

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Fax: +86-512-66308368 Web: www.mrt-cert.com Report No.: 1411RSU01404 Report Version: V01 Issue Date: 12-02-2014

MEASUREMENT REPORT FCC PART 22&24 Portable Handset

FCC ID: 2AAA6S515

APPLICANT: SENWA MEXICO, S.A.DE C.V

Application Type: Certification

Product: S515

Model No.: S515

Brand Name: SENWA

FCC Classification: PCS Licensed Transmitter Held to Ear (PCE)

FCC Rule Part(s): Part2, Part22 Subpart H, Part24 Subpart E

Nov. 13 ~ 24, 2014

Test Procedure(s): ANSI/TIA-603-C-2004, KDB 971168 D01v02r01

Test Date:

: Robin Wu) **Reviewed By** : Marlinchen Approved By TESTING LABORATORY (Marlin Chen) CERTIFICATE #3628.01

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date 12-02-2014	
1411RSU01404	Rev. 01	Initial report		

CONTENTS

Des	scriptio	n Pa	ge
§2. 1	1033 Ge	eneral Information	5
1.	INTRO	DOUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	
2.	PROD	UCT INFORMATION	7
	2.1.	Equipment Description	7
	2.2.	Device Capabilities	
	2.3.	Test Configuration	7
	2.4.	EMI Suppression Device(s)/Modifications	7
3.	DESC	RIPTION of TEST	8
	3.1.	Evaluation Procedure	8
	3.2.	Cellular - Base Frequency Blocks	8
	3.3.	Cellular - Mobile Frequency Blocks	8
	3.4.	PCS - Base Frequency Blocks	8
	3.5.	PCS - Mobile Frequency Blocks	9
	3.6.	Occupied Bandwidth	9
	3.7.	Spurious and Harmonic Emissions at Antenna Terminal	9
	3.8.	Radiated Power and Radiated Spurious Emissions	10
	3.9.	Peak-Average Ratio	11
	3.10.	Frequency Stability / Temperature Variation	11
4.	TEST	EQUIPMENT CALIBRATION DATE	12
5.	SAMP	LE CALCULATIONS	13
6.	MEAS	UREMENT UNCERTAINTY	14
7.	TEST	RESULT	15
	7.1.	Summary	15
	7.2.	Occupied Bandwidth	16
	7.2.1.	Test Limit	16
	7.2.2.	Test Procedure used	16
	7.2.3.	Test Setting	16
	7.2.4.	Test Setup	16
	7.2.5.	Test Result	17
	7.3.	Spurious and Harmonic Emissions at Antenna Terminal	21
	7.3.1.	Test Limit	21

7.3.2.	Test Procedure Used	. 21
7.3.3.	Test Setting	. 21
7.3.4.	Test Setup	. 21
7.3.5.	Test Result	. 22
7.4.	Conducted & Radiated Power and Radiated Spurious Emissions	. 30
7.4.1.	Test Limit	. 30
7.4.2.	Test Procedure Used	. 30
7.4.3.	Test Setting	. 30
7.4.4.	Test Setup	. 32
7.4.5.	Test Result	. 33
7.5.	Peak-Average Ratio	. 41
7.5.1.	Test Limit	. 41
7.5.2.	Test Procedure	. 41
7.5.3.	Test Setup	. 41
7.5.4.	Test Result	. 42
7.6.	Frequency Stability Under Temperature & Voltage Variations	. 44
7.6.1.	Test Limit	. 44
7.6.2.	Test Procedure	. 44
7.6.3.	Test Setup	. 44
7.6.4.	Test Result	. 45
CONC	LUSION	. 49

8.

§2.1033 General Information

Applicant:	SENWA MEXICO, S.A.DE C.V	
Applicant Address:	Av. Javier Barros Sierra 540, Torre I, Planta 5; COL. LOMAS DE	
	SANTA FE DELEGACION ALVARO OBREGON C.P. 01210	
	MEXICO, DISTRITO FEDERAL	
Manufacturer:	SHEN ZHEN IMO ELECTRONIC TECHENLOGY CO., LTD	
Manufacturer Address:	A807 Haisong Building, 9 Tairan Road, Che Kung Temple, Futian	
	District, Shenzhen	
Test Site:	MRT Technology (Suzhou) Co., Ltd	
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong	
	Economic Development Zone, Suzhou, China	
MRT Registration No.:	809388	
FCC Rule Part(s):	Part22 Subpart H, Part24 Subpart E	
Model No.:	S515	
FCC ID:	2AAA6S515	
Test Device Serial No.:	N/A Production Pre-Production Engineering	
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)	

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 809388) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-4179, G-814, C-4664, T-2206) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, EU and TELEC Rules.

- A A A A A A A A A A A A A A A A A A A	1. 1.7.1
Acc	redited Laboratory
	A2LA has according
MRT TECHN	NOLOGY (SUZHOU) CO., LTD.
	Suzhou, China
	for technical competence in the field of
	Electrical Testing
the competence of testing and colderation to	e with the recorptized International Standard ISO/IEC 17025-2005 General requirements for obsevances. This accorditation demonstrates technical competence for a defined scope and th anageneous system (refer to joint 203-81.4C-4.0F Communique Janual 8 January 2009).
	Presented this 17th day of June 2014.
	De De
and the second s	Leter Allage
1-13	For the Accorditation Connell
31 1 2 1 3	Certificate Number 3628.01 Valid to August 31, 2016

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	S515
Model No.	S515
Brand Name	SENWA
Antenna Type	Internal
Antenna Gain	GSM850: 0dBi
	PCS1900: 1.0dBi
	WCDMA BAND II: 1.0dBi
	WCDMA BAND V: 0dBi
Type of Modulation	GSM / GPRS: GMSK
	WCDMA/HSDPA/HSUPA: QPSK (Uplink)

Note: The test data contained in this report only to the emissions due to the EUT's 2G/3G licensed transmitters. The test report has showed the worst test mode.

2.2. Device Capabilities

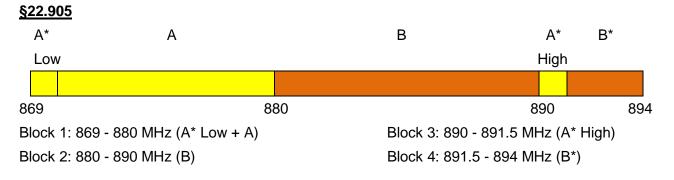
This device contains the following capabilities:

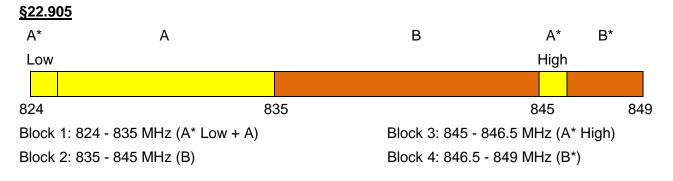
850/1900 GSM/GPRS, 1900 WCDMA/HSDPA/HSUPA, 802.11b/g/n WLAN (DTS), Bluetooth (1x, EDR, BLE)

2.3. Test Configuration

The **S515 FCC ID: 2AAA6S515** was tested per the guidance of ANSI/TIA-603-C-2004 and KDB 971168 D01v02r01. See section 3.0 of this report for a description of the radiated and antenna port conducted emissions tests.

2.4. EMI Suppression Device(s)/Modifications

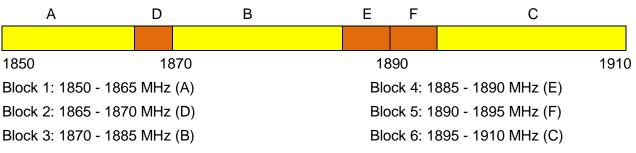

No EMI suppression device(s) were added and no modifications were made during testing.


