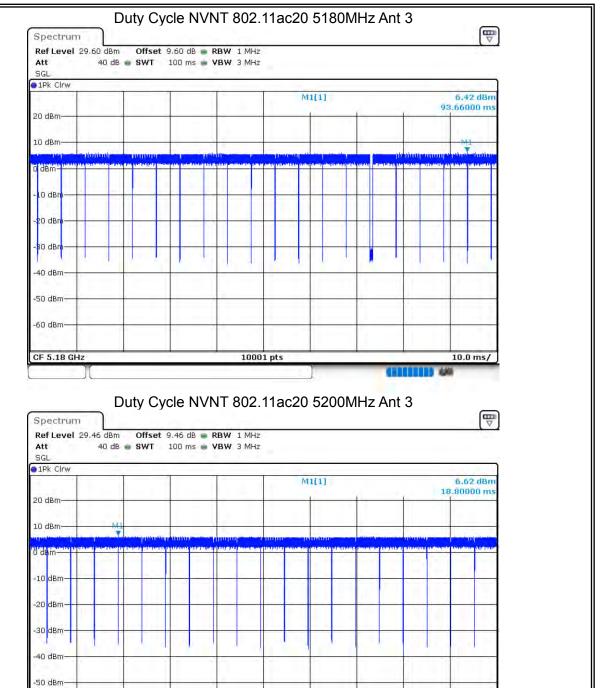
Condition	Mode	Frequency	Duty Cycle	Correction Factor
		(MHz)	(%)	(dB)
NVNT	802.11a	5180	100	0
NVNT	802.11a	5200	100	0
NVNT	802.11a	5240	100	0
NVNT	802.11a	5180	100	0
NVNT	802.11a	5200	100	0
NVNT	802.11a	5240	100	0
NVNT	802.11ac20	5180	100	0
NVNT	802.11ac20	5200	100	0
NVNT	802.11ac20	5240	100	0
NVNT	802.11ac20	5180	100	0
NVNT	802.11ac20	5200	100	0
NVNT	802.11ac20	5240	100	0
NVNT	802.11ac40	5190	100	0
NVNT	802.11ac40	5230	99.96	0
NVNT	802.11ac40	5190	100	0
NVNT	802.11ac40	5230	99.99	0
NVNT	802.11ac80	5210	100	0
NVNT	802.11ac80	5210	100	0
NVNT	802.11n(HT20)	5180	100	0
NVNT	802.11n(HT20)	5200	100	0
NVNT	802.11n(HT20)	5240	100	0
NVNT	802.11n(HT20)	5180	100	0
NVNT	802.11n(HT20)	5200	100	0
NVNT	802.11n(HT20)	5240	100	0
NVNT	802.11n(HT40)	5190	100	0
NVNT	802.11n(HT40)	5230	100	0
NVNT	802.11n(HT40)	5190	100	0
NVNT	802.11n(HT40)	5230	100	0
	NVNT NVNT NVNT NVNT NVNT NVNT NVNT NVNT	NVNT 802.11a NVNT 802.11a NVNT 802.11a NVNT 802.11a NVNT 802.11a NVNT 802.11ac20 NVNT 802.11ac40 NVNT 802.11ac40 NVNT 802.11ac40 NVNT 802.11ac80 NVNT 802.11ac80 NVNT 802.11n(HT20) NVNT 802.11n(HT20) NVNT 802.11n(HT20) NVNT 802.11n(HT20) NVNT 802.11n(HT20) NVNT 802.11n(HT20) NVNT 802.11n(HT40) NVNT 802.11n(HT40) NVNT 802.11n(HT40)	NVNT 802.11a 5180 NVNT 802.11a 5200 NVNT 802.11a 5240 NVNT 802.11a 5180 NVNT 802.11a 5200 NVNT 802.11a 5240 NVNT 802.11ac20 5180 NVNT 802.11ac20 5200 NVNT 802.11ac20 5240 NVNT 802.11ac40 5190 NVNT 802.11ac40 5230 NVNT 802.11ac40 5230 NVNT 802.11ac80 5210 NVNT 802.11ac80 5210 NVNT 802.11n(HT20) 5180 NVNT 802.11n(HT20) 5240 NVNT 802.11n(HT20) 5240 NVNT 802.11n(NVNT 802.11a 5180 100 NVNT 802.11a 5200 100 NVNT 802.11a 5240 100 NVNT 802.11a 5180 100 NVNT 802.11a 5200 100 NVNT 802.11a 5240 100 NVNT 802.11ac20 5180 100 NVNT 802.11ac20 5200 100 NVNT 802.11ac20 5240 100 NVNT 802.11ac40 5190 100 NVNT 802.11ac40 5190 100 NVNT 802.11ac40 5230 99.99 NVNT 802.11ac80 5210 100 NVNT 802.11ac80 5210 100 NVNT 8

