

Full

TEST REPORT

No. 2014SAR0089

For

Client: VSN Technologies Inc. d/b/a VSN

Mobil

Production: WCDMA Digital Mobile Phone

Model Name: V.35 / Nextel V.35

Model Number: V1001

FCC ID: 2AA9WV1001

Hardware Version: V01

Software Version: V01

Issued date: 2014-08-16

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn

Revision Version

Report No.: 2014SAR0089

Report Number	Revision	Date	Memo
2014SAR0089	00	2014-07-05	Initial creation of test report
2014SAR0089	01	2014-08-08	Second creation of test report
2014SAR0089	02	2014-08-14	Third creation of test report
2014SAR0089	03	2014-08-16	The fourth creation of test report

East China Institute of Telecommunications Page Number : 2 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

CONTENTS

Report No.: 2014SAR0089

1.	TEST LABORATORY	6
1.1.	TESTING LOCATION	6
1.2.	TESTING ENVIRONMENT	6
1.3.	PROJECT DATA	6
1.4.	SIGNATURE	6
2.	STATEMENT OF COMPLIANCE	7
3.	CLIENT INFORMATION	9
3.1.	APPLICANT INFORMATION	9
3.2.	MANUFACTURER INFORMATION	9
4.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	.10
4.1.	ABOUT EUT	.10
4.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	.11
4.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	.11
5.	TEST METHODOLOGY	.12
5.1.	APPLICABLE LIMIT REGULATIONS	.12
5.2.	APPLICABLE MEASUREMENT STANDARDS	.12
6.	SPECIFIC ABSORPTION RATE (SAR)	.14
6.1.	INTRODUCTION	.14
6.2.	SAR DEFINITION	.14
7.	TISSUE SIMULATING LIQUIDS	.15
7.1.	TARGETS FOR TISSUE SIMULATING LIQUID	.15
7.2.	DIELECTRIC PERFORMANCE	.15
8.	SYSTEM VERIFICATION	.19
8.1.	SYSTEM SETUP	.19
8.2.	SYSTEM VERIFICATION	.20

Page Number Report Issued Date

: 3 of 205

:August 16, 2014

Report No.: 2014SAR0089

9.	MEAS	UREMENT PROCEDURES	21
9.1.	TESTS	S TO BE PERFORMED	21
9.2.	GENE	RAL MEASUREMENT PROCEDURE	22
9.3.	WCDN	MA MEASUREMENT PROCEDURES FOR SAR	23
9.4.	BLUE	TOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	24
9.5.	POWE	ER DRIFT	25
10.	COND	DUCTED OUTPUT POWER	26
10.1.	MANU	JFACTURING TOLERANCE	26
10.2.	GSM I	MEASUREMENT RESULT	30
10.3.	WCDN	MA MEASUREMENT RESULT	31
10.4.	WI-FI	AND BT MEASUREMENT RESULT	32
11.	SIMUL	TANEOUS TX SAR CONSIDERATIONS	35
11.1.	INTRO	DDUCTION	35
11.2.	TRAN	SMIT ANTENNA SEPARATION DISTANCES	35
11.3.	STANI	DALONE SAR TEST EXCLUSION CONSIDERATIONS	36
12.	EVAL	UATION OF SIMULTANEOUS	37
13.	SAR T	EST RESULT	38
14.	SAR N	MEASUREMENT VARIABILITY	43
15.	MEAS	SUREMENT UNCERTAINTY	45
16.	MAIN	TEST INSTRUMENT	46
ANNE	X A.	GRAPH RESULTS	47
ANNE	XB.	SYSTEM VALIDATION RESULTS	.135
ANNE	X C.	SAR MEASUREMENT SETUP	.141
ANNE	X D.	POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	.147
ANNE	X E.	EQUIVALENT MEDIA RECIPES	.151
ANNE	X F.	SYSTEM VALIDATION	.152