3. DESCRIPTION of TEST

3.1. Evaluation Procedure

3.2. Cellular - Base Frequency Blocks

3.3. Cellular - Mobile Frequency Blocks


3.4. PCS - Base Frequency Blocks

<u>§24.22</u>	<u>29</u>						
	A	D	В	Е	F	С	
1930		1950		19	970		1990
Block 1: 1930 - 1945 MHz (A)				Blo	ock 4: 1	965 - 1970 MHz (E)	
Block 2: 1945 - 1950 MHz (D)				Blo	ock 5: 1	970 - 1975 MHz (F)	
Block	3: 1950 - 1965	MHz (B)		Blo	ock 6: 1	975 - 1990 MHz (C)	

3.5. PCS - Mobile Frequency Blocks

<u>§24.229</u>

3.6. Occupied Bandwidth

<u>§2.1049</u>

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The spectrum analyzers' "occupied bandwidth" measurement function was used to record the occupied bandwidth in accordance with KDB 971168.

3.7. Spurious and Harmonic Emissions at Antenna Terminal

§2.1051 §22.917(a) §24.238(a)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for Part 22 and 1 MHz or greater for Part 24. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

3.8. Radiated Power and Radiated Spurious Emissions

§2.1053 §22.913(a.2) §22.917(a) §24.232(c) §24.238(a)

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurement and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. A 80cm high PVC support structure is placed on top of the turntable.

The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168.

Per the guidance of ANSI/TIA-603-C-2004, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

Pd [dBm] = Pg [dBm] - cable loss [dB] + antenna gain [dBd/dBi]

Where, Pd is the dipole equivalent power, Pg is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to Pg [dBm] - cable loss [dB].

The calculated Pd levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10*log10(Power [Watts]) specified in 22.917(a) and 24.238(a).

3.9. Peak-Average Ratio

<u>§24.232(d)</u>

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

For pulsed signals, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power. For continuous signals, the trigger is set to "free run" in the CCDF measurement mode.

3.10. Frequency Stability / Temperature Variation

<u>§2.1055 §22.355 §22.863 §22.905 §24.229 §24.235</u>

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-C-2004. The frequency stability of the transmitter is measured by:

a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.

b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification - For Part 22, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency. For Part 24, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Time Period and Procedure:

1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

4. TEST EQUIPMENT CALIBRATION DATE

Radiated Emission

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cal. Date
Spectrum Analyzer	Agilent	N9010A	MY5144016A	1 year	2015/01/04
Radio Communication Tester	R&S	CMU 200	117129	1 year	2014/12/14
Preamplifier	MRT	AP01G18	1310002	1 year	2014/12/14
Loop Antenna	Schwarzbeck	FMZB1519	1519-041	1 year	2015/11/08
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	1 year	2015/11/08
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1167	1 year	2015/11/08
Broadband Horn Antenna	Schwarzbeck	BBHA9170	9170-549	1 year	2014/12/11
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2015/11/14

Conducted Test Equipment

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Agilent	N9010A	MY5144016A	1 year	2015/01/04
Radio Communication Tester	R&S	CMU 200	117129	1 year	2014/12/14
DC Power Supply	GWINSTEK	GPS-3030D	EM861052	1 year	2015/11/13
Programmable Temperature &	BAOYT	BYH-1500L	1309W043	1.000	2015/11/20
Humidity Chamber	DAUTI		13090043	1 year	2015/11/20
Temperature/Humidity Meter	Anymetre	TH101B	TR3-01	1 year	2015/11/14

5. SAMPLE CALCULATIONS

GSM Emission Designator

Emission Designator = 250KGXW GSM BW = 250 kHz G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 250KG7W GSM BW = 250 kHz G = Phase Modulation 7 = Quantized/Digital Info W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M16F9W WCDMA BW = 4.16 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data) (Measured at the 99.75% power bandwidth)

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0dBm. The gain of the substituted antenna is 8.1dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40MHz. So 6.1 dB is added to the signal generator reading of -30.9dBm yielding -24.80dBm. The fundamental EIRP was 25.50dBm so this harmonic was 25.50dBm - (-24.80) = 50.3dBc.

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Radiated Emission Measurement

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

9kHz ~ 1GHz: ± 4.18dB

1GHz ~ 40GHz: ± 4.76dB

7. TEST RESULT

Product Name:	<u>S515</u>
FCC ID:	2AAA6S515
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	GSM / PCS / WCDMA Band II / WCDMA Band V

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1049	Occupied bandwidth	N/A		Pass	Section 7.2
2.1051	Band Edge /	> 43 + log10 (P[Watts]) at			
22.917(a)	Conducted Spurious	Band Edge and for all		Pass	Section 7.3
24.238(a)	Emissions	out-of-band emissions	Conducted		
24.232(d)	Peak-Average Ratio	< 13 dB		Pass	Section 7.5
2.1046	Transmitter Conducted	N/A		Pass	RF Exposure
2.1040	Output Power	N/A			Report
22.913(a.2)	Effective Radiated	< 7 Watts max. ERP		Pass	Section 7.4
22.913(a.2)	Power				
24.232(c)	Equivalent Isotropic	< 2 Watts max. EIRP		Pass	Section 7.4
24.232(0)	Radiated Power			1 835	
2.1053		> 43 + log10 (P[Watts]) for all	Radiated		
22.917(a)	Undesirable Emissions	out-of-band emissions	Raulaleu	Pass	Section 7.4
24.238(a)					
2.1055		< 2.5 ppm (Part 22)			
22.355	Frequency Stability	Emission must remain in		Pass	Section 7.6
24.235		band (Part 24)			

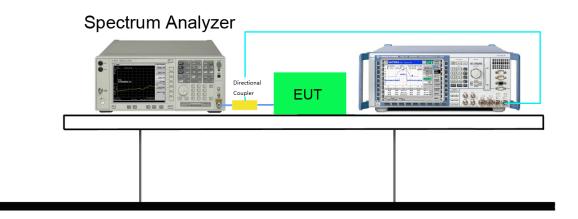
Notes:

- All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in Section 4.0 were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.