Version.1.2 Page 62 of 252




Version.1.2 Page 63 of 252

Version.1.2 Page 64 of 252



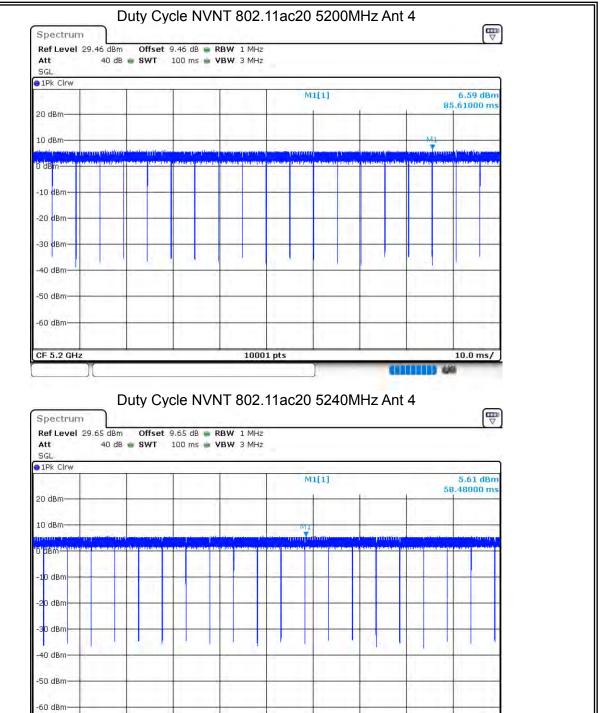
Version.1.2 Page 65 of 252

-60 dBm

CF 5.2 GHz

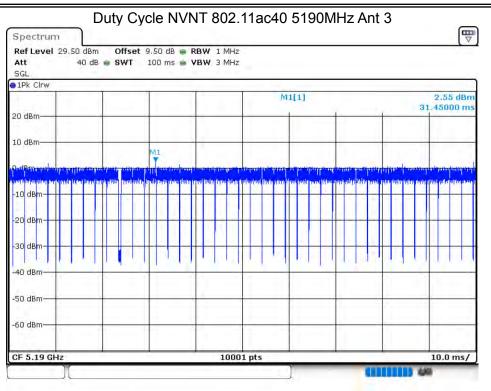
10.0 ms/

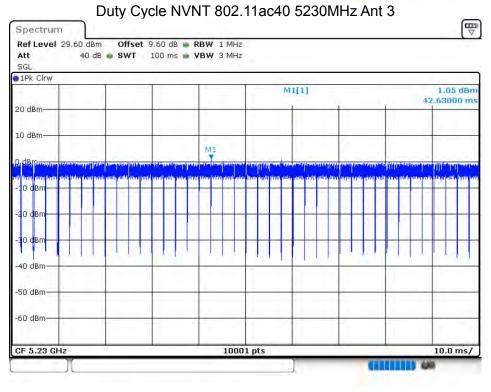
Version.1.2 Page 66 of 252


10001 pts

Version.1.2 Page 67 of 252

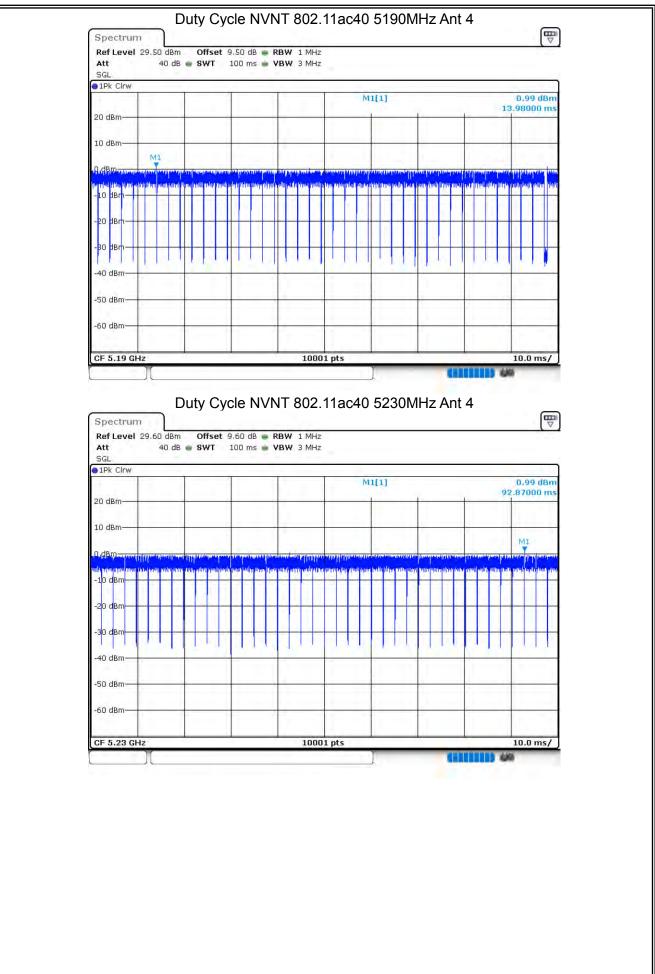
CF 5.24 GHz



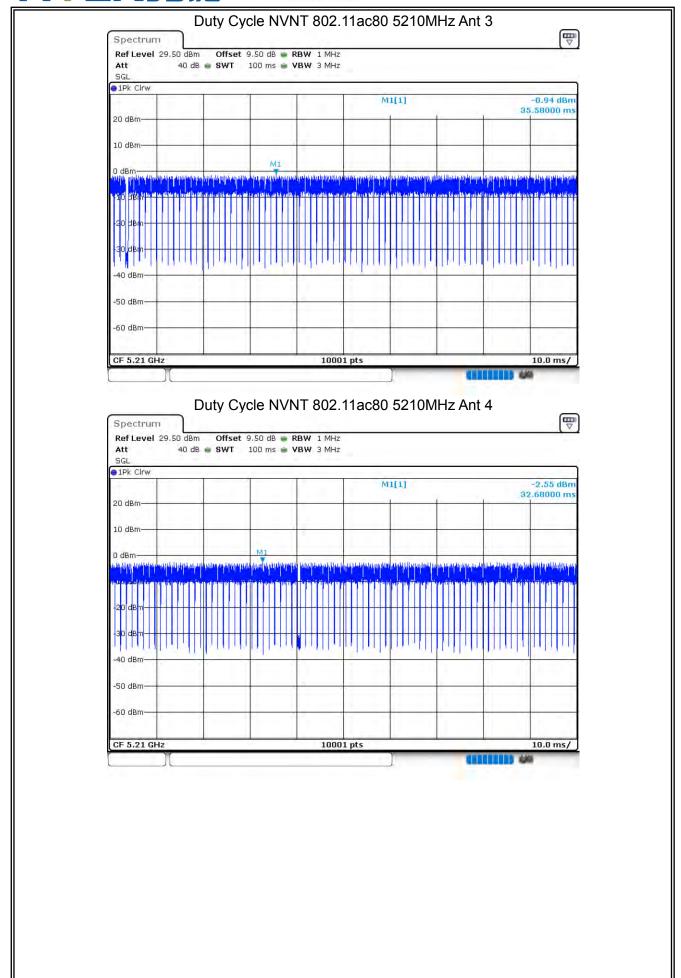

10.0 ms/

Version.1.2 Page 68 of 252

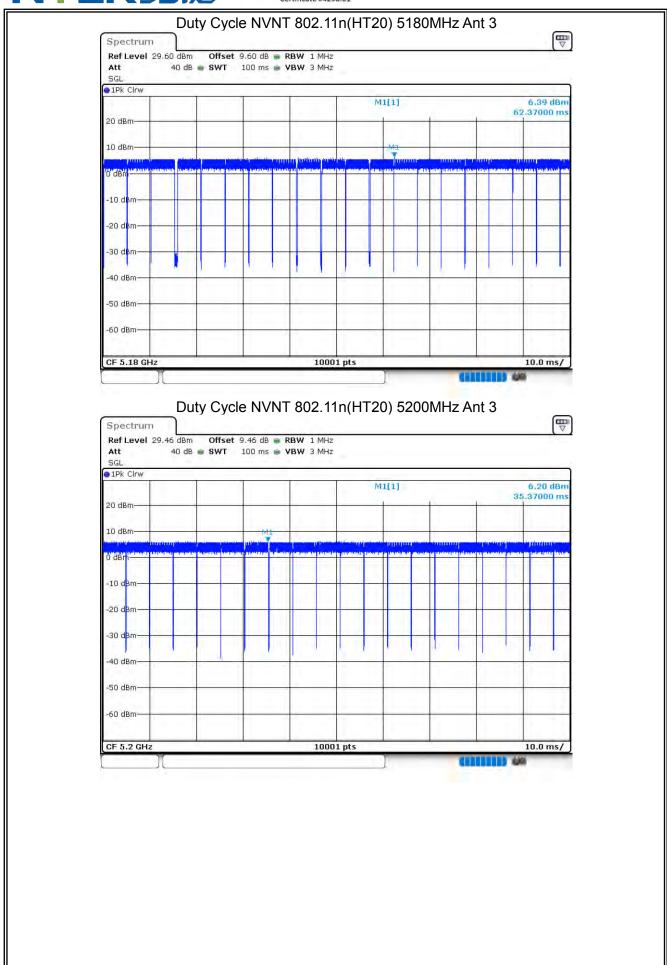
10001 pts



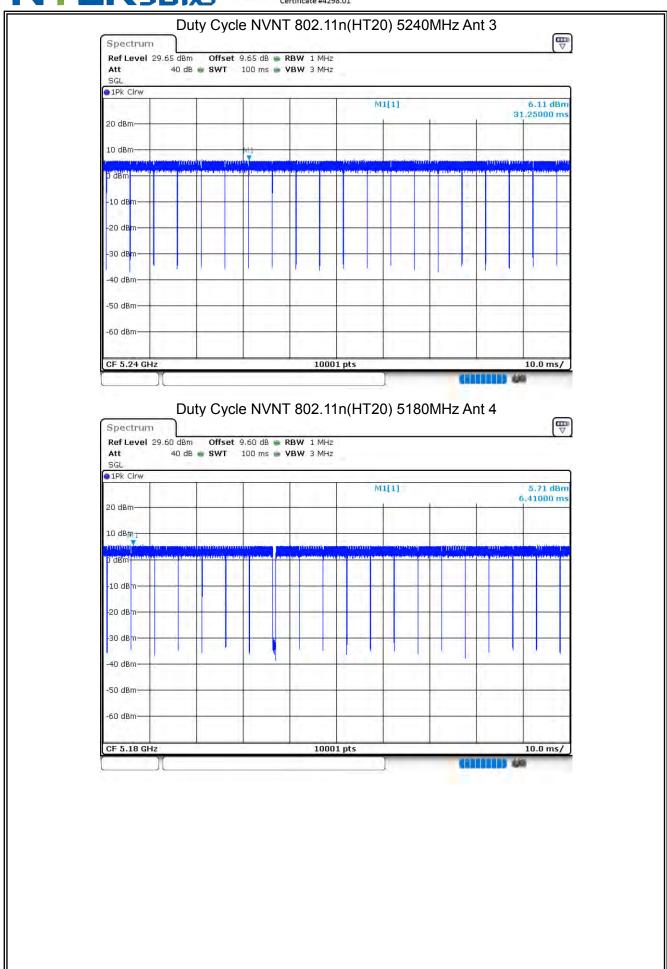
Version.1.2 Page 69 of 252



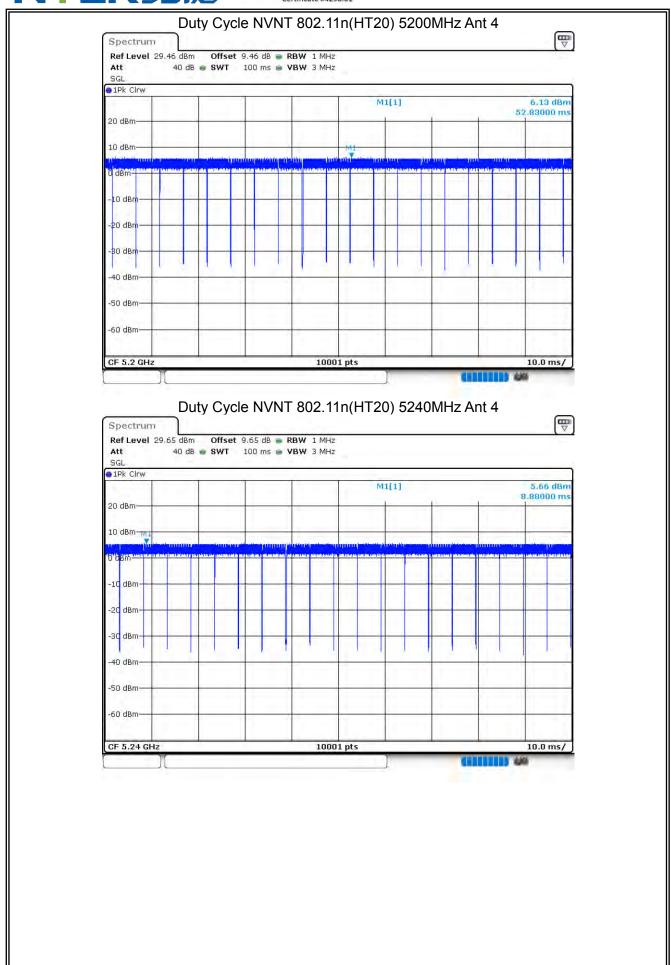
Version.1.2 Page 70 of 252



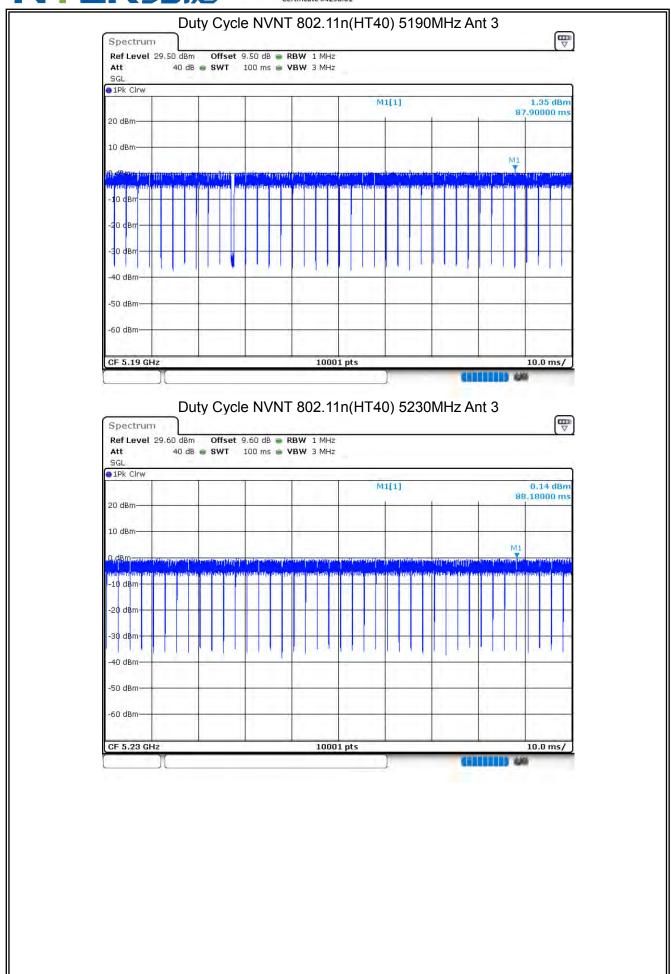
Version.1.2 Page 71 of 252



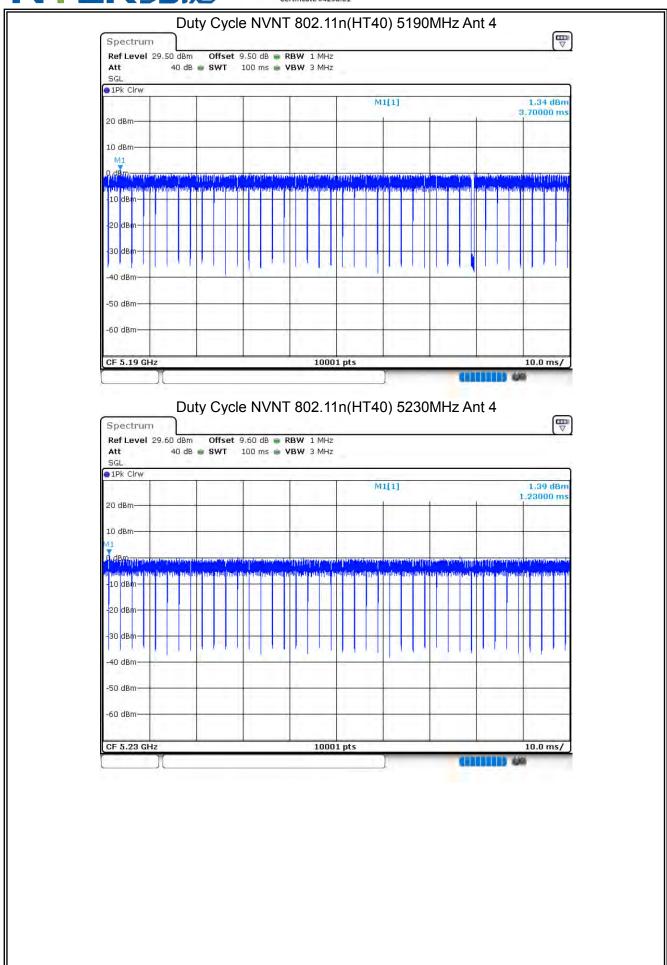
Version.1.2 Page 72 of 252



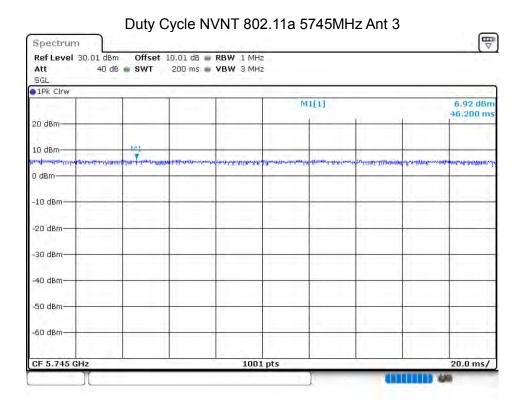
Version.1.2 Page 73 of 252



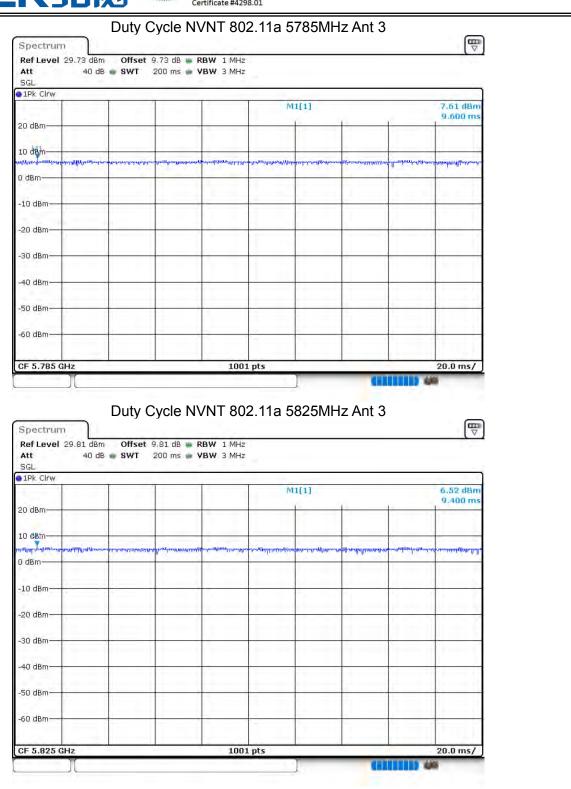
Version.1.2 Page 74 of 252



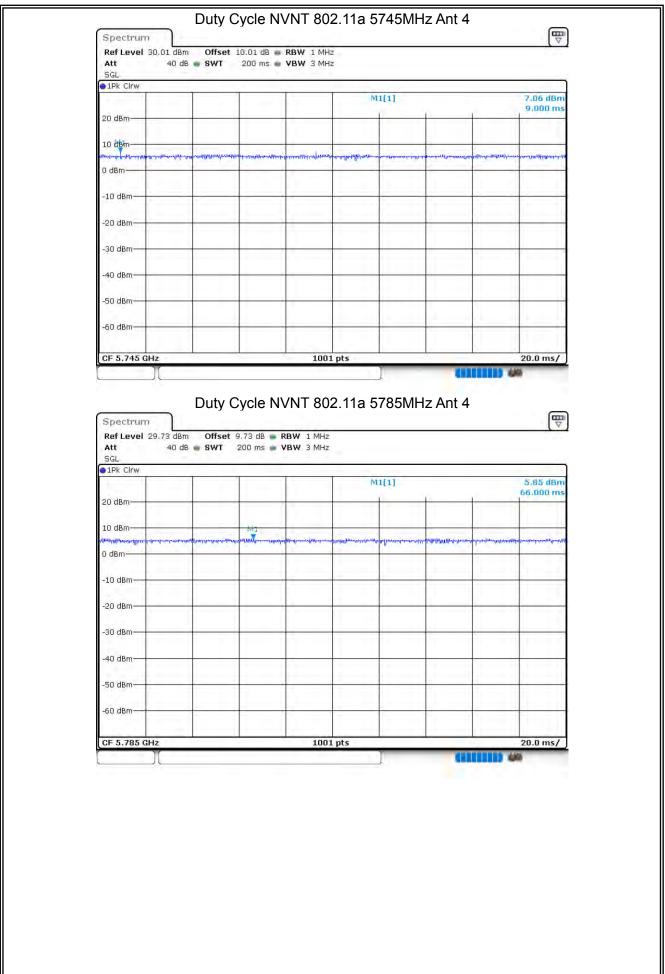
Version.1.2 Page 75 of 252

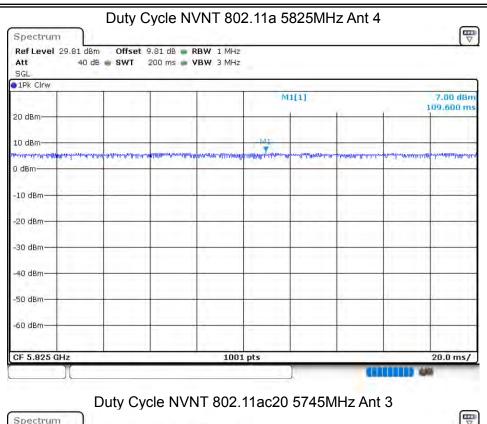


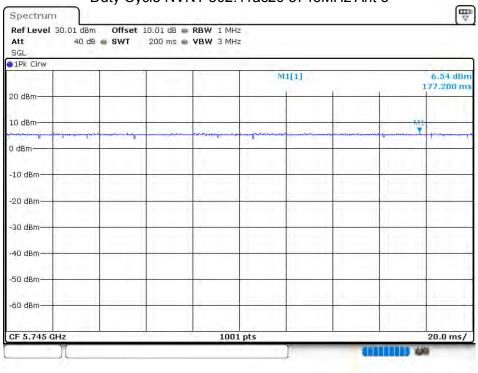
