




|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT                                                                                                              | TE Band                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ηz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| ( Marala in di ana                                                                                               | 8 Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | QP                                                | SK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| Ref Level 3<br>Att                                                                                               | 0.50 dBm Offset<br>20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : 10.50 dB • RBV<br>100 ms • VBV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VIMHz<br>VIMHz Moo                                                                                              | de Auto Sweep                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| 1 Frequency                                                                                                      | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>1Pk Max</li> <li>-43.15 dBm</li> <li>1.4125900 GHz</li> </ul>                                          |
| 20 dBm                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| 10 dBm                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| 0 d8m                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -10 dBm                                                                                                          | H1 -13.000 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -20 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -30 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -40 dBm                                                                                                          | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| and the second | of Water and Bull and Discourt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | und along the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | han sala an                                                                 | مال العامين ومن العالي<br>مركز العامين ومن العالي | havenation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the figure is particular and                                                                                     | and and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and and a share with                                                                                            |
| -60 dBm                                                                                                          | inter description of the state | under and a line of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | approximation and a second state                                                                                | and Million of Contract                           | nder Leigeblich Die Mehren Roll.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | and the second s | a contraction of the second |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000                                                                                                          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20141-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0.00                                                                                                         |
| 30.0 MHz                                                                                                         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000 p                                                                                                        | DES                                               | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.0 MHz/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | М                                                                                                                | easuring 🔳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0 GHz                                                                                                        |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | Chann                                             | el Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                                                                  | Spectrum<br>0.50 dBm Offset<br>20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 10.50 dB • RBV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V 1 MHz                                                                                                         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| Att<br>1 Frequency                                                                                               | 20 dB SWT<br>Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 ms 🖷 VBV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VI3MHz Moo                                                                                                      | de Auto Sweep                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>1Pk Max</li> <li>-42.27 dBm</li> </ul>                                                                 |
| 20 dBm                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4199680 GHz                                                                                                   |
| 10 dBm                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| 0 dBm                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -10 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -20 dBm                                                                                                          | H1 -13.000 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -30 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -40 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ور بر بر المربية المربية                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |                                                   | an an tailithe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | والمعادين والمعادين                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ntade, p                                                                                                         | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the test of the second  |
|                                                                                                                  | ent faste a second to be filled in the second to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and a different of the local states of the loc | analara postara postara pos                                                                                     | And in the Print of the Local Distance            | ingent waterstand processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a and a second | and the state of t | f Magazana ana ang panana ang panana ang panana ang pang p                                                      |
| -60 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| 30.0 MHz                                                                                                         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000 p                                                                                                        | ots                                               | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.0 MHz/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | м                                                                                                                | easuring 💵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.0 GHz                                                                                                        |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | Chann                                             | el Mid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| MultiView                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | - nam                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul><li>▼</li></ul>                                                                                             |
| Ref Level 3<br>Att<br>1 Frequency                                                                                | 0.50 dBm Offset<br>20 dB SWT<br>Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 ms • VBV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VIMHZ<br>VIMHZ Moo                                                                                              | de Auto Sweep                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ● 1Pk Max<br>-41.58 dBm                                                                                         |
| 20 dBm                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -41.58 dBm<br>1.4295390 GHz                                                                                     |
| 10 dBm                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| 0 dBm                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -10 dBm                                                                                                          | H1 -13.000 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -20 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -30 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| -40 dBm                                                                                                          | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | فليهيد المراجع                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|                                                                                                                  | allestate milesconteste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a support of the second | a an          | Manager and the second s | ad produktion of the state of t |                                                                                                                  | vendenbeljaghänder<br>vendenbelgaghänder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ministiluis Linne <sup>d</sup><br>Minister Provinsi State                                                       |
| -60 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| 30.0 MHz                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000 p                                                                                                        | ots                                               | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.0 MHz/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0 GHz                                                                                                        |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M                                                                                                                | easuring 💵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 440 <u></u>                                                                                                     |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | Chann                                             | el High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |

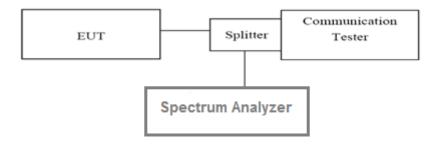
|                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                | LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17-5MI                        | Ηz                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
|------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| MultiVie                     | w                      | Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QAM                           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | ▽                                                                                                                |
| Ref Leve                     | <b>i</b> 30.           | .50 dBm Offset<br>20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : 10.50 dB • RE<br>100 ms • VE                                                                                                                                                                                                                 | BW 1 MHz<br>BW 3 MHz Moo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | de Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| 1 Frequer                    | icy S                  | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1[1]                                    | • 1Pk Max<br>-43.35 dBm<br>1.4134870 GHz                                                                         |
| 20 dBm                       | _                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| 10 dBm                       | _                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| 0 dBm                        | _                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| -10 dBm                      |                        | H1 -13.000 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| -20 dBm                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| -30 dBm                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| -40 dBm                      |                        | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| and the first of the second  |                        | and product a section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | department (Looffbelling                                                                                                                                                                                                                       | abda ang ang ang ang ang ang ang ang ang an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a father all the state of the sale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and form while a stable       | wara the blood                                                                                                 | Unglijkered ( i der ja <sup>ngled</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and public address to a                  | l dissons the delegated                                                                                          |
| -60 dBm                      | no Junio               | a ferre de la construction de la construcción de la construcción de la construcción de la construcción de la co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | padaritising areas and and                                                                                                                                                                                                                     | and the discovery provide the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n an an Artificia a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Non-to-th-RepPictoreau Photo- | Alternation and an and an an                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Law MD Met 19 Control of the             | and the second |
|                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 10.0 01                                                                                                          |
| 30.0 MHz                     |                        | )[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                | 100000 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99                            | 7.0 MHz/                                                                                                       | Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | easuring 🔳                               | 10.0 GHz                                                                                                         |
|                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | el Low                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
|                              |                        | Spectrum<br>50 dBm Offset<br>20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : 10.50 dB • RI                                                                                                                                                                                                                                | BW 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| Att<br>1 Frequent            | icy S                  | 20 dB SWT<br>weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100 ms 🖷 VE                                                                                                                                                                                                                                    | 3WI 3 MHz Moo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | de Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1[1]                                    | ●1Pk Max<br>-42.40 dBm<br>1.4196680 GHz                                                                          |
| 20 dBm                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 1.4196680 GHz                                                                                                    |
| 10 dBm                       | _                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| 0 d8m                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| -10 dBm                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
|                              |                        | H1 -13.000 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| -20 dBm                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| -30 dBm                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| -40 dBm                      |                        | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A contraction of the                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | للا التعريب الماري                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | di constatibilita dal dari                                                                                     | ama dalama kala se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | مادينا و المراجع من محمد الم                                                                                     |
| a second second second       | and spin a             | na antin'ny fisiana amin'ny designa des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>n</sup> territoria de la constante de<br>Esta de la constante de la const | and a strength of the strength | and the second se | ad na galadir tani s          | and a second | (Prove and an Original Providence of the Origina | united in some of the second             | metrosometrosometros                                                                                             |
| -60 dBm                      | _                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| 30.0 MHz                     | _                      | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                | 100000 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99                            | 7.0 MHz/                                                                                                       | Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | asuring 🔳                                | 10.0 GHz                                                                                                         |
|                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chapr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nel Mid                       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| MultiVie                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| Ref Leve<br>Att<br>1 Frequer | a 30.<br>I <b>cy S</b> | 50 dBm Offsel<br>20 dB SWT<br>weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 10.50 dB • RE<br>100 ms • VE                                                                                                                                                                                                                 | 5WV 1 MHz<br>3WV 3 MHz Moo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | de Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | • 1Pk Max                                                                                                        |
| 20 dBm                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1[1]                                    | -40.62 dBm<br>1.4268470 GHz                                                                                      |
|                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| 10 dBm                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| 0 dBm                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| -10 dBm                      |                        | H1 -13.000 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| -20 dBm                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| -30 dBm                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| -40 dBm                      |                        | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                | ىىتىرى بى                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                                                                  |
|                              | aith<br>ma             | Miles alles and the figure of the second state of the second state of the second state of the second s | and population of physical business                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Algebrannel, Billin Life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Landsold and All Alman        | a <mark>ha an an</mark>                                                       | Manager and Anti-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | an a | House and the first of the second                                                                                |
| -60 dBm                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                | - Print C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |
| 30.0 MHz                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                | 100000 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99                            | 7.0 MHz/                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 10.0 GHz                                                                                                         |
|                              |                        | л                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                | Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | easuring 🔳                               |                                                                                                                  |
|                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | el High                       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                  |





# 5.4. Band Edge

## LIMIT


Part 24.238 and Part 22.917 and Part 27.53h(1) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P) dB$ .

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

### LTE Band 7

Part 27.53 m(4) For mobile digital stations, the attenuation factor shall be not less than  $40 + 10 \log (P) dB$  on all frequencies between the channel edge and 5 megahertz from the channel edge,  $43 + 10 \log (P) dB$  on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section.

## **TEST CONFIGURATION**



## TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- The band edges of low and high channels for the highest RF powers were measured. Set RBW>= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 3. Set spectrum analyzer with RMS detector.

### TEST MODE:

Please refer to the clause 3.3

### TEST RESULTS

🛛 Passed 🛛 🗌

Not Applicable

| MultiView 88                                                                                                                                                                      | Spectrum                              |              |                                |                        |          |           |   |              | $\bigtriangledown$                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|--------------------------------|------------------------|----------|-----------|---|--------------|-----------------------------------------------|
| Ref Level 30.5                                                                                                                                                                    | 0 dBm Offset                          | t 10.50      | 0 dB <b>● RBW</b> 30           | ) kHz                  |          |           |   |              |                                               |
| Att                                                                                                                                                                               | 20 dB SWT                             | 140 µs (~7.2 | ms) <b>= VBW</b> 100           | OkHz <b>Mode</b> Au    | to FFT   |           |   |              | Count 100/100<br>1Sa Avg                      |
| 1 Frequency Sw                                                                                                                                                                    | reep                                  |              |                                |                        |          |           |   | M1[1]        | -27.54 dBr                                    |
|                                                                                                                                                                                   |                                       |              |                                |                        |          |           |   |              | 1.85000000 GH                                 |
| 20 dBm                                                                                                                                                                            |                                       |              |                                |                        |          |           |   |              |                                               |
|                                                                                                                                                                                   |                                       |              |                                |                        |          |           |   |              |                                               |
| 10 dBm                                                                                                                                                                            |                                       |              |                                |                        | <u>_</u> |           |   |              |                                               |
|                                                                                                                                                                                   |                                       |              |                                |                        | /        |           |   |              |                                               |
| 0 dBm                                                                                                                                                                             |                                       |              |                                |                        |          | +         |   |              |                                               |
|                                                                                                                                                                                   |                                       |              |                                |                        |          |           |   |              |                                               |
| -10 dBm                                                                                                                                                                           | +1 -13.000 dBm                        |              |                                |                        |          |           |   |              |                                               |
| ľ                                                                                                                                                                                 | 12 10:000 00:00                       |              |                                |                        |          |           |   |              |                                               |
| -20 dBm                                                                                                                                                                           |                                       |              |                                |                        |          |           |   |              |                                               |
|                                                                                                                                                                                   |                                       |              |                                | I. I.                  | 1        |           |   | $\land$      |                                               |
| -30 dBm                                                                                                                                                                           |                                       |              |                                |                        |          |           |   | $\mathbf{X}$ |                                               |
|                                                                                                                                                                                   |                                       |              |                                |                        |          |           |   | $  \sim  $   |                                               |
| -40 dBm                                                                                                                                                                           |                                       |              |                                | 1                      |          |           |   | <u> </u>     |                                               |
| 50 db-                                                                                                                                                                            |                                       |              |                                |                        |          |           |   |              |                                               |
| -50 dBm                                                                                                                                                                           |                                       |              |                                |                        |          |           |   |              |                                               |
| 60 dBm-                                                                                                                                                                           |                                       |              |                                |                        |          |           |   |              |                                               |
| -60 dBm                                                                                                                                                                           |                                       |              |                                |                        |          |           |   |              |                                               |
|                                                                                                                                                                                   |                                       |              |                                |                        |          |           |   |              |                                               |
| CF 1.85 GHz                                                                                                                                                                       | (                                     |              | 1001 pt                        | ts                     | 20       | 00.0 kHz/ |   |              | Span 2.0 MH:                                  |
| MultiView 88                                                                                                                                                                      | Spectrum                              |              |                                | Channel I              | _ow-1RB# |           | M | leasuring    |                                               |
| Ref Level 30.5                                                                                                                                                                    | 50 dBm Offset                         |              | 0 dB • RBW 30                  | ) kHz                  |          |           | M | leasuring    |                                               |
|                                                                                                                                                                                   | 0 dBm Offset<br>20 dB SWT             |              | 0 dB ● RB₩ 30<br>ms) ● VB₩ 100 | ) kHz                  |          |           | M |              | Count 100/100<br>●1Sa Avg                     |
| Ref Level 30.5<br>Att                                                                                                                                                             | 0 dBm Offset<br>20 dB SWT             |              |                                | ) kHz                  |          |           |   | M1[1]        | ▼<br>Count 100/100                            |
| Ref Level 30.5<br>Att                                                                                                                                                             | 0 dBm Offset<br>20 dB SWT             |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 153 Avg<br>-30.80 dBr |
| Ref Level 30.5<br>Att<br>Frequency Sw                                                                                                                                             | 0 dBm Offset<br>20 dB SWT             |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 153 Avg<br>-30.80 dBr |
| Ref Level 30.5<br>Att<br>Frequency Sw                                                                                                                                             | 0 dBm Offset<br>20 dB SWT             |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5<br>Att<br>1 Frequency Sw<br>20 dBm-                                                                                                                                | 0 dBm Offset<br>20 dB SWT             |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5<br>Att<br>1 Frequency Sw<br>20 dBm-                                                                                                                                | 0 dBm Offset<br>20 dB SWT             |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5<br>Att<br>I Frequency Sw<br>20 dBm-<br>10 dBm-                                                                                                                     | 0 dBm Offset<br>20 dB SWT             |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           0 dBm                                                                           | y<br>20 dB Offse<br>20 dB SWT<br>veep |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           0 dBm                                                                           | 0 dBm Offset<br>20 dB SWT             |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           0 dBm                                                                           | y<br>20 dB Offse<br>20 dB SWT<br>veep |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm                                                                         | y<br>20 dB Offse<br>20 dB SWT<br>veep |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm                                                                         | y<br>20 dB Offse<br>20 dB SWT<br>veep |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm                                                       | y<br>20 dB Offse<br>20 dB SWT<br>veep |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm                                                       | y<br>20 dB Offse<br>20 dB SWT<br>veep |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                     | y<br>20 dB Offse<br>20 dB SWT<br>veep |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm                                                       | y<br>20 dB Offse<br>20 dB SWT<br>veep |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5           Att           I Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm | y<br>20 dB Offse<br>20 dB SWT<br>veep |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                     | y<br>20 dB Offse<br>20 dB SWT<br>veep |              |                                | ) kHz                  |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5           Att           I Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm | y<br>20 dB Offse<br>20 dB SWT<br>veep |              | ms) • VBW 100                  | D kHz<br>D kHz Mode Au |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |
| Ref Level 30.5           Att           I Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm | y<br>20 dB Offse<br>20 dB SWT<br>veep |              |                                | D kHz<br>D kHz Mode Au |          | 00.0 kHz/ |   | M1[1]        |                                               |
| Ref Level 30.5           Att           I Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | y<br>20 dB Offse<br>20 dB SWT<br>veep |              | ms) • VBW 100                  | D kHz<br>D kHz Mode Au |          |           |   | M1[1]        | ⊂<br>Count 100/100<br>● 15a Avg<br>-30.80 dBr |

| ectrum<br>Offset<br>SWT 140 µs | 10.50 dB ● RBW 3<br>s (~7.2 ms) ● VBW 10               |                                       | to FFT     |             |                     | M1[1]       | ▼<br>Count 100/100<br>● 1Sa Avg<br>-36,48 dBr<br>1,8500000 GH |
|--------------------------------|--------------------------------------------------------|---------------------------------------|------------|-------------|---------------------|-------------|---------------------------------------------------------------|
| 3 SWT 140 µs                   |                                                        |                                       |            |             |                     | M1[1]       | ●1Sa Avg<br>-36.48 dBr                                        |
|                                |                                                        |                                       |            |             |                     | M1[1]       | ●1Sa Avg<br>-36.48 dBr                                        |
|                                |                                                        |                                       |            |             |                     |             | 1.85000000 GH                                                 |
| )00 dBm                        |                                                        |                                       |            |             |                     |             |                                                               |
| )00 dBm                        |                                                        |                                       |            |             |                     |             |                                                               |
| 000 dBm                        |                                                        |                                       |            |             |                     |             |                                                               |
| 000 dBm                        |                                                        |                                       |            |             |                     |             |                                                               |
| 000 dBm                        |                                                        |                                       |            |             |                     |             |                                                               |
| 000 dBm                        |                                                        |                                       |            |             |                     |             |                                                               |
| 000 dBm                        |                                                        |                                       |            |             |                     |             |                                                               |
|                                |                                                        |                                       |            |             |                     |             |                                                               |
|                                |                                                        |                                       |            |             |                     |             |                                                               |
|                                |                                                        |                                       |            |             |                     |             |                                                               |
|                                |                                                        |                                       |            |             |                     |             |                                                               |
|                                |                                                        |                                       |            |             |                     |             |                                                               |
|                                | <u>f</u>                                               | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |            |             |                     |             |                                                               |
|                                |                                                        |                                       |            |             |                     |             |                                                               |
|                                |                                                        |                                       |            |             |                     |             |                                                               |
|                                |                                                        |                                       |            |             |                     |             |                                                               |
|                                |                                                        |                                       |            |             |                     |             |                                                               |
|                                | 1001 p                                                 | ots                                   | 20         | 0.0 kHz/    |                     |             | Span 2.0 MH                                                   |
|                                |                                                        |                                       |            |             | м                   | leasuring 💵 |                                                               |
| ectrum                         |                                                        |                                       | ow-Full RB | #           |                     |             |                                                               |
| ) Offset                       | 10.50 dB ● <b>RBW</b> 3<br>s (~7.2 ms) ● <b>VBW</b> 10 | 30 kHz                                |            | #           |                     |             | Count 100/100                                                 |
| ) Offset                       | 10.50 dB ● RBW 3<br>s (~7.2 ms) ● VBW 10               | 30 kHz                                |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ) Offset                       | 10.50 dB ● RBW 3<br>s (~7.2 ms) ● VBW 10               | 30 kHz                                |            | #           |                     | M1[1]       | Count 100/100<br>• 1Sa Avg                                    |
| ) Offset                       | 10.50 dB ● RBW 3<br>s (~7.2 ms) ● VBW 10               | 30 kHz                                |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ) Offset                       | 10.50 dB ● RBW 3<br>s (~7.2 ms) ● VBW 10               | 30 kHz                                |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ) Offset                       | 10.50 dB ● RBW 3<br>s (~7.2 ms) ● VBW 10               | 30 kHz                                |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ) Offset                       | 10.50 dB ● RBW 3<br>s (~7.2 ms) ● VBW 10               | 30 kHz                                |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ) Offset                       | 10.50 dB • RBW 3<br>s (~7.2 ms) • VBW 10               | 30 kHz                                |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ο Offset<br>3 SWT 140 μs       | 10.50 dB ● RBW 3<br>s (~7.2 ms) ● VBW 10               | 30 kHz                                |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ) Offset                       | 10.50 dB ● RBW 3<br>s (~7.2 ms) ● VBW 10               | 30 kHz                                |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ο Offset<br>3 SWT 140 μs       | 10.50 dB • RBW 3<br>s (~7.2 ms) • VBW 10               | 30 kHz                                |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ο Offset<br>3 SWT 140 μs       | 10.50 dB • RBW 3<br>s (~7.2 ms) • VBW 10               | 30 kHz                                |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ο Offset<br>3 SWT 140 μs       | 10.50 dB • RBW 3<br>s (~7.2 ms) • VBW 10               | 0 kHz Mode Au                         |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ο Offset<br>3 SWT 140 μs       | 10.50 dB ● RBW 3<br>s (~7.2 ms) ● VBW 10               | 0 kHz Mode Au                         |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ο Offset<br>3 SWT 140 μs       | 10.50 dB ● RBW 3<br>s (~7.2 ms) ● VBW 10               | 0 kHz Mode Au                         |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ο Offset<br>3 SWT 140 μs       | 10.50 dB ● RBW 3<br>s (~7.2 ms) ● VBW 10               | 0 kHz Mode Au                         |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ο Offset<br>3 SWT 140 μs       | 10.50 dB • RBW 3<br>s (~7.2 ms) • VBW 10               | 0 kHz Mode Au                         |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ο Offset<br>3 SWT 140 μs       | 10.50 dB • RBW 3<br>s (~7.2 ms) • VBW 10               | 0 kHz Mode Au                         |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| ο Offset<br>3 SWT 140 μs       | s (~7.2 ms) • VBW 10                                   | 30 kHz Mode Au                        |            |             |                     | M1[1]       | Count 100/100                                                 |
| ο Offset<br>3 SWT 140 μs       | 10.50 dB • RBW 3<br>s (~7.2 ms) • VBW 10               | 30 kHz Mode Au                        |            | #           |                     | M1[1]       | Count 100/100<br>1Sa Avg<br>-38.11 dBr                        |
| -                              |                                                        |                                       | 1001 pts   | 1001 pts 20 | 1001 pts 200.0 kHz/ |             | 1001 pts 200.0 kHz/<br>Measuring                              |

Issued: 2017-06-20

| N 11 3 4                                                                                                                                                                    |                            |               |                      |                                                 |                        |          |           |     |              |                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|----------------------|-------------------------------------------------|------------------------|----------|-----------|-----|--------------|----------------------------------------|
|                                                                                                                                                                             | B Speci                    |               |                      |                                                 |                        |          |           |     |              |                                        |
| RefLevel 3<br>Att                                                                                                                                                           |                            |               |                      | 50 dB <b>= RBW</b> 30<br>2 ms) <b>= VBW</b> 100 |                        | to FFT   |           |     |              | Count 100/100                          |
| 1 Frequency                                                                                                                                                                 |                            |               |                      |                                                 |                        |          |           |     | M1[1]        | ●1Sa Avg                               |
|                                                                                                                                                                             |                            |               |                      |                                                 |                        |          |           |     | WILI         | 1.85000000 GH                          |
| 20 dBm                                                                                                                                                                      |                            |               |                      |                                                 |                        |          |           |     |              |                                        |
|                                                                                                                                                                             |                            |               |                      |                                                 |                        |          |           |     |              |                                        |
| 10 dBm                                                                                                                                                                      |                            |               |                      |                                                 |                        | ~        |           |     |              |                                        |
|                                                                                                                                                                             |                            |               |                      |                                                 |                        |          |           |     |              |                                        |
| 0 dBm                                                                                                                                                                       |                            |               |                      |                                                 |                        |          |           |     |              |                                        |
| -10 dBm                                                                                                                                                                     |                            |               |                      |                                                 |                        |          |           |     |              |                                        |
| -10 UBIII                                                                                                                                                                   | H1 -13.000                 | dBm           |                      |                                                 |                        |          |           |     |              |                                        |
| -20 dBm                                                                                                                                                                     |                            |               |                      |                                                 |                        |          |           |     |              |                                        |
|                                                                                                                                                                             |                            |               |                      |                                                 |                        |          |           |     |              |                                        |
| -30 dBm                                                                                                                                                                     | -                          |               |                      |                                                 | N                      | 1/       |           |     | + +          |                                        |
|                                                                                                                                                                             |                            |               |                      |                                                 |                        |          |           |     | $\mathbb{N}$ |                                        |
| -40 dBm                                                                                                                                                                     |                            |               |                      |                                                 |                        |          |           |     | +            |                                        |
|                                                                                                                                                                             |                            |               |                      |                                                 |                        |          |           |     |              |                                        |
| -50 dBm                                                                                                                                                                     | +~~_                       |               | ~~~~                 | -1'                                             |                        |          |           |     |              |                                        |
| -60 dBm                                                                                                                                                                     |                            |               |                      |                                                 |                        |          |           |     |              |                                        |
|                                                                                                                                                                             |                            |               |                      |                                                 |                        |          |           |     |              |                                        |
| CF 1.85 GHz                                                                                                                                                                 |                            |               |                      |                                                 | te                     | 20       | 0.0 kHz/  |     |              | Span 2.0 MHz                           |
|                                                                                                                                                                             |                            |               |                      |                                                 |                        |          |           | ) v | leasuring 🔳  |                                        |
| MultiView                                                                                                                                                                   | 😁 Speci                    | trum          |                      |                                                 | Channel I              | ₋ow-1RB# |           |     |              |                                        |
| Ref Level 3                                                                                                                                                                 | 0.50 dBm                   | Offset        | 10.5<br>140 us (~7.2 | 50 dB ● RBW 30                                  | 0 kHz                  |          |           |     |              |                                        |
|                                                                                                                                                                             | 0.50 dBm<br>20 dB          | Offset        | 10.5<br>140 µs (~7.2 | 50 dB ● RBW 3<br>2 ms) ● VBW 100                | 0 kHz                  |          |           |     |              | Count 100/100<br>• 1Sa Avg             |
| RefLevel 3<br>Att                                                                                                                                                           | 0.50 dBm<br>20 dB          | Offset        | 10.5<br>140 µs (~7.2 | 50 dB ● RBW 34<br>2 ms) ● VBW 104               | 0 kHz                  |          |           |     | M1[1]        | Count 100/100<br>• 1Sa Avg             |
| RefLevel 3<br>Att                                                                                                                                                           | 0.50 dBm<br>20 dB          | Offset        | 10.5<br>140 µs (~7.2 | 50 dB ● RBW 33<br>2 ms) ● VBW 100               | 0 kHz                  |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level 3<br>● Att<br>1 Frequency                                                                                                                                         | 0.50 dBm<br>20 dB          | Offset        | 10.5<br>140 µs (~7.2 | 50 dB ● RBW 30<br>2 ms) ● VBW 100               | 0 kHz                  |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level 3<br>● Att<br>1 Frequency                                                                                                                                         | 0.50 dBm<br>20 dB          | Offset        | 10.5<br>140 µs (~7.2 | 50 dB ● RBW 3<br>2 ms) ● VBW 100                | 0 kHz                  |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm                                                                                                                                 | 0.50 dBm<br>20 dB          | Offset        | 10.5<br>140 µs (~7.2 | 50 dB ● RBW 31<br>2 ms) ● VBW 101               | 0 kHz                  |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm-                                                                                                                                | 0.50 dBm<br>20 dB          | Offset        | 10.5<br>140 µs (~7.2 | 50 dB ● RBW 31<br>2 ms) ● VBW 100               | 0 kHz                  |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level         3'           Att         1           1 Frequency         20 dBm           20 dBm         0 dBm           0 dBm         0 dBm                              | 0.50 dBm<br>20 dB          | Offset        | 10.5<br>140 µs (~7.2 | 50 dB ● RBW 3<br>2 ms) ● VBW 100                | 0 kHz                  |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm                                                                                                                                 | 0.50 dBm<br>20 dB          | Offset<br>SWT | 10.5<br>140 µs (~7.2 | 50 dB ● RBW 31<br>2 ms) ● VBW 101               | 0 kHz                  |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level         3'           Att         1           1 Frequency         20 dBm           20 dBm         0 dBm           0 dBm         0 dBm                              | 0.50 dBm<br>20 dB<br>Sweep | Offset<br>SWT | 10.5<br>140 µs (~7.2 | 50 dB ● RBW 30<br>2 ms) ● VBW 100               | 0 kHz                  |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level         3'           Att         1           1 Frequency         20 dBm           20 dBm         0           0 dBm                                                | 0.50 dBm<br>20 dB<br>Sweep | Offset<br>SWT | 10.5<br>140 µs (~7.2 | 50 dB • RBW 31<br>2 ms) • VBW 101               | 0 kHz                  |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level         3'           Att         1           1 Frequency         20 dBm           20 dBm         0           0 dBm                                                | 0.50 dBm<br>20 dB<br>Sweep | Offset<br>SWT | 10.5<br>140 µs (~7.2 | 50 dB • RBW 33<br>2 ms) • VBW 10                | 0 kHz                  |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                       | 0.50 dBm<br>20 dB<br>Sweep | Offset<br>SWT | 10.5<br>140 µs (~7.2 | 50 dB • RBW 31<br>2 ms) • VBW 100               | 0 kHz<br>0 kHz Mode Au |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                       | 0.50 dBm<br>20 dB<br>Sweep | Offset<br>SWT | 10.5<br>140 µs (~7.2 | 50 dB • RBW 3<br>2 ms) • VBW 100                | 0 kHz<br>0 kHz Mode Au |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm   | 0.50 dBm<br>20 dB<br>Sweep | Offset<br>SWT | 10.5<br>140 µs (~7.2 | 50 dB ● RBW 30<br>2 ms) ● VBW 100               | 0 kHz<br>0 kHz Mode Au |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                       | 0.50 dBm<br>20 dB<br>Sweep | Offset<br>SWT | 10.5<br>140 µs (~7.2 | 50 dB • RBW 31<br>2 ms) • VBW 101               | 0 kHz<br>0 kHz Mode Au |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm   | 0.50 dBm<br>20 dB<br>Sweep | Offset<br>SWT | 10.5<br>140 µs (~7.2 | 50 dB • RBW 33<br>2 ms) • VBW 10                | 0 kHz<br>0 kHz Mode Au |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | 0.50 dBm<br>20 dB<br>Sweep | Offset<br>SWT | 10.5<br>140 µs (~7.2 | 50 dB • RBW 3<br>2 ms) • VBW 100                | 0 kHz<br>0 kHz Mode Au |          |           |     | M1[1]        | Count 100/100<br>1Sa Avg<br>-34.08 dBr |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | 0.50 dBm<br>20 dB<br>Sweep | Offset<br>SWT | 10.5<br>140 µs (~7.2 | 50 dB • RBW 3<br>ms) • VBW 100                  | D kHz<br>D kHz Mode Au |          | 00.0 kHz/ |     |              | Count 100/100                          |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | 0.50 dBm<br>20 dB<br>Sweep | Offset<br>SWT | 10.5<br>140 µs (~7.2 |                                                 | D kHz<br>D kHz Mode Au |          |           |     | M1[1]        | Count 100/100                          |