7.2. Occupied Bandwidth

7.2.1. Test Limit

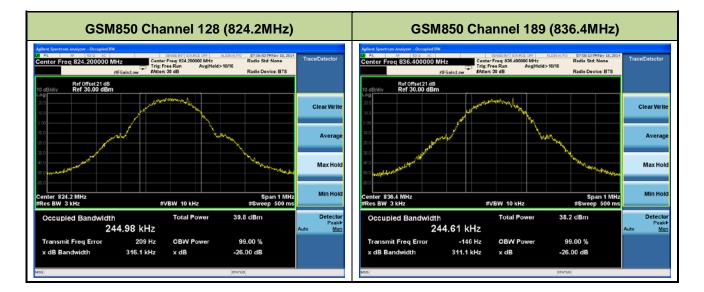
N/A

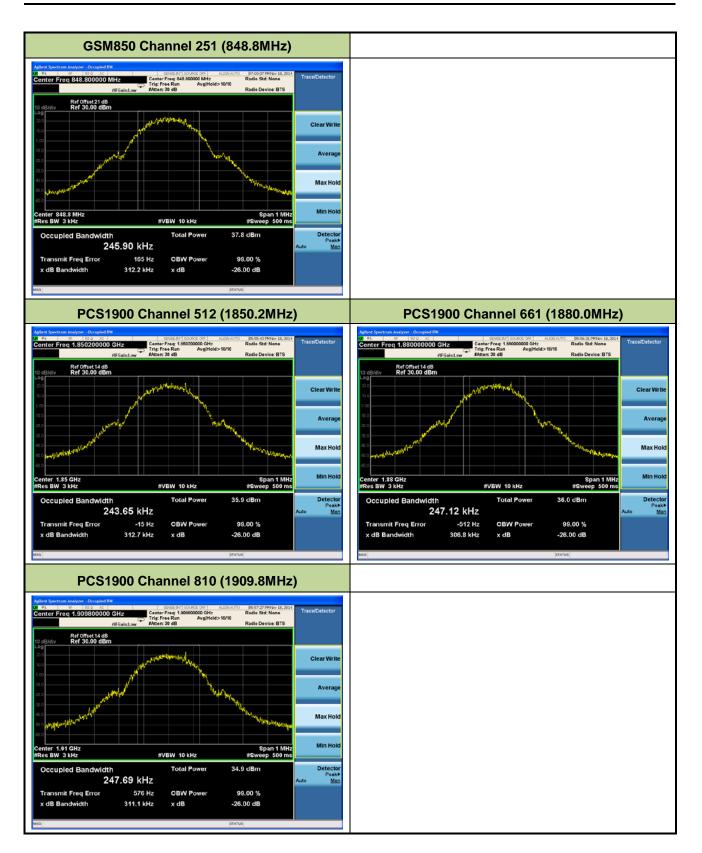

7.2.2. Test Procedure used

KDB 971168 D01v02r01 - Section 4.1 & ANSI/TIA-603-C-2004

7.2.3. Test Setting

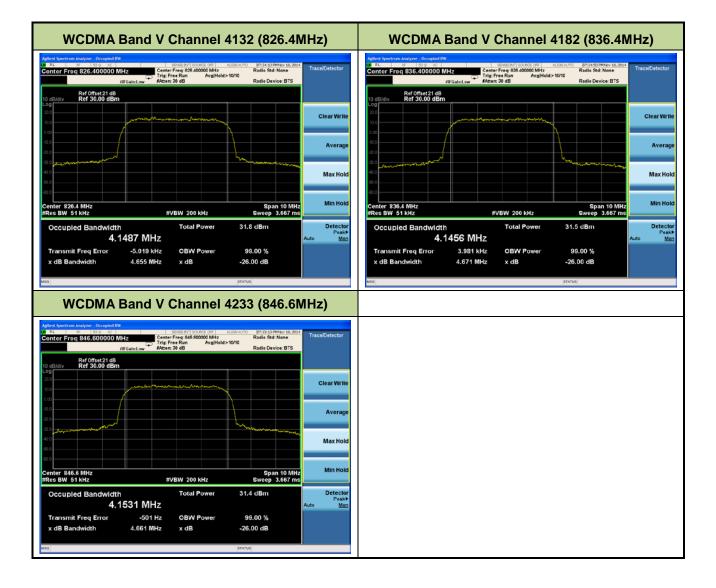
- The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW. RBW = approximately 1% of the emission bandwidth.
- 2. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- 3. Set the detection mode to peak, and the trace mode to max hold.
- 4. Use the 99 % power bandwidth function of the spectrum analyzer (if available) and report the measured bandwidth.


7.2.4. Test Setup



7.2.5. Test Result

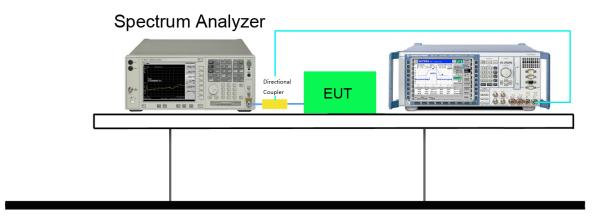
Test Mode	Channel No.	Frequency (MHz)	99% Occupied Bandwidth (kHz)	-26dB Occupied Bandwidth (kHz)	Result
	128	824.2	244.98	316.10	Pass
GSM850	189	836.4	244.61	311.10	Pass
	251	848.8	245.90	312.20	Pass
	512	1850.2	243.65	312.70	Pass
PCS1900	661	1880.0	247.12	306.80	Pass
	810	1909.8	247.69	311.10	Pass
	9262	1852.4	4161.00	4672.00	Pass
WCDMA Band II	9400	1880.0	4160.30	4672.00	Pass
	9538	1907.6	4167.30	4681.00	Pass
	4132	826.4	4148.70	4655.00	Pass
WCDMA Band V	4182	836.4	4145.60	4671.00	Pass
	4233	846.6	4153.10	4661.00	Pass



7.3. Spurious and Harmonic Emissions at Antenna Terminal

7.3.1. Test Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.


7.3.2. Test Procedure Used

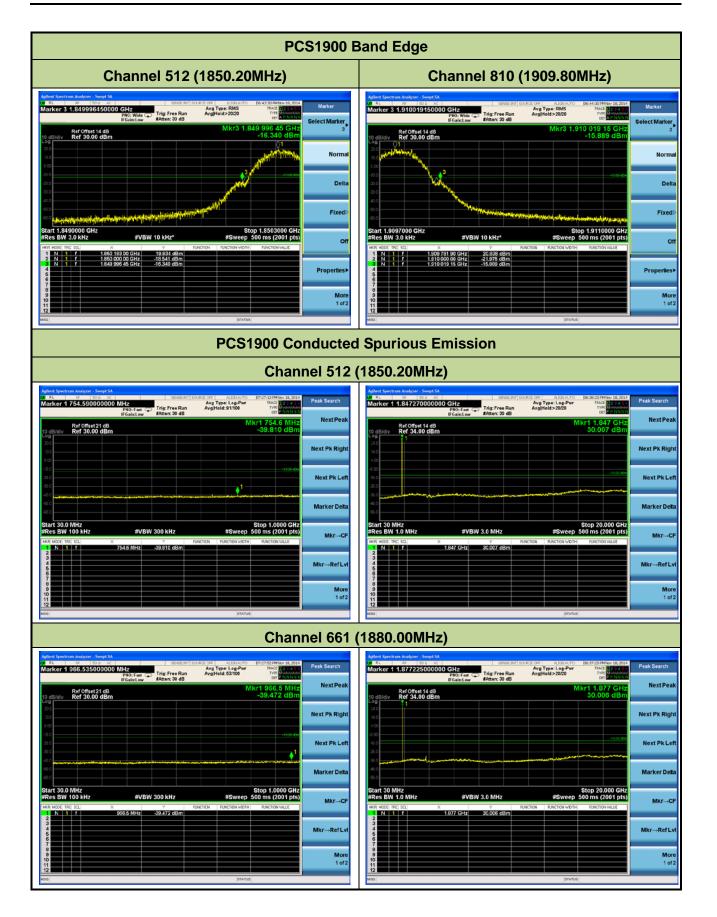
KDB 971168 D01v02r01 - Section 6.0 & ANSI/TIA-603-C-2004

7.3.3. Test Setting

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions.

