DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3842 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity (S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|---------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.41 | 9.41 | 9.41 | 0.30 | 0.90 | ±12.1% | | 900 | 41.5 | 0.97 | 9.15 | 9.15 | 9.15 | 0.16 | 1.37 | ±12.1% | | 1750 | 40.1 | 1.37 | 7.89 | 7.89 | 7.89 | 0.23 | 1.09 | ±12.1% | | 1900 | 40.0 | 1.40 | 7.58 | 7.58 | 7.58 | 0.20 | 1.19 | ±12.1% | | 2450 | 39.2 | 1.80 | 6.92 | 6.92 | 6.92 | 0.32 | 1.16 | ±12.1% | | 2600 | 39.0 | 1.96 | 6.78 | 6.78 | 6.78 | 0.40 | 0.93 | ±12.1% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. #### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3842 #### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.31 | 9.31 | 9.31 | 0.30 | 0.90 | ±12.1% | | 900 | 55.0 | 1.05 | 9.02 | 9.02 | 9.02 | 0.24 | 1.15 | ±12.1% | | 1750 | 53.4 | 1.49 | 7.57 | 7.57 | 7.57 | 0.23 | 1.12 | ±12.1% | | 1900 | 53.3 | 1.52 | 7.32 | 7.32 | 7.32 | 0.22 | 1.21 | ±12.1% | | 2450 | 52.7 | 1.95 | 7.01 | 7.01 | 7.01 | 0.42 | 1.04 | ±12.1% | | 2600 | 52.5 | 2.16 | 6.97 | 6.97 | 6.97 | 0.42 | 1.01 | ±12.1% | $^{^{\}rm C}$ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No: Z17-97110 ## Receiving Pattern (Φ), θ =0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No: Z17-97110 Page 8 of 11 ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) SAR[mW/cm³] not compensated Uncertainty of Linearity Assessment: ±0.9% (k=2) 10² Certificate No: Z17-97110 10-2 10 Page 9 of 11 #### **Conversion Factor Assessment** #### f=750 MHz, WGLS R9(H_convF) #### f=1750 MHz, WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** Certificate No: Z17-97110 Page 10 of 11 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3842 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 67.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No: Z17-97110 #### 1.2. D750V3 Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdier Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CIQ (Auden) Certificate No: D750V3-1156_Feb16 ## **CALIBRATION CERTIFICATE** Object D750V3 - SN: 1156 SAR (BAB (750 M) J0462 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: February 02, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (a) | | |-----------------------------|---------------------|--|------------------------| | Power meter EPM-442A | GB37480704 | Cal Date (Certificate No.) | Scheduled Calibration | | Power sensor HP 8481A | US37292783 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | MY41092317 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 07-Oct-15 (No. 217-02223) | Oct-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02131) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349
SN: 601 | 01-Apr-15 (No. 217-02134) | Mar-16 | | DAE4 | | 31-Dec-15 (No. EX3-7349_Dec15)
30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | | | | Dec-16 | | Secondary Standards | ID# | Check Date (in house) | | | RF generator R&S SMT-06 | 100972 | 15- lun 15 (in house) | Scheduled Check | | Network Analyzer HP 8753E | US37390585 S4206 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | | | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | Calibrated by: Name Function Michael Weber Laboratory Technician Signature Approved by: Katja Pokovic Technical Manager Issued: February 4, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1156_Feb16 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrier S Service suisse d'étalonna C Servizio svizzero di taratu **Swiss Calibration Service** Accreditation No.: SCS 010 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of ; - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the The reported uncertainty of measurement is stated as the standard uncertainty of measuremen multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1156_Feb16 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 750 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.2 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.03 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 7.99 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.25 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.4 ± 6 % | 0.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.70 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.73 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.6 Ω - 0.9 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 28.9 dB | | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.2 Ω - 2.2 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 33.2 dB | | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.031 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | | |-----------------|-----------------|--|--| | Manufactured on | August 12, 2015 | | | #### DASY5 Validation Report for Head TSL Date: 02.02 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1156 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 0.91 S/m; ϵ_r = 42.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(10.28, 10.28, 10.28); Calibrated: 31.12.2015; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.12.2015 - Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ### Dipole Calibration for Head Tissue EX-Probe/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.29 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.06 W/kg SAR(1 g) = 2.03 W/kg; SAR(10 g) = 1.33 W/kg Maximum value of SAR (measured) = 2.72 W/kg 0 dB = 2.72 W/kg = 4.35 dBW/kg #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 02.02.2 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1156 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.98 \text{ S/m}$; $\varepsilon_r = 55.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 31.12.2015; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.12.2015 - Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) #### Dipole Calibration for Body Tissue EX-Probe/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.34 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.35 W/kg SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.45 W/kg Maximum value of SAR (measured) = 2.97 W/kg 0 dB = 2.97 W/kg = 4.73 dBW/kg ### Impedance Measurement Plot for Body TSL ## **Extended Dipole Calibrations** Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | Head | | | | | | | |-------------|----------------------------|-----------|----------------|-------|-----------------|-------| | Date of | Deturn lose (dD) Delta (%) | | Real Impedance | Delta | Imaginary | Delta | | measurement | Return-loss (dB) | Delta (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | 2016-02-02 | -28.9 | | 53.6 | | -0.9 | | | 2017-01-30 | -29.2 | -3.39 | 54.8 | 1.2 | -0.7 | 0.2 | | Body | | | | | | | |-------------|------------------|-----------|----------------|-------|-----------------|-------| | Date of | Return-loss (dB) | Delta (%) | Real Impedance | Delta | Imaginary | Delta | | measurement | Return-1055 (ub) | Della (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | 2016-02-02 | -33.2 | | 50.2 | | -2.2 | | | 2017-01-30 | -34.0 | -8.8 | 51.5 | 1.3 | -2.1 | 0.1 | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration. #### 1.3. D835V2 Dipole Calibration Certificate p e Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: ettl@cbinattl.com CIQ(Shenzhen) Fax: +86-10-62304633-2504 Http://www.chinattl.cn Certificate No: Z16-97016 #### CALIBRATION CERTIFICATE Object D835V2 - SN: 4d153 Calibration Procedure(s) FD-Z11-2-003-01 Calibration Procedures for dipole validation kits Calibration date: Client Jun 16, 2016 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | |------------------------------------|---------|--|-----------------------|--| | Power Meter NRP2 101919 | | 01-Jul-15 (CTTL, No.J15X04256) | Jun-16 | | | Power sensor NRP-Z91 | 101547 | 01-Jul-15 (CTTL, No.J15X04256) | Jun-16 | | | Reference Probe EX3DV4 | SN 7307 | 19-Feb-16(SPEAG,No.EX3-7307_Feb16) | Feb-17 | | | DAE4 | SN 771 | 02-Feb-16(CTTL-SPEAG,No.Z16-97011) | Feb-17 | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | Signal Generator E4438C MY49071430 | | 01-Feb-16 (CTTL, No.J16X00893) | Jan-17 | | | Network Analyzer E5071C MY46110 | | 26-Jan-16 (CTTL, No.J16X00894) | Jan-17 | | | | | | | | | | Name | Function | Signature | |----------------|-------------|-----------------------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 造 | | Reviewed by: | Qi Dianyuan | SAR Project Leader | 200 | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | In with | | | | | | Issued: Jun 17, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z16-97016 Page 1 of 8 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz. #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z16-97016