Issued: 2017-06-20

|                                                                                                                                                                                    | Spectrum                               |                                             |                           |            |               |               |             |                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|---------------------------|------------|---------------|---------------|-------------|----------------------------------------|
| Att                                                                                                                                                                                | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB ● RBW 30<br>µs (~7.2 ms) ● VBW 100 | kHz<br>kHz <b>Mode</b> Ai | uto FFT    |               |               |             | Count 100/100                          |
| 1 Frequency Sv                                                                                                                                                                     | weep                                   |                                             |                           |            |               |               |             | ●1Sa Avg                               |
|                                                                                                                                                                                    |                                        |                                             |                           |            |               |               | M1[1]       | -34.63 dBn<br>1.85000000 GHa           |
| 20 dBm                                                                                                                                                                             |                                        |                                             |                           |            |               |               |             |                                        |
| Lo dom                                                                                                                                                                             |                                        |                                             |                           |            |               |               |             |                                        |
| 10 dBm                                                                                                                                                                             |                                        |                                             |                           |            |               |               |             |                                        |
|                                                                                                                                                                                    |                                        |                                             |                           |            |               |               |             |                                        |
| 0 dBm                                                                                                                                                                              |                                        |                                             |                           |            | L_~.~~        | ~~ <u>~</u> ~ |             |                                        |
|                                                                                                                                                                                    |                                        |                                             |                           |            | <b>T</b>      |               |             |                                        |
| -10 dBm                                                                                                                                                                            |                                        |                                             |                           | ļ(         |               |               |             |                                        |
|                                                                                                                                                                                    | H1 -13.000 dBm                         |                                             |                           | + /        |               |               |             |                                        |
| -20 dBm                                                                                                                                                                            |                                        |                                             |                           |            |               |               |             |                                        |
|                                                                                                                                                                                    |                                        |                                             |                           |            |               |               |             |                                        |
| -30 dBm                                                                                                                                                                            |                                        |                                             |                           |            |               |               |             |                                        |
|                                                                                                                                                                                    |                                        |                                             |                           |            |               |               |             |                                        |
| -40 dBm                                                                                                                                                                            |                                        |                                             | ~                         |            |               |               |             |                                        |
| $\sim$                                                                                                                                                                             | ~ ~                                    |                                             |                           |            |               |               |             |                                        |
| -50 dBm                                                                                                                                                                            |                                        |                                             |                           |            |               |               |             |                                        |
|                                                                                                                                                                                    |                                        |                                             |                           |            |               |               |             |                                        |
| -60 dBm                                                                                                                                                                            |                                        |                                             |                           |            |               |               |             |                                        |
|                                                                                                                                                                                    |                                        |                                             |                           |            |               |               |             |                                        |
| CF 1.85 GHz                                                                                                                                                                        |                                        |                                             | <u> </u>                  | 20         | <br>)0.0 kHz/ |               |             | Span 2.0 MHz                           |
|                                                                                                                                                                                    | Y                                      |                                             | -                         |            | ,             | N             | leasuring 🔳 |                                        |
| MultiView 8                                                                                                                                                                        |                                        | J                                           |                           | ow-Full RB | #             |               |             |                                        |
|                                                                                                                                                                                    | 50 dBm Offset                          | 10.50 dB • RBW 30<br>µs (~7.2 ms) • VBW 100 | kHz                       |            | #             |               |             | ▼<br>Count 100/100                     |
| Ref Level 30.                                                                                                                                                                      | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                           | kHz                       |            | #             |               | M1[1]       | Count 100/100<br>•1Sa Avg              |
| Ref Level 30.<br>Att                                                                                                                                                               | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                           | kHz                       |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30.<br>Att                                                                                                                                                               | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                           | kHz                       |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30.1<br>Att<br>1 Frequency St                                                                                                                                            | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                           | kHz                       |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30.1<br>Att<br>1 Frequency St                                                                                                                                            | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                           | kHz                       |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30.<br>Att<br>1 Frequency Sv<br>20 dBm-                                                                                                                                  | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                           | kHz                       |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30.<br>Att<br>1 Frequency Sv<br>20 dBm-                                                                                                                                  | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                           | kHz                       |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30<br>Att<br>1 Frequency St<br>20 dBm<br>10 dBm                                                                                                                          | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                           | kHz                       |            | #             |               | M1[1]       | Count 100/100                          |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm                                                                            | 50 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                           | kHz                       |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBm |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm                                                                            | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                           | kHz                       |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm                                                                            | 50 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                           | kHz                       |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm                                                          | 50 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                           | kHz                       |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm                                                                            | 50 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                           | kHz                       |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                        | 50 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                           | kHz<br>kHz Mode Au        |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBm |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm                                                          | 50 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                           | kHz<br>kHz Mode Au        |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                        | 50 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                           | kHz<br>kHz Mode Au        |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                        | 50 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                           | kHz<br>kHz Mode Au        |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                      | 50 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                           | kHz<br>kHz Mode Au        |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                        | 50 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                           | kHz<br>kHz Mode Au        |            | #             |               | M1[1]       | Count 100/100<br>ISa Avg<br>-38.37 dBn |
| Ref Level 30           Att           1 Frequency State           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | 50 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30<br>µs (~7.2 ms) • VBW 100 | kHz<br>kHz Mode Au        |            |               |               | M1[1]       | Count 100/100                          |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                      | 50 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                           | kHz<br>kHz Mode Au        |            | #             |               |             | Count 100/100                          |
| Ref Level 30           Att           1 Frequency State           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | 50 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30<br>µs (~7.2 ms) • VBW 100 | kHz<br>kHz Mode Au        |            |               |               |             | Count 100/100<br>ISa Avg<br>-38.37 dBn |

| MultiView                                                                                                                                                                                         |                                   |                       |                                              |                        |          |            |   |            |                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------|----------------------------------------------|------------------------|----------|------------|---|------------|----------------------------------------------------------|
| Att                                                                                                                                                                                               | 50 dBm Offset<br>20 dB SWT        |                       | 0 dB <b>= RBW</b> 30<br>ms) <b>= VBW</b> 100 |                        | to FFT   |            |   |            | Count 100/100                                            |
| 1 Frequency Sv                                                                                                                                                                                    | veep                              |                       |                                              |                        |          |            |   | M1[1]      | ●1Sa Avg<br>-24.69 dBr                                   |
|                                                                                                                                                                                                   |                                   |                       |                                              |                        |          |            |   |            | 1.85000000 GH                                            |
| 20 dBm                                                                                                                                                                                            |                                   |                       |                                              |                        |          |            |   |            |                                                          |
| 10 dBm                                                                                                                                                                                            |                                   |                       |                                              |                        |          |            |   |            |                                                          |
|                                                                                                                                                                                                   |                                   |                       |                                              |                        |          |            |   |            |                                                          |
| 0 dBm                                                                                                                                                                                             |                                   |                       |                                              |                        |          |            |   |            |                                                          |
| -10 dBm                                                                                                                                                                                           |                                   |                       |                                              |                        |          |            |   |            |                                                          |
| 1                                                                                                                                                                                                 | H1 -13.000 dBm                    |                       |                                              |                        |          |            |   |            |                                                          |
| -20 dBm                                                                                                                                                                                           |                                   |                       |                                              | N                      | 1        |            |   |            |                                                          |
| -30 dBm                                                                                                                                                                                           |                                   |                       |                                              |                        | 1        |            |   |            |                                                          |
|                                                                                                                                                                                                   |                                   |                       |                                              |                        |          |            |   |            |                                                          |
| -40 dBm                                                                                                                                                                                           |                                   |                       | $\vdash \sim$                                | þ/                     |          |            |   |            | $\leftarrow$                                             |
| -50 dBm                                                                                                                                                                                           |                                   |                       |                                              |                        |          |            |   |            | <u> </u>                                                 |
| ~~~~~                                                                                                                                                                                             | ~~~                               |                       |                                              |                        |          |            |   |            |                                                          |
| -60 dBm                                                                                                                                                                                           |                                   |                       |                                              |                        |          |            |   |            |                                                          |
|                                                                                                                                                                                                   |                                   |                       |                                              |                        |          |            |   |            |                                                          |
| CF 1.85 GHz                                                                                                                                                                                       | ſ                                 |                       | 1001 pt                                      | S                      | 20       | 00.0 kHz/  | м | easuring 🔳 | Span 2.0 MHz                                             |
| MultiView 8                                                                                                                                                                                       |                                   |                       |                                              |                        | _ow-1RB# |            |   |            |                                                          |
| Ref Level 30.5<br>Att                                                                                                                                                                             | 50 dBm Offset<br>20 dB SWT        | 10.5<br>140 µs (~7.2  | 0 dB ● <b>RBW</b> 30<br>ms) ● <b>VBW</b> 100 | ) kHz                  |          |            |   |            | Count 100/100                                            |
| Ref Level 30.5                                                                                                                                                                                    | 50 dBm Offset<br>20 dB SWT        | 10.50<br>140 µs (~7.2 | 0 dB ● RBW 30<br>ms) ● VBW 100               | ) kHz                  |          |            |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-28.01 dBn                   |
| Ref Level 30.5<br>Att                                                                                                                                                                             | 50 dBm Offset<br>20 dB SWT        | 10.5i<br>140 µs (~7.2 | 0 dB ● RBW 30<br>ms) ● VBW 100               | ) kHz                  |          |            |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-28.01 dBn                   |
| Ref Level 30.3<br>Att<br>1 Frequency Sy                                                                                                                                                           | 50 dBm Offset<br>20 dB SWT        | 10.5<br>140 µs (~7.2  | 0 dB ● RBW 30<br>ms) ● VBW 100               | ) kHz                  |          |            |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-28.01 dBn                   |
| Ref Level 30.3<br>Att<br>1 Frequency Sy                                                                                                                                                           | 50 dBm Offset<br>20 dB SWT        | 10,51<br>140 µs (~7.2 | 0 dB ● RBW 30<br>ms) ● VBW 100               | ) kHz                  |          |            |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-28.01 dBn                   |
| Ref Level 30.3<br>Att<br>1 Frequency Sv<br>20 dBm-                                                                                                                                                | 50 dBm Offset<br>20 dB SWT        | 10.5<br>140 μs (~7.2  | 0 dB • RBW 30<br>ms) • VBW 100               | ) kHz                  |          |            |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-28.01 dBn                   |
| Ref Level 30.3<br>Att<br>1 Frequency Sv<br>20 dBm-<br>10 dBm-                                                                                                                                     | 50 dBm Offset<br>20 dB SWT        | 10.5<br>140 μs (~7.2  | 0 dB • RBW 30<br>ms) • VBW 100               | ) kHz                  |          |            |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-28.01 dBn                   |
| Ref Level 30.3           Att           1 Frequency SV           20 dBm           10 dBm           0 dBm                                                                                           | 50 dBm Offset<br>20 dB SWT        | 10,5<br>140 μs (~7.2  | 0 dB • RBW 30<br>ms) • VBW 100               | ) kHz                  |          |            |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-28.01 dBn                   |
| Ref Level 30.3           Att           1 Frequency SV           20 dBm           10 dBm           0 dBm                                                                                           | o dBm Offset<br>20 dB SWT<br>veep | 10.5<br>140 µs (~7.2  | 0 dB • RBW 30<br>ms) • VBW 100               | ) kHz                  |          |            |   | M1[1]      | Count 100/100<br>●1S3 Avg<br>-28.01 dBn<br>1.91000000 GH |
| Ref Level 30.3           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | o dBm Offset<br>20 dB SWT<br>veep | 10,51<br>140 µs (~7.2 | 0 dB • RBW 30<br>ms) • VBW 100               | ) kHz<br>kHz Mode Au   |          |            |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-28.01 dBn                   |
| Ref Level 30.3           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm                                                                                         | o dBm Offset<br>20 dB SWT<br>veep | 10.5<br>140 μs (~7.2  | 0 dB • RBW 30<br>ms) • VBW 100               | ) kHz<br>kHz Mode Au   |          |            |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-28.01 dBn                   |
| Ref Level 30.3           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | o dBm Offset<br>20 dB SWT<br>veep | 10.5<br>140 μs (~7.2  | 0 dB ● RBW 30<br>ms) ● VBW 100               | ) kHz<br>kHz Mode Au   |          |            |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-28.01 dBn                   |
| Ref Level 30.3           Att           1 Frequency St           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                       | o dBm Offset<br>20 dB SWT<br>veep | 10.5<br>140 μs (~7.2  | 0 dB • RBW 30<br>ms) • VBW 100               | ) kHz<br>kHz Mode Au   |          |            |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-28.01 dBn                   |
| Ref Level 30.3           Att           1 Frequency St           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                       | o dBm Offset<br>20 dB SWT<br>veep | 10.5<br>140 µs (~7.2  | 0 dB • RBW 30<br>ms) • VBW 100               | ) kHz<br>kHz Mode Au   |          |            |   | M1[1]      | Count 100/100<br>01Sa Avg<br>-28.01 dBn                  |
| Ref Level 30.3           Att           1 Frequency St           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                     | o dBm Offset<br>20 dB SWT<br>veep | 10.5<br>140 μs (~7.2  | 0 dB • RBW 30<br>ms) • VBW 100               | ) kHz<br>kHz Mode Au   |          |            |   | M1[1]      | Count 100/100<br>01Sa Avg<br>-28.01 dBn                  |
| Ref Level 30.3           Att           1 Frequency St           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | o dBm Offset<br>20 dB SWT<br>veep | 10.5<br>140 µs (~7.2  | 0 dB • RBW 30<br>ms) • VBW 100               | ) kHz<br>kHz Mode Au   |          |            |   | M1[1]      | Count 100/100<br>01Sa Avg<br>-28.01 dBn                  |
| Ref Level 30.3           Att           1 Frequency St           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | o dBm Offset<br>20 dB SWT<br>veep | 10.5<br>140 µs (~7.2  | 0 dB • RBW 30<br>ms) • VBW 100               | ) kHz<br>) kHz Mode Au |          | )00.0 kHz/ |   | M1[1]      | Count 100/100                                            |
| Ref Level 30.3           Att           1 Frequency St           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | o dBm Offset<br>20 dB SWT<br>veep | 10.5<br>140 μs (~7.2  | ms) • VBW 100                                | ) kHz<br>) kHz Mode Au |          |            |   | M1[1]      | Count 100/100                                            |

| MultiView 8                                                                                                                                                                       | Spectrum                               | 7                                                  |                    |           |          |   |            |                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|--------------------|-----------|----------|---|------------|-------------------------------------------------------------------|
| Ref Level 30.5<br>Att                                                                                                                                                             | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB ● RBW 30<br>0 µs (~7.2 ms) ● VBW 100      |                    | to FFT    |          |   |            | Count 100/100                                                     |
| 1 Frequency Sv                                                                                                                                                                    | weep                                   |                                                    |                    |           |          |   | M1[1]      | <ul> <li>1Sa Avg</li> <li>-34.62 dBr</li> </ul>                   |
|                                                                                                                                                                                   |                                        |                                                    |                    |           |          |   | , interior | 1.85000000 GH                                                     |
| 20 dBm                                                                                                                                                                            |                                        |                                                    |                    |           |          |   |            |                                                                   |
|                                                                                                                                                                                   |                                        |                                                    |                    |           |          |   |            |                                                                   |
| 10 dBm                                                                                                                                                                            |                                        |                                                    |                    |           |          |   |            |                                                                   |
| 0 dBm                                                                                                                                                                             |                                        |                                                    |                    |           |          |   |            |                                                                   |
| U UBIII                                                                                                                                                                           |                                        |                                                    |                    |           |          |   | h          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                            |
| -10 dBm                                                                                                                                                                           |                                        |                                                    |                    | /         |          |   |            |                                                                   |
|                                                                                                                                                                                   | H1 -13.000 dBm                         |                                                    |                    |           |          |   |            |                                                                   |
| -20 dBm                                                                                                                                                                           |                                        |                                                    |                    | <u> </u>  |          |   |            |                                                                   |
|                                                                                                                                                                                   |                                        |                                                    |                    |           |          |   |            |                                                                   |
| -30 dBm                                                                                                                                                                           |                                        |                                                    | N                  | المسر 1   |          |   |            |                                                                   |
| -40-dBm                                                                                                                                                                           |                                        |                                                    | $\sim\sim$         |           |          |   |            |                                                                   |
|                                                                                                                                                                                   | $\sim$                                 |                                                    |                    |           |          |   |            |                                                                   |
| -50 dBm                                                                                                                                                                           |                                        |                                                    |                    |           |          |   |            |                                                                   |
|                                                                                                                                                                                   |                                        |                                                    |                    |           |          |   |            |                                                                   |
| -60 dBm                                                                                                                                                                           |                                        |                                                    |                    |           |          |   |            |                                                                   |
|                                                                                                                                                                                   |                                        |                                                    |                    |           |          |   |            |                                                                   |
| CF 1.85 GHz                                                                                                                                                                       |                                        | 1001 pt                                            | S                  | 20        | 0.0 kHz/ |   |            | Span 2.0 MHz                                                      |
| MultiView 8                                                                                                                                                                       |                                        | 7                                                  |                    | w-Full RB | #        | M | easuring 🔳 |                                                                   |
| Ref Level 30.5<br>Att                                                                                                                                                             | 50 dBm Offset<br>20 dB SWT 140         | C<br>10.50 dB ● RBW 30<br>0 µs (~7.2 ms) ● VBW 100 | kHz                |           | #        | M |            | ▼<br>Count 100/100                                                |
| Ref Level 30.5                                                                                                                                                                    | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                                  | kHz                |           | #        | M | M1[1]      | ▼           Count 100/100           ●1Sa Avg           -40,09 dBr |
| Ref Level 30.5<br>Att                                                                                                                                                             | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                                  | kHz                |           | #        | M | M1[1]      | ▼           Count 100/100           ●1Sa Avg           -40,09 dBr |
| Ref Level 30.5<br>Att<br>1 Frequency Sv                                                                                                                                           | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                                  | kHz                |           | #        |   | M1[1]      | ▼           Count 100/100           ●1Sa Avg           -40,09 dBr |
| Ref Level 30.5<br>Att<br>1 Frequency Sv                                                                                                                                           | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                                  | kHz                |           | #        |   | M1[1]      | ▼           Count 100/100           ●1Sa Avg           -40,09 dBr |
| Ref Level 30.5<br>Att<br>I Frequency Sv<br>20 dBm<br>10 dBm                                                                                                                       | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                                  | kHz                |           | #        |   | M1[1]      | ⊽<br>Count 100/100<br>●1\$a Avg<br>-40,09 dBr                     |
| Ref Level 30.5<br>Att<br>1 Frequency Sv<br>20 dBm-                                                                                                                                | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                                  | kHz                |           | #        |   | M1[1]      | ▼           Count 100/100           ●1Sa Avg           -40,09 dBr |
| Ref Level 30.5<br>Att<br>I Frequency Sv<br>20 dBm<br>10 dBm                                                                                                                       | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                                  | kHz                |           | #        |   | M1[1]      | ▼           Count 100/100           ●1Sa Avg           -40,09 dBr |
| Ref Level 30.5           Att           1 Frequency Sv           20 dBm           10 dBm           0 dBm                                                                           | 50 dBm Offset<br>20 dB SWT 140         | 10.50 dB • RBW 30                                  | kHz                |           | #        |   | M1[1]      |                                                                   |
| Ref Level 30.5           Att           1 Frequency Sv           20 dBm           10 dBm           0 dBm                                                                           | S0 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                                  | kHz                |           | #        |   | M1[1]      | ▼           Count 100/100           ●1Sa Avg           -40,09 dBr |
| Ref Level 30.3           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm                                                       | S0 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                                  | kHz                |           | #        |   | M1[1]      | ▼           Count 100/100           ●1Sa Avg           -40,09 dBr |
| Ref Level 30.3           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm                                                                         | S0 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                                  | kHz                |           | #        |   | M1[1]      | ▼           Count 100/100           ●1Sa Avg           -40,09 dBr |
| Ref Level 30.3           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm                                                       | S0 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                                  | kHz                |           | #        |   | M1[1]      | ▼           Count 100/100           ●1Sa Avg           -40,09 dBr |
| Ref Level 30.3           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm                                                       | S0 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                                  | kHz<br>KHz Mode Au |           | #        |   | M1[1]      | ▼           Count 100/100           ●1Sa Avg           -40,09 dBr |
| Ref Level 30.3           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm                                                       | S0 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                                  | kHz<br>KHz Mode Au |           | #        |   | M1[1]      | ▼           Count 100/100           ●1Sa Avg           -40,09 dBr |
| Ref Level 30.3           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                   | S0 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                                  | kHz<br>KHz Mode Au |           | #        |   | M1[1]      | ▼           Count 100/100           ●1Sa Avg           -40,09 dBr |
| Ref Level 30.3           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                     | S0 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                                  | kHz<br>KHz Mode Au |           | #        |   | M1[1]      | ⊽<br>Count 100/100<br>●1\$a Avg<br>-40,09 dBr                     |
| Ref Level 30.3           Att           1 Frequency Sy           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | S0 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30<br>D µs (~7.2 ms) • VBW 100      | kHz<br>kHz Mode Au | to FFT    |          |   | M1[1]      |                                                                   |
| Ref Level 30.3           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                   | S0 dBm Offset<br>20 dB SWT 140<br>weep | 10.50 dB • RBW 30                                  | kHz<br>kHz Mode Au | to FFT    | #        |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-40.09 dBr<br>1.91000000 GH         |

|                                                                                                                                                                                                                                      | 😁 Spectrur                             |                            |                                                 |                             |          |                                         |         |            |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|-------------------------------------------------|-----------------------------|----------|-----------------------------------------|---------|------------|--------------------------------|
| Ref Level 30<br>Att                                                                                                                                                                                                                  | 0.50 dBm Offs<br>20 dB SW1             | aet 10.5<br>Γ 140 μs (~7.2 | 50 dB <b>= RBW</b> 30<br>2 ms) <b>= VBW</b> 100 | OkHz<br>OkHz <b>Mode</b> Au | to FFT   |                                         |         | (          | Count 100/100                  |
| 1 Frequency S                                                                                                                                                                                                                        | Sweep                                  |                            |                                                 |                             |          |                                         |         | M1[1]      | 1Sa Avg<br>-27.19 dBn          |
|                                                                                                                                                                                                                                      |                                        |                            |                                                 |                             |          |                                         |         | 1          | .85000000 GH                   |
| 20 dBm                                                                                                                                                                                                                               |                                        |                            |                                                 |                             |          |                                         |         |            |                                |
|                                                                                                                                                                                                                                      |                                        |                            |                                                 |                             |          |                                         |         |            |                                |
| 10 dBm                                                                                                                                                                                                                               |                                        |                            |                                                 |                             | C        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |         |            |                                |
| 0 dBm                                                                                                                                                                                                                                |                                        |                            |                                                 |                             |          |                                         |         |            |                                |
|                                                                                                                                                                                                                                      |                                        |                            |                                                 |                             |          |                                         |         |            |                                |
| -10 dBm                                                                                                                                                                                                                              |                                        |                            |                                                 |                             |          |                                         |         |            |                                |
|                                                                                                                                                                                                                                      | H1 -13.000 dBm-                        |                            |                                                 |                             |          |                                         |         |            |                                |
| -20 dBm                                                                                                                                                                                                                              |                                        |                            |                                                 |                             |          |                                         | ~       |            |                                |
| -30 dBm                                                                                                                                                                                                                              |                                        |                            |                                                 |                             |          |                                         |         |            |                                |
| -50 080                                                                                                                                                                                                                              |                                        |                            |                                                 |                             |          |                                         |         |            |                                |
| -40 dBm                                                                                                                                                                                                                              |                                        |                            |                                                 |                             |          |                                         |         |            |                                |
|                                                                                                                                                                                                                                      |                                        |                            |                                                 | T                           |          |                                         |         |            | <u> </u>                       |
| -50 dBm                                                                                                                                                                                                                              | <u> </u>                               | +                          | +                                               |                             |          |                                         |         |            | $\vdash \frown \sim$           |
| 50 d0-                                                                                                                                                                                                                               |                                        |                            |                                                 |                             |          |                                         |         |            |                                |
| -60 dBm                                                                                                                                                                                                                              |                                        |                            |                                                 |                             |          |                                         |         |            |                                |
| CF 1.85 GHz                                                                                                                                                                                                                          |                                        |                            |                                                 | to                          | 20       | 0.0 kHz/                                |         |            | Span 2.0 MHz                   |
|                                                                                                                                                                                                                                      |                                        |                            |                                                 |                             | 20       | 50.0 Ki 127                             | · · · · |            |                                |
|                                                                                                                                                                                                                                      |                                        | n                          |                                                 |                             | _ow-1RB# |                                         | M       | easuring 💷 |                                |
| MultiView<br>Ref Level 30<br>Att                                                                                                                                                                                                     | Spectrur<br>D.50 dBm Offs<br>20 dB SW1 | set 10.3                   | 50 dB ● RBW 30<br>2 ms) ● VBW 100               | Channel I                   |          |                                         | M       |            | ⊽<br>Count 100/100             |
| MultiView<br>Ref Level 30                                                                                                                                                                                                            | 0.50 dBm Offs<br>20 dB SW1             | set 10.3                   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         | M       | (          |                                |
| MultiView<br>Ref Level 30<br>Att                                                                                                                                                                                                     | 0.50 dBm Offs<br>20 dB SW1             | set 10.3                   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         | M       | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView<br>Ref Level 30<br>Att<br>I Frequency S                                                                                                                                                                                    | 0.50 dBm Offs<br>20 dB SW1             | set 10.3                   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         |         | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView<br>Ref Level 30<br>Att<br>I Frequency S                                                                                                                                                                                    | 0.50 dBm Offs<br>20 dB SW1             | set 10.3                   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         |         | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView<br>Ref Level 3C<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                                          | 0.50 dBm Offs<br>20 dB SW1             | set 10.3                   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         |         | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView<br>Ref Level 30<br>Att<br>I Frequency 9<br>20 dBm                                                                                                                                                                          | 0.50 dBm Offs<br>20 dB SW1             | set 10.3                   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         |         | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView<br>Ref Level 3C<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                                          | 0.50 dBm Offe<br>20 dB SW1<br>Sweep    | set 10<br>Τ 140 μs (~7.2   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         |         | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView<br>Ref Level 3C<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                                          | 0.50 dBm Offs<br>20 dB SW1             | set 10<br>Τ 140 μs (~7.2   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         |         | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView<br>Ref Level 3C<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                                          | 0.50 dBm Offe<br>20 dB SW1<br>Sweep    | set 10<br>Τ 140 μs (~7.2   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         |         | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView           Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                                         | 0.50 dBm Offe<br>20 dB SW1<br>Sweep    | set 10<br>Τ 140 μs (~7.2   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         |         | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView<br>Ref Level 3C<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                                          | 0.50 dBm Offe<br>20 dB SW1<br>Sweep    | set 10<br>Τ 140 μs (~7.2   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         |         | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView           Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                                         | 0.50 dBm Offe<br>20 dB SW1<br>Sweep    | set 10<br>Τ 140 μs (~7.2   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         |         | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView           Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                                       | 0.50 dBm Offe<br>20 dB SW1<br>Sweep    | set 10<br>Τ 140 μs (~7.2   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         |         | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView           Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                                       | 0.50 dBm Offe<br>20 dB SW1<br>Sweep    | set 10<br>Τ 140 μs (~7.2   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         |         | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView           Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                                   | 0.50 dBm Offe<br>20 dB SW1<br>Sweep    | set 10<br>Τ 140 μs (~7.2   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         |         | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView           Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                                     | 0.50 dBm Offe<br>20 dB SW1<br>Sweep    | set 10<br>Τ 140 μs (~7.2   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          |                                         |         | (          | ⊽<br>Count 100/100<br>●1Sa Avg |
| MultiView           Ref Level 3C           Att           I Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm | 0.50 dBm Offe<br>20 dB SW1<br>Sweep    | set 10<br>Τ 140 μs (~7.2   | 50 dB • RBW 30<br>2 ms) • VBW 100               | Channel I                   |          |                                         |         | (          |                                |
| MultiView           Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                                   | 0.50 dBm Offe<br>20 dB SW1<br>Sweep    | set 10<br>Τ 140 μs (~7.2   | 50 dB ● <b>RBW</b> 30                           | Channel I                   |          | 00.0 kHz/                               |         | (          | Count 100/100                  |

| MultiView 8                                                                                                                                                                                        |                                       |                                    |                                         |               |           |                 |                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------|-----------------------------------------|---------------|-----------|-----------------|-------------------------------------|
| Ref Level 30.5<br>Att                                                                                                                                                                              | 50 dBm Offset<br>20 dB SWT 14         | 10.50 dB 🖷 F<br>0 us (~7.2 ms) 🛋 V | RBW 30 kHz<br>VBW 100 kHz Mod           | e Auto FET    |           | <br>            | Count 100/100                       |
| 1 Frequency Sv                                                                                                                                                                                     | veep                                  |                                    |                                         |               |           |                 | ⊙1Sa Avg                            |
|                                                                                                                                                                                                    |                                       |                                    |                                         |               |           | <br>M1[1]       | -36.54 dBn<br>1.8500000 GH          |
| 20 dbm                                                                                                                                                                                             |                                       |                                    |                                         |               |           |                 |                                     |
| 20 dBm                                                                                                                                                                                             |                                       |                                    |                                         |               |           |                 |                                     |
|                                                                                                                                                                                                    |                                       |                                    |                                         |               |           |                 |                                     |
| 10 dBm                                                                                                                                                                                             |                                       |                                    |                                         |               |           |                 |                                     |
|                                                                                                                                                                                                    |                                       |                                    |                                         |               |           |                 |                                     |
| 0 dBm                                                                                                                                                                                              |                                       |                                    |                                         |               |           | <br>_           | <u></u>                             |
|                                                                                                                                                                                                    |                                       |                                    |                                         |               |           | <br>            |                                     |
| -10 dBm                                                                                                                                                                                            | 11 10 000 db-                         |                                    |                                         |               |           |                 |                                     |
|                                                                                                                                                                                                    | H1 -13.000 dBm                        |                                    |                                         |               |           |                 |                                     |
| -20 dBm                                                                                                                                                                                            |                                       |                                    |                                         |               |           |                 |                                     |
|                                                                                                                                                                                                    |                                       |                                    |                                         |               |           |                 |                                     |
| -30 dBm                                                                                                                                                                                            |                                       |                                    |                                         | $\rightarrow$ |           |                 |                                     |
|                                                                                                                                                                                                    |                                       |                                    |                                         | M1            |           |                 |                                     |
| -40 dBm                                                                                                                                                                                            |                                       |                                    | $\sim$                                  | ~1            |           |                 |                                     |
|                                                                                                                                                                                                    |                                       |                                    |                                         |               |           |                 |                                     |
| -50 dBm                                                                                                                                                                                            |                                       |                                    |                                         |               |           |                 |                                     |
|                                                                                                                                                                                                    |                                       |                                    |                                         |               |           |                 |                                     |
| -60 dBm                                                                                                                                                                                            |                                       |                                    |                                         |               |           |                 |                                     |
|                                                                                                                                                                                                    |                                       |                                    |                                         |               |           |                 |                                     |
|                                                                                                                                                                                                    |                                       |                                    |                                         |               |           |                 |                                     |
| CF 1.85 GHz                                                                                                                                                                                        | r                                     |                                    | 1001 pts                                | 20            | 00.0 kHz/ |                 | Span 2.0 MHz                        |
| MultiView                                                                                                                                                                                          | )                                     | 10 50 dB = 1                       |                                         | Low-Full RB   | #         | <br>leasuring 🔳 |                                     |
| Ref Level 30.5<br>Att                                                                                                                                                                              | 50 dBm Offset<br>20 dB SWT 14         |                                    | Channe<br>RBW 30 kHz<br>VBW 100 kHz Mod |               | #         |                 | ▼<br>Count 100/100                  |
| Ref Level 30.5                                                                                                                                                                                     | 50 dBm Offset<br>20 dB SWT 14         |                                    | RBW 30 kHz                              |               | #         |                 | ⊽<br>Count 100/100<br>● 1Sa Avg     |
| Ref Level 30.5<br>Att                                                                                                                                                                              | 50 dBm Offset<br>20 dB SWT 14         |                                    | RBW 30 kHz                              |               | #         | M1[1]           | ▼<br>Count 100/100                  |
| Ref Level 30.5<br>Att                                                                                                                                                                              | 50 dBm Offset<br>20 dB SWT 14         |                                    | RBW 30 kHz                              |               | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5<br>Att<br>1 Frequency Sv                                                                                                                                                            | 50 dBm Offset<br>20 dB SWT 14         |                                    | RBW 30 kHz                              |               | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5<br>Att<br>1 Frequency Sv                                                                                                                                                            | 50 dBm Offset<br>20 dB SWT 14         |                                    | RBW 30 kHz                              |               | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5<br>Att<br>1 Frequency Sv<br>20 dBm-                                                                                                                                                 | 50 dBm Offset<br>20 dB SWT 14         |                                    | RBW 30 kHz                              |               | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5<br>Att<br>1 Frequency Sv<br>20 dBm-                                                                                                                                                 | 50 dBm Offset<br>20 dB SWT 14         |                                    | RBW 30 kHz                              |               | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5<br>Att<br>I Frequency SV<br>20 dBm<br>10 dBm                                                                                                                                        | 50 dBm Offset<br>20 dB SWT 14         |                                    | RBW 30 kHz                              |               | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5<br>Att<br>I Frequency SV<br>20 dBm<br>10 dBm                                                                                                                                        | 50 dBm Offset<br>20 dB SWT 14         |                                    | RBW 30 kHz                              |               | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5           Att           1 Frequency SV           20 dBm           10 dBm           0 dBm                                                                                            | 50 dBm Offset<br>20 dB SWT 14         |                                    | RBW 30 kHz                              |               | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5           Att           1 Frequency SV           20 dBm           10 dBm           0 dBm                                                                                            | So dBm Offset<br>20 dB SWT 14<br>veep |                                    | RBW 30 kHz                              |               | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5           Att           1 Frequency SV           20 dBm           10 dBm           0 dBm                                                                                            | So dBm Offset<br>20 dB SWT 14<br>veep |                                    | RBW 30 kHz                              |               | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5           Att           1 Frequency SW           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                        | So dBm Offset<br>20 dB SWT 14<br>veep |                                    | RBW 30 kHz                              |               | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5           Att           1 Frequency SV           20 dBm           10 dBm           0 dBm                                                                                            | So dBm Offset<br>20 dB SWT 14<br>veep |                                    | RBW 30 kHz                              |               | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5           Att           1 Frequency SW           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                        | So dBm Offset<br>20 dB SWT 14<br>veep |                                    | RBW 30 kHz                              |               | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5           Att           1 Frequency SW           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                        | So dBm Offset<br>20 dB SWT 14<br>veep |                                    | RBW 30 kHz                              | e Auto FFT    | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5           Att           1 Frequency SW           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                      | So dBm Offset<br>20 dB SWT 14<br>veep |                                    | RBW 30 kHz                              | e Auto FFT    | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5           Att           1 Frequency SW           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                        | So dBm Offset<br>20 dB SWT 14<br>veep |                                    | RBW 30 kHz                              | e Auto FFT    | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5           Att           1 Frequency SW           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                                    | So dBm Offset<br>20 dB SWT 14<br>veep |                                    | RBW 30 kHz                              | e Auto FFT    | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5           Att           1 Frequency SW           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                      | So dBm Offset<br>20 dB SWT 14<br>veep |                                    | RBW 30 kHz                              | e Auto FFT    | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5           Att           1 Frequency SW           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                                    | So dBm Offset<br>20 dB SWT 14<br>veep |                                    | RBW 30 kHz                              | e Auto FFT    | #         | M1[1]           | ⊂ Count 100/100 •1Sa Avg -39.93 dBn |
| Ref Level 30.5           Att           1 Frequency SW           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                                    | So dBm Offset<br>20 dB SWT 14<br>veep | 0 μs (~7.2 ms) • Υ                 | RBW 30 kHz                              | e Auto FFT    | #         | M1[1]           |                                     |
| Ref Level 30.5           Att           1 Frequency SW           20 dBm           10 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm | So dBm Offset<br>20 dB SWT 14<br>veep | 0 μs (~7.2 ms) • Υ                 | RBW 30 kHz Mod                          | e Auto FFT    |           | M1[1]           |                                     |