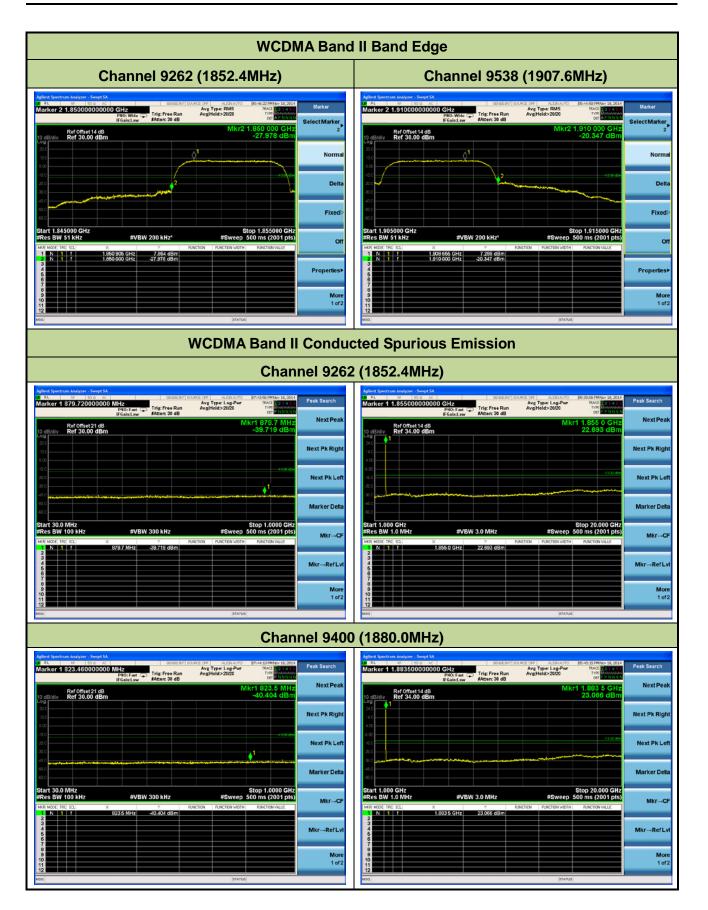
7.3.4. Test Setup

7.3.5. Test Result

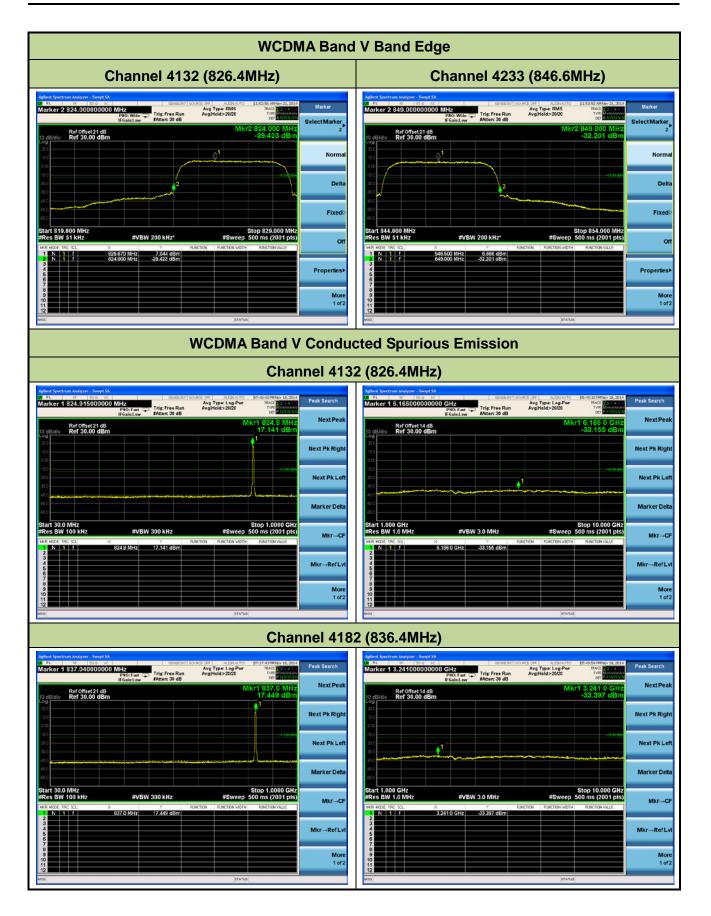

Mode	Channel No.	Frequency (MHz)	Modulation	Test Result
GSM850	128	824.20	GMSK	Pass
GSM850	189	836.40	GMSK	Pass
GSM850	251	848.80	GMSK	Pass
PCS1900	512	1850.20	GMSK	Pass
PCS1900	661	1880.00	GMSK	Pass
PCS1900	810	1909.80	GMSK	Pass
WCDMA Band II	9262	1852.40	QPSK	Pass
WCDMA Band II	9400	1880.00	QPSK	Pass
WCDMA Band II	9538	1907.60	QPSK	Pass
WCDMA Band V	4132	826.40	QPSK	Pass
WCDMA Band V	4182	836.40	QPSK	Pass
WCDMA Band V	4233	846.60	QPSK	Pass

GSM8	850 Band Edge
Channel 128 (824.20MHz)	Channel 251 (848.80MHz)
Marker 3 823.97/8100000 MH2 FGainteen Trig Free Run FGainteen Addition 2 Company Compa	Addred Synchron Analyser, Swyr SA. arker Marker 3 849,0133950000 MHz Marker 3 849,013395 MHz Ref Offset 21 d8 Ref O
10 GB/dW Ref 30.00 dBm -14.975 dBm	Dodskáv Ref 30.00 dEm -14.226 dBm Normal 200 Normal
	Delta 200
	Fixed: Cop
Start 823.0000 MHz Stop 824.3000 MHz #Res BW 3.0 kHz #VBW 10 kHz* #Sweep 500 ms (2001 pts) MR MODE TRC 10. X Y Runction Runction wolth Runction Runction wolth N 1 Y Runction Runction Runction wolth Runction Runction wolth Runction Runction wolth	Start 848.7000 MHz Stop 350.0000 MHz #Res BW 3.0 kHz #VBW 10 kHz* #Sweep 500 ms (2001 pts) HMR MCCE TRC SCI. X Y RANCTION WOTH RUNCTION WOTH Off 1 N 1 S49300 10 MHz 22.954 cBm RUNCTION RUNCTION WOTH FUNCTION WOTH Off
2 N 1 f 824.000 00 MHz -15.970 dBm 3 N 1 f 023.970 90 MHz -14.975 dBm	operties> 2 N I I F 643000 00 MHz 19521 dBm 3 N I I 643013 36 MHz -14226 dBm Properties> 4 5 6 6 6 Properties> Properties>
	More 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
MSQ STATUS	M30 (37ATUS