Version.1.2 Page 76 of 252



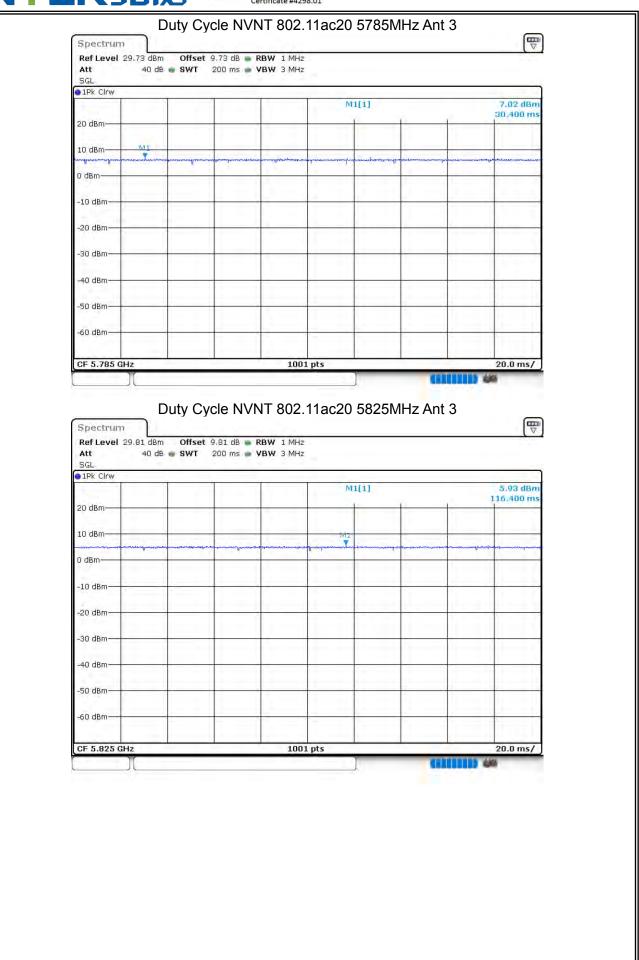
5.8G:					
Antenna	Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor
					(dB)
Ant 3	NVNT	802.11a	5745	100	0
Ant 3	NVNT	802.11a	5785	100	0
Ant 3	NVNT	802.11a	5825	100	0
Ant 4	NVNT	802.11a	5745	100	0
Ant 4	NVNT	802.11a	5785	100	0
Ant 4	NVNT	802.11a	5825	100	0
Ant 3	NVNT	802.11ac20	5745	100	0
Ant 3	NVNT	802.11ac20	5785	100	0
Ant 3	NVNT	802.11ac20	5825	100	0
Ant 4	NVNT	802.11ac20	5745	100	0
Ant 4	NVNT	802.11ac20	5785	100	0
Ant 4	NVNT	802.11ac20	5825	100	0
Ant 3	NVNT	802.11ac40	5755	100	0
Ant 3	NVNT	802.11ac40	5795	100	0
Ant 4	NVNT	802.11ac40	5755	100	0
Ant 4	NVNT	802.11ac40	5795	100	0
Ant 3	NVNT	802.11ac80	5775	100	0
Ant 4	NVNT	802.11ac80	5775	100	0
Ant 3	NVNT	802.11n(HT20)	5745	100	0
Ant 3	NVNT	802.11n(HT20)	5785	100	0
Ant 3	NVNT	802.11n(HT20)	5825	100	0
Ant 4	NVNT	802.11n(HT20)	5745	100	0
Ant 4	NVNT	802.11n(HT20)	5785	100	0
Ant 4	NVNT	802.11n(HT20)	5825	100	0
Ant 3	NVNT	802.11n(HT40)	5755	100	0
Ant 3	NVNT	802.11n(HT40)	5795	100	0
Ant 4	NVNT	802.11n(HT40)	5755	100	0
Ant 4	NVNT	802.11n(HT40)	5795	100	0