Page Number Report Issued Date

: 4 of 205 :August 16, 2014

ANNEX G.	PROBE AND DAE CALIBRATION CERTIFICATE	153
ANNEX H.	DIPOLECALIBRATION CERTIFICATE	178

Report No.: 2014SAR0089

: 5 of 205 :August 16, 2014

1. Test Laboratory

1.1. Testing Location

Company Name:	ECIT Shanghai, East China Institute of Telecommunications
Address:	7-8F, G Area,No. 668, Beijing East Road, Huangpu District,
	Shanghai, P. R. China
Postal Code:	200001
Telephone:	(+86)-021-63843300
Fax:	(+86)-021-63843301

1.2. Testing Environment

NormalTemperature:	15-35℃
Relative Humidity:	20-75%
Ambient noise & Reflection:	< 0.012 W/kg

1.3. Project Data

Project Leader:	Wang Yaqiong
Testing Start Date:	2014-06-20
Testing End Date:	2014-08-16

1.4. Signature

Hu Jiajing (Prepared this test report)

Yu Naiping (Reviewed this test report)

Report No.: 2014SAR0089

Zheng Zhongbin
Director of the laboratory
(Approved this test report)

East China Institute of Telecommunications Page Number : 6 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for V.35 are as follows (with expanded uncertainty 22.4%)

Table 2.1: Max. Reported SAR (1g)

	· · · · · · · · · · · · · · · · · · ·	
Band	Position/Distance	Reported SAR
Band	1 Osition/Distance	1g(W/Kg)
CCM 850	Head/0mm	0.695
GSM 850	Body/10mm	1.168
CSM 1000	Head/0mm	0.933
GSM 1900	Body/10mm	1.090
VAICENAA SEO	Head/0mm	0.637
WCDMA850	Body/10mm	0.666
VA/CDNAA 1000	Head/0mm	1.078
WCDMA 1900	Body/10mm	0.512
\A/: F:	Head/0mm	0.068
Wi-Fi	Body/10mm	0.369

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The measurement together with the test system set-up is described in chapter 7 of this test report. A detailed description of the equipment under test can be found in chapter 3 of this test report. The maximum reported SAR value is obtained at the case of (Table 2.1), and the values are: 1.168 W/kg (1g).

NOTE:

1.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg 2.Body Mode include Body-worn Mode and Hotspot Mode, The measurement of Body-worn Mode include hotspot mode test.

East China Institute of Telecommunications : 7 of 205 Page Number Report Issued Date :August 16, 2014

TEL: +86 21 63843300FAX:+86 21 63843301

The sample has three antennas. One is main antenna for GSM/WCDMA, and the other two is for WiFi/BT and GPS. So simultaneous transmission is GSM/WCDMA and WiFi/BT.

Report No.: 2014SAR0089

Table 2.2: Simultaneous SAR (1g)

	Table 2.2. Official code OAR (19)											
Simult	Simultaneous Transmission SAR(W/Kg)											
To at D	Test Position		's at Danition		GSM	GSM	WCDMA	WCDMA	WCDMA	\A/IF1	ВТ	CLIM
lest Po			850	1900	900 B V	B II B IV	WIFI	note	SUM			
	l off	Cheek	0.695	0.933	0.605	1.078	0.998	0.027	0.026	1.105		
Llood	Left	Tilt 15°	0.261	0.164	0.301	0.195	0.302	0.0048	0.026	0.328		
Head	Diaht	Cheek	0.541	0.666	0.637	0.536	0.679	0.022	0.026	0.705		
	Right	Tilt 15°	0.283	0.278	0.336	0.206	0.326	0.026	0.026	0.362		
	Phantom Side		0.549	0.998	0.283	0.297	0.768	0.034	0.013	1.032		
	Ground Side		1.168	1.090	0.666	0.512	0.811	0.147	0.013	1.315		
Pody	Left Side		0.439	0.249	0.371	0.176	0.251	0.026	0.013	0.465		
Body	Right S	Side	0.397	0.271	0.311	0.118	0.182	0.062	0.013	0.459		
	Top Sic	de	N/A	N/A	N/A	N/A	N/A	0.0023	0.013	N/A		
	Bottom	Side	0.124	0.861	0.072	0.346	0.460	0.0035	0.013	0.874		

According to the above table, the maximum sum of reported SAR values for GSM and WiFiis **1.315 W/kg (1g)**. The detail for simultaneous transmission consideration isdescribed in chapter 13.