GSM850 Co	nducted	Spurious Emission	
Chan	nel 128	(824.20MHz)	
Agilara Spectrum Analyzer - Swapt SA 9 RL 8 Sto AC SENELTY SOURCE OFF ALISMAUTO 8711151 (MNev 18, 2014	Peak Search	Adlers Spectrum Analyzer - Swips SA I R F S0 AC SIMULER/ SOURCE OFF ALIGNATIO (66-50-38 PMMar 38, 2014	Peak Search
Marker 1 923.945000000 MHz PRO Far D Tris Free Ran Avg Tris Log-Par Tris D Tris Free Ran Avg Tris Log-Par Tris D Tris Free Ran Avg Heid-2000 Tris D Tris Pree Ran Avg Heid-2000 Tris D	Next Peak	Histrice 2005050000000 File Trig: Free Run Arginoid>2020 Trig: Strategy and Strateg	Next Peak
10 dB/dly Ref 40.00 dBm 32.070 dBm 32.070 dBm		10 dB/div Ref 30.00 dBm -32.778 dBm	
	Next Pk Right		Next Pk Right
100 1100 1100 1100 1100 1100 1100 1100	Next Pk Left		Next Pk Left
	Marker Delta	80.0	Marker Delta
Start 30.0 MHz Stop 1.0000 GHz #Res BW 100 Hz #VBW 300 kHz #Sweep 500 ms (2001 pts) MR MODE TRC 50.1 X Y RINCTION RUNCTION RUNCTION WIDTH MR MODE TRC 50.1 X Y RUNCTION RUNCTION RUNCTION WIDTH RUNCTION WIDTH	Mkr→CF	Start 1.000 GHz Stop 10.000 GHz #RES BW 1.0 MHz #VBW 3.0 MHz #Sweep 500 ms (2001 pts) MR MODE IRC SCI X Y Runction Runction Runction worth Runction value N I I 2.6533 5 GHz -32.778 GBm Image: Start Sta	Mkr→CF
2 -	Mkr→RefLvl		Mkr→Ref Lvi
9 10 11 12 12 13 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	More 1 of 2	8 9 10 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	More 1 of 2
Chan	nel 189	(836.40MHz)	
Agilent Spectrum Awayner - Swept SA	Peak Search		Peak Search
Pico Fast Trig: Free Run IFGaint.tw Avg/Heid>2020 Trig Ref Offset 21 dB Mkr1 836,6 MHz 10 dBidly Ref 40.00 dBm 31.780 dBm 31.780 dBm	Next Peak	PRO:Fair Frig:Free Run If Gaint. www. Argiteids 20:00 Tree Prio:Fair Ref Offset 14 dB Mkr1 3.142 0 GHz 10 dBlidiv Ref Offset 10.00 dBm -33.579 dBm	Next Peak
	Next Pk Right		Next Pk Right
00	Next Pk Left		Next Pk Left
-0: C -0: C Start 30.0 MHz Stop 1.0000 GHz	Marker Delta	800 Start 1.000 GHz Stop 10.000 GHz	Marker Delta
RCES BW 100 kHz #VBW 300 kHz #Sweep 500 ms (2001 pts) MR MODE TRC SQL X Y Function Planction watch Reaction watch N 31 7 9365 Mintz 37.760 dBm Y Function Planction watch Reaction watch	Mkr→CF	Reis BW 1.0 MHz #VBW 3.0 MHz #Sweep 500 ms (2001 pts) MR MCCE INC 50.1 X Y RACTION RACTION HILL R	Mkr→CF
3	Mkr→RefLvl		Mkr→Ref Lvi
	More 1 of 2		More 1 of 2
⁰⁰⁹ (ITATUS) Chan	nel 251	(848.80MHz)	
Aglent Swetzin Analyzer, Swetz SA. 18 Bit M 1920 AC SWETZ SWEEZER (SOURCE OF ALEXANDO STADIO MILE 2014 Marker 1 848.6800000000 MHz Take San Ang Type Lag Part Take San Ang Type Lag P	Peak Search	Agliert Spectrum Analyzer - Swapt SA	Peak Search
Piloi Fast 20 116 116 116 116 116 116 116 116 116 11	Next Peak	Pito: Fair C Trig: Field da Program. 2000 cer postitiva IFG airclaw #Atten: 30 dB Mkr1 6,148 0 CHz	Next Peak
0 estaviv Ref 40.00 dBm 31.753 dBm 30.753 dBm 000 dBm 0000 dBm 000 dBm 000 dBm 000 dBm 000 dB	Next Pk Right	20.0	Next Pk Right
100	Next Pk Left		Next Pk Left
	Marker Delta	eo o	Marker Delta
Start 300 MHz Stop 1.000 GHz Stop 1.000 GHz #Res BW 100 kHz #VBW 300 kHz #Sweep 500 ms (2001 pts) HMR MODE IRG SQL X Y Runction Runction Runction worth Runctionvalue N 1 9487 MHz 31.763 dBm Runction Runction worth Runctionvalue	Mkr→CF	Start 1.000 GHz Stop 10.000 GHz #RES BW 1.0 MHz #VBW 3.0 MHz #Sweep 500 ms (2001 pts) MR MODE INC. Sci. X Y Runction Runction Runction worth Runction value N Y Sci 48 0 GHz -33,639 GBm	Mkr→CF
2	Mkr→RefLvl		Mkr→RefLvi
8 9 10 12 12 10 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	More 1 of 2		More 1 of 2



		Chan	nel 810	(1909.80MHz)
Agilent Spectrum Analyzer - Swept Si RL BF SD Q Ac Marker 1 885.05500000	SENSE INT SC	ALIONAUTO 07-08-42 PM Nov 18, 2014 Avg Type: Log-Pwr Avg Hold: 62/100 TVPP	Peak Search	Agliert Spectrum Analyzer, Swept SA. 19265 597 (50.801.007) 0.92720 (50.007)
Ref Offset 21 dB 10 dB/div Ref 30.00 dBn	II COMILON	Mkr1 885.1 MHz -40.858 dBm	Next Peak	Ref Office 14 dB 10 dB/dov Ref 34.00 dBm 19 dB/dov Ref 34.00 dBm
20.0			Next Pk Right	140 21 21 21 21 21 21 21 21 21 21 21 21 21
-10.0		-10000	Next Pk Left	4.00
-40 0 -50 0 -60 0	a ga		Marker Delta	4 0 Marker De
		Stop 1.0000 GHz #Sweep 500 ms (2001 pts)	Mkr→CF	Start 30 MHz #VEW 3.0 MHz #Stop 20.000 GHz #Res BW 1.0 MHz #Sweep 500 ms (2001 pt) Mkr Mm weet Res Gu X Y Raction work Raction work
1 N 1 f 2 3 3 4 6 6	835.1 MHz -40.858 dBm		Mkr→RefLvl	N 1 F 1907 GHz 28940 eBm 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
7 8 9 9 10 11 12 12			More 1 of 2	7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
sa 🧼 Alignment Completed		STATUS		M00 3TATUS



		Chanı	nel 953	8 (1907.6MHz)
Agleot Spectrum Analyzer - Swopt SA Of Rt 500 AC Markor 1 778.840000000		RCE OFF ALEXIANTO 87-44-44 FM Nov 18, 2014 Avg Type: Log-Pwr TRACE 15-2014 AvgHeld>20/20 Trm	Peak Search	Added Spectrum Analyzer - Swept SA OpenExer [source] opened (opened) Applied (opened) <thapplied (opened)<="" th=""> Applied (opened)<</thapplied>
Ref Offset 21 dB		Mkr1 778.8 MHz -39.607 dBm	Next Peak	Ref 0fmet14.dB Mkr1 1.912 0 GHz NextPeak
20.0			Next Pk Right	340 Next Pk Right
-10.0		-1339-059	Next Pk Left	400
-40.0			Marker Delta	0 (c)
Start 30.0 MHz #Res BW 100 kHz MKR MODE TRC SCL X	#VBW 300 kHz 7788 MHz	Stop 1.0000 GHz #Sweep 500 ms (2001 pts) NCTION RUNCTION WIDTH RUNCTION VALUE	Mkr→CF	Start 1.000 CHz Stop 20.000 CHz #Res BW 1.0 Hr #Sweep 500 ms (2001 pts) MR MOE The Start Y Partion Partio
2 4 6 6 7			Mkr→RefLvi	2 MkrRefLv
9 9 10 11 12			More 1 of 2	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSQ		STATUS		M50 DTATUS

		Char	nnel 423	3 (846.6MHz)	
gilent Spectrum Analyzer - Swept SA				Aglient Spectrum Analyzer - Swept SA	
RL 85 552 AC Marker 1 845.770000000		URCE OFF ALISHAUTO 07:41:55 FMNev 18, 2014 Avg Type: Log-Pwr TMACE 12:14:57 Avg[Held>-20/20 TVP CET	Peak Search	0 PL W 1930 AC SOURCE (SW1 ALLAND 550020 FW 24.2014 Marker 1 3.047500000000 GHz P100 Far ⊕ Trig: Free Ran AvgHeid>2020 Trig FGaiat w Atten 30 dB	Peak Search
Ref Offset 21 dB		Mkr1 845.8 MHz 16.542 dBm	Next Peak	Ref offset 14 dB Mkr1 3.047 5 GHz 10 dB/div Ref 30.00 dBm -33.281 dBm	Next Pe
20.0			Next Pk Right	200 201	Next Pk Rig
20.0 30.0			Next Pk Left		Next Pk L
40.0 50.0 60.0		مر بین و من الم مرد و ال ^م ر مرد مرد مرد مرد مرد مرد مرد مرد مرد مر	Marker Delta	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Marker De
Start 30.0 MHz #Res BW 100 kHz #KR MODE TRC SCL X	#VBW 300 kHz	Stop 1.0000 GHz #Sweep 500 ms (2001 pts) NCTION PUNCTION WIDTH FUNCTION VALUE	Mkr→CF	Start 1.000 GHz Stop 10.000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz #Sweep 500 ms (2001 pts) MR 100 ETR(55) X Y RURCTION WOTH RURCTION WOTH N I 16 (53) X Y RURCTION WOTH RURCTION WOTH RURCTION WOTH	Mkr→
2 3 4 6 6 6 7			Mkr→RefLvl		Mkr→Refl
7 8 9 10 11 12			More 1 of 2	18 9 10 11	Me 1 e
10		STATUS		M5g BTATUS	

7.4. Conducted & Radiated Power and Radiated Spurious Emissions

7.4.1. Test Limit

Radiated Power

For FCC Part 22.913(a)(2):

The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

For FCC Part 24.232(b):

The EIRP of mobile transmitters and auxiliary test transmitters must not exceed 2 Watts.