Version.1.2 Page 77 of 252


Version.1.2 Page 78 of 252

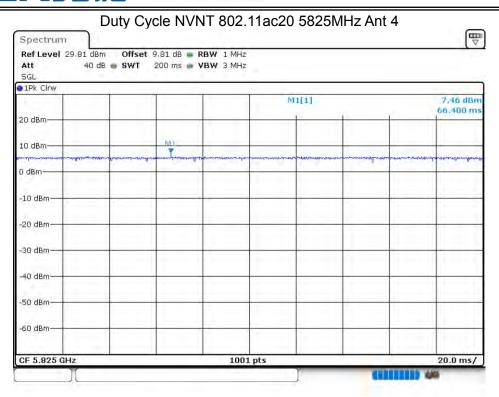


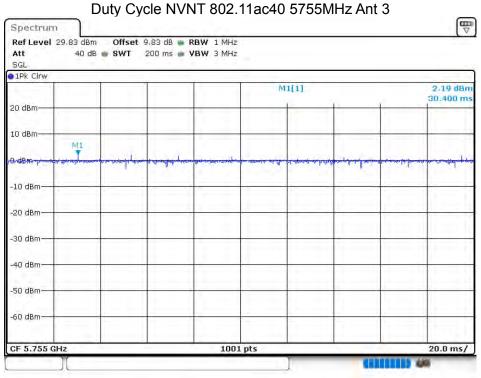
Version.1.2 Page 79 of 252

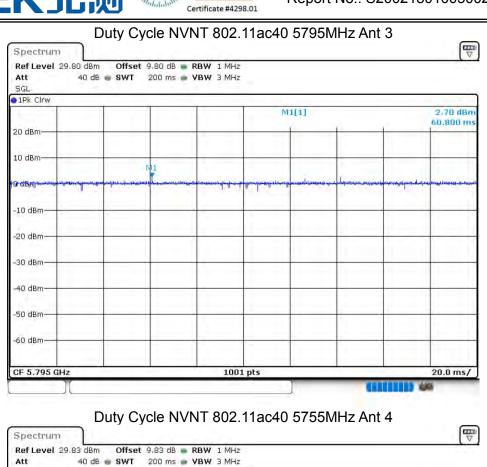


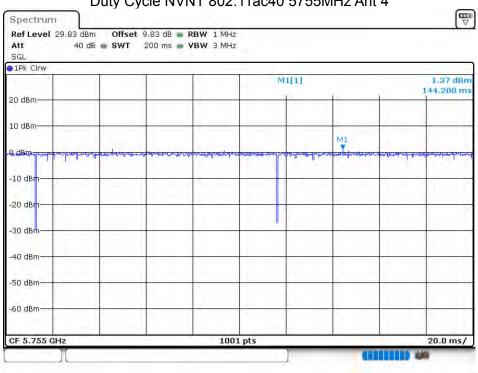
Version.1.2 Page 80 of 252



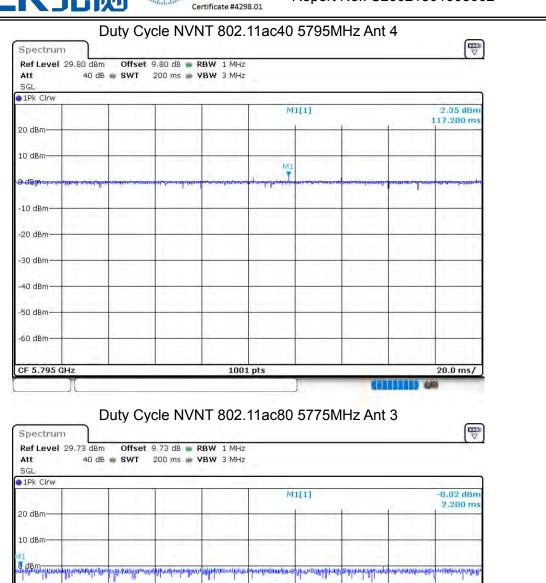

Version.1.2 Page 81 of 252





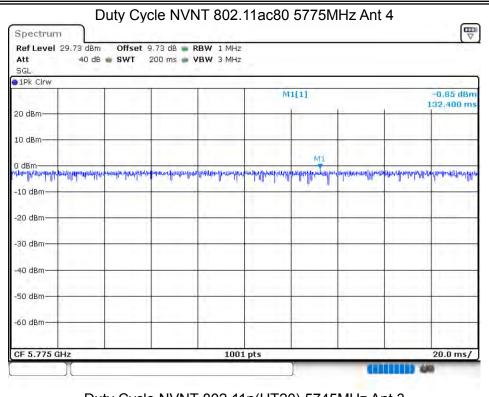

Version.1.2 Page 82 of 252

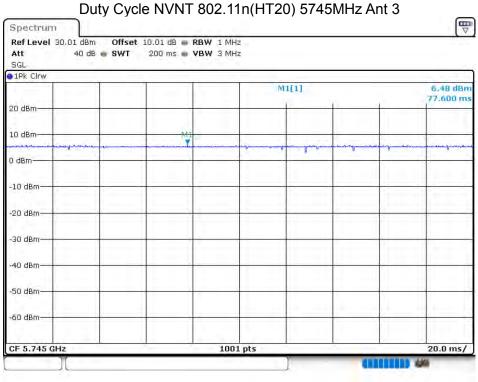
Version.1.2 Page 83 of 252


Version.1.2 Page 84 of 252

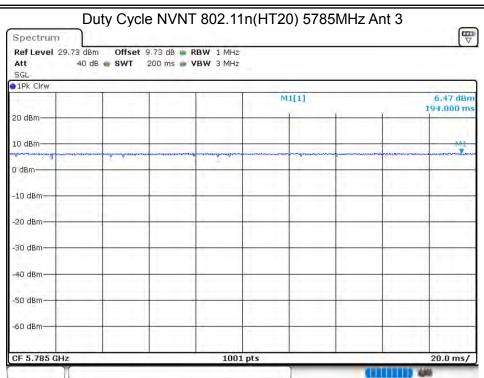
20.0 ms/

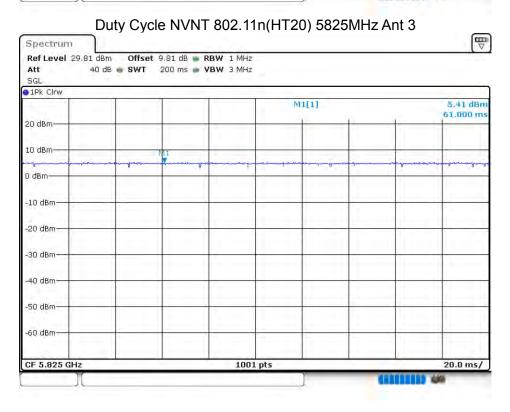
-10 dBm-

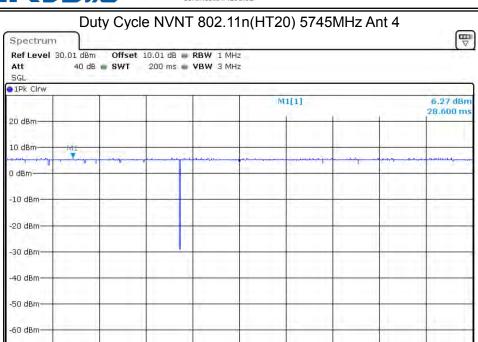

-40 dBm· -50 dBm· -60 dBm·

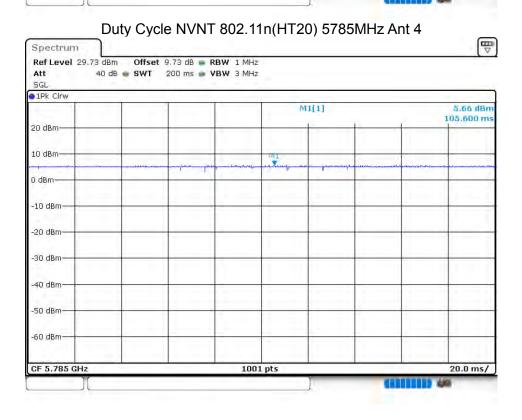

CF 5.775 GHz

Version.1.2 Page 85 of 252

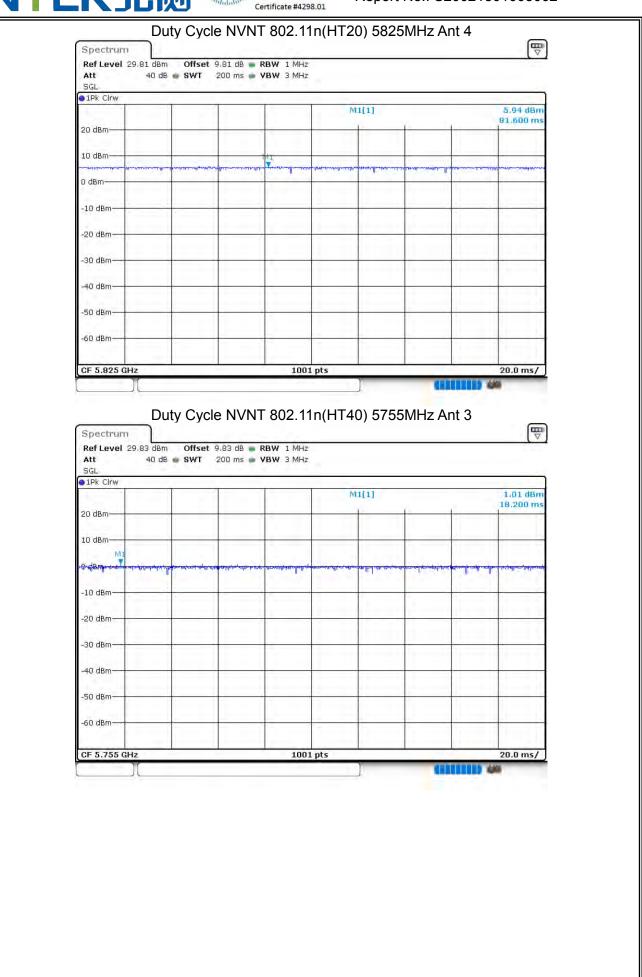

1001 pts




Version.1.2 Page 86 of 252

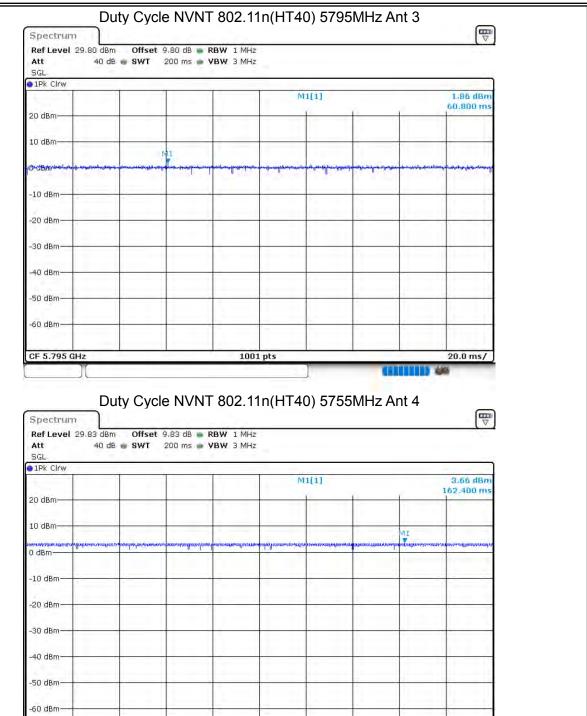


Version.1.2 Page 87 of 252 CF 5.745 GHz


1001 pts

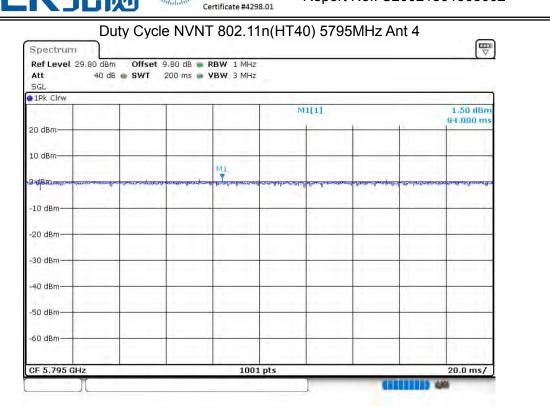
20.0 ms/

Version.1.2 Page 88 of 252



Version.1.2 Page 89 of 252

CF 5.755 GHz



20.0 ms/

Version.1.2 Page 90 of 252

1001 pts

Version.1.2 Page 91 of 252

11.2 MAXIMUM CONDUCTED OUTPUT POWER

5.2G

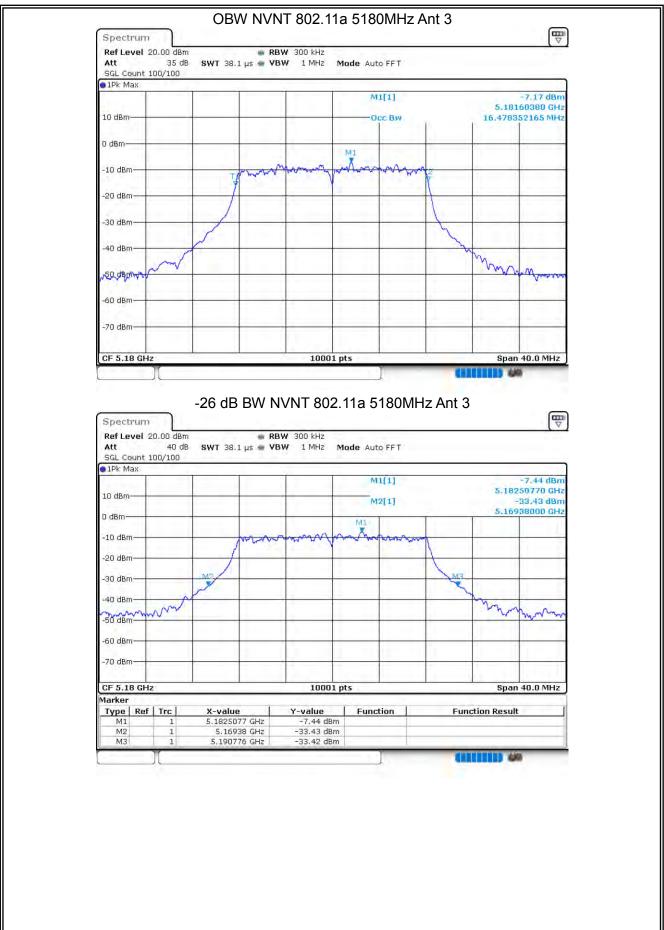
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	802.11a	5180	Ant 3	10.42	0		24	Pass
NVNT	802.11a	5200	Ant 3	10.66	0		24	Pass
NVNT	802.11a	5240	Ant 3	10.42	0		24	Pass
NVNT	802.11a	5180	Ant 4	10.24	0		24	Pass
NVNT	802.11a	5200	Ant 4	10.56	0		24	Pass
NVNT	802.11a	5240	Ant 4	10.08	0		24	Pass
NVNT	802.11ac20	5180	Ant 3	10.71	0	12.50	23.1	Pass
NVNT	802.11ac20	5180	Ant 4	10.25	0	13.50	23.1	Pass
NVNT	802.11ac20	5200	Ant 3	10.85	0	13.77	23.1	Pass
NVNT	802.11ac20	5200	Ant 4	10.67	0	13.77	23.1	Pass
NVNT	802.11ac20	5240	Ant 3	10.66	0	13.46	23.1	Pass
NVNT	802.11ac20	5240	Ant 4	10.22	0	13.40	23.1	Pass
NVNT	802.11ac40	5190	Ant 3	10.35	0	12.99	23.1	Pass
NVNT	802.11ac40	5190	Ant 4	9.57	0	12.99	23.1	Pass
NVNT	802.11ac40	5230	Ant 3	9.31	0	12.48	23.1	Pass
NVNT	802.11ac40	5230	Ant 4	9.63	0	12.40	23.1	Pass
NVNT	802.11ac80	5210	Ant 3	9.93	0	12.52	23.1	Pass
NVNT	802.11ac80	5210	Ant 4	9.04	0	12.52	23.1	Pass
NVNT	802.11n(HT20)	5180	Ant 3	10.63	0	13.49	23.1	Pass
NVNT	802.11n(HT20)	5180	Ant 4	10.32	0	13.49	23.1	Pass
NVNT	802.11n(HT20)	5200	Ant 3	10.88	0	13.81	23.1	Pass
NVNT	802.11n(HT20)	5200	Ant 4	10.72	0	13.01	23.1	Pass
NVNT	802.11n(HT20)	5240	Ant 3	10.63	0	13.44	23.1	Pass
NVNT	802.11n(HT20)	5240	Ant 4	10.21	0	13.44	23.1	Pass
NVNT	802.11n(HT40)	5190	Ant 3	10.33	0	12.98	23.1	Pass
NVNT	802.11n(HT40)	5190	Ant 4	9.57	0	12.90	23.1	Pass
NVNT	802.11n(HT40)	5230	Ant 3	9.29	0	12.48	23.1	Pass
NVNT	802.11n(HT40)	5230	Ant 4	9.65	0	12.48	23.1	Pass

Version.1.2 Page 92 of 252

5.8G:

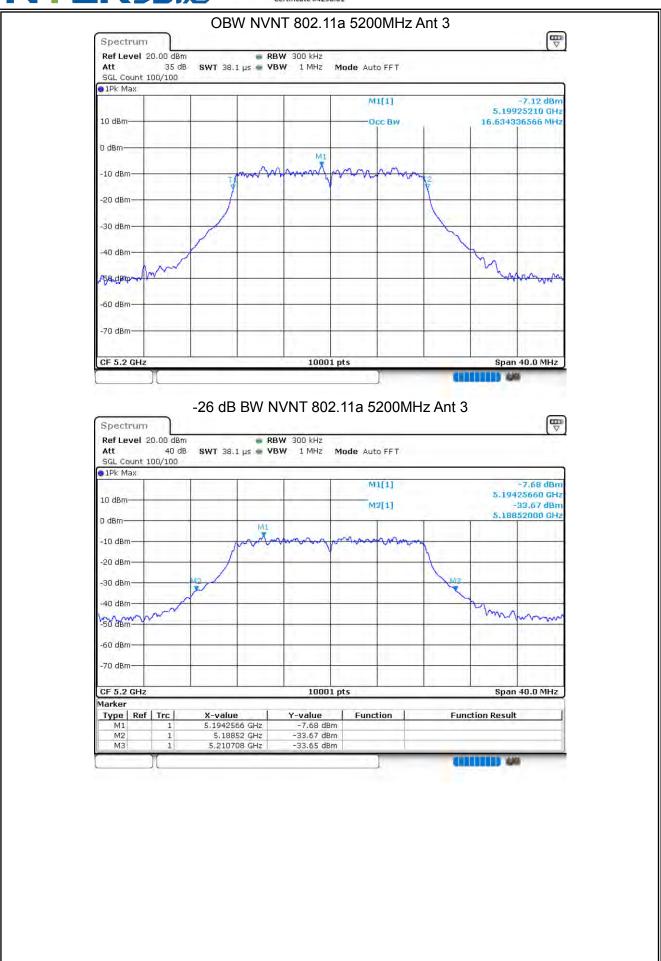
Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdi
		(MHz)		Power (dBm)	Factor	Power	(dBm)	ct
					(dB)	(dBm)		
NVNT	802.11a	5745	Ant 3	10.08	0		30	Pass
NVNT	802.11a	5785	Ant 3	10.83	0		30	Pass
NVNT	802.11a	5825	Ant 3	9.74	0		30	Pass
NVNT	802.11a	5745	Ant 4	10.2	0		30	Pass
NVNT	802.11a	5785	Ant 4	10.07	0		30	Pass
NVNT	802.11a	5825	Ant 4	10.32	0		30	Pass
NVNT	802.11ac20	5745	Ant 3	10.46	0	13.47	29.1	Pass
NVNT	802.11ac20	5745	Ant 4	10.46	0	13.47	29.1	Pass
NVNT	802.11ac20	5785	Ant 3	10.93	0	13.45	29.1	Pass
NVNT	802.11ac20	5785	Ant 4	9.89	0	13.45	29.1	Pass
NVNT	802.11ac20	5825	Ant 3	9.77	0	13.05	29.1	Pass
NVNT	802.11ac20	5825	Ant 4	10.29	0	13.05	29.1	Pass
NVNT	802.11ac40	5755	Ant 3	10.33	0	13.18	29.1	Pass
NVNT	802.11ac40	5755	Ant 4	10.01	0	13.10	29.1	Pass
NVNT	802.11ac40	5795	Ant 3	10.78	0	13.54	29.1	Pass
NVNT	802.11ac40	5795	Ant 4	10.27	0	13.54	29.1	Pass
NVNT	802.11ac80	5775	Ant 3	10.13	0	12.76	29.1	Pass
NVNT	802.11ac80	5775	Ant 4	9.33	0	12.70	29.1	Pass
NVNT	802.11n(HT20)	5745	Ant 3	10.12	0	13.22	29.1	Pass
NVNT	802.11n(HT20)	5745	Ant 4	10.29	0	13.22	29.1	Pass
NVNT	802.11n(HT20)	5785	Ant 3	10.89	0	13.48	29.1	Pass
NVNT	802.11n(HT20)	5785	Ant 4	10.01	0	13.40	29.1	Pass
NVNT	802.11n(HT20)	5825	Ant 3	9.79	0	13.19	29.1	Pass
NVNT	802.11n(HT20)	5825	Ant 4	10.53	0	13.19	29.1	Pass
NVNT	802.11n(HT40)	5755	Ant 3	10.42	0	13.29	29.1	Pass
NVNT	802.11n(HT40)	5755	Ant 4	10.13	0	13.29	29.1	Pass
NVNT	802.11n(HT40)	5795	Ant 3	10.78	0	13.51	29.1	Pass
NVNT	802.11n(HT40)	l1n(HT40) 5795 Ar		10.19	0	13.51	29.1	Pass

