

Certification Exhibit

FCC ID: 2AA9WV360 IC: 11665A-V360

FCC Rule Part: 15.247, 15.407 IC Radio Standards Specification: RSS-210

ACS Project Number: 14-2101

Manufacturer: VSN Technologies, Inc. Model: V360

RF Exposure

General Information:

Applicant:	VSN Technologies, Inc.
ACS Project:	14-2101
Device Category:	Mobile
Environment:	General Population/Uncontrolled Exposure

Technical Information:

Main Board

Antenna Type: Monopole Parasitic Antenna Antenna Gain: 0.71 dBi (2.4 GHz), 2.93 dBi (5 GHz) Maximum Transmitter Conducted Power: 18.09 dBm, 64.4169 mW Maximum System EIRP: 18.8 dBm, 75.8578 mW Exposure Conditions: Greater than 20 centimeters

Daughter Board

Antenna Type:	Meander Antenna			
Antenna Gain:	-0.78 dBi			
Maximum Transmitter Conducted Power: 3.34 dBm, 2.1577 mW				
Maximum System EIRP:	2.56 dBm, 1.803 mW			
Exposure Conditions:	Greater than 20 centimeters			

MPE Calculation

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Table 1: Maximum MPE on Main Board									
MPE Calculator for Mobile Equipment									
Limits for General Population/Uncontrolled Exposure*									
	Transmit	Radio	Power	Radio	Antenna	Antenna	Distance	Power Density	
Mode	Frequency	Power	Density Limit	Power	Gain	Gain (mW		-	
	(MHz)	(dBm)	(mW/Cm2)	(mW)	(dBi)	eq.)	(cm)	(mW/cm^2)	
BLE	2400	-0.35	1.00	0.92	0.71	1.178	20	0.000	
BT3.0	2400	11.03	1.00	12.68	0.71	1.178	20	0.003	
2.4G WLAN	2400	18.09	1.00	64.42	0.71	1.178	20	0.015	
5G WLAN	5100	15.84	1.00	38.37	2.93	1.963	20	0.015	

_ ------ - -

Table 2: Maximum MPE on Daughter Board

MPE Calculator for Mobile Equipment Limits for General Population/Uncontrolled Exposure*								
Mode	Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm2)	Radio Power (mW)	Antenna	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm^2)
BLE	2400	3.34	1.00	2.16	-0.78	0.836	20	0.000

Installation Guidelines

The installation manual should contain text similar to the following advising how to install the equipment to maintain compliance with the FCC RF exposure requirements:

Summation of Power Densities

The radio on the daughter board can transmit simultaneously with any of the configuration of the radio located the main board. Therefore, the maximum RF exposure condition is determined by the summation of the MPE ratios. The limit is such that the total MPE ratio is less or equal to 1.0.

Daughter Board BLE and 2.4 GHz WLAN Operating Simultaneously BLE MPE ratio + 2.4 GHz WLAN MPE Ratio (0.000/1) + (0.015/1) = 0.015 < 1

Daughter Board BLE and 5 GHz WLAN Operating Simultaneously BLE MPE ratio + 5 GHz WLAN MPE Ratio (0.000/1) + (0.015/1) = 0.015 < 1

RF Exposure

In accordance with FCC requirements of human exposure to radio frequency fields, the radiating element shall be installed such that a minimum separation distance of 20 centimeters will be maintained.

Conclusion

This device complies with the MPE requirements by providing adequate separation between the device, any radiating structure and the general population.