|                                                                                                                                                                                                                                  | ~                                 |      |                                    |         |               |           |            |            |                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|------------------------------------|---------|---------------|-----------|------------|------------|-----------------------------------------|
| MultiView                                                                                                                                                                                                                        | 🕑 Spectrum                        | l    |                                    |         |               |           |            |            |                                         |
| Ref Level 30.<br>Att                                                                                                                                                                                                             | 50 dBm Offse<br>20 dB SWT         |      | ).50 dB • RBW 1<br>9.1 ms) • VBW 3 |         | Auto FFT      |           |            |            | Count 100/100                           |
| 1 Frequency S                                                                                                                                                                                                                    |                                   |      | 1                                  | -       |               |           |            |            | ⊙1Sa Avg                                |
|                                                                                                                                                                                                                                  |                                   |      |                                    |         |               |           |            | M1[1]      | -30.53 dBn<br>1.85000000 GHa            |
| 20 dBm                                                                                                                                                                                                                           |                                   |      |                                    |         |               |           |            |            |                                         |
|                                                                                                                                                                                                                                  |                                   |      |                                    |         |               | $\sim$    |            |            |                                         |
| 10 dBm                                                                                                                                                                                                                           |                                   |      |                                    |         |               |           | $\searrow$ |            |                                         |
|                                                                                                                                                                                                                                  |                                   |      |                                    |         |               |           |            |            |                                         |
| 0 dBm                                                                                                                                                                                                                            |                                   |      |                                    |         |               | 1         | +          |            |                                         |
|                                                                                                                                                                                                                                  |                                   |      |                                    |         |               |           |            |            |                                         |
| -10 dBm                                                                                                                                                                                                                          |                                   |      |                                    |         | <u>├</u> ──/─ |           | +          |            |                                         |
|                                                                                                                                                                                                                                  | H1 -13.000 dBm                    |      |                                    |         |               |           |            |            |                                         |
| -20 dBm                                                                                                                                                                                                                          |                                   |      |                                    |         | <u>├ / </u>   |           | +          |            |                                         |
|                                                                                                                                                                                                                                  |                                   |      |                                    |         |               |           |            |            |                                         |
| -30 dBm                                                                                                                                                                                                                          |                                   |      |                                    |         |               |           |            |            |                                         |
|                                                                                                                                                                                                                                  |                                   |      |                                    |         |               |           |            |            |                                         |
| -40 dBm                                                                                                                                                                                                                          |                                   |      | +                                  | ſ       |               |           |            |            |                                         |
|                                                                                                                                                                                                                                  |                                   |      |                                    |         |               |           |            |            |                                         |
| -50 dBm                                                                                                                                                                                                                          | ~ ~                               |      |                                    |         |               |           |            |            |                                         |
|                                                                                                                                                                                                                                  |                                   |      |                                    |         |               |           |            |            |                                         |
| -60 dBm                                                                                                                                                                                                                          |                                   |      |                                    |         |               |           |            |            |                                         |
|                                                                                                                                                                                                                                  |                                   |      |                                    |         |               |           |            |            |                                         |
|                                                                                                                                                                                                                                  |                                   |      |                                    |         |               | 0.0 kHz/  | •          |            | Span 2.0 MHz                            |
| CF 1.85 GHz<br>MultiView                                                                                                                                                                                                         | Spectrum                          |      | 1001 pt                            |         | Low-1RB#      |           | M          | easuring ୩ |                                         |
| MultiView E<br>Ref Level 30.                                                                                                                                                                                                     | 50 dBm Offse                      | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      | JUIU KHZ/ | M          |            | V                                       |
| MultiView 8                                                                                                                                                                                                                      | 50 dBm Offse<br>20 dB SWT         | t 10 |                                    |         | Low-1RB#      | 10.0 KHZ/ | M          |            | ✓<br>Count 100/100<br>●1Sa Avg          |
| MultiView 8<br>Ref Level 30.<br>Att                                                                                                                                                                                              | 50 dBm Offse<br>20 dB SWT         | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           | M          |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView E<br>Ref Level 30.<br>Att<br>I Frequency S                                                                                                                                                                             | 50 dBm Offse<br>20 dB SWT         | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           | M          |            | ✓<br>Count 100/100<br>●1Sa Avg          |
| MultiView 8<br>Ref Level 30.<br>Att                                                                                                                                                                                              | 50 dBm Offse<br>20 dB SWT         | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           | M          |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView E<br>Ref Level 30.<br>Att<br>I Frequency S                                                                                                                                                                             | 50 dBm Offse<br>20 dB SWT         | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           | M          |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView E<br>Ref Level 30.<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                                   | 50 dBm Offse<br>20 dB SWT         | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           | M          |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView E<br>Ref Level 30.<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                                   | 50 dBm Offse<br>20 dB SWT         | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           | M          |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView P<br>Ref Level 30.<br>Att<br>1 Frequency S<br>20 dBm<br>10 dBm                                                                                                                                                         | 50 dBm Offse<br>20 dB SWT         | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           | M          |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView E<br>Ref Level 30.<br>Att<br>I Frequency S<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                                | 50 dBm Offse<br>20 dB SWT<br>weep | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           |            |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView E<br>Ref Level 30.<br>Att<br>I Frequency S<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                                | 50 dBm Offse<br>20 dB SWT         | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           |            |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView E<br>Ref Level 30.<br>Att<br>I Frequency S<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                                | 50 dBm Offse<br>20 dB SWT<br>weep | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           |            |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView P<br>Ref Level 30.<br>Att<br>I Frequency S<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                   | 50 dBm Offse<br>20 dB SWT<br>weep | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           |            |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView P<br>Ref Level 30.<br>Att<br>1 Frequency S<br>20 dBm<br>10 dBm<br>0 dBm<br>-10 dBm                                                                                                                                     | 50 dBm Offse<br>20 dB SWT<br>weep | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           |            |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView         Ref Level 30.           Att         I Frequency S           20 dBm         10 dBm           10 dBm         -20 dBm           -20 dBm         -30 dBm                                                           | 50 dBm Offse<br>20 dB SWT<br>weep | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           |            |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView P<br>Ref Level 30.<br>Att<br>I Frequency S<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                   | 50 dBm Offse<br>20 dB SWT<br>weep | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           |            |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView         E           Ref Level 30.         Att           I Frequency S         20 dBm           20 dBm         0 dBm           10 dBm         0 dBm           -10 dBm                                                   | 50 dBm Offse<br>20 dB SWT<br>weep | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           |            |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView         Ref Level 30.           Att         I Frequency S           20 dBm         10 dBm           10 dBm         -20 dBm           -20 dBm         -30 dBm                                                           | 50 dBm Offse<br>20 dB SWT<br>weep | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           |            |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView         E           Ref Level 30.         Att           I Frequency S         20 dBm           20 dBm         0 dBm           10 dBm         0 dBm           -10 dBm         -30 dBm           -30 dBm         -50 dBm | 50 dBm Offse<br>20 dB SWT<br>weep | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           |            |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView         E           Ref Level 30.         Att           I Frequency S         20 dBm           20 dBm         0 dBm           10 dBm         0 dBm           -10 dBm                                                   | 50 dBm Offse<br>20 dB SWT<br>weep | t 10 | ).50 dB ● <b>RBW</b> 1             |         | Low-1RB#      |           |            |            | Count 100/100<br>●15a Avg<br>-32.68 dBn |
| MultiView         E           Ref Level 30.         Att           1 Frequency S         20 dBm           10 dBm         0 dBm           -10 dBm                                                                                  | 50 dBm Offse<br>20 dB SWT<br>weep | t 10 | 0.50 dB • RBW 1<br>9.1 ms) • VBW 3 | Channel | Low-1RB#      |           |            |            |                                         |
| MultiView         E           Ref Level 30.         Att           I Frequency S         20 dBm           20 dBm         0 dBm           10 dBm         0 dBm           -10 dBm         -30 dBm           -30 dBm         -50 dBm | 50 dBm Offse<br>20 dB SWT<br>weep | t 10 | ).50 dB ● <b>RBW</b> 1             | Channel | Low-1RB#      | 0.0 kHz/  |            |            |                                         |

| MultiView 8                                                                                                                                                                                          | Spectrum                                | l                                                  |                         |              |           |            |                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------|--------------|-----------|------------|---------------------------------------------------------------|
|                                                                                                                                                                                                      | 50 dBm Offset                           | 10.50 dB • RBW 10                                  | 00 kHz                  |              |           |            |                                                               |
| Att<br>1 Frequency System                                                                                                                                                                            | ∠uas SWI 42.0<br>weep                   | 04 µs (~9.1 ms) ● VBW 30                           | UU KHZ Mode /           | AUTO FFI     |           |            | Ount 100/100                                                  |
|                                                                                                                                                                                                      |                                         |                                                    |                         |              |           | M1[1]      | -34.72 dBn                                                    |
|                                                                                                                                                                                                      |                                         |                                                    |                         |              |           |            | 1.8500000 GH:                                                 |
| 20 dBm                                                                                                                                                                                               |                                         |                                                    |                         |              | ++        |            | 1                                                             |
|                                                                                                                                                                                                      |                                         |                                                    |                         |              |           |            |                                                               |
| 10 dBm                                                                                                                                                                                               |                                         |                                                    |                         |              | ++        | <br>       | -                                                             |
|                                                                                                                                                                                                      |                                         |                                                    |                         |              |           |            |                                                               |
| 0 dBm                                                                                                                                                                                                |                                         |                                                    |                         | +            | +         | <br>L      | +                                                             |
|                                                                                                                                                                                                      |                                         |                                                    |                         |              |           |            |                                                               |
| -10 dBm                                                                                                                                                                                              |                                         |                                                    |                         | /            | <u>{</u>  | <br>       |                                                               |
|                                                                                                                                                                                                      | H1 -13.000 dBm                          |                                                    |                         | /            |           |            |                                                               |
| -20 dBm                                                                                                                                                                                              |                                         |                                                    |                         | <u>├</u> ──/ | <u> </u>  |            |                                                               |
|                                                                                                                                                                                                      |                                         |                                                    |                         |              |           |            |                                                               |
| -30 dBm                                                                                                                                                                                              |                                         |                                                    |                         | <u> </u>     | <u> </u>  |            | _                                                             |
|                                                                                                                                                                                                      |                                         |                                                    | M                       | F            |           |            |                                                               |
| -40 dBm                                                                                                                                                                                              |                                         |                                                    |                         |              | ļļ        |            |                                                               |
|                                                                                                                                                                                                      |                                         |                                                    |                         |              |           |            |                                                               |
| -50 dBm                                                                                                                                                                                              |                                         |                                                    |                         |              | L         |            |                                                               |
|                                                                                                                                                                                                      |                                         |                                                    |                         |              |           |            |                                                               |
| -60 dBm                                                                                                                                                                                              |                                         |                                                    |                         |              |           | <br>       |                                                               |
|                                                                                                                                                                                                      |                                         |                                                    |                         |              | 1         |            |                                                               |
|                                                                                                                                                                                                      |                                         |                                                    |                         |              |           | <br>       |                                                               |
| CF 1.85 GHz                                                                                                                                                                                          |                                         | 1001 pt                                            | S                       | 20           | 00.0 kHz/ | easuring 🔳 | Span 2.0 MHz                                                  |
| MultiView 8<br>Ref Level 30.                                                                                                                                                                         |                                         | 7                                                  |                         | ow-Full RB   | #         |            |                                                               |
| Ref Level 30.<br>Att                                                                                                                                                                                 | 50 dBm Offset<br>20 dB SWT 42.0         | (<br>10.50 dB ● RBW 11<br>04 µs (~9.1 ms) ● VBW 30 | 00 kHz                  |              | #         |            | ▼<br>Count 100/100                                            |
| Ref Level 30.                                                                                                                                                                                        | 50 dBm Offset<br>20 dB SWT 42.0         | 10.50 dB • RBW 11                                  | 00 kHz                  |              | #         |            | ⊂<br>Count 100/100<br>●1Sa Avg                                |
| Ref Level 30.<br>Att                                                                                                                                                                                 | 50 dBm Offset<br>20 dB SWT 42.0         | 10.50 dB • RBW 11                                  | 00 kHz                  |              | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30.<br>Att                                                                                                                                                                                 | 50 dBm Offset<br>20 dB SWT 42.0         | 10.50 dB • RBW 11                                  | 00 kHz                  |              | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40.88 dBn                  |
| Ref Level 30.1<br>Att<br>1 Frequency St                                                                                                                                                              | 50 dBm Offset<br>20 dB SWT 42.0         | 10.50 dB • RBW 11                                  | 00 kHz                  |              | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40.88 dBn                  |
| Ref Level 30.1<br>Att<br>1 Frequency St                                                                                                                                                              | 50 dBm Offset<br>20 dB SWT 42.0         | 10.50 dB • RBW 11                                  | 00 kHz                  |              | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40.88 dBn                  |
| Ref Level 30.<br>Att<br>1 Frequency Sv<br>20 dBm-                                                                                                                                                    | 50 dBm Offset<br>20 dB SWT 42.0         | 10.50 dB • RBW 11                                  | 00 kHz                  |              | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30.<br>Att<br>1 Frequency Sv<br>20 dBm-                                                                                                                                                    | 50 dBm Offset<br>20 dB SWT 42.0         | 10.50 dB • RBW 11                                  | 00 kHz                  |              | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30.<br>Att<br>I Frequency St<br>20 dBm<br>10 dBm                                                                                                                                           | 50 dBm Offset<br>20 dB SWT 42.0         | 10.50 dB • RBW 11                                  | 00 kHz                  |              | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm                                                                                              | S0 dBm Offset<br>20 dB SWT 42.0<br>weep | 10.50 dB • RBW 11                                  | 00 kHz                  |              | #         | M1[1]      | ▼<br>Count 100/100                                            |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm                                                                                              | 50 dBm Offset<br>20 dB SWT 42.0         | 10.50 dB • RBW 11                                  | 00 kHz                  |              | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           0 dBm                                                                                                | S0 dBm Offset<br>20 dB SWT 42.0<br>weep | 10.50 dB • RBW 11                                  | 00 kHz                  |              | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm                                                                                              | S0 dBm Offset<br>20 dB SWT 42.0<br>weep | 10.50 dB • RBW 11                                  | 00 kHz                  |              | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           0 dBm                                                                                                | S0 dBm Offset<br>20 dB SWT 42.0<br>weep | 10.50 dB • RBW 11                                  | 00 kHz                  |              | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                            | S0 dBm Offset<br>20 dB SWT 42.0<br>weep | 10.50 dB • RBW 11                                  | 00 kHz                  |              | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                          | S0 dBm Offset<br>20 dB SWT 42.0<br>weep | 10.50 dB • RBW 11                                  | 00 kHz                  | Auto FFT     | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                            | S0 dBm Offset<br>20 dB SWT 42.0<br>weep | 10.50 dB • RBW 11                                  | 00 kHz<br>00 kHz Mode / | Auto FFT     | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                          | S0 dBm Offset<br>20 dB SWT 42.0<br>weep | 10.50 dB • RBW 11                                  | 00 kHz<br>00 kHz Mode / | Auto FFT     | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                          | S0 dBm Offset<br>20 dB SWT 42.0<br>weep | 10.50 dB • RBW 11                                  | 00 kHz<br>00 kHz Mode / | Auto FFT     | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                      | S0 dBm Offset<br>20 dB SWT 42.0<br>weep | 10.50 dB • RBW 11                                  | 00 kHz<br>00 kHz Mode / | Auto FFT     | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                          | S0 dBm Offset<br>20 dB SWT 42.0<br>weep | 10.50 dB • RBW 11                                  | 00 kHz<br>00 kHz Mode / | Auto FFT     | #         | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30           Att           1 Frequency State           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm | S0 dBm Offset<br>20 dB SWT 42.0<br>weep | 10.50 dB • RBW 14<br>04 µs (~9.1 ms) • VBW 34      | 00 kHz<br>00 kHz Mode / | Auto FFT     |           | M1[1]      | ⊂<br>Count 100/100<br>●1Sa Avg<br>-40,88 dBm                  |
| Ref Level 30           Att           1 Frequency St           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                      | S0 dBm Offset<br>20 dB SWT 42.0<br>weep | 10.50 dB • RBW 11                                  | 00 kHz<br>00 kHz Mode / | Auto FFT     | #         | M1[1]      | Count 100/100<br>•1Sa Avg<br>-40.88 dBm<br>1.91000000 GH2<br> |
| Ref Level 30           Att           1 Frequency State           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm | S0 dBm Offset<br>20 dB SWT 42.0<br>weep | 10.50 dB • RBW 14<br>04 µs (~9.1 ms) • VBW 34      | 00 kHz<br>00 kHz Mode / | Auto FFT     |           | M1[1]      |                                                               |

|                                                                                                                                                                                | Spectrum                           |       |                                                    |                         |          |           |                 |            |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|----------------------------------------------------|-------------------------|----------|-----------|-----------------|------------|----------------------------------------------|
| Ref Level 30<br>Att                                                                                                                                                            | .50 dBm Offse<br>20 dB SWT         |       | 0.50 dB <b>= RBW</b> 10<br>9.1 ms) <b>= VBW</b> 30 |                         | Auto FFT |           |                 | (          | Count 100/100                                |
| 1 Frequency S                                                                                                                                                                  | weep                               | 1     |                                                    |                         |          |           |                 | M1[1]      | ●1Sa Avg<br>-31.91 dBm                       |
|                                                                                                                                                                                |                                    |       |                                                    |                         |          |           |                 | 1          | .85000000 GHz                                |
| 20 dBm                                                                                                                                                                         |                                    |       |                                                    |                         |          |           |                 |            |                                              |
|                                                                                                                                                                                |                                    |       |                                                    |                         |          |           |                 |            |                                              |
| 10 dBm                                                                                                                                                                         |                                    |       |                                                    |                         |          |           | $\square$       |            |                                              |
| 0 dBm                                                                                                                                                                          |                                    |       |                                                    |                         |          | (         | $ \rightarrow $ |            |                                              |
|                                                                                                                                                                                |                                    |       |                                                    |                         |          |           |                 |            |                                              |
| -10 dBm                                                                                                                                                                        | H1 -13.000 dBm-                    |       |                                                    |                         |          |           |                 |            |                                              |
|                                                                                                                                                                                | 111 -13.000 dbm                    |       |                                                    |                         |          |           |                 |            |                                              |
| -20 dBm                                                                                                                                                                        |                                    |       |                                                    |                         |          |           |                 |            |                                              |
| -30 dBm                                                                                                                                                                        |                                    |       |                                                    | 1                       | 1        |           |                 | <u> </u>   |                                              |
|                                                                                                                                                                                |                                    |       |                                                    |                         |          |           |                 |            |                                              |
| -40 dBm                                                                                                                                                                        |                                    |       | +                                                  |                         |          |           |                 |            |                                              |
|                                                                                                                                                                                |                                    |       |                                                    |                         |          |           |                 |            |                                              |
| -50 dBm                                                                                                                                                                        |                                    |       |                                                    |                         |          |           |                 |            |                                              |
| -60 dBm                                                                                                                                                                        |                                    |       |                                                    |                         |          |           |                 |            |                                              |
|                                                                                                                                                                                |                                    |       |                                                    |                         |          |           |                 |            |                                              |
| CF 1.85 GHz                                                                                                                                                                    |                                    |       |                                                    | S                       | 20       | 0.0 kHz/  |                 |            | Span 2.0 MHz                                 |
|                                                                                                                                                                                |                                    |       |                                                    |                         |          |           | Me              | easuring 🔳 |                                              |
| MultiView                                                                                                                                                                      | Spectrum                           |       |                                                    | Channel I               | Low-1RB# |           |                 |            | ▽                                            |
| Ref Level 30<br>Att                                                                                                                                                            | .50 dBm Offse<br>20 dB SWT         | et 10 | 0.50 dB ● RBW 10<br>9.1 ms) ● VBW 30               | 00 kHz                  |          |           |                 |            | ⊽<br>Count 100/100                           |
| Ref Level 30                                                                                                                                                                   | .50 dBm Offse<br>20 dB SWT         | et 10 | D.50 dB ● RBW 1(<br>9.1 ms) ● VBW 3(               | 00 kHz                  |          |           |                 | (          | ▽                                            |
| Ref Level 30<br>Att                                                                                                                                                            | .50 dBm Offse<br>20 dB SWT         | et 10 | 0.50 dB ● RBW 10<br>9.1 ms) ● VBW 30               | 00 kHz                  |          |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30<br>Att<br>I Frequency S                                                                                                                                           | .50 dBm Offse<br>20 dB SWT         | et 10 | D.50 dB ● RB₩ 10<br>9.1 ms) ● VBW 30               | 00 kHz                  |          |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30<br>Att<br>I Frequency S                                                                                                                                           | .50 dBm Offse<br>20 dB SWT         | et 10 | 0.50 dB • RBW 10<br>9.1 ms) • VBW 30               | 00 kHz                  |          |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                 | .50 dBm Offse<br>20 dB SWT         | et 10 | D.50 dB • RBW 10<br>9.1 ms) • VBW 30               | 00 kHz                  |          |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30<br>Att<br>1 Frequency S<br>20 d8m-                                                                                                                                | .50 dBm Offse<br>20 dB SWT         | et 10 | D.50 dB ● RB₩ 10<br>9.1 ms) ● VB₩ 30               | 00 kHz                  |          |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                 | .50 dBm Offse<br>20 dB SWT<br>weep | et 10 | D.50 dB • RBW 10<br>9.1 ms) • VBW 30               | 00 kHz                  |          |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                           | .50 dBm Offse<br>20 dB SWT         | et 10 | D.50 dB • RBW 10<br>9.1 ms) • VBW 30               | 00 kHz                  |          |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                           | .50 dBm Offse<br>20 dB SWT<br>weep | et 10 | D.50 dB • RBW 10<br>9.1 ms) • VBW 30               | 00 kHz                  |          |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                       | .50 dBm Offse<br>20 dB SWT<br>weep | et 10 | D.50 dB • RBW 10<br>P.1 ms) • VBW 30               | 00 kHz Mode .           | Auto FFT |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                           | .50 dBm Offse<br>20 dB SWT<br>weep | et 10 | D.50 dB • RBW 11<br>9.1 ms) • VBW 30               | 00 kHz Mode .           |          |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                       | .50 dBm Offse<br>20 dB SWT<br>weep | et 10 | D.50 dB • RBW 10<br>9.1 ms) • VBW 30               | 00 kHz Mode .           | Auto FFT |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm   | .50 dBm Offse<br>20 dB SWT<br>weep | et 10 | D.50 dB • RBW 10<br>9.1 ms) • VBW 30               | 00 kHz Mode .           | Auto FFT |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                       | .50 dBm Offse<br>20 dB SWT<br>weep | et 10 | D.50 dB • RBW 10<br>P.1 ms) • VBW 30               | 00 kHz Mode .           | Auto FFT |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm   | .50 dBm Offse<br>20 dB SWT<br>weep | et 10 | D.50 dB • RBW 10<br>9.1 ms) • VBW 30               | 00 kHz Mode .           | Auto FFT |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm   | .50 dBm Offse<br>20 dB SWT<br>weep | et 10 | D.50 dB • RBW 10<br>9.1 ms) • VBW 30               | 00 kHz Mode .           | Auto FFT |           |                 | (          | ⊂<br>Count 100/100<br>●15a Avg<br>-34.34 dBm |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm   | .50 dBm Offse<br>20 dB SWT<br>weep | et 10 | D.50 dB • RBW 10<br>P.1 ms) • VBW 30<br>           | 00 kHz<br>00 kHz Mode / | Auto FFT | 00.0 kHz/ |                 | (          |                                              |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | .50 dBm Offse<br>20 dB SWT<br>weep | et 10 | 9.1 ms) • VBW 30                                   | 00 kHz<br>00 kHz Mode / | Auto FFT | 00.0 kHz/ |                 | (          | Count 100/100                                |