Radiated Spurious Emissions

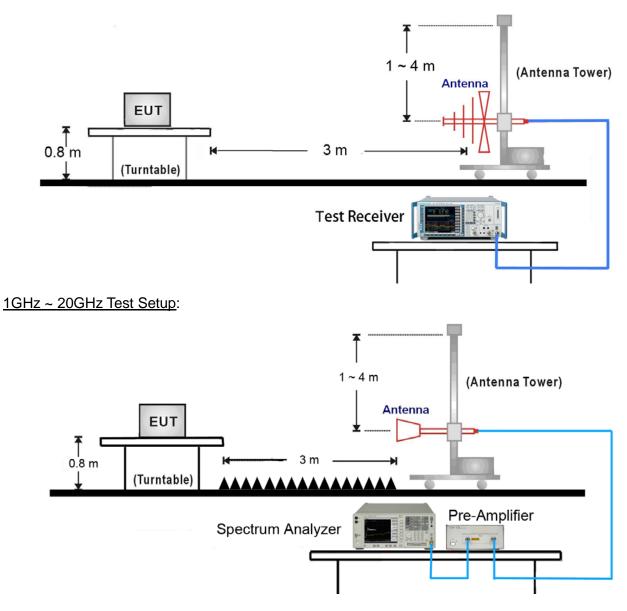
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

7.4.2. Test Procedure Used

KDB 971168 D01v02r01 - Section 7.0 & ANSI/TIA-603-C-2004

7.4.3. Test Setting

- 1. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- 2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- 3. The output of the test antenna shall be connected to the measuring receiver.
- 4. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7. The test antenna shall be raised and lowered again through the specified range of height


until a maximum signal level is detected by the measuring receiver.

- 8. The maximum signal level detected by the measuring receiver shall be noted.
- 9. The transmitter shall be replaced by a substitution antenna.
- 10. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- 11. The substitution antenna shall be connected to a calibrated signal generator.
- 12. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 14. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- 15. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- 16. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- 17. Test site anechoic chamber refer to ANSI C63.4: 2009.

7.4.4. Test Setup

<u>30MHz ~ 1GHz Test Setup</u>:

7.4.5. Test Result

Conducted Power

Mode	Mode Frequency (MHz) Avg. Burst Power Duty Cycle Fac		Duty Cycle Factor	Frame Power
		(dBm)	(dB)	(dBm)
	824.2	32.56	-9	23.56
GSM850	836.4	32.71	-9	23.71
	848.8	32.74	-9	23.74
	824.2	32.46	-9	23.46
GPRS515(1 Slot)	836.4	32.63	-9	23.63
	848.8	32.69	-9	23.69
	824.2	31.67	-6	25.67
GPRS515(2 Slot)	836.4	31.82	-6	25.82
	848.8	31.93	-6	25.93
	824.2	29.98	-4.25	25.73
GPRS515(3 Slot)	836.4	30.17	-4.25	25.92
	848.8	30.33	-4.25	26.08
	824.2	29.34	-3	26.34
GPRS515(4 Slot)	836.4	29.53	-3	26.53
	848.8	29.66	-3	26.66
	1850.2	29.72	-3	26.72
PCS1900	1880.0	29.47	-3	26.47
	1909.8	28.94	-3	25.94
	1850.2	29.71	-9	20.71
GPRS1900(1 Slot)	1880.0	29.33	-9	20.33
	1909.8	28.87	-9	19.87
	1850.2	28.61	-6	22.61
GPRS1900(2 Slot)	1880.0	28.65	-6	22.65
	1909.8	28.31	-6	22.31
	1850.2	26.63	-4.25	22.38
GPRS1900(3 Slot)	1880.0	26.79	-4.25	22.54
	1909.8	26.76	-4.25	22.51
	1850.2	25.83	-3	22.83
GPRS1900(4 Slot)	1880.0	26.04	-3	23.04
	1909.8	26.05	-3	23.05

Note: Frame Power (dBm) = Avg. Burst Power (dBm) + Duty Cycle Factor (dB)

Mode	3GPP Subtest	Ban	Band II Channel			d V Chai	nnel	MPR
	Sublesi	9262	9400	9538	4132	4182	4233	
WCDMA R99	1	26.15	25.34	24.77	28.26	28.23	27.50	N/A
	1	25.93	25.33	24.84	26.87	27.02	26.01	0
	2	25.77	25.12	24.63	26.60	26.81	25.84	0
Rel5 HSDPA	3	25.54	24.91	24.72	26.41	26.59	25.62	0.5
	4	25.23	21.99	24.51	26.19	26.69	25.73	0.5
	1	26.09	25.40	24.77	27.68	27.59	26.54	0.0
	2	25.86	25.30	24.52	27.56	27.41	26.41	2.0
Rel6 HSUPA	3	25.67	25.26	24.62	27.48	27.39	26.29	1.0
	4	25.73	25.39	24.48	27.62	27.26	26.33	2.0
	5	25.79	25.17	24.50	27.59	27.31	26.36	0.0

Radiated Power

GSM850

Frequency	Ant. Pol.	SG Reading	Cable Loss	Substitute	ERP	Limit	Margin
(MHz)	(H/V)	(dBm)	(dB)	Antenna	(dBm)	(dBm)	(dB)
				Gain (dBd)			
Low Channel 12	28 (824.201	/IHz)					
824.2	Н	27.82	1.78	6.52	32.56	38.5	-5.94
824.2	V	18.74	1.78	6.38	23.34	38.5	-15.16
Middle Channe	l 189 (836.4	0MHz)					
836.4	Н	27.36	1.80	6.63	32.19	38.5	-6.31
836.4	V	18.18	1.80	6.15	22.53	38.5	-15.97
High Channel 2	51 (848.80	MHz)					
848.8	Н	27.98	1.82	6.80	32.96	38.5	-5.54
848.8	V	18.10	1.82	6.54	22.82	38.5	-15.68

PCS1900

Frequency	Ant. Pol.	SG Reading	Cable Loss	Substitute	EIRP	Limit	Margin
(MHz)	(H/V)	(dBm)	(dB)	Antenna	(dBm)	(dBm)	(dB)
				Gain (dBi)			
Low Channel 5	12 (1850.20	MHz)					
1850.2	Н	27.62	2.70	4.64	29.38	33.0	-3.62
1850.2	V	22.17	2.70	4.64	24.11	33.0	-8.89
Middle Channe	l 661 (1880.	.00MHz)					
1880.0	Н	28.49	2.72	4.59	30.36	33.0	-2.64
1880.0	V	21.88	2.72	4.59	23.75	33.0	-9.25
High Channel 8	310 (1909.80	OMHz)					
1909.8	Н	29.06	2.75	4.54	30.85	33.0	-2.15
1909.8	V	20.57	2.75	4.54	22.36	33.0	-10.64