Note: Band IV test results are obtained from the TA report and the test report No. is RXA1405-0124SAR).

East China Institute of Telecommunications Page Number : 8 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

Report No.: 2014SAR0089

3. Client Information

3.1. Applicant Information

Company Name: VSN Technologies Inc. d/b/a VSN Mobile

Address: 1975 E. Sunrise Blvd. Suite 400, Fort Lauderdale FL

Contact Person: Amit Verma
Telephone: 954-609-4912

Postcode: 33304

3.2. Manufacturer Information

Company Name: MOBIWIRE MOBILES (NINGBO) CO.,LTD

Address: No.999, Dacheng East Road, Fenghua City, Zhejiang

Contact Person: Xu linzhong
Telephone: 0574 88916450

Postcode: 315500

East China Institute of Telecommunications Page Number : 9 of 205

TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

4. Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1. About EUT

Description:	WCDMA Digital Mobile Phone	
Model name:	V.35 / Nextel V.35	
Operation Model(s):	GSM850/1900,WCDMA1900/850,Wifi2450	
Tx Frequency:	824.2-848.8, 1850.2-1909.8MHz (GSM)	
	1852.4-1907.6 MHz, 826.4-846.6MHz (WCDMA)	
	2412-2462 MHz (Wi-Fi)	
	2402~2480 MHz (BT)	
Test device Production	Production unit	
information:		
GPRS Class Mode:	В	
GPRS Multislot Class:	12	
Device type:	Portable device	
HSUPA UE category:	6	
HSPA+ UE DL category:	14	
Antenna type:	Inner antenna	
Accessories/Body-worn	Headset	
configurations:		
Dimensions:	11.3cm×6.0cm	
Hotspot Mode:	Support simultaneous transmission of hotspot and voice	
	(or data)	
FCC ID:	2AA9WV1001	

East China Institute of Telecommunications Page Number
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date

ber : 10 of 205 ued Date :August 16, 2014

Report No.: 2014SAR0089

4.2.Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	
N06	IMEI: 354043060004167	V01	V01	

^{*}EUT ID: is used to identify the test sample in the lab internally.

4.3. Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
B01	Battery	178069902	N/A	N/A
				HuiZhou Lianyun
A01	Headset	TS813-28MS01-16R	N/A	Electronic Technology Co.,
				Ltd
				HuiZhou Lianyun
A02	Headset	TS880-89MS01-M	N/A	Electronic Technology Co.,
				Ltd

^{*}AE ID: is used to identify the test sample in the lab internally.

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 11 of 205 Report Issued Date : August 16, 2014

Report No.: 2014SAR0089

5. TEST METHODOLOGY

5.1. Applicable Limit Regulations

ANSI C95.1–1992:IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2. Applicable Measurement Standards

IC RSS-102 ISSUE4: Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: ExperimentalTechniques.

IEEE1528a-2005:Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head From Wireless Communications Devices: Measurement Techniques.

KDB648474 D04 SAR Handsets Multi Xmiter and Ant v01r02:SAR Evaluation Considerations for Wireless Handsets.

KDB248227 SAR meas for 802.11abg v01r02: SAR measurement procedures for 802.112abg transmitters.

KDB447498 D01 General RF Exposure Guidance v05r02:Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB865664 D01 v01r03:SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 RF Exposure Reporting v01r03:provides general reporting requirements as well as certain specific information required to support MPE and SAR compliance.

KDB941225 D01 SAR test for 3G devides v02:Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE.

KDB941225 D03 SAR test Redution GSM GPRS EDGE v01:Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE.

KDB941225 D06 hotspot SAR v01r01:SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities.