| MultiView 88                                                                                                                                                                                      | ,                                   |                         |                              |                                       |           |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------|------------------------------|---------------------------------------|-----------|----------------|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Level 30.5<br>Att                                                                                                                                                                             | 0 dBm Offset<br>20 dB SWT           | 10.50<br>42.04 us (~9.1 | )dB = RBW 10<br>ms) = VBW 30 | 00 kHz<br>00 kHz <b>Mode</b> <i>i</i> | Auto FFT  |                |     |             | Count 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1 Frequency Sw                                                                                                                                                                                    |                                     |                         |                              | in a should read                      |           |                |     |             | ⊙1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |                                     |                         |                              |                                       |           |                |     | M1[1]       | -36.52 dBn<br>1.85000000 GH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20 dBm                                                                                                                                                                                            |                                     |                         |                              |                                       |           |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                   |                                     |                         |                              |                                       |           |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10 dBm                                                                                                                                                                                            |                                     |                         |                              |                                       |           |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                   |                                     |                         |                              |                                       |           |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0 dBm                                                                                                                                                                                             |                                     |                         |                              |                                       |           |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                   |                                     |                         |                              |                                       |           |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -10 dBm                                                                                                                                                                                           |                                     |                         |                              |                                       |           | <u> </u>       |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| +                                                                                                                                                                                                 | 11 -13.000 dBm                      |                         |                              |                                       | - /       |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -20 dBm                                                                                                                                                                                           |                                     |                         |                              |                                       | /         |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                   |                                     |                         |                              |                                       |           |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -30 dBm                                                                                                                                                                                           |                                     |                         |                              |                                       | /         |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                   |                                     |                         |                              | N                                     | 1         |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40 dBm                                                                                                                                                                                            |                                     | ~                       |                              |                                       |           |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                   |                                     |                         |                              |                                       |           |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -50 dBm                                                                                                                                                                                           |                                     |                         |                              |                                       |           |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                   |                                     |                         |                              |                                       |           |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -60 dBm                                                                                                                                                                                           |                                     |                         |                              |                                       |           |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                   |                                     |                         |                              |                                       |           |                |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CF 1.85 GHz                                                                                                                                                                                       |                                     |                         | 1001 pt                      | is                                    | 20        | )<br>00.0 kHz/ |     |             | Span 2.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                   |                                     |                         |                              |                                       |           |                | ) ( | 1easuring 🔳 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MultiView                                                                                                                                                                                         |                                     |                         |                              |                                       | w-Full RB | #              |     |             | ▽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ref Level 30.5<br>• Att                                                                                                                                                                           | 0dBm Offset<br>20dB SWT 4           | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz                                |           | #              |     |             | ▼<br>Count 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ref Level 30.5                                                                                                                                                                                    | 0dBm Offset<br>20dB SWT 4           | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz                                |           | #              |     |             | ⊂<br>Count 100/100<br>●1\$a Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level 30.5<br>Att                                                                                                                                                                             | 0dBm Offset<br>20dB SWT 4           | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz                                |           | #              |     | M1[1]       | ⊂<br>Count 100/100<br>●1\$a Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level 30.5<br>Att                                                                                                                                                                             | 0dBm Offset<br>20dB SWT 4           | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz                                |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5<br>Att<br>1 Frequency Sw                                                                                                                                                           | 0dBm Offset<br>20dB SWT 4           | 10.5(<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz                                |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5<br>Att<br>1 Frequency Sw                                                                                                                                                           | 0dBm Offset<br>20dB SWT 4           | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz                                |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5<br>Att<br>1 Frequency Sw<br>20 dBm                                                                                                                                                 | 0dBm Offset<br>20dB SWT 4           | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz                                |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5<br>Att<br>1 Frequency Sw<br>20 dBm                                                                                                                                                 | 0dBm Offset<br>20dB SWT 4           | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz                                |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           0 dBm                                                                                           | 0dBm Offset<br>20dB SWT 4           | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz                                |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           0 dBm                                                                                           | o dBm Offset<br>20 dB SWT (<br>reep | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz                                |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           0 dBm                                                                                           | 0dBm Offset<br>20dB SWT 4           | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz                                |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           0 dBm                                                                                           | o dBm Offset<br>20 dB SWT (<br>reep | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz                                |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | o dBm Offset<br>20 dB SWT (<br>reep | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz                                |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           0 dBm                                                                                           | o dBm Offset<br>20 dB SWT (<br>reep | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz                                |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                     | o dBm Offset<br>20 dB SWT (<br>reep | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz<br>00 kHz Mode A               |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | o dBm Offset<br>20 dB SWT (<br>reep | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz<br>00 kHz Mode A               |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | o dBm Offset<br>20 dB SWT (<br>reep | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz<br>00 kHz Mode A               |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | o dBm Offset<br>20 dB SWT (<br>reep | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz<br>00 kHz Mode A               |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm                 | o dBm Offset<br>20 dB SWT (<br>reep | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz<br>00 kHz Mode A               |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | o dBm Offset<br>20 dB SWT (<br>reep | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz<br>00 kHz Mode A               |           | #              |     |             | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           0 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm | o dBm Offset<br>20 dB SWT (<br>reep | 10.50<br>42.04 µs (~9.1 | D dB • RBW 11                | 00 kHz<br>00 kHz Mode A               | Auto FFT  |                |     |             | ▼           Count 100/100           ● 153 Avg           -39.97 dBn           1.91000000 GH           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □ |
| Ref Level 30.5           Att           1 Frequency Sw           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                 | o dBm Offset<br>20 dB SWT (<br>reep | 10.50<br>42.04 µs (~9.1 | ) dB • RBW 10                | 00 kHz<br>00 kHz Mode A               | Auto FFT  | #              |     | M1[1]       | Count 100/100<br>●1Sa Avg<br>-39.97 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|                                                                                                                                                                                                  |                                    | <u> </u>       |                                  |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|----------------------------------|--------------------------------|----------|-----------|----|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                  | Spectrum                           |                |                                  |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ref Level 30<br>Att                                                                                                                                                                              | .50 dBm Offse<br>20 dB SWT         |                | 50 dB • RBW 1<br>1 ms) • VBW 3   | 00 kHz<br>00 kHz <b>Mode</b> / | Auto FET |           |    | (                 | Count 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 Frequency S                                                                                                                                                                                    |                                    | 12101 100 ( 01 | -                                |                                |          |           |    |                   | ●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                  |                                    |                |                                  |                                |          |           |    | M1[1]             | -40.60 dBm<br>85000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20 dBm                                                                                                                                                                                           |                                    |                |                                  |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |                                    |                |                                  |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10 dBm                                                                                                                                                                                           |                                    |                |                                  |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |                                    |                |                                  |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0 dBm                                                                                                                                                                                            |                                    |                |                                  |                                |          |           | 1  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |                                    |                |                                  |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -10 dBm                                                                                                                                                                                          | H1 -13.000 dBm-                    |                |                                  |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -20 dBm                                                                                                                                                                                          |                                    |                |                                  |                                |          |           |    |                   | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -20 UBIII                                                                                                                                                                                        |                                    |                |                                  |                                |          |           |    |                   | $\mathbf{X}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -30 dBm                                                                                                                                                                                          |                                    |                |                                  |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |                                    |                |                                  |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -40 dBm                                                                                                                                                                                          |                                    |                |                                  | N                              | 1        |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |                                    |                | L                                |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -50 dBm                                                                                                                                                                                          |                                    |                |                                  |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |                                    |                |                                  |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -60 dBm                                                                                                                                                                                          |                                    |                |                                  |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |                                    |                |                                  |                                |          |           |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CF 1.85 GHz                                                                                                                                                                                      |                                    |                | 1001 pt                          | S                              | 20       | 0.0 kHz/  |    |                   | Span 2.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MultiView 8                                                                                                                                                                                      | Spectrum                           | ·              |                                  | Channel I                      | _ow-1RB# |           | Me | easuring <b>a</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ref Level 30<br>Att                                                                                                                                                                              | .50 dBm Offso<br>20 dB SWT         | et 10.         | 50 dB ● RBW 1<br>1 ms) ● VBW 3   | 00 kHz                         |          |           | Me |                   | <br>Count 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ref Level 30                                                                                                                                                                                     | .50 dBm Offso<br>20 dB SWT         | et 10.         | 50 dB ● RBW 1i<br>1 ms) ● VBW 3i | 00 kHz                         |          | 1         |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30<br>Att                                                                                                                                                                              | .50 dBm Offso<br>20 dB SWT         | et 10.         | 50 dB ● RBW 1<br>1 ms) ● VBW 3   | 00 kHz                         |          |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30<br>Att                                                                                                                                                                              | .50 dBm Offso<br>20 dB SWT         | et 10.         | 50 dB ● RBW 11<br>1 ms) ● VBW 3  | 00 kHz                         |          |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm-                                                                                                                                                  | .50 dBm Offso<br>20 dB SWT         | et 10.         | 50 dB ● RBW 11<br>1 ms) ● VBW 3  | 00 kHz                         |          |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30<br>Att<br>Frequency S                                                                                                                                                               | .50 dBm Offso<br>20 dB SWT         | et 10.         | 50 dB ● RBW 1i<br>1 ms) ● VBW 3  | 00 kHz                         |          |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                   | .50 dBm Offso<br>20 dB SWT         | et 10.         | 50 dB ● RBW 11<br>1 ms) ● VBW 3  | 00 kHz                         |          |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm-                                                                                                                                                  | .50 dBm Offso<br>20 dB SWT         | et 10.         | 50 dB • RBW 1<br>1 ms) • VBW 3   | 00 kHz                         |          |           |    |                   | <br>Count 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ref Level 30<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                   | .50 dBm Offse<br>20 dB SWT<br>weep | et 10.         | 50 dB • RBW 1<br>1 ms) • VBW 3   | 00 kHz                         |          |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                             | .50 dBm Offso<br>20 dB SWT         | et 10.         | 50 dB ● RBW 1i<br>1 ms) ● VBW 3  | 00 kHz                         |          |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                             | .50 dBm Offse<br>20 dB SWT<br>weep | et 10.         | 50 dB • RBW 1<br>1 ms) • VBW 3   | 00 kHz                         |          |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                         | .50 dBm Offse<br>20 dB SWT<br>weep | et 10.         | 50 dB • RBW 11<br>1 ms) • VBW 3  | 00 kHz                         |          |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                             | .50 dBm Offse<br>20 dB SWT<br>weep | et 10.         | 50 dB • RBW 1<br>1 ms) • VBW 3   | 00 kHz                         |          |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                         | .50 dBm Offse<br>20 dB SWT<br>weep | et 10.         | 50 dB • RBW 1<br>1 ms) • VBW 3   | 00 kHz                         |          |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                         | .50 dBm Offse<br>20 dB SWT<br>weep | et 10.         | 50 dB • RBW 1<br>1 ms) • VBW 3   | 00 kHz<br>00 kHz Mode /        |          |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                     | .50 dBm Offse<br>20 dB SWT<br>weep | et 10.         | 50 dB • RBW 1<br>1 ms) • VBW 3   | 00 kHz<br>00 kHz Mode /        | Auto FFT |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                         | .50 dBm Offse<br>20 dB SWT<br>weep | et 10.         | 50 dB • RBW 11<br>1 ms) • VBW 3  | 00 kHz<br>00 kHz Mode /        | Auto FFT |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                     | .50 dBm Offse<br>20 dB SWT<br>weep | et 10.         | 50 dB • RBW 11<br>1 ms) • VBW 3  | 00 kHz<br>00 kHz Mode /        | Auto FFT |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                                     | .50 dBm Offse<br>20 dB SWT<br>weep | et 10.         | 50 dB • RBW 1<br>1 ms) • VBW 3   | 00 kHz<br>00 kHz Mode /        | Auto FFT |           |    |                   | ⊽<br>Count 100/100<br>●1Sa Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                                     | .50 dBm Offse<br>20 dB SWT<br>weep | et 10.         | 50 dB • RBW 1<br>1 ms) • VBW 3   | 00 kHz<br>00 kHz Mode /        |          | 00.0 kHz/ |    | M1[1] 1           | ▼           Count 100/100           ●1\$a Avg           -43.96 dBn           .91000000 GH:             □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □           □ |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm | .50 dBm Offse<br>20 dB SWT<br>weep | et 10.         | 1 ms) • VBW 3                    | 00 kHz<br>00 kHz Mode /        |          |           |    |                   | Count 100/100<br>133 Avg<br>-43.96 dBn<br>.91000000 GH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| MultiView                                                                                                                                                                                      |                                    |                       | 50 ID - 55.00                    | 00111                          |            |          |   |             |                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------|----------------------------------|--------------------------------|------------|----------|---|-------------|------------------------------------------|
| Att                                                                                                                                                                                            |                                    | t 10<br>42.04 µs (~9. | .50 dB • RBW 1<br>.1 ms) • VBW 3 | 00 kHz<br>00 kHz <b>Mode</b> i | Auto FFT   |          |   |             | Count 100/100                            |
| 1 Frequency S                                                                                                                                                                                  | weep                               |                       |                                  |                                |            |          |   | M1[1]       | ●1Sa Avg<br>-39.29 dBn<br>1.85000000 GH: |
|                                                                                                                                                                                                |                                    |                       |                                  |                                |            |          |   |             | 1.85000000 GH:                           |
| 20 dBm                                                                                                                                                                                         |                                    |                       |                                  |                                |            |          |   |             |                                          |
| 10 dBm                                                                                                                                                                                         |                                    |                       |                                  |                                |            |          |   |             |                                          |
|                                                                                                                                                                                                |                                    |                       |                                  |                                |            |          |   |             |                                          |
| 0 dBm                                                                                                                                                                                          |                                    |                       |                                  |                                |            |          |   |             |                                          |
|                                                                                                                                                                                                |                                    |                       |                                  |                                |            |          |   | <u> </u>    |                                          |
| -10 dBm                                                                                                                                                                                        | H1 -13.000 dBm                     |                       |                                  |                                |            |          |   |             |                                          |
| -20 dBm                                                                                                                                                                                        |                                    |                       |                                  |                                |            |          |   |             |                                          |
| 20 0011                                                                                                                                                                                        |                                    |                       |                                  |                                |            | ,        | / |             |                                          |
| -30 dBm                                                                                                                                                                                        |                                    |                       |                                  |                                |            | /        |   |             |                                          |
|                                                                                                                                                                                                |                                    |                       |                                  | 1                              | 1          |          |   |             |                                          |
| -40 dBm                                                                                                                                                                                        |                                    |                       | +                                |                                |            |          |   |             |                                          |
| -50 dBm                                                                                                                                                                                        |                                    |                       |                                  |                                |            |          |   |             |                                          |
|                                                                                                                                                                                                |                                    |                       |                                  |                                |            |          |   |             |                                          |
| -60 dBm                                                                                                                                                                                        |                                    |                       |                                  |                                |            |          |   |             |                                          |
|                                                                                                                                                                                                |                                    |                       |                                  |                                |            |          |   |             |                                          |
| CF 1.85 GHz                                                                                                                                                                                    |                                    |                       | 1001 pt                          | Ś                              | 20         | 0.0 kHz/ | - | leasuring 🔳 | Span 2.0 MHz                             |
|                                                                                                                                                                                                | B Spectrum                         | (                     |                                  |                                | ow-Full RB | #        |   |             |                                          |
| Ref Level 30<br>Att                                                                                                                                                                            | .50 dBm Offse<br>20 dB SWT         | t 10                  | .50 dB ● RBW 1<br>1 ms) ● VBW 3  | 00 kHz                         |            | #        |   |             | Count 100/100                            |
| Ref Level 30                                                                                                                                                                                   | .50 dBm Offse<br>20 dB SWT         | t 10                  | .50 dB • RBW 1                   | 00 kHz                         |            | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30<br>Att                                                                                                                                                                            | .50 dBm Offse<br>20 dB SWT         | t 10                  | .50 dB • RBW 1                   | 00 kHz                         |            | #        |   | M1[1]       | Count 100/100<br>•1Sa Avg                |
| Ref Level 30<br>● Att<br>1 Frequency S                                                                                                                                                         | .50 dBm Offse<br>20 dB SWT         | t 10                  | .50 dB • RBW 1                   | 00 kHz                         |            | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30<br>● Att<br>1 Frequency S                                                                                                                                                         | .50 dBm Offse<br>20 dB SWT         | t 10                  | .50 dB • RBW 1                   | 00 kHz                         |            | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                 | .50 dBm Offse<br>20 dB SWT         | t 10                  | .50 dB • RBW 1                   | 00 kHz                         |            | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm-                                                                                                                                                | .50 dBm Offse<br>20 dB SWT         | t 10                  | .50 dB • RBW 1                   | 00 kHz                         |            | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                 | .50 dBm Offse<br>20 dB SWT<br>weep | t 10                  | .50 dB • RBW 1                   | 00 kHz                         |            | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30           Att           I Frequency S           20 dBm-           10 dBm-           0 dBm-                                                                                        | .50 dBm Offse<br>20 dB SWT         | t 10                  | .50 dB • RBW 1                   | 00 kHz                         |            | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30           Att           I Frequency S           20 dBm-           10 dBm-           0 dBm-                                                                                        | .50 dBm Offse<br>20 dB SWT<br>weep | t 10                  | .50 dB • RBW 1                   | 00 kHz                         |            | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm                                                                         | .50 dBm Offse<br>20 dB SWT<br>weep | t 10                  | .50 dB • RBW 1                   | 00 kHz                         |            | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | .50 dBm Offse<br>20 dB SWT<br>weep | t 10                  | .50 dB • RBW 1                   | 00 kHz                         |            | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm                                                                         | .50 dBm Offse<br>20 dB SWT<br>weep | t 10                  | .50 dB • RBW 1                   | 00 kHz<br>00 kHz Mode .        | Auto FFT   | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | .50 dBm Offse<br>20 dB SWT<br>weep | t 10                  | .50 dB • RBW 1                   | 00 kHz<br>00 kHz Mode .        |            | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | .50 dBm Offse<br>20 dB SWT<br>weep | t 10                  | .50 dB • RBW 1                   | 00 kHz<br>00 kHz Mode .        | Auto FFT   | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                 | .50 dBm Offse<br>20 dB SWT<br>weep | t 10                  | .50 dB • RBW 1                   | 00 kHz<br>00 kHz Mode .        | Auto FFT   | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | .50 dBm Offse<br>20 dB SWT<br>weep | t 10                  | .50 dB • RBW 1                   | 00 kHz<br>00 kHz Mode .        | Auto FFT   | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                 | .50 dBm Offse<br>20 dB SWT<br>weep | t 10                  | .50 dB • RBW 1                   | 00 kHz<br>00 kHz Mode /        | Auto FFT   | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-44.27 dBn   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | .50 dBm Offse<br>20 dB SWT<br>weep | t 10                  | 50 dB • RBW 1<br>1 ms) • VBW 3   | 00 kHz<br>00 kHz Mode /        | Auto FFT   |          |   | M1[1]       | Count 100/100                            |

|                                                                                                                                                                                                   | ~                                  |                           |                                             |                                |          |          |   |            |                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|---------------------------------------------|--------------------------------|----------|----------|---|------------|------------------------------------------|
|                                                                                                                                                                                                   | Spectrum                           |                           |                                             |                                |          |          |   |            |                                          |
| Ref Level 30.<br>Att                                                                                                                                                                              | 50 dBm Offset<br>20 dB SWT         | 10.50<br>42.04 µs (~9.1 r | ) dB = RBW 10<br>ms) = VBW 30               | 00 kHz<br>00 kHz <b>Mode</b> . | Auto FET |          |   | (          | Count 100/100                            |
| 1 Frequency S                                                                                                                                                                                     | weep                               |                           | .,                                          |                                |          |          |   |            | ●1Sa Avg                                 |
|                                                                                                                                                                                                   |                                    |                           |                                             |                                |          |          |   | M1[1]      | -42.49 dBn<br>.85000000 GHa              |
| 20 dBm                                                                                                                                                                                            |                                    |                           |                                             |                                |          |          |   |            |                                          |
|                                                                                                                                                                                                   |                                    |                           |                                             |                                |          |          |   |            |                                          |
| 10 dBm                                                                                                                                                                                            |                                    |                           |                                             |                                |          |          |   |            |                                          |
|                                                                                                                                                                                                   |                                    |                           |                                             |                                |          |          |   |            |                                          |
| 0 dBm                                                                                                                                                                                             |                                    |                           |                                             |                                |          |          |   |            |                                          |
|                                                                                                                                                                                                   |                                    |                           |                                             |                                |          |          |   |            |                                          |
| -10 dBm                                                                                                                                                                                           | H1 -13.000 dBm                     |                           |                                             |                                |          | ļ,       |   |            |                                          |
|                                                                                                                                                                                                   |                                    |                           |                                             |                                |          | /        |   |            |                                          |
| -20 dBm                                                                                                                                                                                           |                                    |                           |                                             |                                |          |          |   |            |                                          |
| -30 dBm                                                                                                                                                                                           |                                    |                           |                                             |                                |          |          |   |            |                                          |
|                                                                                                                                                                                                   |                                    |                           |                                             |                                |          |          |   |            |                                          |
| -40 dBm                                                                                                                                                                                           |                                    |                           |                                             | ļ ,                            | 1        |          |   |            |                                          |
|                                                                                                                                                                                                   |                                    |                           |                                             |                                | T        |          |   |            |                                          |
| -50 dBm                                                                                                                                                                                           |                                    |                           | ~                                           |                                |          |          |   |            |                                          |
|                                                                                                                                                                                                   |                                    |                           |                                             |                                |          |          |   |            |                                          |
| -60 dBm                                                                                                                                                                                           |                                    |                           |                                             |                                |          |          |   |            |                                          |
|                                                                                                                                                                                                   |                                    |                           |                                             |                                |          |          |   |            |                                          |
| CF 1.85 GHz                                                                                                                                                                                       |                                    |                           | 1001 pts                                    | s                              | 20       | 0.0 kHz/ |   |            | Span 2.0 MHz                             |
| MultiView 8                                                                                                                                                                                       | B Spectrum                         |                           |                                             | Channel                        | Low-1RB# |          | M | easuring 🗨 |                                          |
| MultiView 8<br>Ref Level 30.<br>Att                                                                                                                                                               | 50 dBm Offset<br>20 dB SWT         | 10.50<br>42.04 µs (~9.1 r | 0 dB ● RBW 10<br>ms) ● VBW 30               | 00 kHz                         |          |          | M |            | ▼<br>Count 100/100                       |
| MultiView 8<br>Ref Level 30.                                                                                                                                                                      | 50 dBm Offset<br>20 dB SWT         | 10.50<br>42.04 µs (~9.1 r | 0 dB ● <b>RBW</b> 10<br>ms) ● <b>VBW</b> 30 | 00 kHz                         |          |          | M |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView<br>Ref Level 30,<br>Att<br>I Frequency St                                                                                                                                               | 50 dBm Offset<br>20 dB SWT         | 10.50<br>42.04 µs (~9.1 r | ∪dB ● RBW 10<br>ms) ● VBW 30                | 00 kHz                         |          |          | M |            | ⊽<br>Count 100/100<br>● 1Sa Avg          |
| MultiView 8<br>Ref Level 30.<br>Att                                                                                                                                                               | 50 dBm Offset<br>20 dB SWT         | 10.50<br>42.04 µs (~9.1 r | odB ● RBW 10<br>ms) ● VBW 30                | 00 kHz                         |          |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView<br>Ref Level 30,<br>Att<br>I Frequency St                                                                                                                                               | 50 dBm Offset<br>20 dB SWT         | 10.50<br>42.04 µs (~9.1 r | dB ● RBW 10<br>ns) ● VBW 30                 | 00 kHz                         |          |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView 8<br>Ref Level 30.<br>Att<br>I Frequency St<br>20 dBm                                                                                                                                   | 50 dBm Offset<br>20 dB SWT         | 10.50<br>42.04 µs (~9.1 r | )dB • RBW 10<br>ms) • VBW 30                | 00 kHz                         |          |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView 8<br>Ref Level 30.<br>Att<br>I Frequency St<br>20 dBm                                                                                                                                   | 50 dBm Offset<br>20 dB SWT         | 10.50<br>42.04 µs (~9.1 r | 0 dB ● RBW 10<br>ms) ● VBW 30               | 00 kHz                         |          |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView P<br>Ref Level 30.<br>Att<br>I Frequency St<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                                                                             | 50 dBm Offset<br>20 dB SWT         | 10.50<br>42.04 µs (~9.1 r | i dB ● RBW 10<br>ms) ● VBW 30               | 00 kHz                         |          |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView 8<br>Ref Level 30.<br>Att<br>I Frequency SV<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                                                                             | 50 dBm Offset<br>20 dB SWT<br>weep | 10.50<br>42.04 µs (~9.1 r | J dB ● RBW 10<br>ms) ● VBW 30               | 00 kHz                         |          |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView P<br>Ref Level 30.<br>Att<br>I Frequency S<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                 | 50 dBm Offset<br>20 dB SWT         | 10.50<br>42.04 µs (~9.1 r | 0 dB ● RBW 10<br>ms) ● VBW 30               | 00 kHz                         |          |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView 8<br>Ref Level 30.<br>Att<br>I Frequency SV<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                                                                             | 50 dBm Offset<br>20 dB SWT<br>weep | 10.50<br>42.04 µs (~9.1 r | ) dB • RBW 10<br>ms) • VBW 30               | 00 kHz                         |          |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView P<br>Ref Level 30.<br>Att<br>I Frequency S<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                    | 50 dBm Offset<br>20 dB SWT<br>weep | 10.50<br>42.04 µs (~9.1 r | 0 dB ● RBW 10<br>ms) ● VBW 30               | 00 kHz                         |          |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView P<br>Ref Level 30.<br>Att<br>I Frequency S<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                 | 50 dBm Offset<br>20 dB SWT<br>weep | 10.50<br>42.04 µs (~9.1 r | 0 dB ● RBW 10<br>ms) ● VBW 30               | 00 kHz                         |          |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView P<br>Ref Level 30.<br>Att<br>I Frequency S<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                    | 50 dBm Offset<br>20 dB SWT<br>weep | 10.50<br>42.04 µs (~9.1 r | i dB • RBW 10<br>ms) • VBW 30               | D0 kHz<br>D0 kHz Mode          | Auto FFT |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView           Ref Level 30.           Att           I Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                     | 50 dBm Offset<br>20 dB SWT<br>weep | 10.50<br>42.04 µs (~9.1 r | i dB • RBW 10<br>ms) • VBW 30               | D0 kHz<br>D0 kHz Mode          |          |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView           Ref Level 30.           Att           I Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                     | 50 dBm Offset<br>20 dB SWT<br>weep | 10.50<br>42.04 µs (~9.1 r | ) dB • RBW 10<br>ms) • VBW 30               | D0 kHz<br>D0 kHz Mode          | Auto FFT |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView         Perf Level 30.           Att         I Frequency SV           20 dBm         10 dBm           10 dBm                                                                            | 50 dBm Offset<br>20 dB SWT<br>weep | 10.50<br>42.04 µs (~9.1 r | ) dB ● RBW 10<br>ms) ● VBW 30               | D0 kHz<br>D0 kHz Mode          | Auto FFT |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView           Ref Level 30.           Att           I Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm | 50 dBm Offset<br>20 dB SWT<br>weep | 10.50<br>42.04 µs (~9.1 r | ) dB ● RBW 10<br>ms) ● VBW 30               | D0 kHz<br>D0 kHz Mode          | Auto FFT |          |   |            | Count 100/100<br>• 15a Avg<br>-45.67 dBn |
| MultiView         P           Ref Level 30.         Att           1 Frequency St         20 dBm           10 dBm         0 dBm           -10 dBm                                                  | 50 dBm Offset<br>20 dB SWT<br>weep | 10.50<br>42.04 µs (~9.1 r | ns) • VBW 30                                | D0 kHz<br>D0 kHz Mode          | Auto FFT |          |   |            |                                          |
| MultiView         Perf Level 30.           Att         I Frequency SV           20 dBm         10 dBm           10 dBm                                                                            | 50 dBm Offset<br>20 dB SWT<br>weep | 10.50<br>42.04 µs (~9.1 r | 108 • RBW 10<br>ms) • VBW 30                | D0 kHz<br>D0 kHz Mode          | Auto FFT | 0.0 kHz/ |   | M1[1] 1    | Count 100/100                            |
| MultiView         P           Ref Level 30.         Att           1 Frequency St         20 dBm           10 dBm         0 dBm           -10 dBm                                                  | 50 dBm Offset<br>20 dB SWT<br>weep | 10.50<br>42.04 µs (~9.1 r | ns) • VBW 30                                | D0 kHz<br>D0 kHz Mode          | Auto FFT | 0.0 kHz/ |   |            | Count 100/100                            |

| MultiView                                                                                                                                                                                      |                                        |                        |                               |                        |            |           |   |            |                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|-------------------------------|------------------------|------------|-----------|---|------------|------------------------------------------------------------|
| Ref Level 30<br>Att                                                                                                                                                                            | .50 dBm Offset<br>20 dB SWT 43         |                        | ) dB = RBW 10<br>ms) = VBW 30 |                        | Auto EET   |           |   |            | Count 100/100                                              |
| 1 Frequency S                                                                                                                                                                                  | Gweep                                  | 2.04 µs (1* 9.1        | illis) <b>– 15 i</b> 30       |                        | Raterini   |           |   |            | ●1Sa Avg                                                   |
|                                                                                                                                                                                                |                                        |                        |                               |                        |            |           |   | M1[1]      | -41.05 dBm<br>85000000 GHz                                 |
|                                                                                                                                                                                                |                                        |                        |                               |                        |            |           |   |            |                                                            |
| 20 dBm                                                                                                                                                                                         |                                        |                        |                               |                        |            |           |   |            |                                                            |
|                                                                                                                                                                                                |                                        |                        |                               |                        |            |           |   |            |                                                            |
| 10 dBm                                                                                                                                                                                         |                                        |                        |                               |                        |            |           |   |            |                                                            |
|                                                                                                                                                                                                |                                        |                        |                               |                        |            |           |   |            |                                                            |
| 0 dBm                                                                                                                                                                                          |                                        |                        |                               |                        |            |           |   |            |                                                            |
|                                                                                                                                                                                                |                                        |                        |                               |                        |            |           |   |            |                                                            |
| -10 dBm                                                                                                                                                                                        |                                        |                        |                               |                        |            |           |   |            |                                                            |
|                                                                                                                                                                                                | H1 -13.000 dBm                         |                        |                               |                        |            |           |   |            |                                                            |
| -20 dBm                                                                                                                                                                                        |                                        |                        |                               |                        |            |           |   |            |                                                            |
| 20 000                                                                                                                                                                                         |                                        |                        |                               |                        |            |           | V |            |                                                            |
|                                                                                                                                                                                                |                                        |                        |                               |                        |            | /         | 1 |            |                                                            |
| -30 dBm                                                                                                                                                                                        |                                        |                        |                               |                        |            |           |   |            |                                                            |
|                                                                                                                                                                                                |                                        |                        |                               | N                      | 11         |           |   |            |                                                            |
| -40 dBm                                                                                                                                                                                        |                                        |                        |                               |                        | ¥          |           |   |            |                                                            |
|                                                                                                                                                                                                |                                        |                        |                               |                        |            |           |   |            |                                                            |
| -50 dBm                                                                                                                                                                                        |                                        |                        |                               |                        |            |           |   |            |                                                            |
|                                                                                                                                                                                                |                                        |                        |                               |                        |            |           |   |            |                                                            |
| -60 dBm                                                                                                                                                                                        |                                        |                        |                               |                        |            |           |   |            |                                                            |
|                                                                                                                                                                                                |                                        |                        |                               |                        |            |           |   |            |                                                            |
| CF 1.85 GHz                                                                                                                                                                                    |                                        |                        | 1001 pts                      |                        | 20         | 0.0 kHz/  |   |            | Span 2.0 MHz                                               |
| GF 1105 GF12                                                                                                                                                                                   | 1                                      |                        | 1001 pts                      | ,                      | 20         | 5010 KH27 |   | easuring 🔳 |                                                            |
|                                                                                                                                                                                                | Spectrum                               | 10.50                  |                               |                        | ow-Full RB | #         |   |            |                                                            |
| Ref Level 30<br>Att                                                                                                                                                                            | .50 dBm Offset<br>20 dB SWT 43         | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   |            | Count 100/100                                              |
| Ref Level 30                                                                                                                                                                                   | .50 dBm Offset<br>20 dB SWT 43         | 10.5(<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   |            | Count 100/100<br>• 1Sa Avg                                 |
| Ref Level 30<br>Att                                                                                                                                                                            | .50 dBm Offset<br>20 dB SWT 43         | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   | M1[1]      | Count 100/100                                              |
| Ref Level 30<br>Att                                                                                                                                                                            | .50 dBm Offset<br>20 dB SWT 43         | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30<br>Att<br>1 Frequency S                                                                                                                                                           | .50 dBm Offset<br>20 dB SWT 43         | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm-                                                                                                                                                | .50 dBm Offset<br>20 dB SWT 43         | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30<br>Att<br>1 Frequency S                                                                                                                                                           | .50 dBm Offset<br>20 dB SWT 43         | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm                                                                                                                                                 | .50 dBm Offset<br>20 dB SWT 43         | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-44.35 dBm                   |
| Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm-                                                                                                                                                | .50 dBm Offset<br>20 dB SWT 43         | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | .50 dBm Offset<br>20 dB SWT 43         | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm                                                                                                                                                 | .50 dBm Offset<br>20 dB SWT 43         | 10.5(<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | .50 dBm Offset<br>20 dB SWT 4:<br>weep | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | .50 dBm Offset<br>20 dB SWT 4:<br>weep | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                       | .50 dBm Offset<br>20 dB SWT 4:<br>weep | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | .50 dBm Offset<br>20 dB SWT 4:<br>weep | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                       | .50 dBm Offset<br>20 dB SWT 4:<br>weep | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz                 |            | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                       | .50 dBm Offset<br>20 dB SWT 4:<br>weep | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz<br>0 kHz Mode / | Auto FFT   | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                     | .50 dBm Offset<br>20 dB SWT 4:<br>weep | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz<br>0 kHz Mode / |            | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                     | .50 dBm Offset<br>20 dB SWT 4:<br>weep | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz<br>0 kHz Mode / | Auto FFT   | #         |   | M1[1]      | Count 100/100<br>1Sa Avg<br>-44,35 dBm                     |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | .50 dBm Offset<br>20 dB SWT 4:<br>weep | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz<br>0 kHz Mode / | Auto FFT   | #         |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-44.35 dBm                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | .50 dBm Offset<br>20 dB SWT 4:<br>weep | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz<br>0 kHz Mode / | Auto FFT   | #         |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-44.35 dBm                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm                 | .50 dBm Offset<br>20 dB SWT 4:<br>weep | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | 10 kHz<br>0 kHz Mode / | Auto FFT   | #         |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-44.35 dBm                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | .50 dBm Offset<br>20 dB SWT 4:<br>weep | 10.50<br>2.04 µs (~9.1 | 0 dB • RBW 10<br>ms) • VBW 30 | i0 kHz<br>0 kHz Mode / | Auto FFT   |           |   | M1[1]      | Count 100/100                                              |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm                 | .50 dBm Offset<br>20 dB SWT 4:<br>weep | 10.50<br>2.04 µs (~9.1 | ) dB 🖷 RBW 10                 | i0 kHz<br>0 kHz Mode / | Auto FFT   | #         |   | M1[1]      | Count 100/100<br>• 15a Avg<br>- 44.35 dBm<br>.91000000 GHz |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | .50 dBm Offset<br>20 dB SWT 4:<br>weep | 10.50<br>2.04 µs (~9.1 | 0 dB • RBW 10<br>ms) • VBW 30 | i0 kHz<br>0 kHz Mode / | Auto FFT   |           |   | M1[1]      | Count 100/100<br>• 15a Avg<br>- 44.35 dBm<br>.91000000 GHz |

| MultiView                                                                                                                                                                                       |                                       |                            | •                       |                        |          |          |   |             |                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|-------------------------|------------------------|----------|----------|---|-------------|-----------------------------------------------------|
| RefLevel 30.<br>Att                                                                                                                                                                             | 50 dBm Offset<br>20 dB SWT 13         |                            | iB = RBW 30<br>s) = VBW |                        | uto FFT  |          |   |             | Count 100/100                                       |
| 1 Frequency S                                                                                                                                                                                   | weep                                  |                            | .,                      |                        |          |          |   |             | ●1Sa Avg                                            |
|                                                                                                                                                                                                 |                                       |                            |                         |                        |          |          |   | M1[1]       | -44.64 dBm<br>1.85000000 GHz                        |
| 20 dBm                                                                                                                                                                                          |                                       |                            |                         |                        |          |          |   |             |                                                     |
| 20 0811                                                                                                                                                                                         |                                       |                            |                         |                        |          |          |   |             |                                                     |
|                                                                                                                                                                                                 |                                       |                            |                         |                        |          |          |   |             |                                                     |
| 10 dBm                                                                                                                                                                                          |                                       |                            |                         |                        |          |          |   |             |                                                     |
|                                                                                                                                                                                                 |                                       |                            |                         |                        |          |          |   |             |                                                     |
| 0 dBm                                                                                                                                                                                           |                                       |                            |                         |                        |          |          |   |             |                                                     |
|                                                                                                                                                                                                 |                                       |                            |                         |                        |          |          |   |             |                                                     |
| -10 dBm                                                                                                                                                                                         |                                       |                            |                         |                        |          |          | 1 |             |                                                     |
|                                                                                                                                                                                                 | H1 -13.000 dBm                        |                            |                         |                        |          |          |   |             |                                                     |
| -20 dBm                                                                                                                                                                                         |                                       |                            |                         |                        |          |          |   |             |                                                     |
|                                                                                                                                                                                                 |                                       |                            |                         |                        |          |          |   |             |                                                     |
| -30 dBm                                                                                                                                                                                         |                                       |                            |                         |                        |          |          |   |             |                                                     |
|                                                                                                                                                                                                 |                                       |                            |                         |                        |          |          |   |             |                                                     |
| -40 dBm                                                                                                                                                                                         |                                       |                            |                         |                        | ļ,       | /        |   |             | _                                                   |
|                                                                                                                                                                                                 |                                       |                            |                         | N                      | 1        |          |   |             |                                                     |
| -50 dBm                                                                                                                                                                                         |                                       |                            |                         |                        |          |          |   |             |                                                     |
| co ubiii                                                                                                                                                                                        |                                       |                            |                         |                        |          |          |   |             |                                                     |
|                                                                                                                                                                                                 |                                       |                            |                         |                        |          |          |   |             |                                                     |
| -60 dBm                                                                                                                                                                                         |                                       |                            |                         |                        |          |          |   |             |                                                     |
|                                                                                                                                                                                                 |                                       |                            |                         |                        |          |          |   |             |                                                     |
| CF 1.85 GHz                                                                                                                                                                                     |                                       |                            | 1001 pt                 | ts                     | 20       | 0.0 kHz/ |   |             | Span 2.0 MHz                                        |
|                                                                                                                                                                                                 | B Spectrum                            | <b></b>                    |                         |                        | _ow-1RB# |          |   | leasuring 🔳 | ▼                                                   |
| Ref Level 30.<br>Att                                                                                                                                                                            | 50 dBm Offset<br>20 dB SWT 13         | 10.50 d<br>3.93 µs (~21 ms | IB ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   |             | ⊽<br>Count 100/100                                  |
| Ref Level 30.                                                                                                                                                                                   | 50 dBm Offset<br>20 dB SWT 13         | 10.50 d<br>3.93 µs (~21 ms | IB ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   |             | Count 100/100<br>●1Sa Avg                           |
| Ref Level 30.<br>Att                                                                                                                                                                            | 50 dBm Offset<br>20 dB SWT 13         | 10.50 d<br>3.93 µs (~21 ms | iB ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br>Count 100/100<br>● 15a Avg<br>-48.97 dBn       |
| Ref Level 30.<br>Att                                                                                                                                                                            | 50 dBm Offset<br>20 dB SWT 13         | 10.50 d<br>3.93 µs (~21 ms | iB ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br>Count 100/100<br>●1Sa Avg                      |
| Ref Level 30.<br>Att<br>1 Frequency S                                                                                                                                                           | 50 dBm Offset<br>20 dB SWT 13         | 10.50 d<br>3.93 µs (~21 ms | iB ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br>Count 100/100<br>● 15a Avg<br>-48.97 dBn       |
| Ref Level 30.<br>Att<br>1 Frequency S<br>20 dBm                                                                                                                                                 | 50 dBm Offset<br>20 dB SWT 13         | 10.50 d<br>3.93 µs (~21 ms | iB ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br>Count 100/100<br>● 15a Avg<br>-48.97 dBn       |
| Ref Level 30.<br>Att<br>1 Frequency S                                                                                                                                                           | 50 dBm Offset<br>20 dB SWT 13         | 10.50 d<br>3.93 µs (~21 ms | iB ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br>Count 100/100<br>● 15a Avg<br>-48.97 dBn       |
| Ref Level 30.<br>Att<br>1 Frequency S<br>20 dBm<br>10 dBm                                                                                                                                       | 50 dBm Offset<br>20 dB SWT 13         | 10.50 d<br>3.93 µs (~21 ms | /B ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br><u>Count 100/100</u><br>•1Sa Avg<br>-48.97 dBn |
| Ref Level 30.<br>Att<br>1 Frequency S<br>20 dBm                                                                                                                                                 | 50 dBm Offset<br>20 dB SWT 13         | 10.50 d<br>3.93 µs (~21 ms | /B ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br><u>Count 100/100</u><br>•1Sa Avg<br>-48.97 dBn |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | 50 dBm Offset<br>20 dB SWT 13         | 10.50 d                    | /B ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br><u>Count 100/100</u><br>•1Sa Avg<br>-48.97 dBn |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm                                                                                         | 50 dBm Offset<br>20 dB SWT 13         | 10.50 d                    | /B ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br><u>Count 100/100</u><br>•1Sa Avg<br>-48.97 dBn |
| Ref Level 30.           Att           1 Frequency St           20 dBm           10 dBm           0 dBm                                                                                          | 50 dBm Offset<br>20 dB SWT 13<br>weep | 10.50 d<br>3.93 µs (~21 ms | /B ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br><u>Count 100/100</u><br>•1Sa Avg<br>-48.97 dBn |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm                                                                                         | 50 dBm Offset<br>20 dB SWT 13<br>weep | 10.50 d<br>3.93 µs (~21 ms | /B ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br><u>Count 100/100</u><br>•1Sa Avg<br>-48.97 dBn |
| Ref Level 30.           Att           1 Frequency St           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                      | 50 dBm Offset<br>20 dB SWT 13<br>weep | 10.50 d<br>3.93 µs (~21 ms | /B ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br><u>Count 100/100</u><br>•1Sa Avg<br>-48.97 dBn |
| Ref Level 30.           Att           1 Frequency St           20 dBm           10 dBm           0 dBm                                                                                          | 50 dBm Offset<br>20 dB SWT 13<br>weep | 10.50 d<br>3.93 µs (~21 ms | /B ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br><u>Count 100/100</u><br>•1Sa Avg<br>-48.97 dBn |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                     | 50 dBm Offset<br>20 dB SWT 13<br>weep | 10.50 d<br>3.93 µs (~21 ms | /B ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br><u>Count 100/100</u><br>•1Sa Avg<br>-48.97 dBn |
| Ref Level 30.           Att           1 Frequency St           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                      | 50 dBm Offset<br>20 dB SWT 13<br>weep | 10.50 d<br>3.93 µs (~21 ms | /B ● RBW 30<br>s) ● VBW | 00 kHz                 |          |          |   | M1[1]       | ⊂<br><u>Count 100/100</u><br>•1Sa Avg<br>-48.97 dBn |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                     | 50 dBm Offset<br>20 dB SWT 13<br>weep | 10.50 d<br>3.93 µs (~21 ms | /B ● RBW 30<br>s) ● VBW | 00 kHz<br>1 MHz Mode A |          |          |   | M1[1]       | ⊂<br><u>Count 100/100</u><br>•1Sa Avg<br>-48.97 dBn |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                     | 50 dBm Offset<br>20 dB SWT 13<br>weep | 10.50 d                    | /B ● RBW 30<br>s) ● VBW | 00 kHz<br>1 MHz Mode A |          |          |   | M1[1]       | ⊂<br>Count 100/100<br>● 15a Avg<br>-48.97 dBn       |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | 50 dBm Offset<br>20 dB SWT 13<br>weep | 10.50 d                    | /B ● RBW 30<br>s) ● VBW | 00 kHz<br>1 MHz Mode A |          |          |   | M1[1]       | ⊂<br>Count 100/100<br>● 15a Avg<br>-48.97 dBn       |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | 50 dBm Offset<br>20 dB SWT 13<br>weep | 10.50 d                    | /B ● RBW 30<br>s) ● VBW | 00 kHz<br>1 MHz Mode A |          |          |   | M1[1]       | ⊂<br>Count 100/100<br>● 15a Avg<br>-48.97 dBn       |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | 50 dBm Offset<br>20 dB SWT 13<br>weep | 10.50 d                    | /B ● RBW 30<br>s) ● VBW | 00 kHz<br>1 MHz Mode A |          |          |   | M1[1]       | ⊂<br>Count 100/100<br>● 15a Avg<br>-48.97 dBn       |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm | 50 dBm Offset<br>20 dB SWT 13<br>weep | 10.50 d                    | s) • VBW                | 00 kHz<br>1 MHz Mode A |          |          |   | M1[1]       | Count 100/100                                       |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | 50 dBm Offset<br>20 dB SWT 13<br>weep | 10.50 d                    | /B ● RBW 30<br>s) ● VBW | 00 kHz<br>1 MHz Mode A |          | 0.0 kHz/ |   | M1[1]       | ⊂<br>Count 100/100<br>● 15a Avg<br>-48.97 dBn       |