WCDMA Band II

Frequency	Ant. Pol.	SG Reading	Cable Loss	Substitute	EIRP	Limit	Margin
(MHz)	(H/V)	(dBm)	(dB)	Antenna	(dBm)	(dBm)	(dB)
				Gain (dBi)			
Low Channel 92	262 (1852.4	OMHz)					
1852.4	H	22.43	2.70	4.64	24.37	33.0	-8.63
1852.4	V	17.26	2.70	4.64	19.20	33.0	-13.8
Middle Channe	I 9400 (1880	0.00MHz)					
1880.0	Н	23.54	2.72	4.59	25.41	33.0	-7.59
1880.0	V	17.52	2.72	4.59	19.39	33.0	-13.61
High Channel 9	538 (1907.6	60MHz)					
1907.6	Н	24.52	2.75	4.55	26.32	33.0	-6.68
1907.6	V	16.62	2.75	4.55	18.42	33.0	-14.58

Frequency	Ant. Pol.	SG Reading	Cable Loss	Substitute	ERP	Limit	Margin
(MHz)	(H/V)	(dBm)	(dB)	Antenna	(dBm)	(dBm)	(dB)
				Gain (dBd)			
Low Channel 4132 (826.40MHz)							
826.4	Н	21.72	1.79	6.50	26.43	38.5	-12.21
826.4	V	12.41	1.79	6.30	16.92	38.5	-21.67
Middle Channel 4182 (836.40MHz)							
836.4	Н	21.86	1.80	6.63	26.69	38.5	-11.90
836.4	V	13.10	1.80	6.15	17.45	38.5	-21.20
High Channel 4233 (846.60MHz)							
846.6	Н	21.78	1.82	6.80	26.76	38.5	-11.87
846.6	V	12.13	1.82	6.51	17.82	38.5	-20.90

WCDMA Band V

NOTES:

- ERP (dBm) / EIRP (dBm)= SG Reading (dBm) Cable Loss (dB) + Substitute Antenna Gain (dBd)
- 2. This device was tested under all configurations and the highest power is reported in GSM mode. This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA and GSM/GPRS capabilities. For WCDMA and HSPA transmission, all configurations were investigated and the worst case UMTS emissions were found in RMC WCDMA mode at 12.2kbps rate.
- 3. This unit was tested with its standard adapter.
- 4. The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case test configuration was found in the EUT in the V positioning. The data reported in the table above was measured in this test setup.

Radiated Spurious Emission

GSM850

Frequency	Ant. Pol.	SG Reading		Substitute	ERP	Limit	Margin
(MHz)	(H/V)	(dBm)	(dB)	Antenna	(dBm)	(dBm)	(dB)
				Gain (dBd)			
Low Channel	128 (824.2	0MHz)					
1646.0	V	-46.67	2.55	5.13	-44.09	-13.0	-31.09
2470.5	V	-43.27	3.14	5.54	-40.87	-13.0	-27.87
1646.0	Н	-45.60	2.55	5.13	-43.02	-13.0	-30.02
2470.5	Н	-43.17	3.14	5.54	-40.77	-13.0	-27.77
Middle Chann	el 189 (836	6.40MHz)					
1671.5	V	-47.84	2.57	5.05	-45.36	-13.0	-32.36
2513.0	V	-47.13	3.18	5.64	-44.67	-13.0	-31.67
1671.5	Н	-48.70	2.57	5.05	-46.22	-13.0	-33.22
2513.0	Н	-52.49	3.18	5.64	-50.03	-13.0	-37.03
High Channel	251 (848.8	30MHz)					
1697.0	V	-52.10	2.59	4.97	-49.72	-13.0	-36.72
2547.0	V	-50.68	3.20	5.73	-48.15	-13.0	-35.15
1697.0	Н	-50.29	2.59	4.97	-47.91	-13.0	-34.91
2547.0	Н	-50.54	3.20	5.73	-48.01	-13.0	-35.01

Note:

1. Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

2. ERP (dBm) = SG Reading (dBm) - Cable Loss (dB) + Substitute Antenna Gain (dBd)

FC31900							
Frequency	Ant. Pol.	SG Reading	Cable Loss	Substitute	EIRP	Limit	Margin
(MHz)	(H/V)	(dBm)	(dB)	Antenna	(dBm)	(dBm)	(dB)
				Gain (dBi)			
Low Channel	512 (1850.	20MHz)					
3703.0	V	-50.85	3.90	7.88	-46.87	-13.0	-33.87
5547.5	V	-50.43	4.85	10.10	-45.18	-13.0	-32.18
3703.0	Н	-50.76	3.90	7.88	-46.78	-13.0	-33.78
5547.5	Н	-50.11	4.85	10.10	-44.86	-13.0	-31.86
Middle Chann	el 661 (188	30.00MHz)					
3762.5	V	-48.45	3.94	7.93	-44.46	-13.0	-31.46
5641.0	V	-49.90	4.94	10.10	-44.74	-13.0	-31.74
3762.5	Н	-50.13	3.94	7.93	-46.14	-13.0	-33.14
5641.0	Н	-53.11	4.94	10.10	-47.95	-13.0	-34.95
High Channel	810 (1909	.80MHz)					
3822.0	V	-44.82	3.98	8.07	-40.73	-13.0	-27.73
5726.0	V	-50.75	5.00	10.10	-45.65	-13.0	-32.65
3822.0	Н	-52.82	3.98	8.07	-48.73	-13.0	-35.73
5726.0	Н	-53.07	5.00	10.10	-47.97	-13.0	-34.97

PCS1900

Note:

1. Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

2. EIRP (dBm) = SG Reading (dBm) - Cable Loss (dB) + Substitute Antenna Gain (dBd)

WCDMA Band II

Frequency (MHz)	Ant. Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Substitute Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)
Low Channel	9262 (1852	2.40MHz)					
3703.0	V	-41.79	3.90	7.88	-37.81	-13.0	-24.81
5556.0	V	-49.62	4.83	10.10	-44.35	-13.0	-31.35
3703.0	Н	-39.81	3.90	7.88	-35.83	-13.0	-22.83
5556.0	Н	-47.90	4.83	10.10	-42.63	-13.0	-29.63
Middle Chann	el 9400 (18	380.00MHz)					
3754.0	V	-38.60	3.93	7.91	-34.62	-13.0	-21.62
5641.0	V	-44.17	4.94	10.10	-39.01	-13.0	-26.01
3762.5	Н	-37.65	3.94	7.93	-33.66	-13.0	-20.66
5641.0	Н	-44.97	4.94	10.10	-39.81	-13.0	-26.81
High Channel	9538 (190	7.60MHz)					
3813.5	V	-35.37	3.97	8.05	-31.29	-13.0	-18.29
5717.5	V	-38.38	5.00	10.10	-33.28	-13.0	-20.28
3813.5	Н	-35.10	3.97	8.05	-31.02	-13.0	-18.02
5717.5	Н	-37.22	5.00	10.10	-32.12	-13.0	-19.12

Note:

1. Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

2. EIRP (dBm) = SG Reading (dBm) - Cable Loss (dB) + Substitute Antenna Gain (dBd)

WCDMA Band V

Frequency (MHz)	Ant. Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Substitute Antenna Gain (dBd)	ERP (dBm)	Limit (dBm)	Margin (dB)
Low Channel	4132 (826.	40MHz)		. ,			
1654.5	V	-52.03	2.56	5.11	-49.48	-13.0	-36.48
2479.2	V	-58.17	3.15	5.56	-55.76	-13.0	-42.76
1654.5	Н	-49.13	2.56	5.11	-46.58	-13.0	-33.58
2479.2	Н	-56.66	3.15	5.56	-54.25	-13.0	-41.25
Middle Chann	el 4182 (83	36.40MHz)					
1671.5	V	-50.93	2.57	5.05	-48.45	-13.0	-35.45
3337.5	V	-54.24	3.67	7.09	-50.82	-13.0	-37.82
1671.5	Н	-45.43	2.57	5.05	-42.95	-13.0	-29.95
3337.5	Н	-51.53	3.67	7.09	-48.11	-13.0	-35.11
High Channel	4233 (846	.60MHz)					
1688.5	V	-53.96	2.58	5.00	-51.54	-13.0	-38.54
3388.5	V	-54.28	3.73	7.31	-50.70	-13.0	-37.70
1688.5	Н	-48.57	2.58	4.97	-46.18	-13.0	-33.18
3388.5	Н	-53.30	2.73	7.31	-48.72	-13.0	-35.72