Version.1.2 Page 93 of 252


11.3 OCCUPIED CHANNEL BANDWIDTH

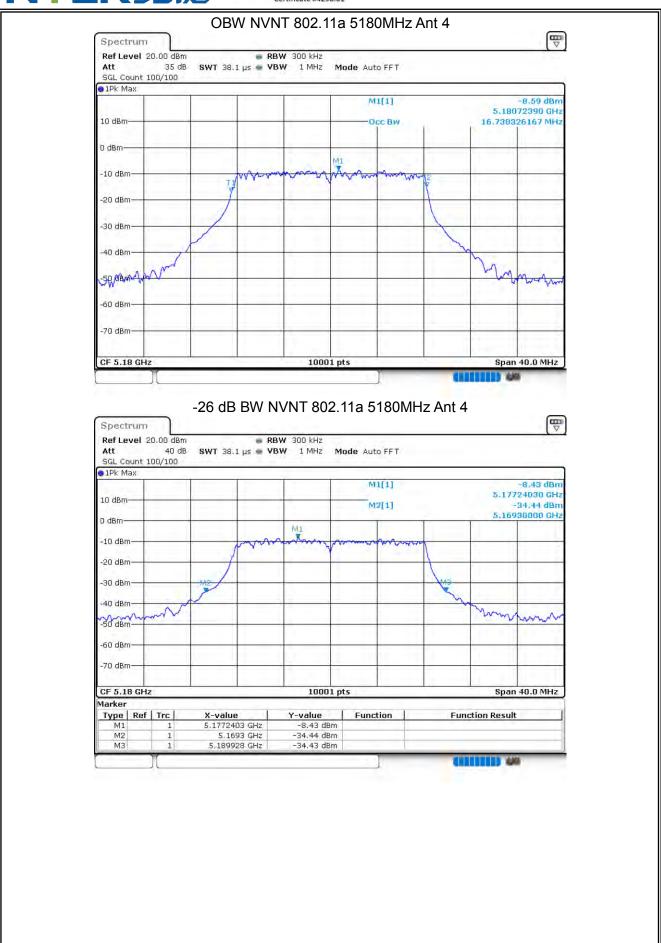
5.2G:						
Condition	Mode	Frequency	Antenna	99% OBW	-26 dB	Verdic
		(MHz)		(MHz)	Bandwidth	t
					(MHz)	
NVNT	802.11a	5180	Ant 3	16.4784	21.396	Pass
NVNT	802.11a	5200	Ant 3	16.6343	22.188	Pass
NVNT	802.11a	5240	Ant 3	16.8503	21.716	Pass
NVNT	802.11a	5180	Ant 4	16.7383	20.628	Pass
NVNT	802.11a	5200	Ant 4	16.7383	21.7	Pass
NVNT	802.11a	5240	Ant 4	16.6143	22.008	Pass
NVNT	802.11ac20	5180	Ant 3	17.8342	22.78	Pass
NVNT	802.11ac20	5200	Ant 3	17.9462	23.024	Pass
NVNT	802.11ac20	5240	Ant 3	17.8622	22.008	Pass
NVNT	802.11ac20	5180	Ant 4	17.8182	22.624	Pass
NVNT	802.11ac20	5200	Ant 4	17.7902	22.564	Pass
NVNT	802.11ac20	5240	Ant 4	18.0302	23.084	Pass
NVNT	802.11ac40	5190	Ant 3	36.4604	44.264	Pass
NVNT	802.11ac40	5230	Ant 3	36.4684	45.816	Pass
NVNT	802.11ac40	5190	Ant 4	36.4604	44.712	Pass
NVNT	802.11ac40	5230	Ant 4	36.5723	45.056	Pass
NVNT	802.11ac80	5210	Ant 3	76.1524	91.456	Pass
NVNT	802.11ac80	5210	Ant 4	76.4724	92.4	Pass
NVNT	802.11n(HT20)	5180	Ant 3	18.0662	22.036	Pass
NVNT	802.11n(HT20)	5200	Ant 3	17.8102	22.38	Pass
NVNT	802.11n(HT20)	5240	Ant 3	17.8982	22.696	Pass
NVNT	802.11n(HT20)	5180	Ant 4	17.8622	21.912	Pass
NVNT	802.11n(HT20)	5200	Ant 4	18.1262	22.74	Pass
NVNT	802.11n(HT20)	5240	Ant 4	17.9542	22.3	Pass
NVNT	802.11n(HT40)	5190	Ant 3	36.4684	45.392	Pass
NVNT	802.11n(HT40)	5230	Ant 3	36.4924	45.872	Pass
NVNT	802.11n(HT40)	5190	Ant 4	36.4444	44.864	Pass
NVNT	802.11n(HT40)	5230	Ant 4	36.5803	46.088	Pass