| MultiView 8                                                                                                                                                                                       |                                    |                       |                           |                               |           |           |   |             |                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------|---------------------------|-------------------------------|-----------|-----------|---|-------------|----------------------------------------|
| Ref Level 30.5<br>Att                                                                                                                                                                             | 50 dBm Offset                      | 10.5<br>13 93 us (~21 | 0 dB = RBW 3              | 00 kHz<br>1 MHz <b>Mode</b> A | uto EET   |           |   |             | Count 100/100                          |
| 1 Frequency Sy                                                                                                                                                                                    |                                    | 10.00 µ3 (*21         | 1113) • • • • • •         | - induc A                     |           |           |   |             | ⊙1Sa Avg                               |
|                                                                                                                                                                                                   |                                    |                       |                           |                               |           |           |   | M1[1]       | -34.65 dBm<br>1.85000000 GHz           |
|                                                                                                                                                                                                   |                                    |                       |                           |                               |           |           |   |             | 1.85000000 012                         |
| 20 dBm                                                                                                                                                                                            |                                    |                       |                           |                               |           |           |   |             |                                        |
|                                                                                                                                                                                                   |                                    |                       |                           |                               |           |           |   |             |                                        |
| 10 dBm                                                                                                                                                                                            |                                    |                       |                           |                               |           |           |   |             |                                        |
|                                                                                                                                                                                                   |                                    |                       |                           |                               |           |           |   |             |                                        |
| 0 dBm                                                                                                                                                                                             |                                    |                       |                           |                               |           |           |   |             |                                        |
|                                                                                                                                                                                                   |                                    |                       |                           |                               |           |           |   |             | _                                      |
| -10 dBm                                                                                                                                                                                           |                                    |                       |                           |                               |           |           |   |             |                                        |
|                                                                                                                                                                                                   | H1 -13.000 dBm                     |                       |                           |                               |           |           |   |             |                                        |
| -20 dBm                                                                                                                                                                                           |                                    |                       |                           |                               |           |           |   |             |                                        |
| -20 UBIII                                                                                                                                                                                         |                                    |                       |                           |                               |           |           |   |             |                                        |
|                                                                                                                                                                                                   |                                    |                       |                           |                               |           | /         | ſ |             |                                        |
| -30 dBm                                                                                                                                                                                           |                                    |                       |                           | M                             | 1         |           |   |             |                                        |
|                                                                                                                                                                                                   |                                    |                       |                           | +'                            |           | <b>—</b>  |   |             |                                        |
| -40 dBm                                                                                                                                                                                           |                                    |                       |                           |                               |           |           |   |             |                                        |
|                                                                                                                                                                                                   |                                    |                       |                           |                               |           |           |   |             |                                        |
| -50 dBm                                                                                                                                                                                           |                                    |                       |                           |                               |           |           |   |             |                                        |
|                                                                                                                                                                                                   |                                    |                       |                           |                               |           |           |   |             |                                        |
| -60 dBm                                                                                                                                                                                           |                                    |                       |                           |                               |           |           |   |             |                                        |
|                                                                                                                                                                                                   |                                    |                       |                           |                               |           |           |   |             |                                        |
|                                                                                                                                                                                                   |                                    |                       |                           |                               |           |           |   |             |                                        |
| CF 1.85 GHz                                                                                                                                                                                       | (                                  |                       | 1001 p                    | ots                           | 20        | 00.0 kHz/ |   | Measuring 🚺 | Span 2.0 MHz                           |
| MultiViour 9                                                                                                                                                                                      | Spectrum                           |                       |                           | Channel Lo                    | w-Full RB | #         |   |             |                                        |
| Att                                                                                                                                                                                               | 50 dBm Offset<br>20 dB SWT         | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              |                               |           | #         |   |             | ▼ Count 100/100                        |
| Ref Level 30.5                                                                                                                                                                                    | 50 dBm Offset<br>20 dB SWT         | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   |             | Count 100/100<br>ISa Avg               |
| Ref Level 30.5<br>Att                                                                                                                                                                             | 50 dBm Offset<br>20 dB SWT         | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   | M1[1]       | Count 100/100                          |
| Ref Level 30.5<br>Att<br>1 Frequency Sv                                                                                                                                                           | 50 dBm Offset<br>20 dB SWT         | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5<br>Att                                                                                                                                                                             | 50 dBm Offset<br>20 dB SWT         | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5<br>Att<br>1 Frequency Sv<br>20 dBm                                                                                                                                                 | 50 dBm Offset<br>20 dB SWT         | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5<br>Att<br>1 Frequency Sv                                                                                                                                                           | 50 dBm Offset<br>20 dB SWT         | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5<br>Att<br>1 Frequency Sv<br>20 dBm<br>10 dBm                                                                                                                                       | 50 dBm Offset<br>20 dB SWT         | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5<br>Att<br>1 Frequency Sv<br>20 dBm                                                                                                                                                 | 50 dBm Offset<br>20 dB SWT         | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.3           Att           I Frequency Sv           20 dBm           10 dBm           0 dBm                                                                                           | 50 dBm Offset<br>20 dB SWT         | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5           Att           1 Frequency Sv           20 dBm           10 dBm           0 dBm                                                                                           | Jo dBm Offset<br>20 dB SWT<br>veep | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5           Att           1 Frequency Sv           20 dBm           10 dBm           0 dBm                                                                                           | 50 dBm Offset<br>20 dB SWT         | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5           Att           1 Frequency Sv           20 dBm           10 dBm           0 dBm                                                                                           | Jo dBm Offset<br>20 dB SWT<br>veep | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5           Att           1 Frequency Sv           20 dBm           10 dBm           0 dBm                                                                                           | Jo dBm Offset<br>20 dB SWT<br>veep | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5           Att           1 Frequency Sv           20 dBm           10 dBm           0 dBm                                                                                           | Jo dBm Offset<br>20 dB SWT<br>veep | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | Jo dBm Offset<br>20 dB SWT<br>veep | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | 000 kHz<br>1 MHz Mode A       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | Jo dBm Offset<br>20 dB SWT<br>veep | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | :00 kHz                       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | Jo dBm Offset<br>20 dB SWT<br>veep | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | 000 kHz<br>1 MHz Mode A       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | Jo dBm Offset<br>20 dB SWT<br>veep | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | 000 kHz<br>1 MHz Mode A       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | Jo dBm Offset<br>20 dB SWT<br>veep | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | 000 kHz<br>1 MHz Mode A       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | Jo dBm Offset<br>20 dB SWT<br>veep | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | 000 kHz<br>1 MHz Mode A       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | Jo dBm Offset<br>20 dB SWT<br>veep | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | 000 kHz<br>1 MHz Mode A       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | Jo dBm Offset<br>20 dB SWT<br>veep | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | 000 kHz<br>1 MHz Mode A       |           | #         |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |
| Ref Level 30.5           Att           1 Frequency SV           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | Jo dBm Offset<br>20 dB SWT<br>veep | 10.5<br>13.93 µs (~21 | 0 dB 🖷 RBW 3              | OO kHz<br>1 MHz Mode A        | uto FFT   | #         |   | M1[1]       | Count 100/100                          |
| Ref Level 30.5           Att           1 Frequency SW           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | Jo dBm Offset<br>20 dB SWT<br>veep | 10.5<br>13.93 µs (~21 | O dB • RBW 3<br>ms) • VBW | OO kHz<br>1 MHz Mode A        | uto FFT   |           |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-38,92 dBm |

|                                                                                                                                                                                                                            | B Spectrum                            |                            |                        |                               |          |          |          |            |                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|------------------------|-------------------------------|----------|----------|----------|------------|---------------------------------------|
| Ref Level 30<br>Att                                                                                                                                                                                                        | .50 dBm Offset<br>20 dB SWT 1         | 10.50 d<br>3.93 us (~21 ms | B = RBW 30<br>a) = VBW | 00 kHz<br>1 MHz <b>Mode</b> A | uto FFT  |          |          |            | Count 100/100                         |
| 1 Frequency S                                                                                                                                                                                                              | weep                                  |                            | ,                      |                               |          | 1        |          |            | ●1Sa Avg                              |
|                                                                                                                                                                                                                            |                                       |                            |                        |                               |          |          |          | M1[1]      | -46.64 dBn<br>1.85000000 GH;          |
|                                                                                                                                                                                                                            |                                       |                            |                        |                               |          |          |          |            |                                       |
| 20 dBm                                                                                                                                                                                                                     |                                       |                            |                        |                               |          |          |          |            |                                       |
|                                                                                                                                                                                                                            |                                       |                            |                        |                               |          |          |          |            |                                       |
| 10 dBm                                                                                                                                                                                                                     |                                       |                            |                        |                               |          |          |          |            |                                       |
|                                                                                                                                                                                                                            |                                       |                            |                        |                               |          |          |          |            |                                       |
| 0 dBm                                                                                                                                                                                                                      |                                       |                            |                        |                               |          |          |          |            |                                       |
|                                                                                                                                                                                                                            |                                       |                            |                        |                               |          |          |          |            |                                       |
| -10 dBm                                                                                                                                                                                                                    |                                       |                            |                        |                               |          |          |          |            |                                       |
|                                                                                                                                                                                                                            | H1 -13.000 dBm                        |                            |                        |                               |          | - /      |          |            |                                       |
| -20 dBm                                                                                                                                                                                                                    |                                       |                            |                        |                               |          |          |          |            |                                       |
| -20 0011                                                                                                                                                                                                                   |                                       |                            |                        |                               |          |          |          |            |                                       |
|                                                                                                                                                                                                                            |                                       |                            |                        |                               |          |          |          |            |                                       |
| -30 dBm                                                                                                                                                                                                                    |                                       |                            |                        |                               |          |          |          |            |                                       |
|                                                                                                                                                                                                                            |                                       |                            |                        |                               |          |          |          |            |                                       |
| -40 dBm                                                                                                                                                                                                                    |                                       |                            |                        |                               |          | ¥        |          |            |                                       |
|                                                                                                                                                                                                                            |                                       |                            |                        |                               | 1        |          |          |            |                                       |
| -50 dBm                                                                                                                                                                                                                    | L                                     |                            | -                      |                               |          |          |          |            |                                       |
|                                                                                                                                                                                                                            |                                       |                            |                        |                               |          |          |          |            |                                       |
| -60 dBm                                                                                                                                                                                                                    |                                       |                            |                        |                               |          |          |          |            |                                       |
|                                                                                                                                                                                                                            |                                       |                            |                        |                               |          |          |          |            |                                       |
|                                                                                                                                                                                                                            |                                       |                            |                        |                               |          |          |          |            |                                       |
| CF 1.85 GHz                                                                                                                                                                                                                |                                       |                            | 1001 pt                | IS                            | 21       | 0.0 kHz/ | <u> </u> |            | Span 2.0 MHz                          |
| MultiView                                                                                                                                                                                                                  | Spectrum                              |                            |                        |                               | Low-1RB# |          | M        | easuring 🔳 |                                       |
| MultiView<br>Ref Level 30<br>Att                                                                                                                                                                                           | .50 dBm Offset<br>20 dB SWT 1         | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          | M        |            | ▼<br>Count 100/100                    |
| MultiView 8<br>Ref Level 30                                                                                                                                                                                                | .50 dBm Offset<br>20 dB SWT 1         | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          | M        |            | ⊂<br><u>Count 100/100</u><br>●1Sa Avg |
| MultiView<br>Ref Level 30<br>Att                                                                                                                                                                                           | .50 dBm Offset<br>20 dB SWT 1         | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          | M        | M1[1]      | ▼<br>Count 100/100                    |
| MultiView<br>Ref Level 30<br>Att<br>Frequency S                                                                                                                                                                            | .50 dBm Offset<br>20 dB SWT 1         | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          | M        | M1[1]      |                                       |
| MultiView<br>Ref Level 30<br>Att                                                                                                                                                                                           | .50 dBm Offset<br>20 dB SWT 1         | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          | M        | M1[1]      |                                       |
| MultiView<br>Ref Level 30<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                                | .50 dBm Offset<br>20 dB SWT 1         | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          | M        | M1[1]      |                                       |
| MultiView<br>Ref Level 30<br>Att<br>Frequency S                                                                                                                                                                            | .50 dBm Offset<br>20 dB SWT 1         | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          | M        | M1[1]      |                                       |
| MultiView<br>Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm<br>40 dBm                                                                                                                                                      | .50 dBm Offset<br>20 dB SWT 1         | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          | M        | M1[1]      |                                       |
| MultiView<br>Ref Level 30<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                                | .50 dBm Offset<br>20 dB SWT 1         | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          | M        | M1[1]      |                                       |
| MultiView<br>Ref Level 30<br>Att<br>I Frequency S<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                             | .50 dBm Offset<br>20 dB SWT 1         | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          | M        | M1[1]      |                                       |
| MultiView<br>Ref Level 30<br>Att<br>I Frequency S<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                                                                           | .50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          | M        | M1[1]      |                                       |
| MultiView<br>Ref Level 30<br>Att<br>I Frequency S<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                                                                           | .50 dBm Offset<br>20 dB SWT 1         | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          |          | M1[1]      |                                       |
| MultiView<br>Ref Level 30<br>Att<br>I Frequency S<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                                                                           | .50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          |          | M1[1]      |                                       |
| MultiView<br>Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                                                                           | .50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          |          | M1[1]      |                                       |
| MultiView<br>Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                                                                           | .50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          |          | M1[1]      |                                       |
| MultiView         Ref Level 30           Att         1           I Frequency S         20 dBm           10 dBm         0 dBm           -10 dBm         -20 dBm                                                             | .50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          |          | M1[1]      |                                       |
| MultiView         Ref Level 30           Att         IFrequency S           20 dBm         10 dBm           10 dBm         -10 dBm           -10 dBm         -20 dBm                                                       | .50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          |          | M1[1]      |                                       |
| MultiView         Ref Level 30           Att         1           I Frequency S         20 dBm           10 dBm         0 dBm           -10 dBm         -20 dBm                                                             | .50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz                        |          |          |          | M1[1]      |                                       |
| MultiView         Ref Level 30           Att         1           1         Frequency S           20 dBm         10 dBm           10 dBm         10 dBm           -10 dBm         -30 dBm           -30 dBm         -40 dBm | .50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz<br>1 MHz Mode A        |          |          |          | M1[1]      |                                       |
| MultiView         Ref Level 30           Att         IFrequency S           20 dBm         10 dBm           10 dBm         -10 dBm           -10 dBm         -20 dBm                                                       | .50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz<br>1 MHz Mode A        |          |          |          | M1[1]      |                                       |
| MultiView           Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           -10 dBm           -30 dBm           -30 dBm           -40 dBm                                           | .50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | 00 kHz<br>1 MHz Mode A        |          |          |          | M1[1]      |                                       |
| MultiView         Ref Level 30           Att         1           1         Frequency S           20 dBm         10 dBm           10 dBm         10 dBm           -10 dBm         -30 dBm           -30 dBm         -40 dBm | .50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 d                    | B ● <b>RBW</b> 30      | 00 kHz<br>1 MHz Mode A        |          |          |          | M1[1]      | ✓ Count 100/100 ●1Sa Avg -49,25 dBn   |
| MultiView           Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           -10 dBm           -30 dBm           -30 dBm           -40 dBm                                           | .50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 d                    | B ● <b>RBW</b> 30      | 00 kHz<br>1 MHz Mode A        |          |          |          | M1[1]      | ✓ Count 100/100 ●1Sa Avg -49,25 dBn   |
| MultiView           Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           -10 dBm           -30 dBm           -30 dBm           -40 dBm                                           | .50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 d<br>3.93 µs (~21 ms | B ● <b>RBW</b> 30      | D0 kHz<br>1 MHz Mode A        |          | 0.0 kHz/ |          | M1[1]      | Count 100/100                         |
| MultiView           Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm       | .50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 d                    | B • RBW 3c             | D0 kHz<br>1 MHz Mode A        |          | 0.0 kHz/ |          | M1[1]      | ⊂ Count 100/100 ●1Sa Avg -49.25 dBn   |

|                                                                                                                                                                                                  |                                     |                         |                                           |                               | 5MHz-160  |          |   |            |                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------|-------------------------------------------|-------------------------------|-----------|----------|---|------------|-------------------------------------------------|
| MultiView                                                                                                                                                                                        | Spectrum                            |                         |                                           |                               |           |          |   |            |                                                 |
| Ref Level 30<br>Att                                                                                                                                                                              | .50 dBm Offset<br>20 dB SWT         | : 10.5<br>13.93 µs (~21 | 50 dB <b>= RBW</b> 3<br>Lms) <b>= VBW</b> | 00 kHz<br>1 MHz <b>Mode</b> A | uto FFT   |          |   |            | Count 100/100                                   |
| 1 Frequency S                                                                                                                                                                                    |                                     |                         | ,                                         |                               |           |          |   | M1[1]      | <ul> <li>1Sa Avg</li> <li>-37.65 dBn</li> </ul> |
|                                                                                                                                                                                                  |                                     |                         |                                           |                               |           |          |   | WILI       | 1.85000000 GH                                   |
| 20 dBm                                                                                                                                                                                           |                                     |                         |                                           |                               |           |          |   |            |                                                 |
|                                                                                                                                                                                                  |                                     |                         |                                           |                               |           |          |   |            |                                                 |
| 10 dBm                                                                                                                                                                                           |                                     |                         |                                           |                               |           |          |   |            |                                                 |
|                                                                                                                                                                                                  |                                     |                         |                                           |                               |           |          |   |            |                                                 |
| 0 dBm                                                                                                                                                                                            |                                     |                         |                                           |                               |           |          |   |            |                                                 |
| -10 dBm                                                                                                                                                                                          |                                     |                         |                                           |                               |           |          |   |            |                                                 |
| -10 0000                                                                                                                                                                                         | H1 -13.000 dBm                      |                         |                                           |                               |           |          |   | 1          |                                                 |
| -20 dBm                                                                                                                                                                                          |                                     |                         |                                           |                               |           |          |   |            |                                                 |
|                                                                                                                                                                                                  |                                     |                         |                                           |                               |           |          |   |            |                                                 |
| -30 dBm                                                                                                                                                                                          |                                     |                         |                                           |                               |           | - /      |   |            |                                                 |
|                                                                                                                                                                                                  |                                     |                         | ļ                                         | N                             | 1         |          |   |            |                                                 |
| -40 dBm                                                                                                                                                                                          |                                     |                         |                                           |                               |           |          |   |            |                                                 |
|                                                                                                                                                                                                  |                                     |                         |                                           |                               |           |          |   |            |                                                 |
| -50 dBm                                                                                                                                                                                          |                                     |                         |                                           |                               |           |          |   |            |                                                 |
| -60 dBm                                                                                                                                                                                          |                                     |                         |                                           |                               |           |          |   |            |                                                 |
|                                                                                                                                                                                                  |                                     |                         |                                           |                               |           |          |   |            |                                                 |
| CF 1.85 GHz                                                                                                                                                                                      |                                     |                         | 1001 p                                    | ate .                         | 20        | 0.0 kHz/ |   |            | Span 2.0 MHz                                    |
|                                                                                                                                                                                                  | 1                                   |                         |                                           |                               |           |          | М | easuring 🔳 |                                                 |
|                                                                                                                                                                                                  | Spectrum                            |                         |                                           | Channel Lo                    | w-Full RB | #        |   |            |                                                 |
| Ref Level 30<br>Att                                                                                                                                                                              | .50 dBm Offset<br>20 dB SWT         |                         | 50 dB 🖷 RBW 3                             |                               |           | #        |   |            | Count 100/100                                   |
| Ref Level 30                                                                                                                                                                                     | .50 dBm Offset<br>20 dB SWT         |                         | 50 dB 🖷 RBW 3                             | :00 kHz                       |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30<br>Att<br>1 Frequency S                                                                                                                                                             | .50 dBm Offset<br>20 dB SWT         |                         | 50 dB 🖷 RBW 3                             | :00 kHz                       |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30<br>Att                                                                                                                                                                              | .50 dBm Offset<br>20 dB SWT         |                         | 50 dB 🖷 RBW 3                             | :00 kHz                       |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm-                                                                                                                                                  | .50 dBm Offset<br>20 dB SWT         |                         | 50 dB 🖷 RBW 3                             | :00 kHz                       |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30<br>Att<br>1 Frequency S                                                                                                                                                             | .50 dBm Offset<br>20 dB SWT         |                         | 50 dB 🖷 RBW 3                             | :00 kHz                       |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm-                                                                                                                                                  | .50 dBm Offset<br>20 dB SWT         |                         | 50 dB 🖷 RBW 3                             | :00 kHz                       |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                   | .50 dBm Offset<br>20 dB SWT         |                         | 50 dB 🖷 RBW 3                             | :00 kHz                       |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                   | .50 dBm Offset<br>20 dB SWT<br>weep |                         | 50 dB 🖷 RBW 3                             | :00 kHz                       |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm                                                                                           | .50 dBm Offset<br>20 dB SWT         |                         | 50 dB 🖷 RBW 3                             | :00 kHz                       |           | #        |   | M1[1]      |                                                 |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                             | .50 dBm Offset<br>20 dB SWT<br>weep |                         | 50 dB 🖷 RBW 3                             | :00 kHz                       |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                         | .50 dBm Offset<br>20 dB SWT<br>weep |                         | 50 dB 🖷 RBW 3                             | :00 kHz                       |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm                                                                                           | .50 dBm Offset<br>20 dB SWT<br>weep |                         | 50 dB 🖷 RBW 3                             | 00 kHz<br>1 MHz Mode A        |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                         | .50 dBm Offset<br>20 dB SWT<br>weep |                         | 50 dB 🖷 RBW 3                             | :00 kHz                       |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                         | .50 dBm Offset<br>20 dB SWT<br>weep |                         | 50 dB 🖷 RBW 3                             | 00 kHz<br>1 MHz Mode A        |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                         | .50 dBm Offset<br>20 dB SWT<br>weep |                         | 50 dB 🖷 RBW 3                             | 00 kHz<br>1 MHz Mode A        |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                       | .50 dBm Offset<br>20 dB SWT<br>weep |                         | 50 dB 🖷 RBW 3                             | 00 kHz<br>1 MHz Mode A        |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                       | .50 dBm Offset<br>20 dB SWT<br>weep |                         | 50 dB 🖷 RBW 3                             | 00 kHz<br>1 MHz Mode A        |           | #        |   | M1[1]      | Count 100/100<br>•1Sa Avg<br>-39.51 dBn         |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                     | .50 dBm Offset<br>20 dB SWT<br>weep |                         | 50 dB 🖷 RBW 3                             | 00 kHz<br>1 MHz Mode A        | uto FFT   |          |   | M1[1]      | Count 100/100                                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                     | .50 dBm Offset<br>20 dB SWT<br>weep |                         | 50 dB 🖷 RBW 3                             | OO kHz<br>1 MHz Mode A        | uto FFT   | #        |   | M1[1]      | Count 100/100                                   |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm | .50 dBm Offset<br>20 dB SWT<br>weep |                         | 50 dB • RBW 3                             | OO kHz<br>1 MHz Mode A        | uto FFT   |          |   | M1[1]      | Count 100/100                                   |

| MultiView                                                                                                                                                                                                                                                           |                                      |                           |                         |           |          |           |   |            |                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|-------------------------|-----------|----------|-----------|---|------------|----------------------------------------------|
| Ref Level 30.<br>Att                                                                                                                                                                                                                                                | 50 dBm Offset<br>20 dB SWT 1         |                           | dB • RBW 30<br>s) • VBW |           | uto FFT  |           |   | c          | Count 100/100                                |
| 1 Frequency S                                                                                                                                                                                                                                                       | weep                                 |                           | ,                       |           |          |           |   |            | ⊙1Sa Avg                                     |
|                                                                                                                                                                                                                                                                     |                                      |                           |                         |           |          |           |   | M1[1]      | -45.17 dBm<br>.85000000 GH:                  |
| 20 dBm                                                                                                                                                                                                                                                              |                                      |                           |                         |           |          |           |   | _          |                                              |
| 20 0811                                                                                                                                                                                                                                                             |                                      |                           |                         |           |          |           |   |            |                                              |
|                                                                                                                                                                                                                                                                     |                                      |                           |                         |           |          |           |   |            |                                              |
| 10 dBm                                                                                                                                                                                                                                                              |                                      |                           |                         |           |          |           |   |            |                                              |
|                                                                                                                                                                                                                                                                     |                                      |                           |                         |           |          |           |   |            |                                              |
| 0 dBm                                                                                                                                                                                                                                                               |                                      |                           |                         |           |          |           |   |            |                                              |
|                                                                                                                                                                                                                                                                     |                                      |                           |                         |           |          |           |   |            |                                              |
| -10 dBm                                                                                                                                                                                                                                                             |                                      |                           |                         |           |          |           |   | 1          |                                              |
|                                                                                                                                                                                                                                                                     | H1 -13.000 dBm                       |                           |                         |           |          |           |   | 1          |                                              |
| -20 dBm                                                                                                                                                                                                                                                             |                                      |                           |                         |           |          |           |   |            |                                              |
|                                                                                                                                                                                                                                                                     |                                      |                           |                         |           |          |           |   |            |                                              |
| -30 dBm                                                                                                                                                                                                                                                             |                                      |                           |                         |           |          |           |   |            |                                              |
|                                                                                                                                                                                                                                                                     |                                      |                           |                         |           |          |           |   |            |                                              |
| -40 dBm                                                                                                                                                                                                                                                             |                                      |                           |                         |           |          |           |   |            |                                              |
|                                                                                                                                                                                                                                                                     |                                      |                           |                         | M         | 1        |           | 1 |            |                                              |
| -50 dBm                                                                                                                                                                                                                                                             |                                      |                           |                         |           |          |           |   |            |                                              |
| -50 ubiii                                                                                                                                                                                                                                                           |                                      |                           |                         |           |          |           |   |            |                                              |
|                                                                                                                                                                                                                                                                     |                                      |                           |                         |           |          |           |   |            |                                              |
| -60 dBm                                                                                                                                                                                                                                                             |                                      |                           |                         |           |          |           |   |            |                                              |
|                                                                                                                                                                                                                                                                     |                                      |                           |                         |           |          |           |   |            |                                              |
|                                                                                                                                                                                                                                                                     |                                      |                           | 1001 pt                 | ts        | 20       | 0.0 kHz/  |   |            | Span 2.0 MHz                                 |
|                                                                                                                                                                                                                                                                     | Spectrum                             |                           |                         | Channel L | .ow-1RB# |           | M | easuring 🌒 |                                              |
| MultiView 8<br>Ref Level 30.<br>Att                                                                                                                                                                                                                                 | 50 dBm Offset<br>20 dB SWT 1         | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           | M |            | <br>Count 100/100                            |
| MultiView 8<br>Ref Level 30.                                                                                                                                                                                                                                        | 50 dBm Offset<br>20 dB SWT 1         | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           | M | (          | ⊂<br>Count 100/100<br>●1Sa Avg               |
| MultiView 8<br>Ref Level 30.<br>Att                                                                                                                                                                                                                                 | 50 dBm Offset<br>20 dB SWT 1         | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           | M | (<br>      | <br>Count 100/100                            |
| MultiView 8<br>Ref Level 30.<br>Att                                                                                                                                                                                                                                 | 50 dBm Offset<br>20 dB SWT 1         | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           | M | (<br>      | ⊽<br>Count 100/100<br>●1Sa Avg<br>-48.32 dBn |
| MultiView<br>Ref Level 30,<br>Att<br>I Frequency S                                                                                                                                                                                                                  | 50 dBm Offset<br>20 dB SWT 1         | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           | M | (<br>      | ⊽<br>Count 100/100<br>●1Sa Avg<br>-48.32 dBn |
| MultiView<br>Ref Level 30,<br>Att<br>I Frequency S                                                                                                                                                                                                                  | 50 dBm Offset<br>20 dB SWT 1         | 10.50<br>3.93 µs (~21 m   | db • RBW 30             | Channel L |          |           | M | (<br>      | ⊽<br>Count 100/100<br>●1Sa Avg<br>-48.32 dBn |
| MultiView F<br>Ref Level 30.<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                                                                      | 50 dBm Offset<br>20 dB SWT 1         | 10.50<br>3.93 µs (~21 m   | db • RBW 30             | Channel L |          |           |   | (<br>      | ⊽<br>Count 100/100<br>●1Sa Avg<br>-48.32 dBn |
| MultiView F<br>Ref Level 30.<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                                                                      | 50 dBm Offset<br>20 dB SWT 1         | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           |   | (<br>      | ⊽<br>Count 100/100<br>●1Sa Avg<br>-48.32 dBn |
| MultiView<br>Ref Level 30.<br>Att<br>1 Frequency S<br>20 dBm<br>10 dBm                                                                                                                                                                                              | 50 dBm Offset<br>20 dB SWT 1         | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           |   | (<br>      | ⊽<br>Count 100/100<br>●1Sa Avg<br>-48.32 dBn |
| MultiView<br>Ref Level 30.<br>Att<br>1 Frequency S<br>20 dBm<br>10 dBm                                                                                                                                                                                              | 50 dBm Offset<br>20 dB SWT 1         | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           |   | (<br>      | ⊽<br>Count 100/100<br>●1Sa Avg<br>-48.32 dBn |
| MultiView C<br>Ref Level 30.<br>Att<br>1 Frequency S<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                                                                   | 50 dBm Offset<br>20 dB SWT 1         | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           |   | (<br>      | ⊽<br>Count 100/100<br>●1Sa Avg<br>-48.32 dBn |
| MultiView P<br>Ref Level 30.<br>Att<br>1 Frequency S<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                                                                   | 50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           |   | (<br>      | ⊽<br>Count 100/100<br>●1Sa Avg<br>-48.32 dBn |
| MultiView C<br>Ref Level 30.<br>Att<br>1 Frequency S<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                                                                   | 50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           |   | (<br>      | ⊽<br>Count 100/100<br>●1Sa Avg<br>-48.32 dBn |
| MultiView         B           Ref Level 30.         Att           1 Frequency S         20 dBm           10 dBm         0 dBm           -10 dBm         -20 dBm                                                                                                     | 50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           |   | (<br>      | ⊽<br>Count 100/100<br>●1Sa Avg<br>-48.32 dBn |
| MultiView P<br>Ref Level 30.<br>Att<br>1 Frequency S<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                                                                   | 50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           |   | (<br>      | ⊽<br>Count 100/100<br>●1Sa Avg<br>-48.32 dBn |
| MultiView         B           Ref Level         30.           Att         1           1 Frequency S         20 dBm           20 dBm         0 dBm           -10 dBm         -20 dBm           -20 dBm         -30 dBm                                               | 50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           |   | (<br>      | ⊽<br>Count 100/100<br>●1Sa Avg<br>-48.32 dBn |
| MultiView         B           Ref Level 30.         Att           1 Frequency S         20 dBm           10 dBm         0 dBm           -10 dBm         -20 dBm                                                                                                     | 50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L |          |           |   | (<br>      | Count 100/100<br>●15a Avg<br>-48.32 dBn      |
| MultiView         Part           Ref Level 30.         Att           I Frequency S         20 dBm           20 dBm         0 dBm           10 dBm         -0 dBm           -20 dBm         -30 dBm           -40 dBm         -40 dBm                                | 50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L | Jto FFT  |           |   | (<br>      | ⊽<br>Count 100/100<br>●1Sa Avg<br>-48.32 dBn |
| MultiView         B           Ref Level         30.           Att         1           1 Frequency S         20 dBm           20 dBm         0 dBm           -10 dBm         -20 dBm           -20 dBm         -30 dBm                                               | 50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L | Jto FFT  |           |   | (<br>      | Count 100/100<br>●15a Avg<br>-48.32 dBn      |
| MultiView         Part           Ref Level 30.         Att           I Frequency S         20 dBm           20 dBm         0 dBm           10 dBm         -0 dBm           -20 dBm         -30 dBm           -40 dBm         -40 dBm                                | 50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L | Jto FFT  |           |   | (<br>      | Count 100/100<br>●15a Avg<br>-48.32 dBn      |
| MultiView         Part           Ref Level 30.         Att           I Frequency S         20 dBm           20 dBm         0 dBm           10 dBm         -0 dBm           -20 dBm         -30 dBm           -40 dBm         -40 dBm                                | 50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L | Jto FFT  |           |   | (<br>      | Count 100/100<br>●15a Avg<br>-48.32 dBn      |
| MultiView         Ref Level 30.           Att         I Frequency S           20 dBm         0 dBm           10 dBm         0 dBm           -10 dBm         -30 dBm           -30 dBm         -30 dBm           -50 dBm         -50 dBm                             | 50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L | Jto FFT  |           |   | (<br>      | Count 100/100<br>●15a Avg<br>-48.32 dBn      |
| MultiView         E           Ref Level 30.         Att           I Frequency S         20 dBm           20 dBm         0 dBm           10 dBm         -0 dBm           -10 dBm         -30 dBm           -30 dBm         -30 dBm           -50 dBm         -60 dBm | 50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 (<br>3.93 µs (~21 m | dB ● RBW 30<br>s) ● VBW | Channel L | Jto FFT  | 0.0 kHz / |   | (<br>      | Count 100/100                                |
| MultiView         Ref Level 30.           Att         I Frequency S           20 dBm         0 dBm           10 dBm         0 dBm           -10 dBm         -30 dBm           -30 dBm         -30 dBm           -50 dBm         -50 dBm                             | 50 dBm Offset<br>20 dB SWT 1<br>weep | 10.50 (<br>3.93 µs (~21 m | db • RBW 30             | Channel L | Jto FFT  | 0.0 kHz/  |   | M1[1] 1    | Count 100/100<br>●15a Avg<br>-48.32 dBn      |