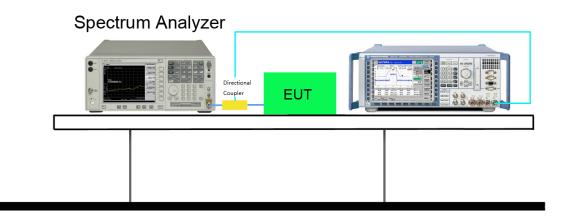
Note:

1. Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

2. ERP (dBm) = SG Reading (dBm) - Cable Loss (dB) + Substitute Antenna Gain (dBd)

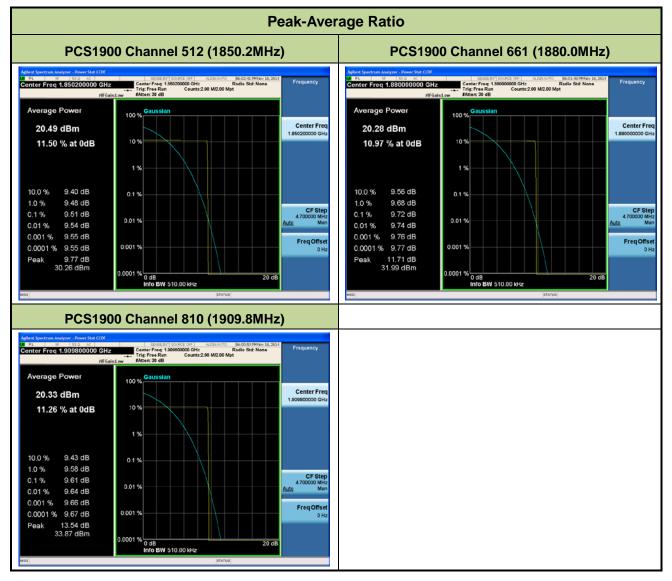
7.5. Peak-Average Ratio

7.5.1. Test Limit


The transmitter's peak-to-average power ratio (PAPR) shall not exceed 13 dB for more than

0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

7.5.2. Test Procedure


KDB 971168 D01v02r01 - Section 5.7 & ANSI/TIA-603-C-2004

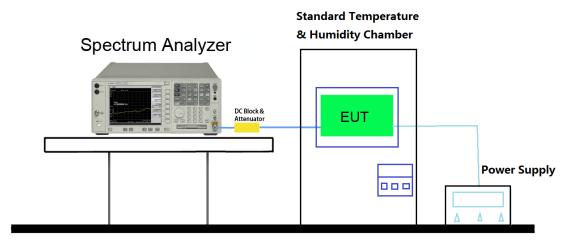
7.5.3. Test Setup

7.5.4. Test Result

7.6. Frequency Stability Under Temperature & Voltage Variations

7.6.1. Test Limit

The frequency stability shall be sufficient to ensure that the fundamental emission stays within


the authorized frequency block.

Limit	< ± 2.5 ppm
-------	-------------

7.6.2. Test Procedure

KDB 971168 D01v02r01 - Section 9.0 & ANSI/TIA-603-C-2004

7.6.3. Test Setup

7.6.4. Test Result

Operating Frequency	836,400,000 Hz
Channel	189
Test Mode	GSM850
Reference Voltage	3.7 VDC
Deviation Limit	±0.00025% or 2.5ppm

Voltage	Power	TEMP	Frequency	Freq. Dev.	Deviation
(%)	(VDC)	(%)	(Hz)	(Hz)	(%)
100%		+20(Ref)	836,400,000	67	0.00000801
100%		-30	836,400,000	52	0.00000622
100%		-20	836,400,000	46	0.00000550
100%		-10	836,400,000	39	0.00000466
100%		0	836,400,000	25	0.00000299
100%	3.7	+10	836,400,000	-62	-0.00000741
100%		+20	836,400,000	-33	-0.00000395
100%		+30	836,400,000	26	0.00000311
100%		+40	836,400,000	-42	-0.00000502
100%		+50	836,400,000	59	0.00000705
115%	4.2	+20	836,400,000	-54	-0.00000646
BAT.ENDPOINT	3.6	+20	836,400,000	-29	-0.00000347

Operating Frequency	1,880,000,000 Hz
Channel	661
Test Mode	PCS1900
Reference Voltage	3.7 VDC
Deviation Limit	±0.00025% or 2.5ppm

Voltage	Power	TEMP	Frequency	Freq. Dev.	Deviation
(%)	(VDC)	(%)	(Hz)	(Hz)	(%)
100%		+20(Ref)	1,880,000,000	-58	-0.00000309
100%		-30	1,880,000,000	-54	-0.00000287
100%		-20	1,880,000,000	26	0.00000138
100%		-10	1,880,000,000	-53	-0.00000282
100%	o -	0	1,880,000,000	63	0.00000335
100%	3.7	+10	1,880,000,000	56	0.00000298
100%		+20	1,880,000,000	46	0.00000245
100%		+30	1,880,000,000	-49	-0.00000261
100%		+40	1,880,000,000	-62	-0.00000330
100%		+50	1,880,000,000	49	0.00000261
115%	4.2	+20	1,880,000,000	62	0.00000330
BAT.ENDPOINT	3.6	+20	1,880,000,000	-38	-0.00000202

Operating Frequency	1,880,000,000 Hz
Channel	9400
Test Mode	WCDMA Band II
Reference Voltage	3.7 VDC
Deviation Limit	±0.00025% or 2.5ppm

Voltage	Power	TEMP	Frequency	Freq. Dev.	Deviation
(%)	(VDC)	(%)	(Hz)	(Hz)	(%)
100%		+20(Ref)	1,880,000,000	26	0.00000138
100%		-30	1,880,000,000	49	0.00000261
100%		-20	1,880,000,000	-28	-0.00000149
100%		-10	1,880,000,000	82	0.00000436
100%	. –	0	1,880,000,000	46	0.00000245
100%	3.7	+10	1,880,000,000	-49	-0.00000261
100%		+20	1,880,000,000	28	0.00000149
100%		+30	1,880,000,000	44	0.00000234
100%		+40	1,880,000,000	-79	-0.00000420
100%		+50	1,880,000,000	61	0.00000324
115%	4.2	+20	1,880,000,000	-69	-0.00000367
BAT.ENDPOINT	3.6	+20	1,880,000,000	26	0.00000138

Operating Frequency	836,400,000 Hz
Channel	4182
Test Mode	WCDMA Band V
Reference Voltage	3.7 VDC
Deviation Limit	±0.00025% or 2.5ppm

Voltage	Power	TEMP	Frequency	Freq. Dev.	Deviation
(%)	(VDC)	(%)	(Hz)	(Hz)	(%)
100%	3.7	+20(Ref)	836,400,000	32	0.00000383
100%		-30	836,400,000	51	0.00000610
100%		-20	836,400,000	64	0.00000765
100%		-10	836,400,000	59	0.00000705
100%		0	836,400,000	37	0.00000442
100%		+10	836,400,000	-26	-0.00000311
100%		+20	836,400,000	54	0.00000646
100%		+30	836,400,000	80	0.00000956
100%		+40	836,400,000	63	0.00000753
100%		+50	836,400,000	-62	-0.00000741
115%	4.2	+20	836,400,000	-49	-0.00000586
BAT.ENDPOINT	3.6	+20	836,400,000	67	0.00000801

8. CONCLUSION

The data collected relate only the item(s) tested and show that the S515 FCC ID: 2AAA6S515

compliance with all the requirements of Parts 2, 22, 24 of the FCC Rules.