Version.1.2 Page 94 of 252

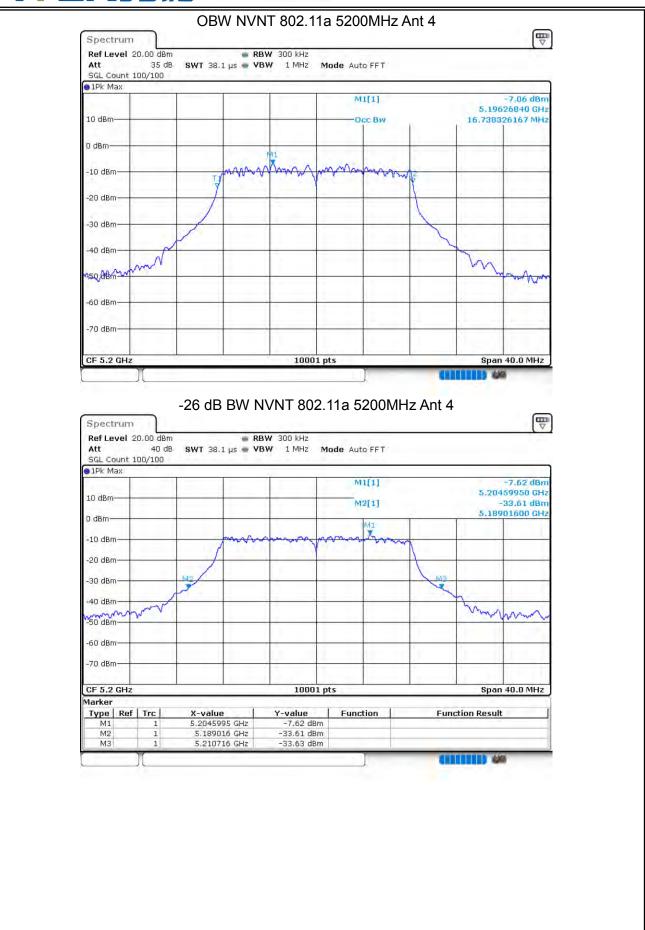


Version.1.2 Page 95 of 252

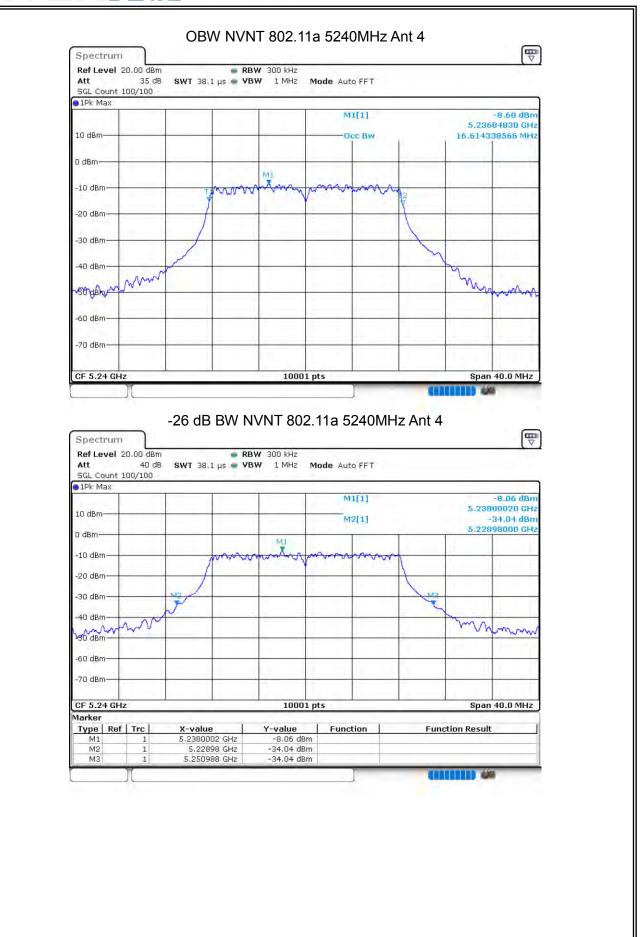
Version.1.2 Page 96 of 252



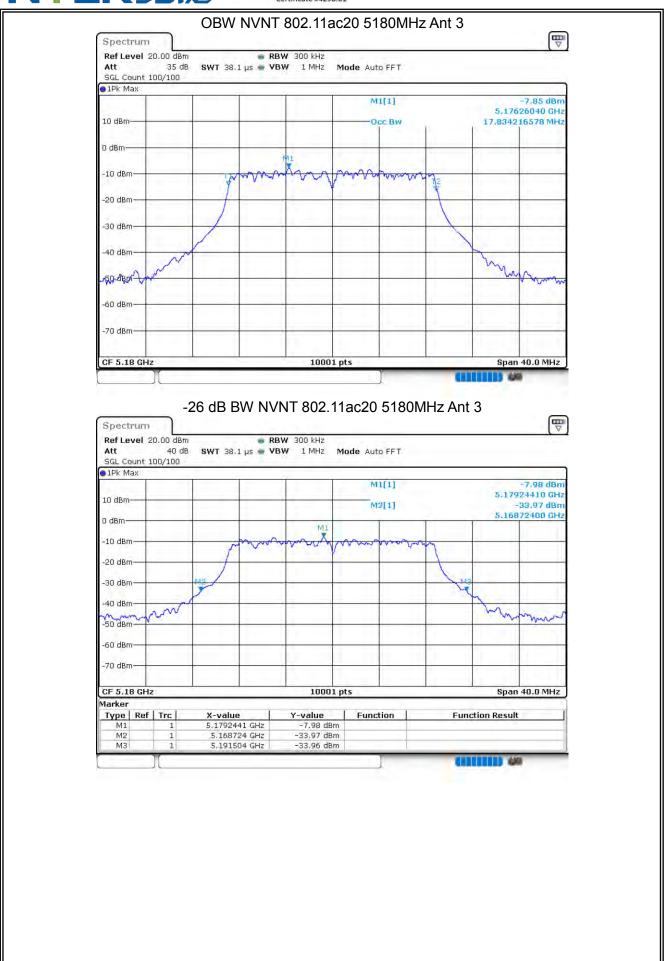
Version.1.2 Page 97 of 252



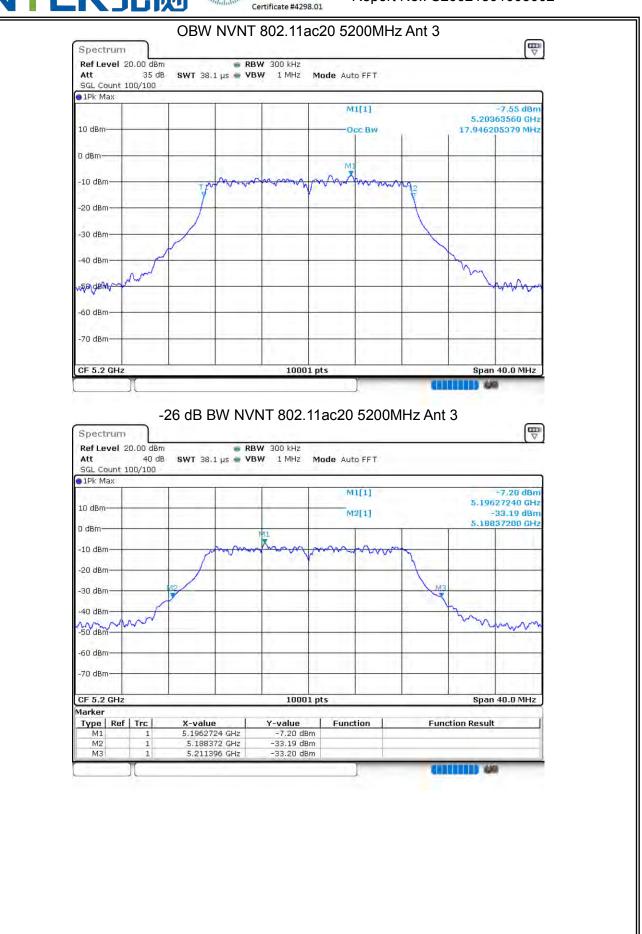
Version.1.2 Page 98 of 252



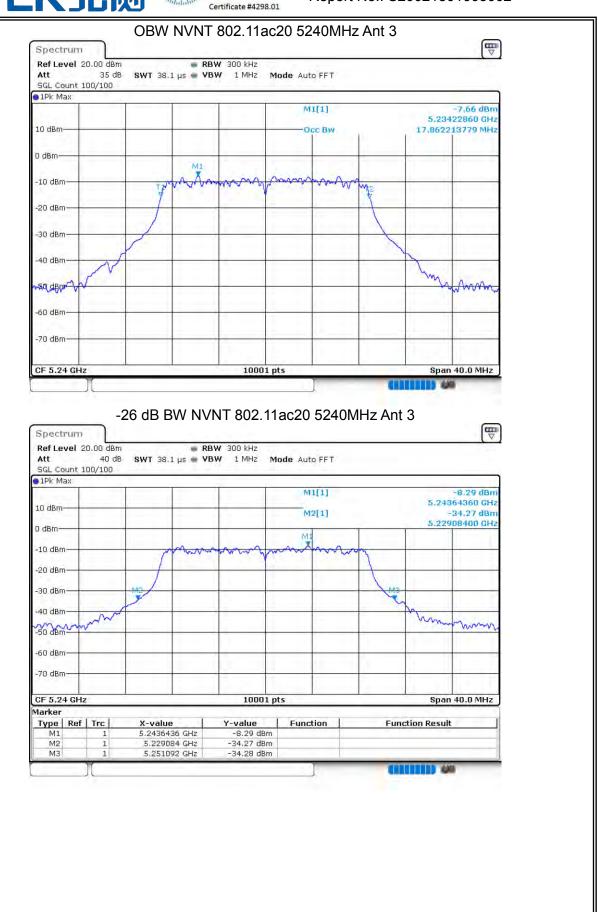
Version.1.2 Page 99 of 252



Version.1.2 Page 100 of 252

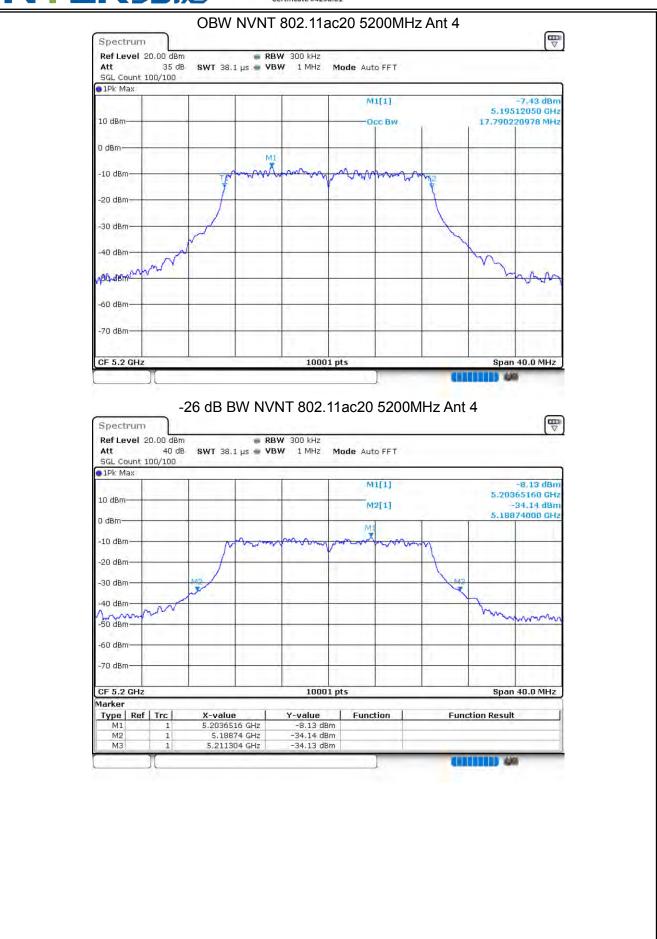


Version.1.2 Page 101 of 252

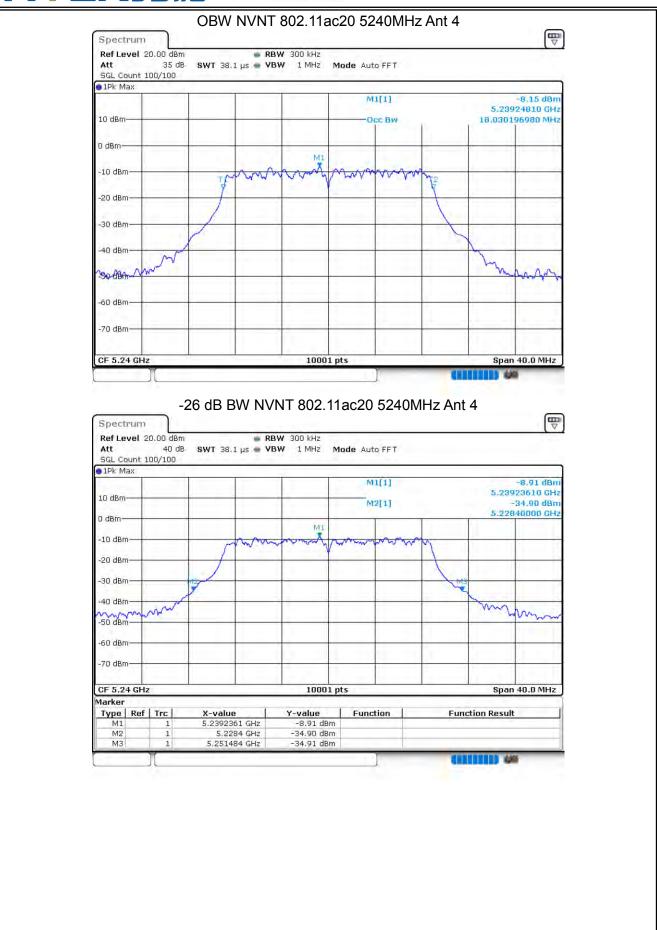


Version.1.2 Page 102 of 252

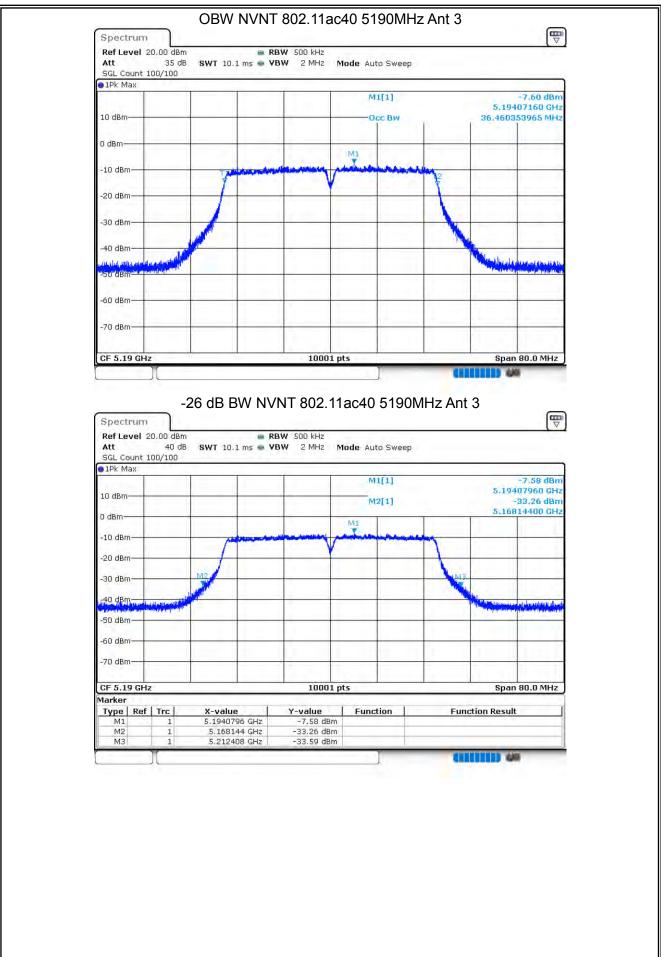