|                                                                                                                                                                                                 | ~                                     |                                     |                              |            |            |    |            | (                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|------------------------------|------------|------------|----|------------|----------------------------------------|
|                                                                                                                                                                                                 | B) Spectrum                           |                                     |                              |            |            |    |            |                                        |
| RefLevel 30.<br>Att                                                                                                                                                                             | 50 dBm Offset<br>20 dB SWT 13         | 10.50 dB ● F<br>.93 µs (~21 ms) ● V | NBW 300 kHz<br>NBW 1 MHz Mod | e Auto FFT |            |    |            | Count 100/100                          |
| 1 Frequency S                                                                                                                                                                                   | weep                                  |                                     |                              |            |            |    |            | ●1Sa Avg                               |
|                                                                                                                                                                                                 |                                       |                                     |                              |            |            |    | M1[1]      | -37.25 dBn<br>1.85000000 GH            |
| 20 dBm                                                                                                                                                                                          |                                       |                                     |                              |            |            |    |            |                                        |
|                                                                                                                                                                                                 |                                       |                                     |                              |            |            |    |            |                                        |
| 10 dBm                                                                                                                                                                                          |                                       |                                     |                              |            |            |    |            |                                        |
|                                                                                                                                                                                                 |                                       |                                     |                              |            |            |    |            |                                        |
| 0 dBm                                                                                                                                                                                           |                                       |                                     |                              |            |            |    |            |                                        |
|                                                                                                                                                                                                 |                                       |                                     |                              |            |            |    |            |                                        |
| -10 dBm                                                                                                                                                                                         | -H1 -13.000 dBm                       |                                     |                              |            |            |    |            |                                        |
|                                                                                                                                                                                                 |                                       |                                     |                              |            |            |    |            | 1                                      |
| -20 dBm                                                                                                                                                                                         |                                       |                                     |                              |            |            |    |            |                                        |
| -30 dBm                                                                                                                                                                                         |                                       |                                     |                              |            |            |    |            |                                        |
| -30 UDIII                                                                                                                                                                                       |                                       |                                     |                              | M1         |            |    |            |                                        |
| -40 dBm                                                                                                                                                                                         |                                       |                                     |                              |            |            |    |            |                                        |
|                                                                                                                                                                                                 |                                       |                                     |                              |            |            |    |            |                                        |
| -50 dBm                                                                                                                                                                                         |                                       |                                     |                              |            |            |    |            |                                        |
|                                                                                                                                                                                                 |                                       |                                     |                              |            |            |    |            |                                        |
| -60 dBm                                                                                                                                                                                         |                                       |                                     |                              |            |            |    |            |                                        |
|                                                                                                                                                                                                 |                                       |                                     |                              |            |            |    |            |                                        |
| CF 1.85 GHz                                                                                                                                                                                     |                                       | 1                                   | 001 pts                      |            | 200.0 kHz/ |    |            | Span 2.0 MHz                           |
|                                                                                                                                                                                                 |                                       |                                     |                              |            |            | Me | easuring 🔳 |                                        |
| MultiView 8                                                                                                                                                                                     |                                       |                                     |                              | Low-Full R | B#         |    |            |                                        |
| Ref Level 30.<br>Att                                                                                                                                                                            | 50 dBm Offset<br>20 dB SWT 13         | 10.50 dB ● F<br>.93 µs (~21 ms) ● V | <b>RBW</b> 300 kHz           |            | B#         |    |            | Count 100/100                          |
| Ref Level 30.                                                                                                                                                                                   | 50 dBm Offset<br>20 dB SWT 13         |                                     | <b>RBW</b> 300 kHz           |            | B#         | 1  |            | Count 100/100<br>•1Sa Avg              |
| Ref Level 30.<br>Att                                                                                                                                                                            | 50 dBm Offset<br>20 dB SWT 13         |                                     | <b>RBW</b> 300 kHz           |            | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.<br>Att                                                                                                                                                                            | 50 dBm Offset<br>20 dB SWT 13         |                                     | <b>RBW</b> 300 kHz           |            | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.<br>Att<br>Frequency S                                                                                                                                                             | 50 dBm Offset<br>20 dB SWT 13         |                                     | <b>RBW</b> 300 kHz           |            | B#         |    | M1[1]      | Count 100/100                          |
| Ref Level 30.<br>Att<br>Frequency S                                                                                                                                                             | 50 dBm Offset<br>20 dB SWT 13         |                                     | <b>RBW</b> 300 kHz           |            | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.<br>Att<br>1 Frequency S<br>20 dBm<br>10 dBm                                                                                                                                       | 50 dBm Offset<br>20 dB SWT 13         |                                     | <b>RBW</b> 300 kHz           |            | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.<br>Att<br>1 Frequency St<br>20 dBm                                                                                                                                                | 50 dBm Offset<br>20 dB SWT 13         |                                     | <b>RBW</b> 300 kHz           |            | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.           Att           1 Frequency S'           20 dBm           10 dBm           0 dBm                                                                                          | 50 dBm Offset<br>20 dB SWT 13         |                                     | <b>RBW</b> 300 kHz           |            | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | 50 dBm Offset<br>20 dB SWT 13         |                                     | <b>RBW</b> 300 kHz           |            | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | 50 dBm Offset<br>20 dB SWT 13<br>weep |                                     | <b>RBW</b> 300 kHz           |            | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | 50 dBm Offset<br>20 dB SWT 13<br>weep |                                     | <b>RBW</b> 300 kHz           |            | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | 50 dBm Offset<br>20 dB SWT 13<br>weep |                                     | <b>RBW</b> 300 kHz           |            | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.           Att           1 Frequency State           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                   | 50 dBm Offset<br>20 dB SWT 13<br>weep |                                     | <b>RBW</b> 300 kHz           |            | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.           Att           1 Frequency State           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                   | 50 dBm Offset<br>20 dB SWT 13<br>weep |                                     | <b>RBW</b> 300 kHz           | e Auto FFT | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.           Att           1 Frequency St           20 dBm           10 dBm           0 dBm           -20 dBm           -30 dBm           -40 dBm                                    | 50 dBm Offset<br>20 dB SWT 13<br>weep |                                     | <b>RBW</b> 300 kHz           | e Auto FFT | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.           Att           1 Frequency State           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                   | 50 dBm Offset<br>20 dB SWT 13<br>weep |                                     | <b>RBW</b> 300 kHz           | e Auto FFT | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.           Att           1 Frequency State           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm               | 50 dBm Offset<br>20 dB SWT 13<br>weep |                                     | <b>RBW</b> 300 kHz           | e Auto FFT | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.           Att           1 Frequency St           20 dBm           10 dBm           0 dBm           -20 dBm           -30 dBm           -40 dBm                                    | 50 dBm Offset<br>20 dB SWT 13<br>weep |                                     | <b>RBW</b> 300 kHz           | e Auto FFT | B#         |    | M1[1]      | Count 100/100<br>1Sa Avg<br>-37.83 dBn |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | 50 dBm Offset<br>20 dB SWT 13<br>weep | -93 μs (~21 ms) • Ν                 | RBW 300 kHz<br>BW 1 MHz Mod  | e Auto FFT |            |    | M1[1]      | Count 100/100                          |
| Ref Level 30.           Att           1 Frequency State           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm               | 50 dBm Offset<br>20 dB SWT 13<br>weep | -93 μs (~21 ms) • Ν                 | <b>RBW</b> 300 kHz           | e Auto FFT | B#         |    | M1[1]      | Count 100/100                          |
| Ref Level 30.           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | 50 dBm Offset<br>20 dB SWT 13<br>weep | -93 μs (~21 ms) • Ν                 | RBW 300 kHz<br>BW 1 MHz Mod  | e Auto FFT |            |    | M1[1]      | Count 100/100                          |

|                                                                                                                                                                             | B Spectru                         |                          | 10.50 dB 🗢 RBW                  | 300 kHz      |          |           |   |             |                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|---------------------------------|--------------|----------|-----------|---|-------------|-----------------------------------------|
| Att                                                                                                                                                                         | 20 dB SW                          | T 13.93 μs (·            | ~21 ms) • VBW                   | 1 MHz Mode   | Auto FFT |           |   |             | Count 100/100                           |
| 1 Frequency                                                                                                                                                                 | Sweep                             |                          |                                 |              |          |           |   | M1[1]       | 1Sa Avg<br>-46.33 dBm                   |
|                                                                                                                                                                             |                                   |                          |                                 |              |          |           |   |             | 1.85000000 GHz                          |
| 20 dBm                                                                                                                                                                      |                                   |                          |                                 |              |          |           |   |             |                                         |
|                                                                                                                                                                             |                                   |                          |                                 |              |          |           |   |             |                                         |
| 10 dBm                                                                                                                                                                      |                                   |                          |                                 |              |          |           |   |             |                                         |
|                                                                                                                                                                             |                                   |                          |                                 |              |          |           |   |             |                                         |
| 0 dBm                                                                                                                                                                       |                                   |                          |                                 |              |          |           |   |             |                                         |
| o ubiii                                                                                                                                                                     |                                   |                          |                                 |              |          |           |   |             |                                         |
| -10 dBm                                                                                                                                                                     |                                   |                          |                                 |              |          |           |   |             |                                         |
| -10 UBIII-                                                                                                                                                                  | H1 -13.000 dBm                    | ) <del></del>            |                                 |              |          |           |   |             |                                         |
|                                                                                                                                                                             |                                   |                          |                                 |              |          |           |   |             |                                         |
| -20 dBm                                                                                                                                                                     |                                   |                          |                                 |              |          |           |   |             |                                         |
|                                                                                                                                                                             |                                   |                          |                                 |              |          |           |   |             |                                         |
| -30 dBm                                                                                                                                                                     |                                   |                          |                                 |              |          |           |   |             |                                         |
|                                                                                                                                                                             |                                   |                          |                                 |              |          |           |   |             |                                         |
| -40 dBm                                                                                                                                                                     |                                   |                          |                                 | -            | MI       |           |   |             |                                         |
|                                                                                                                                                                             |                                   |                          |                                 |              | M1       |           | T |             |                                         |
| -50 dBm                                                                                                                                                                     |                                   | +                        |                                 |              |          |           |   |             |                                         |
|                                                                                                                                                                             |                                   |                          |                                 |              |          |           |   |             |                                         |
| -60 dBm                                                                                                                                                                     |                                   | _                        |                                 |              |          |           |   |             |                                         |
|                                                                                                                                                                             |                                   |                          |                                 |              |          |           |   |             |                                         |
| CF 1.85 GHz                                                                                                                                                                 |                                   |                          | 1001                            | pts          | 20       | 0.0 kHz/  |   |             | Span 2.0 MHz                            |
|                                                                                                                                                                             | 10                                |                          |                                 |              |          |           |   | leasuring 🔳 | 1.14                                    |
| MultiView                                                                                                                                                                   | B Spectru                         | m                        |                                 | Channel      | Low-1RB# |           | M | leasuring   |                                         |
| Ref Level 3                                                                                                                                                                 | 0.50 dBm Off                      | set                      | 10.50 dB ● RBW                  | 300 kHz      |          |           | N | leasuring   | ▽                                       |
| Ref Level 3<br>Att                                                                                                                                                          | 0.50 dBm Off<br>20 dB SW          | set                      | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           | N | ieasuring   |                                         |
| Ref Level 3                                                                                                                                                                 | 0.50 dBm Off<br>20 dB SW          | set                      | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3<br>Att<br>1 Frequency                                                                                                                                           | 0.50 dBm Off<br>20 dB SW          | set                      | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | ⊽<br>Count 100/100<br>●1Sa Avg          |
| Ref Level 3<br>Att                                                                                                                                                          | 0.50 dBm Off<br>20 dB SW          | set                      | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm-                                                                                                                                | 0.50 dBm Off<br>20 dB SW          | set                      | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3<br>Att<br>1 Frequency                                                                                                                                           | 0.50 dBm Off<br>20 dB SW          | set                      | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm-                                                                                                                                | 0.50 dBm Off<br>20 dB SW          | set                      | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm-                                                                                                                                | 0.50 dBm Off<br>20 dB SW          | set                      | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm<br>10 dBm                                                                                                                       | 0.50 dBm Off<br>20 dB SW          | set                      | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm<br>10 dBm                                                                                                                       | 3.50 dBm Off<br>20 dB SW<br>Sweep | set ::<br>IT 13.93 µs (- | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                                           | 0.50 dBm Off<br>20 dB SW          | set ::<br>IT 13.93 µs (- | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3<br>Att<br>I Frequency<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                              | 3.50 dBm Off<br>20 dB SW<br>Sweep | set ::<br>IT 13.93 µs (- | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                                           | 3.50 dBm Off<br>20 dB SW<br>Sweep | set ::<br>IT 13.93 µs (- | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                                           | 3.50 dBm Off<br>20 dB SW<br>Sweep | set ::<br>IT 13.93 µs (- | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                       | 3.50 dBm Off<br>20 dB SW<br>Sweep | set ::<br>IT 13.93 µs (- | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                       | 3.50 dBm Off<br>20 dB SW<br>Sweep | set ::<br>IT 13.93 µs (- | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                       | 3.50 dBm Off<br>20 dB SW<br>Sweep | set ::<br>IT 13.93 µs (- | 10.50 dB ● RBW<br>~21 ms) ● VBW | 300 kHz      | Auto FFT |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                       | 3.50 dBm Off<br>20 dB SW<br>Sweep | set ::<br>IT 13.93 µs (- | 10.50 dB • RBW<br>~21 ms) • VBW | 300 kHz      |          |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | 3.50 dBm Off<br>20 dB SW<br>Sweep | set ::<br>IT 13.93 µs (- | 10.50 dB • RBW<br>~21 ms) • VBW | 300 kHz      | Auto FFT |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | 3.50 dBm Off<br>20 dB SW<br>Sweep | set ::<br>IT 13.93 µs (- | 10.50 dB • RBW<br>~21 ms) • VBW | 300 kHz      | Auto FFT |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm | 3.50 dBm Off<br>20 dB SW<br>Sweep | set ::<br>IT 13.93 µs (- | 10.50 dB • RBW<br>~21 ms) • VBW | 300 kHz      | Auto FFT |           |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm | 3.50 dBm Off<br>20 dB SW<br>Sweep | set ::<br>IT 13.93 µs (- | ~21 ms) • VBW                   | 300 kHz Mode | Auto FFT |           |   | M1[1]       |                                         |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm | 3.50 dBm Off<br>20 dB SW<br>Sweep | set ::<br>IT 13.93 µs (- | 10.50 dB • RBW<br>~21 ms) • VBW | 300 kHz Mode | Auto FFT | 00.0 kHz/ |   | M1[1]       | Count 100/100<br>●1Sa Avg<br>-49,89 dBm |

| MultiView 8                                                                                                                                                                                    | .50 dBm Offse                     |                      | ).50 dB 🖷 RBW 31                 |                          |            |        |   |            |                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|----------------------------------|--------------------------|------------|--------|---|------------|-----------------------------------------------|
| Att                                                                                                                                                                                            | 20 dB SWT                         | ι 10<br>13.93 μs (~2 | 21 ms) <b>= KBW</b> 31           | JO KHZ<br>1 MHZ Mode Aut | to FFT     |        |   |            | Count 100/100                                 |
| 1 Frequency S                                                                                                                                                                                  | weep                              |                      |                                  |                          |            |        |   | M1[1]      | 1Sa Avg<br>-38,53 dBm                         |
|                                                                                                                                                                                                |                                   |                      |                                  |                          |            |        |   |            | -38.53 dBm<br>1.85000000 GHz                  |
| 20 dBm                                                                                                                                                                                         |                                   |                      |                                  |                          |            |        |   |            |                                               |
|                                                                                                                                                                                                |                                   |                      |                                  |                          |            |        |   |            |                                               |
| 10 dBm                                                                                                                                                                                         |                                   |                      |                                  |                          |            |        |   |            |                                               |
|                                                                                                                                                                                                |                                   |                      |                                  |                          |            |        |   |            |                                               |
| 0 dBm                                                                                                                                                                                          |                                   |                      |                                  |                          |            |        |   |            |                                               |
|                                                                                                                                                                                                |                                   |                      |                                  |                          |            |        |   |            |                                               |
| -10 dBm                                                                                                                                                                                        | H1 -13.000 dBm                    |                      |                                  |                          |            |        |   |            |                                               |
|                                                                                                                                                                                                | 101000 0011                       |                      |                                  |                          |            |        |   |            |                                               |
| -20 dBm                                                                                                                                                                                        |                                   |                      |                                  |                          |            |        |   |            |                                               |
|                                                                                                                                                                                                |                                   |                      |                                  |                          |            |        |   |            |                                               |
| -30 dBm                                                                                                                                                                                        |                                   |                      |                                  |                          |            |        |   |            |                                               |
| -40 dBm                                                                                                                                                                                        |                                   |                      |                                  | M1                       |            |        |   |            |                                               |
|                                                                                                                                                                                                |                                   |                      |                                  |                          |            |        |   |            |                                               |
| -50 dBm                                                                                                                                                                                        |                                   |                      |                                  |                          |            |        |   |            |                                               |
|                                                                                                                                                                                                |                                   |                      |                                  |                          |            |        |   |            |                                               |
| -60 dBm                                                                                                                                                                                        |                                   |                      |                                  |                          |            |        |   |            |                                               |
|                                                                                                                                                                                                |                                   |                      |                                  |                          |            |        |   |            |                                               |
| CF 1.85 GHz                                                                                                                                                                                    |                                   |                      |                                  | l l                      | 200        | 0 kHz/ |   |            | Span 2.0 MHz                                  |
|                                                                                                                                                                                                | )(                                |                      |                                  |                          |            |        | M | easuring 🔳 |                                               |
| MultiView                                                                                                                                                                                      |                                   |                      |                                  | Channel Lov              | w-Full RB# |        |   |            |                                               |
| Ref Level 30<br>Att                                                                                                                                                                            | .50 dBm Offse<br>20 dB SWT        | t 10                 | ).50 dB • RBW 3)                 | D0 kHz                   |            |        |   |            |                                               |
| Ref Level 30                                                                                                                                                                                   | .50 dBm Offse<br>20 dB SWT        | t 10                 | ).50 dB • RBW 3)                 |                          |            |        |   |            | ⊽<br>Count 100/100<br>●1\$a Avg               |
| Ref Level 30<br>Att                                                                                                                                                                            | .50 dBm Offse<br>20 dB SWT        | t 10                 | ).50 dB • RBW 3)                 | D0 kHz                   |            |        |   |            | ▼<br>Count 100/100                            |
| Ref Level 30<br>Att                                                                                                                                                                            | .50 dBm Offse<br>20 dB SWT        | t 10                 | ).50 dB • RBW 3)                 | D0 kHz                   |            |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30<br>Att<br>Frequency S                                                                                                                                                             | .50 dBm Offse<br>20 dB SWT        | t 10                 | ).50 dB • RBW 3)                 | D0 kHz                   |            |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30<br>Att<br>Frequency S                                                                                                                                                             | .50 dBm Offse<br>20 dB SWT        | t 10                 | ).50 dB • RBW 3)                 | D0 kHz                   |            |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30<br>Att<br>Frequency S<br>20 dBm                                                                                                                                                   | .50 dBm Offse<br>20 dB SWT        | t 10                 | ).50 dB • RBW 3)                 | D0 kHz                   |            |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30<br>Att<br>Frequency S<br>20 dBm                                                                                                                                                   | .50 dBm Offse<br>20 dB SWT        | t 10                 | ).50 dB • RBW 3)                 | D0 kHz                   |            |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | .50 dBm Offse<br>20 dB SWT        | t 10                 | ).50 dB • RBW 3)                 | D0 kHz                   |            |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30           Att           I Frequency S           20 dBm           10 dBm                                                                                                           | .50 dBm Offse<br>20 dB SWT        | t 10                 | ).50 dB • RBW 3)                 | D0 kHz                   |            |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | 50 dBm Offse<br>20 dB SWT<br>weep | t 10                 | ).50 dB • RBW 3)                 | D0 kHz                   |            |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30           Att           I Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | 50 dBm Offse<br>20 dB SWT<br>weep | t 10                 | ).50 dB • RBW 3)                 | D0 kHz                   |            |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm                                                                         | 50 dBm Offse<br>20 dB SWT<br>weep | t 10                 | ).50 dB • RBW 3)                 | D0 kHz                   |            |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | 50 dBm Offse<br>20 dB SWT<br>weep | t 10                 | ).50 dB • RBW 3)                 | D0 kHz<br>1 MHz Mode Aut | to FFT     |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm                                                                         | 50 dBm Offse<br>20 dB SWT<br>weep | t 10                 | ).50 dB • RBW 3)                 | D0 kHz                   | to FFT     |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | 50 dBm Offse<br>20 dB SWT<br>weep | t 10                 | ).50 dB • RBW 3)                 | D0 kHz<br>1 MHz Mode Aut | to FFT     |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | 50 dBm Offse<br>20 dB SWT<br>weep | t 10                 | ).50 dB • RBW 3)                 | D0 kHz<br>1 MHz Mode Aut | to FFT     |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | 50 dBm Offse<br>20 dB SWT<br>weep | t 10                 | ).50 dB • RBW 3)                 | D0 kHz<br>1 MHz Mode Aut | to FFT     |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | 50 dBm Offse<br>20 dB SWT<br>weep | t 10                 | ).50 dB • RBW 3)                 | D0 kHz<br>1 MHz Mode Aut | to FFT     |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | 50 dBm Offse<br>20 dB SWT<br>weep | t 10                 | ).50 dB • RBW 3)                 | D0 kHz<br>1 MHz Mode Aut | to FFT     |        |   |            | ⊂<br>Count 100/100<br>●1\$a Avg<br>-38,64 dBr |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | 50 dBm Offse<br>20 dB SWT<br>weep | t 10                 | ).50 dB • RBW 3)                 | D0 kHz<br>1 MHz Mode Aut | to FFT     | 0 kHz/ |   |            |                                               |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | 50 dBm Offse<br>20 dB SWT<br>weep | t 10                 | 0.50 dB ● RBW 31<br>21 ms) ● VBW | D0 kHz<br>1 MHz Mode Aut | to FFT     | 0 kHz/ |   |            |                                               |

| MultiView                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | - In - PRUL - 01               |                        |          |          |   |                 |                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------|------------------------|----------|----------|---|-----------------|------------------------------------------------------------|
| Att                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t 10.5<br>140 µs (~7.2 | 0 dB • RBW 30<br>ms) • VBW 100 | )kHz <b>Mode</b> Au    | to FFT   |          |   | 1               | Count 100/100                                              |
| 1 Frequency                                                                                                                                                                                      | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                                |                        |          |          |   | M1[1]           | 1Sa Avg<br>-31.38 dBr                                      |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                |                        |          |          |   | 1               | L.71000000 GH                                              |
| 20 dBm                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                |                        |          |          |   |                 |                                                            |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                |                        |          |          |   |                 |                                                            |
| 10 dBm                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                |                        |          |          |   |                 |                                                            |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                |                        | <i>۲</i> |          |   |                 |                                                            |
| 0 dBm                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                |                        |          |          |   |                 |                                                            |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                |                        |          |          |   |                 |                                                            |
| -10 dBm                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                |                        |          |          |   |                 |                                                            |
|                                                                                                                                                                                                  | H1 -13.000 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                |                        |          |          |   |                 |                                                            |
| -20 dBm                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                |                        |          |          |   |                 |                                                            |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                |                        |          |          |   |                 |                                                            |
| -30 dBm                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                | M                      | 1        |          |   |                 |                                                            |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                | /                      |          |          |   |                 |                                                            |
| -40 dBm                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                | $\vdash$               |          |          |   | $\wedge \wedge$ |                                                            |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                |                        |          |          |   |                 |                                                            |
| -50 dBm                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                | /                      |          |          |   | ļ               |                                                            |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                |                        |          |          |   |                 |                                                            |
| -60 dBm                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~~~                   | -                              |                        |          |          |   |                 |                                                            |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                |                        |          |          |   |                 |                                                            |
| CF 1.71 GHz                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 1001 pt                        |                        | 20       | 0.0 kHz/ |   |                 | Span 2.0 MH                                                |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                |                        |          |          |   |                 |                                                            |
| MultiView                                                                                                                                                                                        | B Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                | Channel I              | _ow-1RB# |          | M | easuring 🔳      |                                                            |
|                                                                                                                                                                                                  | 0.50 dBm Offse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          | M |                 | ▽                                                          |
|                                                                                                                                                                                                  | 0.50 dBm Offse<br>20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t 10.5                 | 0 dB ● <b>RBW</b> 30           |                        |          |          | M |                 | Count 100/100<br>1Sa Avg                                   |
| Ref Level 30<br>Att                                                                                                                                                                              | 0.50 dBm Offse<br>20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          | M |                 | Count 100/100<br>• 1\$a Avg<br>-31,30 dB                   |
| Ref Level 30<br>Att<br>1 Frequency :                                                                                                                                                             | 0.50 dBm Offse<br>20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          | M |                 | Count 100/100<br>• 1\$a Avg<br>-31,30 dB                   |
| Ref Level 30<br>Att                                                                                                                                                                              | 0.50 dBm Offse<br>20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          | M |                 | Count 100/100<br>• 1\$a Avg<br>-31,30 dB                   |
| Ref Level 30<br>Att<br>1 Frequency 2<br>20 dBm-                                                                                                                                                  | 0.50 dBm Offse<br>20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          | M |                 | Count 100/100<br>• 1Sa Avg<br>-31.30 dB                    |
| Ref Level 30<br>Att<br>1 Frequency :                                                                                                                                                             | 0.50 dBm Offse<br>20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          | M |                 | Count 100/100<br>• 1Sa Avg<br>-31.30 dB                    |
| Ref Level 30<br>Att<br>I Frequency<br>20 dBm-<br>10 dBm-                                                                                                                                         | 0.50 dBm Offse<br>20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          | M |                 | Count 100/100<br>• 1Sa Avg<br>-31.30 dB                    |
| Ref Level 30<br>Att<br>1 Frequency 2<br>20 dBm-                                                                                                                                                  | 0.50 dBm Offse<br>20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          | M |                 | Count 100/100<br>• 1Sa Avg<br>-31.30 dB                    |
| Ref Level 3(           Att           1 Frequency           20 dBm                                                                                                                                | 0.50 dBm Offse<br>20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          | M |                 | Count 100/100<br>• 1Sa Avg<br>-31.30 dB                    |
| Ref Level 30<br>Att<br>I Frequency<br>20 dBm-<br>10 dBm-                                                                                                                                         | 0.50 dBm Offse<br>20 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          | M |                 | Count 100/100<br>• 1\$a Avg<br>-31,30 dB                   |
| Ref Level 3(           Att           1 Frequency 3           20 dBm           10 dBm           0 dBm                                                                                             | Store of the second sec | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          |   |                 | Count 100/100<br>• 1\$a Avg<br>-31,30 dB                   |
| Ref Level 3(           Att           1 Frequency           20 dBm                                                                                                                                | Store of the second sec | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          |   |                 | Count 100/100<br>• 1\$a Avg<br>-31,30 dB                   |
| Ref Level 3(           Att           1 Frequency 3           20 dBm           10 dBm           0 dBm                                                                                             | Store of the second sec | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          |   |                 | Count 100/100<br>• 1\$a Avg<br>-31,30 dB                   |
| Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                         | Store of the second sec | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          |   |                 |                                                            |
| Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                         | Store of the second sec | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          |   |                 | Count 100/100<br>• 1\$a Avg<br>-31,30 dB                   |
| Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                         | Store of the second sec | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          |   |                 | Count 100/100<br>• 1\$a Avg<br>-31,30 dB                   |
| Ref Level 3(           Att           1 Frequency:           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                        | Store of the second sec | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          |   |                 | Count 100/100<br>• 1\$a Avg<br>-31,30 dB                   |
| Ref Level 3(           Att           1 Frequency :           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                         | Store of the second sec | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          |   |                 | Count 100/100<br>• 1\$a Avg<br>-31,30 dB                   |
| Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -30 dBm           -30 dBm           -50 dBm                       | Store of the second sec | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          |   |                 | Count 100/100<br>• 1Sa Avg<br>-31.30 dB                    |
| Ref Level 3(           Att           1 Frequency:           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                        | Store of the second sec | t 10.5                 | 0 dB ● <b>RBW</b> 30           | ) kHz                  |          |          |   |                 | Count 100/100<br>• 1Sa Avg<br>-31.30 dB                    |
| Ref Level 3(           Att           1 Frequency 3(           20 dBm           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t 10.5                 | 0 dB • RBW 30<br>ms) • VBW 100 | D kHz<br>D kHz Mode Au | to FFT   |          |   |                 | Count 100/100<br>• 153 Avg<br>- 31.30 dBi<br>1.75500000 GH |
| Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -30 dBm           -30 dBm           -50 dBm                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t 10.5                 | 0 dB ● <b>RBW</b> 30           | D kHz<br>D kHz Mode Au | to FFT   | 0.0 kHz/ |   | M1[1] ;         | Count 100/100<br>• 1Sa Avg<br>-31.30 dB                    |

|                                                                                                                                                                                             |                                        |                         | - • -                                        | E Band 4-1                     |            |          |   |            |                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|----------------------------------------------|--------------------------------|------------|----------|---|------------|---------------------------------------------------|
| MultiView                                                                                                                                                                                   |                                        |                         |                                              |                                |            |          |   |            |                                                   |
| Att                                                                                                                                                                                         | 30.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 μs (~7.2 | ) dB <b>= RBW</b> 30<br>ms) <b>= VBW</b> 100 | DikHz<br>DikHzi <b>Mode</b> Au | uto FFT    |          |   |            | Count 100/100                                     |
| 1 Frequency                                                                                                                                                                                 | Sweep                                  |                         |                                              |                                |            |          |   | M1[1]      | 1Sa Avg<br>-40.88 dBn                             |
|                                                                                                                                                                                             |                                        |                         |                                              |                                |            |          |   |            | 1.71000000 GH                                     |
| 20 dBm                                                                                                                                                                                      |                                        |                         |                                              |                                |            |          |   |            |                                                   |
|                                                                                                                                                                                             |                                        |                         |                                              |                                |            |          |   |            |                                                   |
| 10 dBm                                                                                                                                                                                      |                                        |                         |                                              |                                |            |          |   |            |                                                   |
|                                                                                                                                                                                             |                                        |                         |                                              |                                |            |          |   |            |                                                   |
| 0 dBm                                                                                                                                                                                       |                                        |                         |                                              |                                | $\land$    |          |   |            |                                                   |
| -10 dBm                                                                                                                                                                                     |                                        |                         |                                              |                                |            |          |   |            |                                                   |
| -10 000                                                                                                                                                                                     | H1 -13.000 dBm                         |                         |                                              |                                |            |          |   |            |                                                   |
| -20 dBm                                                                                                                                                                                     |                                        |                         |                                              |                                |            |          |   |            |                                                   |
|                                                                                                                                                                                             |                                        |                         |                                              |                                |            |          |   |            |                                                   |
| -30 dBm                                                                                                                                                                                     |                                        |                         |                                              |                                |            |          |   |            |                                                   |
|                                                                                                                                                                                             |                                        |                         |                                              |                                |            |          |   |            |                                                   |
| -40 dBm                                                                                                                                                                                     |                                        |                         |                                              | <u> </u>                       |            |          |   |            |                                                   |
|                                                                                                                                                                                             |                                        |                         | $p \sim -$                                   |                                |            |          |   |            |                                                   |
| -50 dBm                                                                                                                                                                                     |                                        |                         |                                              |                                |            |          |   |            |                                                   |
| -60 dBm                                                                                                                                                                                     |                                        |                         |                                              |                                |            |          |   |            |                                                   |
| oo abiii                                                                                                                                                                                    |                                        |                         |                                              |                                |            |          |   |            |                                                   |
| CF 1.71 GHz                                                                                                                                                                                 |                                        |                         | 1001 pt                                      | te                             | 20         | 0.0 kHz/ |   |            | Span 2.0 MHz                                      |
| -                                                                                                                                                                                           |                                        |                         |                                              |                                |            |          | М | easuring 🔳 |                                                   |
| MultiView                                                                                                                                                                                   | Spectrum                               |                         | (                                            | Channel Lo                     | ow-Full RB | 3#       |   |            | ▽                                                 |
| Ref Level 3                                                                                                                                                                                 | 30.50 dBm Offset                       | t 10.50                 | )dB <b>= RBW</b> 30                          | ) kHz                          |            | 3#       |   |            |                                                   |
|                                                                                                                                                                                             | 30.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 µs (~7.2 | )dB <b>= RBW</b> 30                          |                                |            | 8#       |   |            | Count 100/100                                     |
| Ref Level 3<br>Att                                                                                                                                                                          | 30.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 3#       |   |            | Count 100/100                                     |
| Ref Level 3<br>Att                                                                                                                                                                          | 30.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 3#       |   |            | Count 100/100                                     |
| Ref Level 3<br>Att<br>1 Frequency                                                                                                                                                           | 30.50 dBm Offset<br>20 dB SWT          | t 10.5(<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 8#       |   |            | Count 100/100                                     |
| Ref Level 3<br>Att<br>1 Frequency                                                                                                                                                           | 30.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 8#       |   |            | Count 100/100                                     |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm                                                                                                           | 30.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 8#       |   |            | Count 100/100                                     |
| Ref Level 3<br>Att<br>Frequency<br>20 dBm                                                                                                                                                   | 30.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 3#<br>   |   |            | Count 100/100                                     |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm                                                                                                           | 30.50 dBm Offset<br>20 dB SWT          | t 10.5(<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 8#       |   |            | Count 100/100                                     |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                                                           | 30.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 8#       |   |            | Count 100/100                                     |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                                                           | 30.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 µs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 3#<br>   |   |            | Count 100/100                                     |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | 30.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | B#       |   |            | Count 100/100                                     |
| Ref Level 3           Att           1 Frequency           20 d8m           10 d8m           -10 d8m                                                                                         | 30.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.5(<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 3#<br>   |   |            | Count 100/100                                     |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | 30.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.5(<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 3#<br>   |   |            | Count 100/100                                     |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | 30.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 3#       |   |            | Count 100/100                                     |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                     | 30.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 3#       |   |            | Count 100/100                                     |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | 30.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 µs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 3#       |   |            | Count 100/100                                     |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                     | 30.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.5(<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 3#       |   |            | Count 100/100                                     |
| Ref Level 3           Att           1 Frequency           20 d8m           10 d8m           -10 d8m           -20 d8m           -30 d8m           -40 d8m                                   | 30.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.5(<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | ) kHz                          |            | 3#       |   |            | Count 100/100                                     |
| Ref Level 3           Att           1 Frequency           20 d8m           10 d8m           -10 d8m           -20 d8m           -30 d8m           -40 d8m                                   | 0.50 dBm Offset<br>20 dB SWT<br>Sweep  | t 10.50<br>140 μs (~7.2 | )dB <b>●RBW</b> 30                           | D kHz<br>D kHz Mode Au         |            | 3#       |   |            | Count 100/100 • 153 Avg -40.68 dBn 1.75500000 GH  |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | 0.50 dBm Offset<br>20 dB SWT<br>Sweep  | t 10.50<br>140 μs (~7.2 | 0 dB • RBW 3(<br>ms) • VBW 100               | D kHz<br>D kHz Mode Au         |            |          |   |            | Count 100/100 • 153 Avg -40.68 dBn 1.75500000 GH; |

| Marchand                                                                                                                                                                                     | C C no -t                             |                           |                                            |                               |          | QAM             |            |                   |                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|--------------------------------------------|-------------------------------|----------|-----------------|------------|-------------------|----------------------------------------------------------------|
| MultiView                                                                                                                                                                                    |                                       |                           |                                            |                               |          |                 |            |                   |                                                                |
| Att                                                                                                                                                                                          | 0.50 dBm Offset<br>20 dB SWT          | : 10.50<br>140 µs (~7.2 r | dB <b>= RBW</b> 30<br>ms) <b>= VBW</b> 100 | ) kHz<br>) kHz <b>Mode</b> Au | uto FFT  |                 |            |                   | Count 100/100                                                  |
| 1 Frequency                                                                                                                                                                                  | Sweep                                 |                           |                                            |                               |          |                 |            | M1[1]             | 1Sa Avg<br>-34.47 dBm                                          |
|                                                                                                                                                                                              |                                       |                           |                                            |                               |          |                 |            |                   | 1.71000000 GHz                                                 |
| 20 dBm                                                                                                                                                                                       |                                       |                           |                                            |                               |          |                 |            |                   |                                                                |
|                                                                                                                                                                                              |                                       |                           |                                            |                               |          |                 |            |                   |                                                                |
| 10 dBm                                                                                                                                                                                       |                                       |                           |                                            |                               |          |                 |            |                   |                                                                |
|                                                                                                                                                                                              |                                       |                           |                                            |                               |          |                 |            |                   |                                                                |
| 0 dBm                                                                                                                                                                                        |                                       |                           |                                            |                               | ļ        | $ \rightarrow $ |            |                   |                                                                |
|                                                                                                                                                                                              |                                       |                           |                                            |                               |          |                 |            |                   |                                                                |
| -10 dBm                                                                                                                                                                                      |                                       |                           |                                            |                               |          |                 |            |                   |                                                                |
|                                                                                                                                                                                              | H1 -13.000 dBm                        |                           |                                            |                               |          | 1               |            |                   |                                                                |
| -20 dBm                                                                                                                                                                                      |                                       |                           |                                            |                               |          |                 |            |                   |                                                                |
|                                                                                                                                                                                              |                                       |                           |                                            |                               |          |                 | $\searrow$ |                   |                                                                |
| -30 dBm                                                                                                                                                                                      |                                       |                           |                                            |                               |          |                 |            |                   |                                                                |
|                                                                                                                                                                                              |                                       |                           |                                            |                               |          |                 |            |                   |                                                                |
| -40 dBm                                                                                                                                                                                      |                                       |                           |                                            |                               | /        |                 |            | $\Lambda \Lambda$ |                                                                |
|                                                                                                                                                                                              |                                       |                           |                                            |                               |          |                 |            | $  \sim  $        |                                                                |
| -50 dBm                                                                                                                                                                                      |                                       |                           |                                            |                               |          |                 |            |                   |                                                                |
| 00 00.00                                                                                                                                                                                     |                                       |                           |                                            | ſ                             |          |                 |            |                   |                                                                |
| -60 dBm                                                                                                                                                                                      |                                       |                           |                                            |                               |          |                 |            |                   |                                                                |
|                                                                                                                                                                                              |                                       | ~                         |                                            |                               |          |                 |            |                   |                                                                |
| $\rightarrow$                                                                                                                                                                                |                                       |                           |                                            |                               |          |                 |            |                   |                                                                |
| CF 1.71 GHz                                                                                                                                                                                  | )(                                    |                           | 1001 pt                                    | S                             |          | 00.0 kHz/       |            | leasuring 🔳       | Span 2.0 MHz                                                   |
| MultiView                                                                                                                                                                                    | B Spectrum                            |                           |                                            | Channel                       | Low-1RB# | Ŀ               |            |                   |                                                                |
|                                                                                                                                                                                              | 0.50 dBm Offset                       | 10.50                     | dB ● RBW 30                                | ) kHz                         |          | <u>!</u>        |            |                   |                                                                |
|                                                                                                                                                                                              | 0.50 dBm Offset<br>20 dB SWT          | : 10.50<br>140 µs (~7.2 r | dB <b>● RBW</b> 30<br>ns) <b>● VBW</b> 100 |                               |          | <u>.</u>        |            |                   | Count 100/100<br>• 1Sa Avg                                     |
| Ref Level 30<br>Att                                                                                                                                                                          | 0.50 dBm Offset<br>20 dB SWT          | : 10.50<br>140 μs (~7.2 r | dB • RBW 30<br>ms) • VBW 100               | ) kHz                         |          | <u>.</u>        |            | M1[1]             | Count 100/100                                                  |
| Ref Level 30<br>Att<br>1 Frequency 9                                                                                                                                                         | 0.50 dBm Offset<br>20 dB SWT          | : 10.50<br>140 µs (~7.2 r | dB <b>- RBW</b> 30<br>ns) <b>- VBW</b> 100 | ) kHz                         |          | <u>.</u>        |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 30<br>Att                                                                                                                                                                          | 0.50 dBm Offset<br>20 dB SWT          | : 10.50<br>140 µs (~7.2 r | dB = RBW 30<br>ns) = VBW 100               | ) kHz                         |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 30<br>Att<br>1 Frequency 2<br>20 dBm-                                                                                                                                              | 0.50 dBm Offset<br>20 dB SWT          | 10.50<br>140 µs (~7.2 г   | dB = RBW 30<br>ms) = VBW 100               | ) kHz                         |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 30<br>Att<br>1 Frequency 9                                                                                                                                                         | 0.50 dBm Offset<br>20 dB SWT          | 10.50<br>140 μs (~7.2 r   | dB • RBW 30<br>ns) • VBW 100               | ) kHz                         |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 30<br>Att<br>1 Frequency 3<br>20 dBm-<br>10 dBm-                                                                                                                                   | 0.50 dBm Offset<br>20 dB SWT          | 10.50<br>140 μs (~7.2 r   | dB = RBW 30<br>ns) = VBW 100               | ) kHz                         |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 30<br>Att<br>1 Frequency 2<br>20 dBm-                                                                                                                                              | 0.50 dBm Offset<br>20 dB SWT          | 10.50<br>140 μs (~7.2 r   | dB • RBW 30<br>ns) • VBW 100               | ) kHz                         |          |                 |            | MI[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                                                           | 0.50 dBm Offset<br>20 dB SWT          | 10.50<br>140 µs (~7.2 r   | dB = RBW 30<br>ms) = VBW 100               | ) kHz                         |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 30<br>Att<br>1 Frequency 3<br>20 dBm-<br>10 dBm-                                                                                                                                   | 0.50 dBm Offset<br>20 dB SWT          | 10.50<br>140 µs (~7.2 r   | dB = RBW 30<br>ms) = VBW 100               | ) kHz                         |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                                                           | 0.50 dBm Offset<br>20 dB SWT<br>Swcep | 10.50<br>140 µs (~7.2 r   | dB = RBW 30<br>ns) = VBW 100               | ) kHz                         |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 3(           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                                                           | 0.50 dBm Offset<br>20 dB SWT<br>Swcep | 10.50<br>140 µs (~7.2 r   | dB = RBW 30<br>ns) = VBW 100               | ) kHz                         |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 30           Att           1 Frequency:           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                      | 0.50 dBm Offset<br>20 dB SWT<br>Swcep | 10.50<br>140 µs (~7.2 r   | dB • RBW 30<br>ns) • VBW 100               | ) kHz<br>kHz Mode A           |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                                                           | 0.50 dBm Offset<br>20 dB SWT<br>Swcep | 10.50<br>140 μs (~7.2 r   | dB • RBW 30<br>ns) • VBW 100               | ) kHz<br>kHz Mode A           |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 3i           Att           1 Frequency:           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                    | 0.50 dBm Offset<br>20 dB SWT<br>Swcep | 10.50<br>140 μs (~7.2 r   | dB • RBW 30<br>ns) • VBW 100               | ) kHz<br>kHz Mode A           |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 30           Att           1 Frequency:           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                      | 0.50 dBm Offset<br>20 dB SWT<br>Swcep | 10.50<br>140 μs (~7.2 r   | dB • RBW 30                                | ) kHz<br>kHz Mode A           |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 3i           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | 0.50 dBm Offset<br>20 dB SWT<br>Swcep | 10.50<br>140 μs (~7.2 r   | dB • RBW 30                                | ) kHz<br>kHz Mode A           |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 3i           Att           1 Frequency:           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                    | 0.50 dBm Offset<br>20 dB SWT<br>Swcep | 10.50<br>140 μs (~7.2 r   | dB • RBW 30                                | ) kHz<br>kHz Mode A           |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 3i           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -30 dBm           -30 dBm           -50 dBm                                   | 0.50 dBm Offset<br>20 dB SWT<br>Swcep | 10.50<br>140 μs (~7.2 r   | dB • RBW 30<br>ns) • VBW 100               | ) kHz<br>kHz Mode A           |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 3i           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | 0.50 dBm Offset<br>20 dB SWT<br>Swcep | 10.50<br>140 μs (~7.2 r   | dB • RBW 30<br>ns) • VBW 100               | ) kHz<br>kHz Mode A           |          |                 |            | M1[1]             | Count 100/100<br>ISa Avg<br>-34.51 dBm                         |
| Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm | H1 -13.000 dBm                        | 10.50<br>140 μs (~7.2 r   | ns) • VBW 100                              | 0 kHz<br>0 kHz Mode At        |          |                 |            | M1[1]             | Count 100/100 • 153 Avg - 34.51 dBn 1.75500000 GH2             |
| Ref Level 3i           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -30 dBm           -30 dBm           -50 dBm                                   | H1 -13.000 dBm                        | 10.50<br>140 μs (~7.2 r   | dB • RBW 30<br>ms) • VBW 100               | 0 kHz<br>0 kHz Mode At        |          | E               |            |                   | Count 100/100<br>• 153 Avg<br>-34.51 dBn<br>1.75500000 GHz<br> |
| Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm | H1 -13.000 dBm                        | 10.50<br>140 μs (~7.2 r   | ns) • VBW 100                              | 0 kHz<br>0 kHz Mode At        |          |                 |            |                   | Count 100/100 • 153 Avg - 34.51 dBn 1.75500000 GH2             |

|                                                                                                                                                           |                                       |                         |                                |                            | .4MHz-16   |                     | <br>                    |                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|--------------------------------|----------------------------|------------|---------------------|-------------------------|--------------------------------------------------|
| MultiView                                                                                                                                                 |                                       |                         |                                |                            |            |                     |                         |                                                  |
| Att                                                                                                                                                       | 0.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 µs (~7.2 | ) dB = RBW 30<br>ms) = VBW 100 | )kHz<br>)kHz <b>Mode</b> A | uto FFT    |                     |                         | Count 100/100                                    |
| 1 Frequency                                                                                                                                               | Sweep                                 |                         |                                |                            |            |                     | M1[1]                   | 1Sa Avg<br>-40.73 dBn                            |
|                                                                                                                                                           |                                       |                         |                                |                            |            |                     |                         | 1.71000000 GH:                                   |
| 20 dBm                                                                                                                                                    |                                       |                         |                                |                            |            |                     |                         |                                                  |
|                                                                                                                                                           |                                       |                         |                                |                            |            |                     |                         |                                                  |
| 10 dBm                                                                                                                                                    |                                       |                         |                                |                            |            |                     |                         |                                                  |
| 0 dBm                                                                                                                                                     |                                       |                         |                                |                            |            |                     |                         |                                                  |
| o abiii                                                                                                                                                   |                                       |                         |                                |                            | ~          | $ \longrightarrow $ | <br>$ \longrightarrow $ | $\rightarrow \sim \sim$                          |
| -10 dBm                                                                                                                                                   |                                       | ļ                       |                                |                            |            |                     |                         |                                                  |
|                                                                                                                                                           | H1 -13.000 dBm                        |                         |                                |                            |            |                     |                         |                                                  |
| -20 dBm                                                                                                                                                   |                                       |                         |                                |                            | +          |                     |                         |                                                  |
|                                                                                                                                                           |                                       |                         |                                |                            |            |                     |                         |                                                  |
| -30 dBm                                                                                                                                                   |                                       |                         |                                |                            |            |                     |                         |                                                  |
| -40 dBm                                                                                                                                                   |                                       |                         |                                |                            | MI         |                     |                         |                                                  |
| -+0 ubiii                                                                                                                                                 |                                       |                         | h                              | h                          | 1          |                     |                         |                                                  |
| -50 dBm                                                                                                                                                   |                                       | Ĕ                       |                                |                            |            |                     |                         |                                                  |
|                                                                                                                                                           |                                       |                         |                                |                            |            |                     |                         |                                                  |
| -60 dBm                                                                                                                                                   |                                       |                         |                                |                            |            |                     |                         |                                                  |
|                                                                                                                                                           |                                       |                         |                                |                            |            |                     |                         |                                                  |
| CF 1.71 GHz                                                                                                                                               |                                       |                         | 1001 pi                        | s                          | 20         | 00.0 kHz/           | <br>'<br>1easuring 🔳    | Span 2.0 MHz                                     |
| MultiView                                                                                                                                                 |                                       |                         |                                |                            | ow-Full RE | 3#                  | <br>                    |                                                  |
| Ref Level 3                                                                                                                                               | 0.50 dBm Offset<br>20 dB SWT          | t 10.50                 | 0 dB ● RBW 30<br>ms) ● VBW 100 | ) kHz                      |            | 3#                  | <br>                    | Count 100/100                                    |
| Ref Level 3                                                                                                                                               | 0.50 dBm Offset<br>20 dB SWT          | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>• 1Sa Avg<br>-40.24 dBn         |
| Ref Level 3<br>Att<br>1 Frequency                                                                                                                         | 0.50 dBm Offset<br>20 dB SWT          | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>• 1Sa Avg<br>-40.24 dBn         |
| Ref Level 3                                                                                                                                               | 0.50 dBm Offset<br>20 dB SWT          | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>• 1Sa Avg<br>-40.24 dBn         |
| Ref Level 3<br>Att<br>1 Frequency                                                                                                                         | 0.50 dBm Offset<br>20 dB SWT          | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>1Sa Avg<br>-40.24 dBn           |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm-                                                                                                              | 0.50 dBm Offset<br>20 dB SWT          | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>• 1Sa Avg<br>-40.24 dBn         |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm-                                                                                                              | 0.50 dBm Offset<br>20 dB SWT          | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>1Sa Avg<br>-40.24 dBn           |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                         | 0.50 dBm Offset<br>20 dB SWT          | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>1Sa Avg<br>-40.24 dBn           |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm-<br>10 dBm-                                                                                                   | 0.50 dBm Offset<br>20 dB SWT          | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>• 1Sa Avg<br>-40.24 dBn         |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                         | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>• 1Sa Avg<br>-40.24 dBn         |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                         | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>• 1Sa Avg<br>-40.24 dBn         |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                         | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>• 1Sa Avg<br>-40.24 dBn         |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                     | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100                                    |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                     | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>• 1Sa Avg<br>-40.24 dBn         |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                   | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>• 1Sa Avg<br>-40.24 dBn         |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                   | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>• 1Sa Avg<br>-40.24 dBn         |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                   | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>1Sa Avg<br>-40.24 dBn           |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50                 | ) dB • RBW 30                  | ) kHz                      |            | 3#                  | M1[1]                   | Count 100/100<br>1Sa Avg<br>-40.24 dBn           |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm | 0.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50                 | ) dB • RBW 30                  | D kHz<br>kHz Mode A        | uto FFT    | 3#                  | M1[1]                   | Count 100/100 • 15a Avg -40.24 dBn 1.75500000 GH |

| MultiView                                                                                                                                                                                                                          | 😁 Spectrum                            |                           |                              |                               |          |           |     |             | $\bigtriangledown$                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|------------------------------|-------------------------------|----------|-----------|-----|-------------|-------------------------------------------------------------|
| Ref Level 3<br>Att                                                                                                                                                                                                                 | 0.50 dBm Offset                       | t 10.50                   | dB • RBW 30                  | ) kHz<br>) kHz <b>Mode</b> Au |          |           |     |             | Count 100/100                                               |
| 1 Frequency                                                                                                                                                                                                                        |                                       | 140 µs (197.2 h           | 15) <b>- 15</b> 4 100        |                               | .0111    |           |     |             | ●1Sa Avg                                                    |
|                                                                                                                                                                                                                                    |                                       |                           |                              |                               |          |           |     | M1[1]       | -29.21 dBn<br>1.71000000 GH                                 |
| 20 dBm                                                                                                                                                                                                                             |                                       |                           |                              |                               |          |           |     |             |                                                             |
|                                                                                                                                                                                                                                    |                                       |                           |                              |                               |          |           |     |             |                                                             |
| 10 dBm                                                                                                                                                                                                                             |                                       |                           |                              |                               | /        | h         |     |             |                                                             |
|                                                                                                                                                                                                                                    |                                       |                           |                              |                               |          |           |     |             |                                                             |
| 0 dBm                                                                                                                                                                                                                              |                                       |                           |                              |                               |          |           |     |             |                                                             |
|                                                                                                                                                                                                                                    |                                       |                           |                              |                               |          |           |     |             |                                                             |
| -10 dBm                                                                                                                                                                                                                            | H1 -13.000 dBm                        |                           |                              |                               |          |           |     |             |                                                             |
| -20 dBm                                                                                                                                                                                                                            |                                       |                           |                              |                               |          |           |     |             |                                                             |
| -20 0011                                                                                                                                                                                                                           |                                       |                           |                              |                               |          |           | m - |             |                                                             |
| -30 dBm                                                                                                                                                                                                                            |                                       |                           |                              | «                             | 1        |           |     |             |                                                             |
|                                                                                                                                                                                                                                    |                                       |                           |                              |                               |          |           |     |             |                                                             |
| -40 dBm                                                                                                                                                                                                                            |                                       |                           |                              |                               |          |           |     |             |                                                             |
|                                                                                                                                                                                                                                    |                                       |                           |                              |                               |          |           |     |             |                                                             |
| -50 dBm                                                                                                                                                                                                                            |                                       |                           |                              | r                             |          |           |     |             | ¥~~~~~                                                      |
| 50 JF                                                                                                                                                                                                                              |                                       | ~~~~                      |                              |                               |          |           |     |             |                                                             |
| -60 dBm                                                                                                                                                                                                                            |                                       | ~~~                       |                              |                               |          |           |     |             |                                                             |
|                                                                                                                                                                                                                                    |                                       |                           | 1001 pt                      |                               |          | )0.0 kHz/ |     |             | Span 2.0 MHz                                                |
| CF 1.71 GHz                                                                                                                                                                                                                        |                                       |                           |                              | Channel L                     | .ow-1RB# |           | M   | 1easuring 🕊 |                                                             |
| MultiView                                                                                                                                                                                                                          | 0.50 dBm Offset                       | 10.50                     | dB • RBW 30                  | ) kHz                         |          | :         | N   | leasuring 🕊 |                                                             |
| MultiView<br>Ref Level 3<br>• Att                                                                                                                                                                                                  | 0.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 μs (~7.2 n | dB • RBW 30                  |                               |          | :         | N   | leasuring 🕊 | ▼<br>Count 100/100                                          |
| MultiView<br>Ref Level 3                                                                                                                                                                                                           | 0.50 dBm Offset<br>20 dB SWT          | t 10,50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     | M1[1]       | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView<br>Ref Level 30<br>• Att<br>1 Frequency                                                                                                                                                                                  | 0.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | ⊽<br>Count 100/100<br>●1\$a Avg                             |
| MultiView<br>Ref Level 3<br>• Att                                                                                                                                                                                                  | 0.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView<br>Ref Level 30<br>• Att<br>1 Frequency                                                                                                                                                                                  | 0.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView<br>Ref Level 3<br>Att<br>1 Frequency<br>20 dBm-                                                                                                                                                                          | 0.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView<br>Ref Level 3<br>Att<br>1 Frequency<br>20 dBm-                                                                                                                                                                          | 0.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView<br>Ref Level 31<br>Att<br>1 Frequency<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                                                                                                                    | 0.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView<br>Ref Level 3<br>Att<br>1 Frequency<br>20 dBm-<br>10 dBm-                                                                                                                                                               | 0.50 dBm Offset<br>20 dB SWT          | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView<br>Ref Level 3<br>Att<br>1 Frequency<br>20 dBm                                                                                                                                                                           | 0.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView<br>Ref Level 31<br>Att<br>1 Frequency<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                                                                                                                    | 0.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView<br>Ref Level 3<br>Att<br>1 Frequency<br>20 dBm                                                                                                                                                                           | 0.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView           Ref Level 3:           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm                                                                                           | 0.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView           Ref Level 3:           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm                                                                                           | 0.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView           Ref Level 3:           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                                         | 0.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView           Ref Level 3:           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                                         | 0.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView           Ref Level 3:           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -30 dBm           -30 dBm           -50 dBm                                                     | 0.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView           Ref Level 3:           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                                     | 0.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | ) kHz                         |          |           |     |             | Count 100/100<br>01Sa Avg<br>-28.97 dBn                     |
| MultiView           Ref Level 3:           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm | 0.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 µs (~7.2 n | dB = RBW 30<br>ns) = VBW 100 | kHz Mode Au                   | 1        |           |     |             | Count 100/100                                               |
| MultiView           Ref Level 3:           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -30 dBm           -30 dBm           -50 dBm                                                     | 0.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50<br>140 µs (~7.2 n | dB • RBW 30                  | kHz Mode Au                   | 1        | 00.0 kHz/ |     |             | Count 100/100<br>1/3 Avg<br>-28.97 dBn<br>1.75500000 GH<br> |

|                                                                                                                                                                                                |                                      |          |                                     |                             | 3MHz-QP   |          |   |            |                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|-------------------------------------|-----------------------------|-----------|----------|---|------------|-----------------------------------------|
| MultiView                                                                                                                                                                                      |                                      |          |                                     |                             |           |          |   |            | $\bigtriangledown$                      |
| Ref Level 30<br>Att                                                                                                                                                                            | 0.50 dBm Offs<br>20 dB SWT           |          | .50 dB • RBW 30<br>.2 ms) • VBW 100 | )kHz<br>)kHz <b>Mode</b> Au | to FFT    |          |   | c          | Count 100/100                           |
| 1 Frequency S                                                                                                                                                                                  |                                      |          |                                     |                             |           |          |   | M1[1]      | ●1Sa Avg<br>-41.61 dBr                  |
|                                                                                                                                                                                                |                                      |          |                                     |                             |           |          |   | 1          | .71000000 GH                            |
| 20 dBm                                                                                                                                                                                         |                                      |          |                                     |                             |           |          |   |            |                                         |
|                                                                                                                                                                                                |                                      |          |                                     |                             |           |          |   |            |                                         |
| 10 dBm                                                                                                                                                                                         |                                      |          |                                     |                             |           |          |   |            |                                         |
|                                                                                                                                                                                                |                                      |          |                                     |                             |           |          |   |            |                                         |
| 0 dBm                                                                                                                                                                                          |                                      |          |                                     |                             |           |          |   | _          |                                         |
| -10 dBm                                                                                                                                                                                        |                                      |          |                                     |                             | $\sim$    | ~~~~_    |   | $\sim$     |                                         |
|                                                                                                                                                                                                | H1 -13.000 dBm-                      |          |                                     |                             |           |          |   |            |                                         |
| -20 dBm                                                                                                                                                                                        |                                      |          |                                     |                             |           |          |   |            |                                         |
|                                                                                                                                                                                                |                                      |          |                                     |                             |           |          |   |            |                                         |
| -30 dBm                                                                                                                                                                                        | +                                    |          |                                     |                             |           |          |   |            |                                         |
|                                                                                                                                                                                                |                                      |          |                                     |                             |           |          |   |            |                                         |
| -40 dBm                                                                                                                                                                                        |                                      |          |                                     |                             | 1         |          |   |            |                                         |
|                                                                                                                                                                                                |                                      |          | ~~~~~                               | for                         |           |          |   |            |                                         |
| -50 dBm                                                                                                                                                                                        |                                      |          |                                     |                             |           |          |   |            |                                         |
| -60 dBm                                                                                                                                                                                        |                                      |          |                                     |                             |           |          |   |            |                                         |
|                                                                                                                                                                                                |                                      |          |                                     |                             |           |          |   |            |                                         |
| CF 1.71 GHz                                                                                                                                                                                    |                                      |          | 1001 pt                             | <br>TS                      | 20        | 0.0 kHz/ |   |            | Span 2.0 MH:                            |
|                                                                                                                                                                                                | ſ                                    |          |                                     |                             |           |          | м | easuring 🔳 |                                         |
| MultiView                                                                                                                                                                                      | B Spectrum                           | <u>ו</u> | C                                   | Channel Lo                  | w-Full RB | 3#       |   |            |                                         |
|                                                                                                                                                                                                | D.50 dBm Offs                        | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | 3#       |   |            |                                         |
| Ref Level 30                                                                                                                                                                                   | 0.50 dBm Offs<br>20 dB SWT           | et 10.   |                                     | ) kHz                       |           | 8#       | 1 |            | Count 100/100<br>ISa Avg                |
| Ref Level 30<br>Att                                                                                                                                                                            | 0.50 dBm Offs<br>20 dB SWT           | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | 3#       |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30<br>Att                                                                                                                                                                            | 0.50 dBm Offs<br>20 dB SWT           | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | \$#      |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm-                                                                                                                                                | 0.50 dBm Offs<br>20 dB SWT           | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | \$#<br>  |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30<br>Att<br>1 Frequency \$                                                                                                                                                          | 0.50 dBm Offs<br>20 dB SWT           | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | 3#       |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                 | 0.50 dBm Offs<br>20 dB SWT           | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | \$#<br>  |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm-                                                                                                                                                | 0.50 dBm Offs<br>20 dB SWT           | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | \$#<br>  |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30<br>Att<br>I Frequency S<br>20 dBm                                                                                                                                                 | 0.50 dBm Offs<br>20 dB SWT           | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | \$#<br>  |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | 0.50 dBm Offs<br>20 dB SWT           | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | 3#       |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | D.50 dBm Offs.<br>20 dB SWT<br>Sweep | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | 3#       |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30           Att           1 Frequency \$           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                      | D.50 dBm Offs.<br>20 dB SWT<br>Sweep | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | 3#       |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                           | D.50 dBm Offs.<br>20 dB SWT<br>Sweep | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | 3#<br>   |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | D.50 dBm Offs.<br>20 dB SWT<br>Sweep | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | 3#<br>   |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30           Att           1 Frequency \$           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                      | D.50 dBm Offs.<br>20 dB SWT<br>Sweep | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | 3#       |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                       | D.50 dBm Offs.<br>20 dB SWT<br>Sweep | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | 3#       |   | M1[1]      | Count 100/100<br>●1Sa Avg<br>-40.15 dBr |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                     | D.50 dBm Offs.<br>20 dB SWT<br>Sweep | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | 3#       |   | M1[1]      | Count 100/100<br>●1Sa Avg<br>-40.15 dBr |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                     | D.50 dBm Offs.<br>20 dB SWT<br>Sweep | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | 3#       |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm                 | D.50 dBm Offs.<br>20 dB SWT<br>Sweep | et 10.   | .50 dB • RBW 30                     | ) kHz                       |           | 3#<br>   |   | M1[1]      | Count 100/100<br>ISa Avg<br>-40.15 dBr  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm                 | D.50 dBm Offs-<br>20 dB SWT<br>Sweep | et 10.   | .50 dB • RBW 30                     | ) kHz<br>) kHz Mode Au      |           | 3#       |   | M1[1] 1    | Span 2.0 MH:                            |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm | D.50 dBm Offs-<br>20 dB SWT<br>Sweep | et 10.   | .50 dB • RBW 30<br>.2 ms) • VBW 100 | ) kHz<br>) kHz Mode Au      |           |          |   | M1[1]      | Span 2.0 MHz                            |