Version.1.2 Page 103 of 252



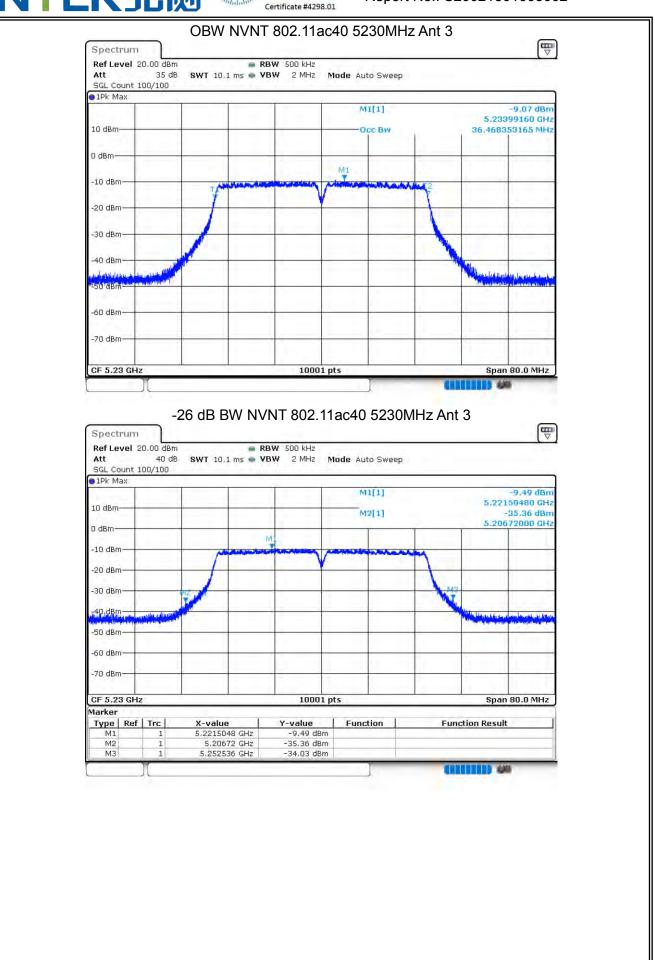
Version.1.2 Page 104 of 252



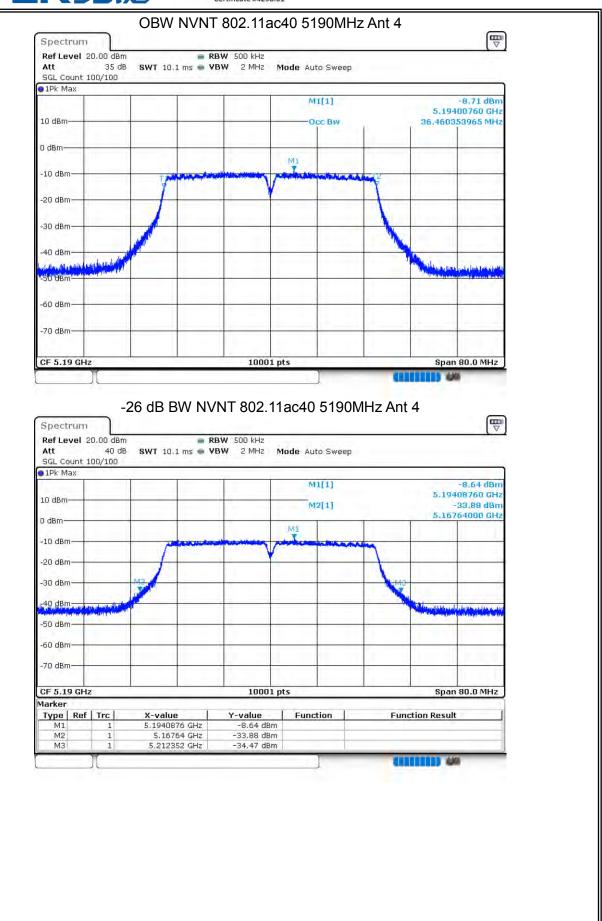
Version.1.2 Page 105 of 252



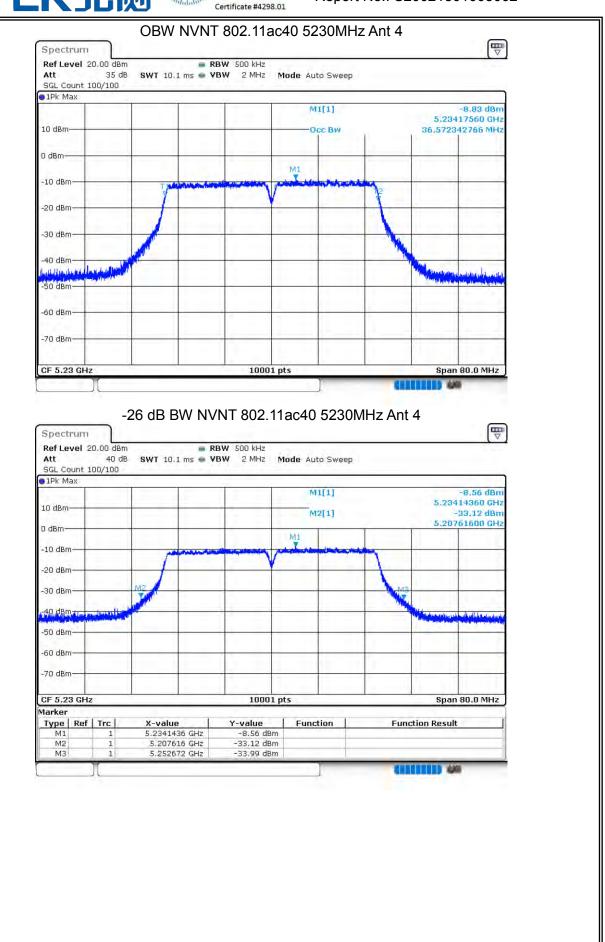
Version.1.2 Page 106 of 252



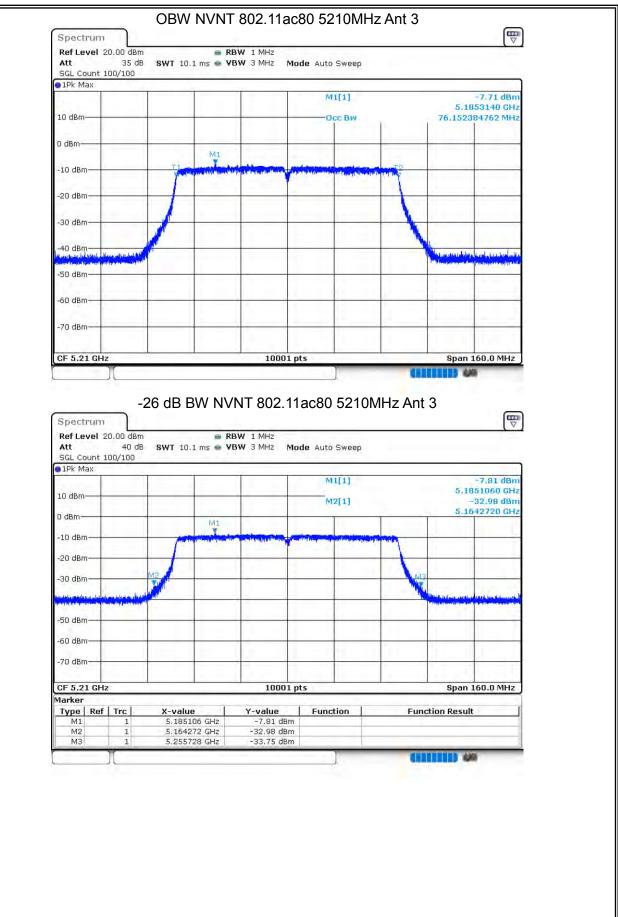
Version.1.2 Page 107 of 252



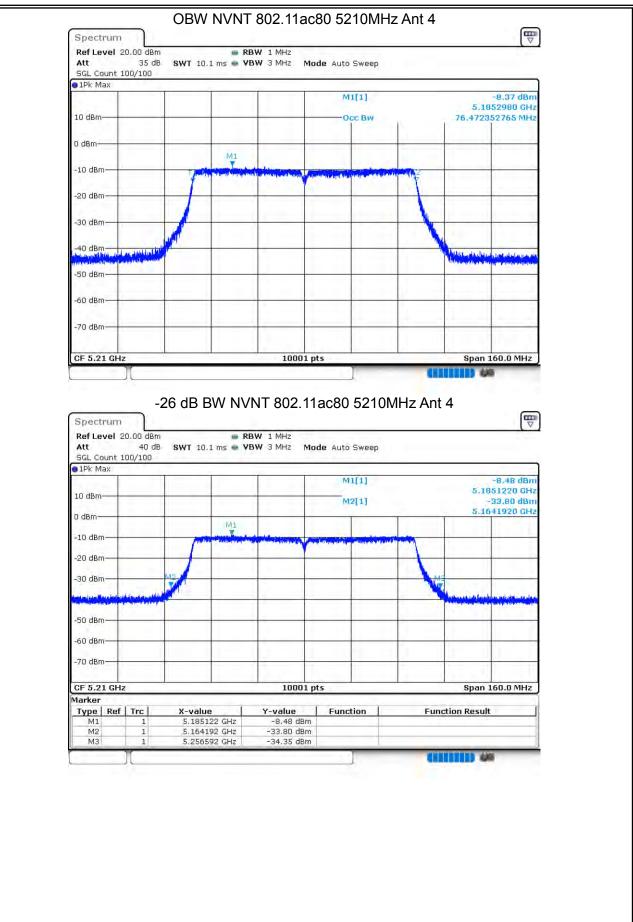
Version.1.2 Page 108 of 252



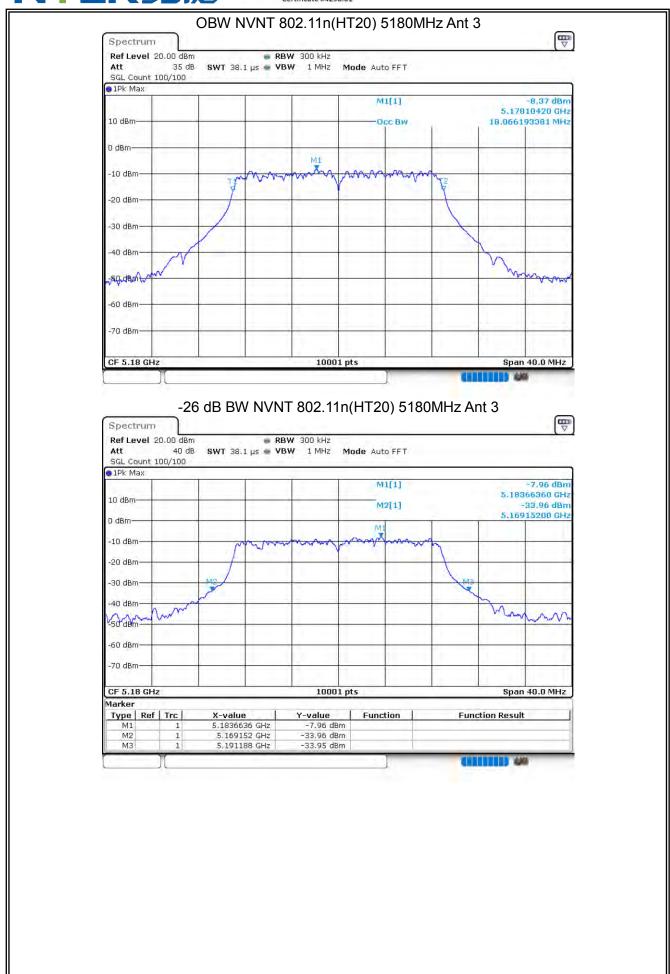
Version.1.2 Page 109 of 252



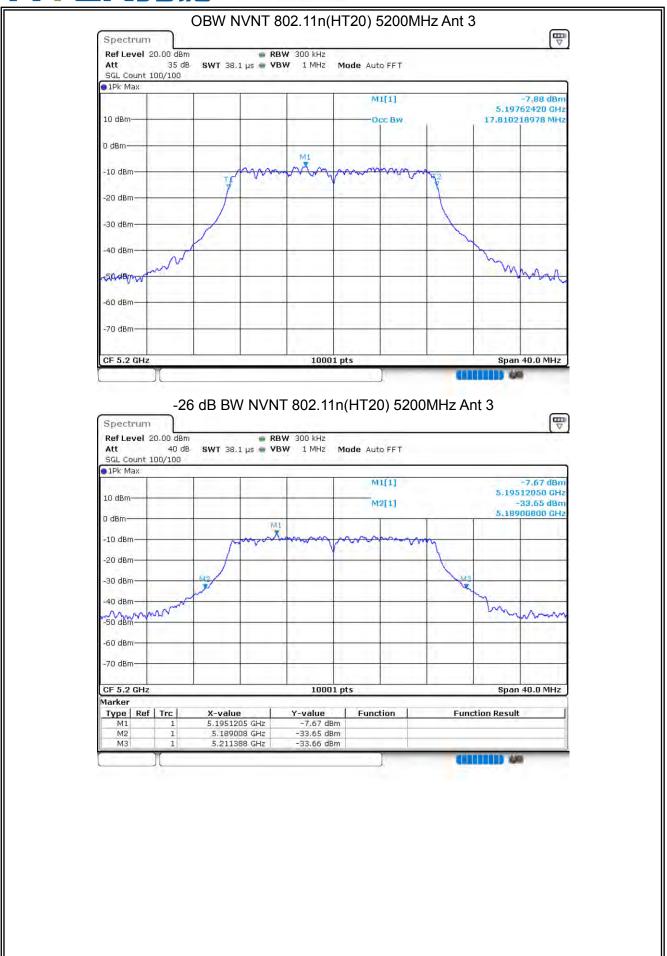
Version.1.2 Page 110 of 252



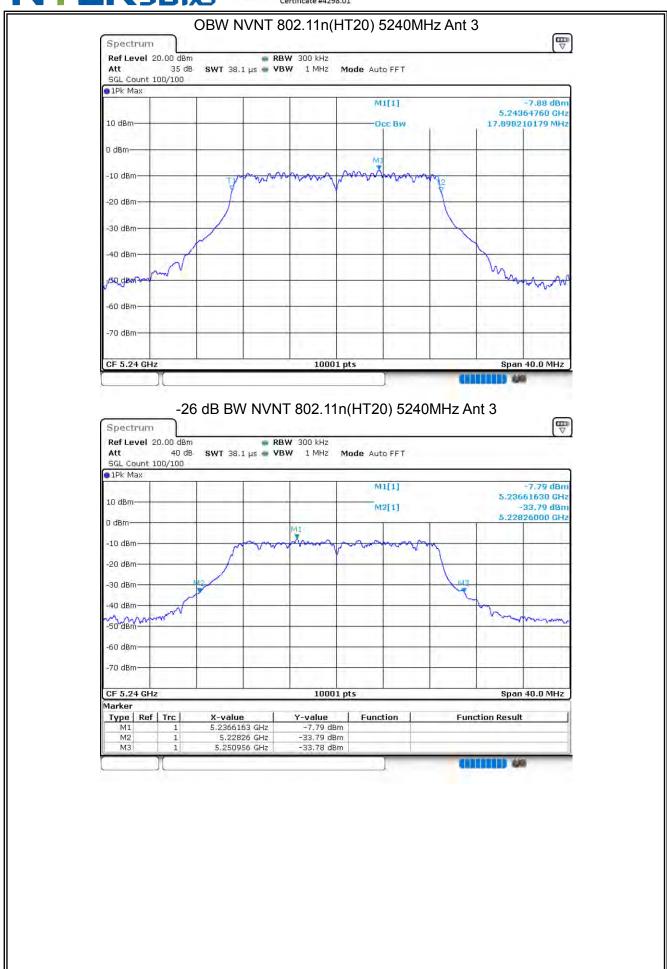
Version.1.2 Page 111 of 252