| MultiView                                                                                                                                                                                                                          | 😁 Spectrum                           |                |                               |                               |          |                 |        |              | $\bigtriangledown$                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|-------------------------------|-------------------------------|----------|-----------------|--------|--------------|-----------------------------------------------------------|
|                                                                                                                                                                                                                                    | 0.50 dBm Offse                       | t 10.50        | I dB ● RBW _ 30               | ) kHz<br>) kHz <b>Mode</b> Au |          |                 |        |              | Count 100 (100                                            |
| Att<br>1 Frequency 1                                                                                                                                                                                                               |                                      | 140 µs (~7.2 i | ns) — VBVV IOU                | JKHZ MOODE AU                 |          |                 |        |              | Count 100/100<br>1Sa Avg                                  |
|                                                                                                                                                                                                                                    |                                      |                |                               |                               |          |                 |        | M1[1]        | -30.71 dBn<br>1.71000000 GH                               |
| 20 dBm                                                                                                                                                                                                                             |                                      |                |                               |                               |          |                 |        |              |                                                           |
|                                                                                                                                                                                                                                    |                                      |                |                               |                               |          |                 |        |              |                                                           |
| 10 dBm                                                                                                                                                                                                                             |                                      |                |                               |                               |          |                 |        |              |                                                           |
|                                                                                                                                                                                                                                    |                                      |                |                               |                               | ~        | m               |        |              |                                                           |
| 0 dBm                                                                                                                                                                                                                              |                                      |                |                               |                               | /        | $ \rightarrow $ |        |              |                                                           |
|                                                                                                                                                                                                                                    |                                      |                |                               |                               |          |                 |        |              |                                                           |
| -10 dBm                                                                                                                                                                                                                            |                                      |                |                               |                               |          |                 |        |              |                                                           |
|                                                                                                                                                                                                                                    | H1 -13.000 dBm                       |                |                               |                               |          |                 |        |              |                                                           |
| -20 dBm                                                                                                                                                                                                                            |                                      |                |                               |                               |          |                 |        |              |                                                           |
|                                                                                                                                                                                                                                    |                                      |                |                               |                               |          |                 | $\sim$ |              |                                                           |
| -30 dBm                                                                                                                                                                                                                            |                                      |                |                               | M                             | 1        |                 |        |              |                                                           |
|                                                                                                                                                                                                                                    |                                      |                |                               |                               |          |                 |        | $\mathbf{k}$ |                                                           |
| -40 dBm                                                                                                                                                                                                                            |                                      |                |                               |                               |          |                 |        | +            |                                                           |
|                                                                                                                                                                                                                                    |                                      |                |                               |                               |          |                 |        |              |                                                           |
| -50 dBm                                                                                                                                                                                                                            |                                      |                |                               | <u> </u>                      |          |                 |        |              | $\checkmark$                                              |
|                                                                                                                                                                                                                                    |                                      |                |                               |                               |          |                 |        |              |                                                           |
| -60 dBm                                                                                                                                                                                                                            | tran                                 |                |                               |                               |          |                 |        |              |                                                           |
|                                                                                                                                                                                                                                    |                                      |                |                               |                               |          |                 |        |              |                                                           |
|                                                                                                                                                                                                                                    |                                      |                | 1001 pt                       | S                             | 20       | 0.0 kHz/        |        | 1            | Span 2.0 MHz                                              |
| CF 1.71 GHz                                                                                                                                                                                                                        | Spectrum                             |                |                               | Channel I                     | _ow-1RB# | <u>-</u>        |        | 1easuring 📲  |                                                           |
| MultiView<br>Ref Level 30                                                                                                                                                                                                          | 0.50 dBm Offse                       | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          | <u>-</u>        | r      | 1easuring 🔳  | ▽                                                         |
| MultiView                                                                                                                                                                                                                          | 0.50 dBm Offse<br>20 dB SWT          | t 10.50        | 0dB ● RBW 30                  |                               |          | <u>.</u>        |        |              | Count 100/100<br>●1Sa Avg                                 |
| MultiView<br>Ref Level 30<br>Att                                                                                                                                                                                                   | 0.50 dBm Offse<br>20 dB SWT          | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          | <u>.</u>        |        | M1[1]        | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView<br>Ref Level 30<br>• Att<br>1 Frequency 4                                                                                                                                                                                | 0.50 dBm Offse<br>20 dB SWT          | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg                                 |
| MultiView<br>Ref Level 30<br>Att                                                                                                                                                                                                   | 0.50 dBm Offse<br>20 dB SWT          | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView<br>Ref Level 30<br>Att<br>1 Frequency<br>20 dBm                                                                                                                                                                          | 0.50 dBm Offse<br>20 dB SWT          | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView<br>Ref Level 30<br>• Att<br>1 Frequency 4                                                                                                                                                                                | 0.50 dBm Offse<br>20 dB SWT          | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView<br>Ref Level 30<br>Att<br>1 Frequency<br>20 dBm                                                                                                                                                                          | 0.50 dBm Offse<br>20 dB SWT          | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView<br>Ref Level 30<br>Att<br>1 Frequency<br>20 dBm-<br>10 dBm-                                                                                                                                                              | 0.50 dBm Offse<br>20 dB SWT          | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView<br>Ref Level 30<br>Att<br>1 Frequency<br>20 dBm-<br>10 dBm-                                                                                                                                                              | 0.50 dBm Offse<br>20 dB SWT<br>Sweep | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView<br>Ref Level 30<br>Att<br>1 Frequency<br>20 dBm                                                                                                                                                                          | 0.50 dBm Offse<br>20 dB SWT          | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView<br>Ref Level 30<br>Att<br>1 Frequency<br>20 dBm                                                                                                                                                                          | 0.50 dBm Offse<br>20 dB SWT<br>Sweep | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView<br>Ref Level 30<br>Att<br>1 Frequency<br>20 dBm                                                                                                                                                                          | 0.50 dBm Offse<br>20 dB SWT<br>Sweep | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView<br>Ref Level 30<br>Att<br>1 Frequency<br>20 dBm                                                                                                                                                                          | 0.50 dBm Offse<br>20 dB SWT<br>Sweep | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView Ref Level 30 Att TFrequency 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm                                                                                                                                                        | 0.50 dBm Offse<br>20 dB SWT<br>Sweep | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView Ref Level 30 Att TFrequency 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm                                                                                                                                                        | 0.50 dBm Offse<br>20 dB SWT<br>Sweep | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                                         | 0.50 dBm Offse<br>20 dB SWT<br>Sweep | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                                         | 0.50 dBm Offse<br>20 dB SWT<br>Sweep | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView           Ref Level 3(<br>Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                                          | 0.50 dBm Offse<br>20 dB SWT<br>Sweep | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                                     | 0.50 dBm Offse<br>20 dB SWT<br>Sweep | t 10.50        | 0dB ● RBW 30                  | ) kHz                         |          |                 |        |              | Count 100/100<br>●1Sa Avg<br>-30.56 dBn                   |
| MultiView           Ref Level 30           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm | H1 -13.000 dBm                       | t 10.50        | rdB = RBW 30<br>ms) = VBW 100 | D kHz<br>V kHz Mode Au        | 1        |                 |        |              |                                                           |
| MultiView           Ref Level 3(<br>Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                                          | H1 -13.000 dBm                       | t 10.50        | 0dB ● RBW 30                  | D kHz<br>V kHz Mode Au        | 1        | 20.0 kHz/       |        |              | Count 100/100<br>• 153 AVg<br>-30,56 dBn<br>1.75500000 GH |

|                                                                                                                                                                                             |                                       |         |                                |                    | 3MHz-16C  |          |   |             |                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|--------------------------------|--------------------|-----------|----------|---|-------------|--------------------------------------------------------------|
| MultiView                                                                                                                                                                                   | B Spectrum                            |         |                                |                    |           |          |   |             |                                                              |
| Ref Level 3<br>Att                                                                                                                                                                          | 0.50 dBm Offset                       | t 10.50 | 0 dB = RBW 30<br>ms) = VBW 100 |                    | to FET    |          |   |             | Count 100/100                                                |
| 1 Frequency                                                                                                                                                                                 |                                       |         |                                |                    |           |          |   |             | ⊙1Sa Avg                                                     |
|                                                                                                                                                                                             |                                       |         |                                |                    |           |          |   | M1[1]       | -41.78 dBr<br>1.71000000 GH                                  |
| 20 dBm                                                                                                                                                                                      |                                       |         |                                |                    |           |          |   |             | _                                                            |
|                                                                                                                                                                                             |                                       |         |                                |                    |           |          |   |             |                                                              |
| 10 dBm                                                                                                                                                                                      |                                       |         |                                |                    |           |          |   |             |                                                              |
|                                                                                                                                                                                             |                                       |         |                                |                    |           |          |   |             |                                                              |
| 0 dBm                                                                                                                                                                                       |                                       |         |                                |                    |           |          |   |             |                                                              |
| -10 dBm                                                                                                                                                                                     |                                       |         |                                |                    | $\sim$    | $\sim$   |   |             |                                                              |
| -10 UBIII                                                                                                                                                                                   | H1 -13.000 dBm                        |         |                                |                    |           |          |   |             |                                                              |
| -20 dBm                                                                                                                                                                                     |                                       |         |                                |                    |           |          |   |             |                                                              |
|                                                                                                                                                                                             |                                       |         |                                |                    |           |          |   |             |                                                              |
| -30 dBm                                                                                                                                                                                     |                                       |         |                                |                    |           |          |   |             |                                                              |
|                                                                                                                                                                                             |                                       |         |                                |                    |           |          |   |             |                                                              |
| -40 dBm                                                                                                                                                                                     |                                       |         |                                | N                  | 1         |          |   |             |                                                              |
| ~~~~                                                                                                                                                                                        |                                       |         |                                |                    |           |          |   |             |                                                              |
| -50 dBm                                                                                                                                                                                     |                                       |         |                                |                    |           |          |   |             |                                                              |
| -60 dBm                                                                                                                                                                                     |                                       |         |                                |                    |           |          |   |             |                                                              |
|                                                                                                                                                                                             |                                       |         |                                |                    |           |          |   |             |                                                              |
| CF 1.71 GHz                                                                                                                                                                                 |                                       | 1       | 1001 pt:                       | s                  | 20        | 0.0 kHz/ |   |             | Span 2.0 MH                                                  |
|                                                                                                                                                                                             | ſ                                     |         |                                |                    |           |          | M | leasuring 🔳 |                                                              |
| MultiView                                                                                                                                                                                   | 88 Spectrum                           |         | C                              | hannel Lo          | w-Full RE | 3#       |   |             | ⊽                                                            |
| Ref Level 3                                                                                                                                                                                 | 0.50 dBm Offset                       | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | 3#       |   |             |                                                              |
|                                                                                                                                                                                             | 0.50 dBm Offset<br>20 dB SWT          | t 10.50 |                                | kHz                |           | 8#       |   |             | Count 100/100<br>1Sa Avg                                     |
| Ref Level 3<br>Att                                                                                                                                                                          | 0.50 dBm Offset<br>20 dB SWT          | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | 3#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3<br>Att                                                                                                                                                                          | 0.50 dBm Offset<br>20 dB SWT          | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | #        |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3<br>Att<br>1 Frequency                                                                                                                                                           | 0.50 dBm Offset<br>20 dB SWT          | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | 8#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBi                       |
| Ref Level 3<br>Att<br>1 Frequency                                                                                                                                                           | 0.50 dBm Offset<br>20 dB SWT          | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | B#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBi                       |
| Ref Level 3<br>Att<br>Frequency<br>20 dBm                                                                                                                                                   | 0.50 dBm Offset<br>20 dB SWT          | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | 8#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm-                                                                                                                                                | 0.50 dBm Offset<br>20 dB SWT          | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | B#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3<br>Att<br>Frequency<br>20 dBm                                                                                                                                                   | 0.50 dBm Offset<br>20 dB SWT          | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | 8#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3           Att           1 Frequency           20 dBm-           10 dBm-           0 dBm-                                                                                        | 0.50 dBm Offset<br>20 dB SWT          | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | B#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3           Att           1 Frequency           20 dBm-           10 dBm-           0 dBm-                                                                                        | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | B#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                       | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | B#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                                                           | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | B#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                     | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | B#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm                                                       | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | B#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                     | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | B#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | B#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                   | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | 3#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm | 0.50 dBm Offse<br>20 dB SWT<br>Sweep  | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz                |           | B#       |   | M1[1]       | Count 100/100<br>1Sa Avg<br>-41.54 dBr                       |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm | 0.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50 | 0 dB <b>● RBW</b> 30           | kHz<br>kHz Mode Au |           | 3#       |   | M1[1]       | Count 100/100<br>• 158 AVg<br>-41.54 dB<br>1.75500000 GF<br> |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm | 0.50 dBm Offset<br>20 dB SWT<br>Sweep | t 10.50 | 0 dB • RBW 30<br>ms) • VBW 100 | kHz<br>kHz Mode Au |           |          |   | M1[1]       | Count 100/100 • 15a Avg -41.54 dBr 1.75500000 GH             |

| Multitre                                                                                                                                                                                                         | Spactrum                            |                         |                                                 |                              |          |               |   |            |                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------|-------------------------------------------------|------------------------------|----------|---------------|---|------------|-----------------------------------------------------------|
| MultiView                                                                                                                                                                                                        |                                     |                         |                                                 |                              |          |               |   |            |                                                           |
| Ref Level 30<br>Att                                                                                                                                                                                              | ).50 dBm Offse<br>20 dB SWT         | et 10.<br>42.04 μs (~9. | .50 dB <b>= RBW</b> 10<br>1 ms) <b>= VBW</b> 30 | DOKHZ<br>DOKHZ <b>Mode</b> A | Auto FFT |               |   |            | Count 100/100                                             |
| 1 Frequency S                                                                                                                                                                                                    | Sweep                               |                         |                                                 |                              |          |               |   | N41543     | ●1Sa Avg                                                  |
|                                                                                                                                                                                                                  |                                     |                         |                                                 |                              |          |               |   | M1[1]      | -36.65 dBn<br>1.71000000 GH                               |
| 20 dBm                                                                                                                                                                                                           |                                     |                         |                                                 |                              |          |               |   |            |                                                           |
| 20 0011                                                                                                                                                                                                          |                                     |                         |                                                 |                              |          |               |   |            |                                                           |
|                                                                                                                                                                                                                  |                                     |                         |                                                 |                              |          |               |   |            |                                                           |
| 10 dBm                                                                                                                                                                                                           |                                     |                         |                                                 |                              |          |               |   |            |                                                           |
|                                                                                                                                                                                                                  |                                     |                         |                                                 |                              |          |               |   |            |                                                           |
| 0 dBm                                                                                                                                                                                                            |                                     |                         |                                                 |                              | /        | 1             |   |            |                                                           |
|                                                                                                                                                                                                                  |                                     |                         |                                                 |                              |          |               |   |            |                                                           |
| -10 dBm                                                                                                                                                                                                          |                                     |                         |                                                 |                              |          |               | + |            |                                                           |
|                                                                                                                                                                                                                  | H1 -13.000 dBm                      |                         |                                                 |                              |          |               |   |            |                                                           |
| -20 dBm                                                                                                                                                                                                          |                                     |                         |                                                 |                              | - /      |               | + |            |                                                           |
|                                                                                                                                                                                                                  |                                     |                         |                                                 |                              |          |               |   |            |                                                           |
| -30 dBm                                                                                                                                                                                                          |                                     |                         |                                                 |                              |          |               | 1 | L          |                                                           |
|                                                                                                                                                                                                                  |                                     |                         |                                                 | N                            | 1        |               |   |            |                                                           |
| -40 dBm                                                                                                                                                                                                          |                                     |                         |                                                 |                              | <b></b>  |               |   |            |                                                           |
|                                                                                                                                                                                                                  |                                     |                         |                                                 |                              |          |               |   |            | $\downarrow$                                              |
| E0 d0                                                                                                                                                                                                            |                                     |                         |                                                 |                              |          |               |   |            |                                                           |
| -50 dBm                                                                                                                                                                                                          |                                     |                         |                                                 |                              |          |               |   |            |                                                           |
|                                                                                                                                                                                                                  |                                     |                         |                                                 |                              |          |               |   |            |                                                           |
| -60 dBm                                                                                                                                                                                                          |                                     |                         |                                                 |                              |          |               |   |            |                                                           |
|                                                                                                                                                                                                                  |                                     |                         |                                                 |                              |          |               |   |            |                                                           |
| CF 1.71 GHz                                                                                                                                                                                                      |                                     |                         | 1001 pt                                         | s                            | 20       | )<br>0.0 kHz/ |   |            | Span 2.0 MHz                                              |
| MultiView                                                                                                                                                                                                        |                                     | C C                     |                                                 |                              | _ow-1RB# |               |   | easuring 🔳 | ▼                                                         |
| Ref Level 30<br>Att                                                                                                                                                                                              | 0.50 dBm Offse<br>20 dB SWT         | et 10.                  | .50 dB ● RBW 10<br>1 ms) ● VBW 30               | 00 kHz                       |          | <u>.</u>      |   |            |                                                           |
| Ref Level 30                                                                                                                                                                                                     | 0.50 dBm Offse<br>20 dB SWT         | et 10.                  | .50 dB • RBW 10                                 | 00 kHz                       |          | 1             |   |            | ⊂<br>Count 100/100<br>●1Sa Avg                            |
| Ref Level 30<br>Att                                                                                                                                                                                              | 0.50 dBm Offse<br>20 dB SWT         | et 10.                  | .50 dB • RBW 10                                 | 00 kHz                       |          | :<br>:        |   |            | ⊽<br>Count 100/100                                        |
| Ref Level 30<br>Att<br>1 Frequency S                                                                                                                                                                             | 0.50 dBm Offse<br>20 dB SWT         | et 10.                  | .50 dB • RBW 10                                 | 00 kHz                       |          |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30<br>Att                                                                                                                                                                                              | 0.50 dBm Offse<br>20 dB SWT         | et 10.                  | .50 dB • RBW 10                                 | 00 kHz                       |          |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm-                                                                                                                                                                  | 0.50 dBm Offse<br>20 dB SWT         | et 10.                  | .50 dB • RBW 10                                 | 00 kHz                       |          |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30<br>Att<br>1 Frequency S                                                                                                                                                                             | 0.50 dBm Offse<br>20 dB SWT         | et 10.                  | .50 dB • RBW 10                                 | 00 kHz                       |          |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           I Frequency \$           20 dBm           10 dBm                                                                                                                            | 0.50 dBm Offse<br>20 dB SWT         | et 10.                  | .50 dB • RBW 10                                 | 00 kHz                       |          |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30<br>Att<br>1 Frequency S<br>20 dBm-                                                                                                                                                                  | 0.50 dBm Offse<br>20 dB SWT         | et 10.                  | .50 dB • RBW 10                                 | 00 kHz                       |          |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                                             | 0.50 dBm Offse<br>20 dB SWT         | et 10.                  | .50 dB • RBW 10                                 | 00 kHz                       |          |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           I Frequency \$           20 dBm           10 dBm                                                                                                                            | .50 dBm Offse<br>20 dB SWT<br>swcep | et 10.                  | .50 dB • RBW 10                                 | 00 kHz                       |          |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                                             | 0.50 dBm Offse<br>20 dB SWT         | et 10.                  | .50 dB • RBW 10                                 | 00 kHz                       |          |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                                             | .50 dBm Offse<br>20 dB SWT<br>swcep | et 10.                  | .50 dB • RBW 10                                 | 00 kHz                       |          |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           1 Frequency \$           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                                        | .50 dBm Offse<br>20 dB SWT<br>swcep | et 10.                  | .50 dB • RBW 10                                 | 00 kHz                       |          |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm                                                                                                             | .50 dBm Offse<br>20 dB SWT<br>swcep | et 10.                  | .50 dB • RBW 10                                 | 00 kHz<br>00 kHz Mode 4      | Auto FFT |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           1 Frequency \$           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                                        | .50 dBm Offse<br>20 dB SWT<br>swcep | et 10.                  | .50 dB • RBW 10                                 | 00 kHz<br>00 kHz Mode 4      |          |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           1 Frequency \$           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                                        | .50 dBm Offse<br>20 dB SWT<br>swcep | et 10.                  | .50 dB • RBW 10                                 | 00 kHz<br>00 kHz Mode 4      | Auto FFT |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                                       | .50 dBm Offse<br>20 dB SWT<br>swcep | et 10.                  | .50 dB • RBW 10                                 | 00 kHz<br>00 kHz Mode 4      | Auto FFT |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                                       | .50 dBm Offse<br>20 dB SWT<br>swcep | et 10.                  | .50 dB • RBW 10                                 | 00 kHz<br>00 kHz Mode 4      | Auto FFT |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                                       | .50 dBm Offse<br>20 dB SWT<br>swcep | et 10.                  | .50 dB • RBW 10                                 | 00 kHz<br>00 kHz Mode 4      | Auto FFT |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                                   | .50 dBm Offse<br>20 dB SWT<br>swcep | et 10.                  | .50 dB • RBW 10                                 | 00 kHz<br>00 kHz Mode 4      | Auto FFT |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                                       | .50 dBm Offse<br>20 dB SWT<br>swcep | et 10.                  | .50 dB • RBW 10                                 | 00 kHz<br>00 kHz Mode 4      | Auto FFT |               |   |            | Count 100/100<br>● 1Sa Avg<br>-36.28 dBr                  |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm |                                     | et 10.                  | 50 dB • RBW 11<br>1 ms) • VBW 30                | 00 kHz<br>10 kHz Mode /      | Auto FFT |               |   |            | Count 100/100<br>• 15a Avg<br>-36.28 dBn<br>1.75500000 GH |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                                   |                                     | et 10.                  | .50 dB • RBW 10                                 | 00 kHz<br>10 kHz Mode /      | Auto FFT |               |   | M1[1]      | Count 100/100<br>9 153 Avg<br>-36,28 dBn<br>1.75500000 GH |
| Ref Level 30           Att           1 Frequency S           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm |                                     | et 10.                  | 50 dB • RBW 11<br>1 ms) • VBW 30                | 00 kHz<br>10 kHz Mode /      | Auto FFT |               |   |            | Count 100/100<br>9 153 Avg<br>-36,28 dBn<br>1.75500000 GH |

| Count 100/11<br>• 1/3 AV<br>M1[1] • -40.68 d<br>1.71000000 d<br> |
|------------------------------------------------------------------|
|                                                                  |
|                                                                  |
| 1.71000000 0                                                     |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
| uring 💶 🗰 🚧                                                      |
|                                                                  |
|                                                                  |
| Count 100/10                                                     |
| ●1Sa Av<br>M1[1] -39.85 d                                        |
| 1.75500000 (                                                     |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
| Span 2.0 M                                                       |
| -                                                                |

| MultiView                                                                                                                                                                                     | 🗄 Spectrum                                              |               |                                                |                       |          | QAM       |   |            | ▽                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------|------------------------------------------------|-----------------------|----------|-----------|---|------------|----------------------------------------------------|
|                                                                                                                                                                                               | 30.50 dBm Offs                                          |               | 50 dB • RBW 1                                  | 00 kHz                |          |           |   |            |                                                    |
| Att                                                                                                                                                                                           | 20 dB SWT                                               | 42.04 µs (~9. | 1 ms) 🖷 VBW 3                                  | 00 kHz Mode           | Auto FFT |           |   |            | Count 100/100<br>• 1Sa Avg                         |
| 1 Frequency                                                                                                                                                                                   | Змеер                                                   |               |                                                |                       |          |           |   | M1[1]      | -37.64 dBn                                         |
|                                                                                                                                                                                               |                                                         |               |                                                |                       |          |           |   |            | 1.71000000 GH:                                     |
| 20 dBm                                                                                                                                                                                        |                                                         |               |                                                |                       |          |           |   |            |                                                    |
|                                                                                                                                                                                               |                                                         |               |                                                |                       |          |           |   |            |                                                    |
| 10 dBm                                                                                                                                                                                        |                                                         |               |                                                |                       |          |           |   |            |                                                    |
|                                                                                                                                                                                               |                                                         |               |                                                |                       |          |           |   |            |                                                    |
| 0 dBm                                                                                                                                                                                         |                                                         |               |                                                |                       | 1        | (         |   |            |                                                    |
|                                                                                                                                                                                               |                                                         |               |                                                |                       |          |           |   |            |                                                    |
| -10 dBm                                                                                                                                                                                       | H1 -13.000 dBm-                                         |               |                                                |                       |          |           |   |            |                                                    |
|                                                                                                                                                                                               | 112 101000 0011                                         |               |                                                |                       |          |           |   |            |                                                    |
| -20 dBm                                                                                                                                                                                       |                                                         |               |                                                |                       |          |           |   |            |                                                    |
|                                                                                                                                                                                               |                                                         |               |                                                |                       |          |           | 1 |            |                                                    |
| -30 dBm                                                                                                                                                                                       |                                                         |               |                                                |                       |          |           |   |            |                                                    |
|                                                                                                                                                                                               |                                                         |               |                                                |                       | 11       |           |   |            |                                                    |
| -40 dBm                                                                                                                                                                                       |                                                         |               |                                                |                       |          |           |   |            |                                                    |
|                                                                                                                                                                                               |                                                         |               |                                                |                       |          |           |   |            |                                                    |
| -50 dBm                                                                                                                                                                                       |                                                         |               |                                                |                       |          |           |   |            |                                                    |
|                                                                                                                                                                                               |                                                         |               |                                                |                       |          |           |   |            |                                                    |
| -60_dBm                                                                                                                                                                                       |                                                         |               |                                                |                       |          |           |   |            |                                                    |
|                                                                                                                                                                                               |                                                         |               |                                                |                       |          |           |   |            |                                                    |
| CF 1.71 GHz                                                                                                                                                                                   |                                                         |               | 1001 pt                                        | s                     | 20       | 00.0 kHz/ |   | easuring 🔳 | Span 2.0 MHz                                       |
| MultiView                                                                                                                                                                                     | 🕄 Spectrum                                              | 1             |                                                | Channel               | Low-1RB# | <u> </u>  |   |            |                                                    |
| Ref Level 3<br>Att                                                                                                                                                                            | 30.50 dBm Offse<br>20 dB SWT                            | et 10.        | 50 dB • RBW 1                                  | 00 kHz                |          | <u>.</u>  |   |            |                                                    |
|                                                                                                                                                                                               | 30.50 dBm Offse<br>20 dB SWT                            |               | 50 dB • RBW 1                                  | 00 kHz                |          |           |   |            | Count 100/100<br>• 1Sa Avg                         |
| Ref Level 3<br>Att                                                                                                                                                                            | 30.50 dBm Offse<br>20 dB SWT                            | et 10.        | 50 dB • RBW 1                                  | 00 kHz                |          |           |   | M1[1]      | Count 100/100                                      |
| Ref Level 3<br>Att                                                                                                                                                                            | 30.50 dBm Offse<br>20 dB SWT                            | et 10.        | 50 dB • RBW 1                                  | 00 kHz                |          |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3<br>Att<br>1 Frequency                                                                                                                                                             | 30.50 dBm Offse<br>20 dB SWT                            | et 10.        | 50 dB • RBW 1                                  | 00 kHz                |          |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3<br>Att<br>1 Frequency                                                                                                                                                             | 30.50 dBm Offse<br>20 dB SWT                            | et 10.        | 50 dB • RBW 1                                  | 00 kHz                |          |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm-                                                                                                                                                  | 30.50 dBm Offse<br>20 dB SWT                            | et 10.        | 50 dB • RBW 1                                  | 00 kHz                |          |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm-                                                                                                                                                  | 30.50 dBm Offse<br>20 dB SWT                            | et 10.        | 50 dB • RBW 1                                  | 00 kHz                |          |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm<br>10 dBm                                                                                                                                         | 30.50 dBm Offse<br>20 dB SWT                            | et 10.        | 50 dB • RBW 1                                  | 00 kHz                |          |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3<br>Att<br>1 Frequency<br>20 dBm<br>10 dBm                                                                                                                                         | 30.50 dBm Offse<br>20 dB SWT<br>Sweep                   | et 10.        | 50 dB • RBW 1                                  | 00 kHz                |          |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                                                             | 30.50 dBm Offse<br>20 dB SWT                            | et 10.        | 50 dB • RBW 1                                  | 00 kHz                |          |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           0 dBm                                                                                             | 30.50 dBm Offse<br>20 dB SWT<br>Sweep                   | et 10.        | 50 dB • RBW 1                                  | 00 kHz                |          |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3           • Att           1 Frequency           20 dBm           10 dBm           -10 dBm                                                                                         | 30.50 dBm Offse<br>20 dB SWT<br>Sweep                   | et 10.        | 50 dB • RBW 1                                  | 00 kHz                |          |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3           • Att           1 Frequency           20 dBm           10 dBm           -10 dBm                                                                                         | 30.50 dBm Offse<br>20 dB SWT<br>Sweep                   | et 10.        | 50 dB • RBW 1                                  | 00 kHz<br>00 kHz Mode | Auto FFT |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                         | 30.50 dBm Offse<br>20 dB SWT<br>Sweep                   | et 10.        | 50 dB • RBW 1                                  | 00 kHz<br>00 kHz Mode |          |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                         | 30.50 dBm Offse<br>20 dB SWT<br>Sweep                   | et 10.        | 50 dB • RBW 1                                  | 00 kHz<br>00 kHz Mode | Auto FFT |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                         | 30.50 dBm Offse<br>20 dB SWT<br>Sweep                   | et 10.        | 50 dB • RBW 1                                  | 00 kHz<br>00 kHz Mode | Auto FFT |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm                                                                         | 30.50 dBm Offse<br>20 dB SWT<br>Sweep                   | et 10.        | 50 dB • RBW 1                                  | 00 kHz<br>00 kHz Mode | Auto FFT |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                       | 30.50 dBm Offse<br>20 dB SWT<br>Sweep                   | et 10.        | 50 dB • RBW 1                                  | 00 kHz<br>00 kHz Mode | Auto FFT |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3           Att           1 Frequency           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                       | 30.50 dBm Offse<br>20 dB SWT<br>Sweep                   | et 10.        | 50 dB • RBW 1                                  | 00 kHz<br>00 kHz Mode | Auto FFT |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3           Att           I Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                     | 30.50 dBm Offse<br>20 dB SWT<br>Sweep                   | et 10.        | 50 dB • RBW 1                                  | 00 kHz<br>00 kHz Mode | Auto FFT |           |   | M1[1]      | Count 100/100<br>• 1Sa Avg<br>-36.32 dBn           |
| Ref Level 3           Att           I Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                     | 30.50 dBm Offse<br>20 dB SWT<br>Sweep<br>H1 -13.000 dBm | et 10.        | 50 dB • RBW 1                                  | 00 kHz<br>00 kHz Mode | Auto FFT | 0.0 kHz/  |   | M1[1]      | Count 100/100 • 153 Avg - 36.32 dBn 1.75500000 GH; |
| Ref Level 3           • Att           1 Frequency           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm | 30.50 dBm Offse<br>20 dB SWT<br>Sweep<br>H1 -13.000 dBm | et 10.        | 50 dB • <b>RBW</b> 11<br>1 ms) • <b>VBW</b> 31 | 00 kHz<br>00 kHz Mode | Auto FFT |           |   | M1[1]      | Count 100/100 • 153 Avg - 36.32 dBn 1.75500000 GH; |