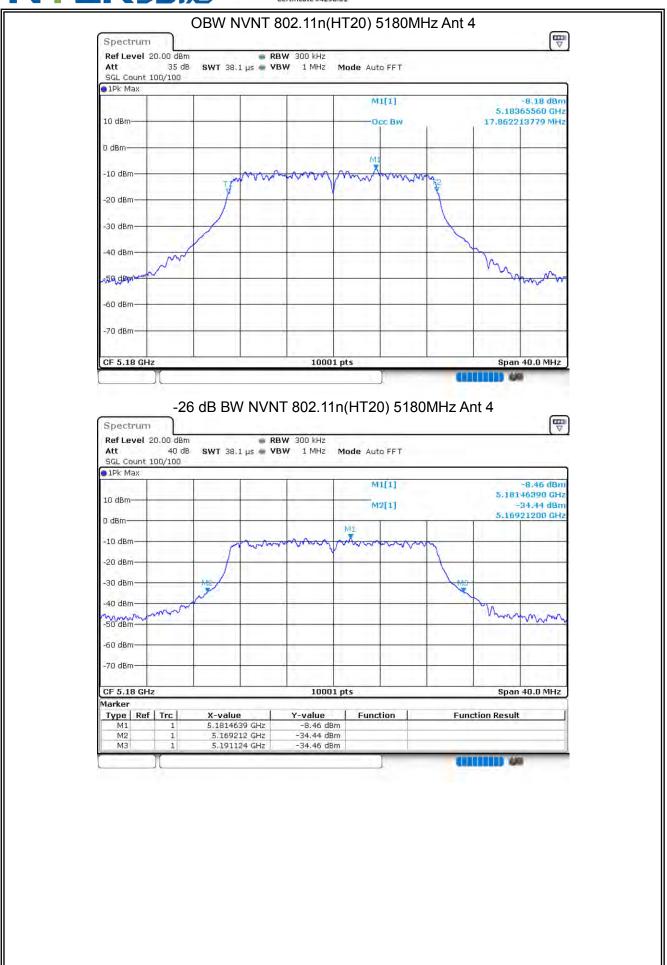
Version.1.2 Page 112 of 252



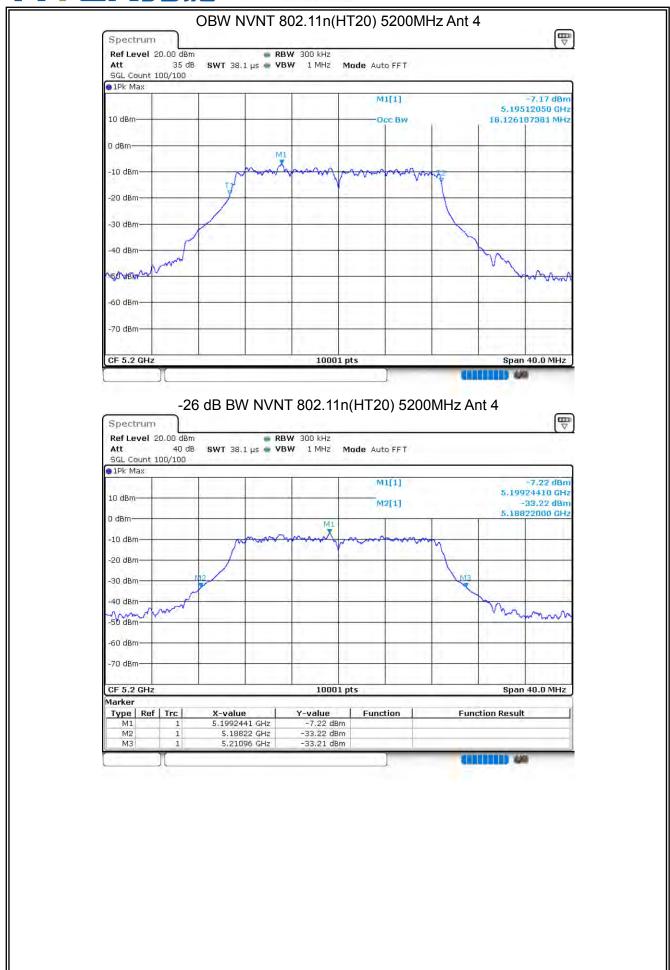
Version.1.2 Page 113 of 252



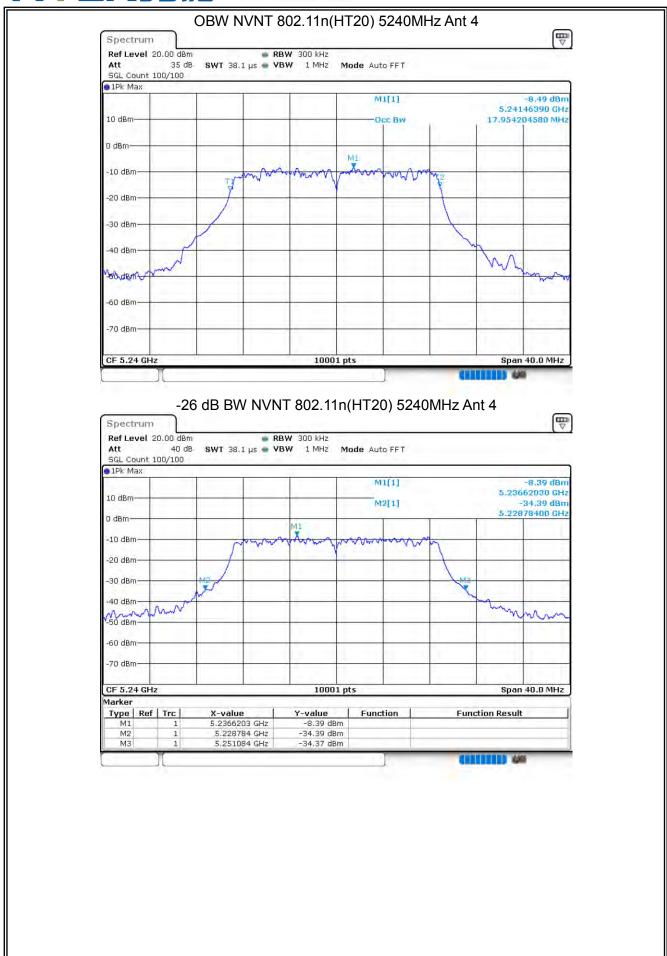
Version.1.2 Page 114 of 252



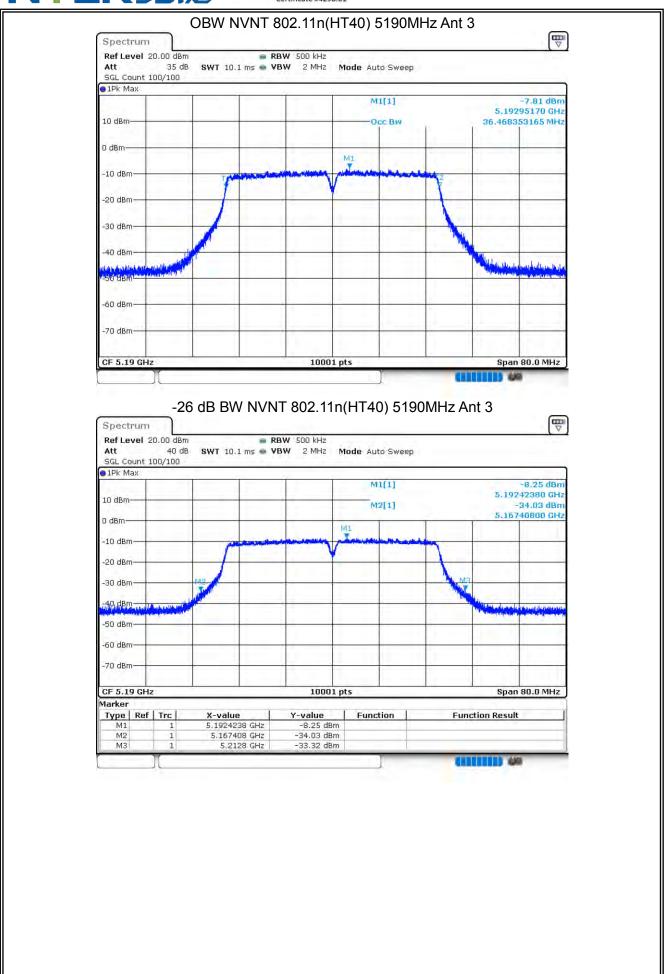
Version.1.2 Page 115 of 252



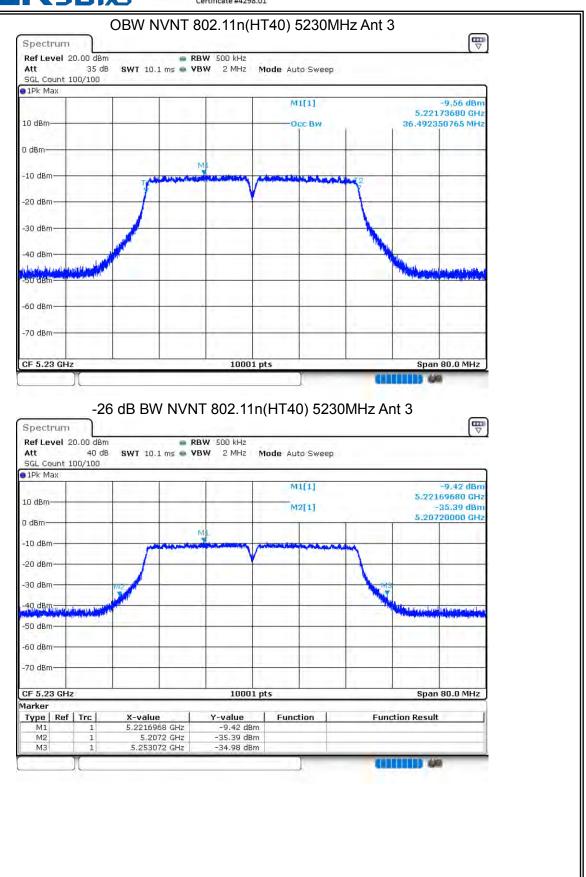
Version.1.2 Page 116 of 252



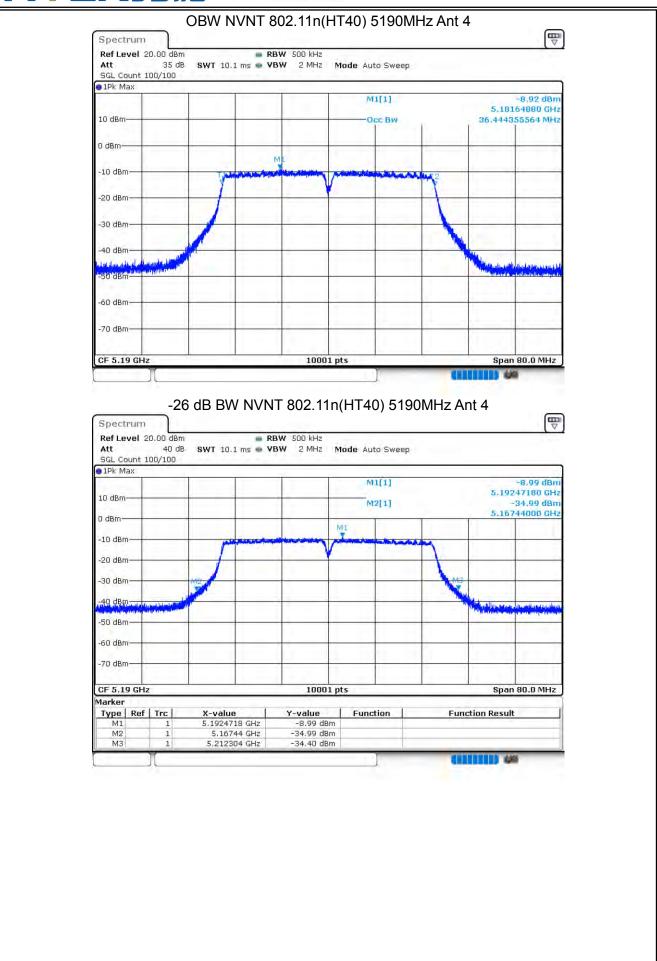
Version.1.2 Page 117 of 252



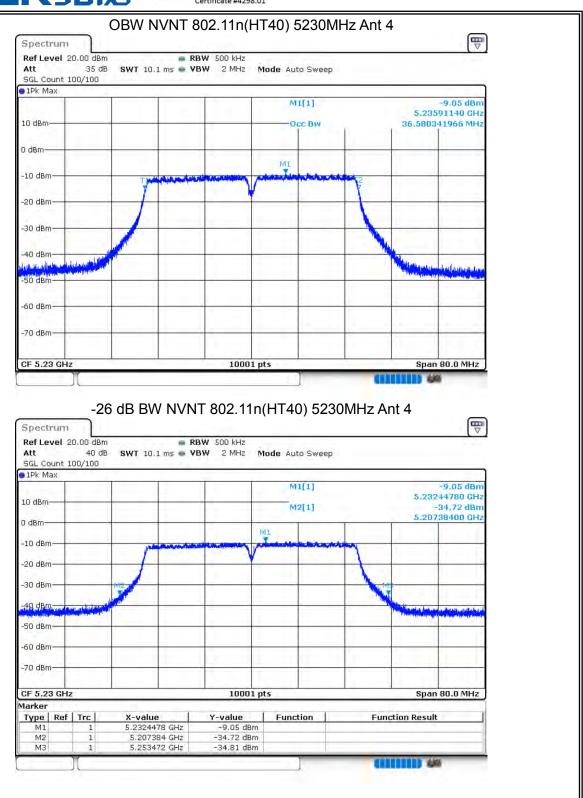
Version.1.2 Page 118 of 252



Version.1.2 Page 119 of 252



Version.1.2 Page 120 of 252



Version.1.2 Page 121 of 252

Version.1.2 Page 122 of 252