Report No.: 2014SAR0089

648474 D04 Handset SAR v01r01:SAR Evaluation Considerations for Wireless Handsets

East China Institute of Telecommunications Page Number : 13 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

: 14 of 205

:August 16, 2014

Page Number

Report Issued Date

6. Specific Absorption Rate (SAR)

6.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

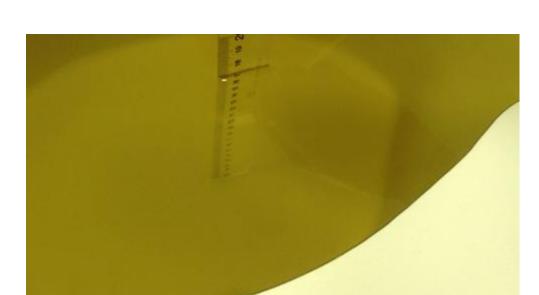
However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7. Tissue Simulating Liquids

7.1. Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

Report No.: 2014SAR0089


idolo i i i i i i i i i i i i i i i i i i							
Frequency (MHz)	Liquid Type	Conductivity(σ)	± 5% Range	Permittivity(ε)	± 5% Range		
835	Head	0.90	0.86~0.95	41.5	39.4~43.6		
835	Body	0.97	0.92~1.02	55.2	52.4~58.0		
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0		
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0		
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2		
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3		

7.2. Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

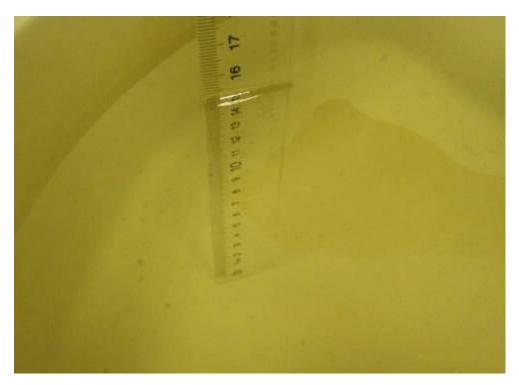
Measurem	Measurement Value						
Liquid Tem	perature: 21.0	${\mathbb C}$					
Type	Frequency	Permittivity ε	Drift (%)	Conductivity σ	Drift (%)	Test Date	
Head	835 MHz	41.04	-1.10%	0.917	1.88%	2014-06-23	
Body	835 MHz	55.15	0.09%	0.99	2.97%	2014-06-24	
Head	1900 MHz	39.64	-0.90%	1.385	-1.07%	2014-06-26	
Body	1900 MHz	53.24	0.11%	1.524	0.26%	2014-06-27	
Head	2450 MHz	39.12	-0.20%	1.809	0.5%	2014-06-20	
Body	2450 MHz	53.95	2.37%	1.918	1.64%	2014-06-20	

East China Institute of Telecommunications Page Number : 15 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

: 16 of 205

:August 16, 2014

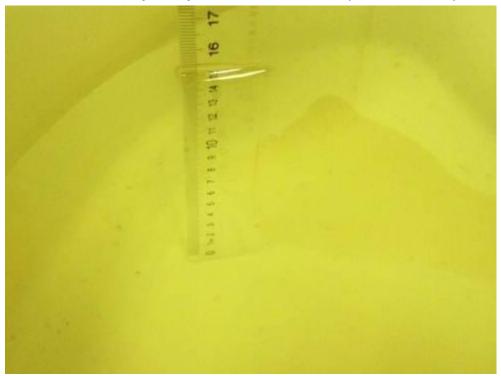
Page Number


Report Issued Date

Picture 7-1: Liquid depth in the Flat Phantom (835 MHz Head)

Picture 7-2: Liquid depth in the Flat Phantom (1900 MHz Head)

Picture 7-3: Liquid depth in the Flat Phantom (835 MHz Body)


Picture 7-4: Liquid depth in the Flat Phantom (1900 MHz Body)

Page Number : 17 of 205
Report Issued Date : August 16, 2014

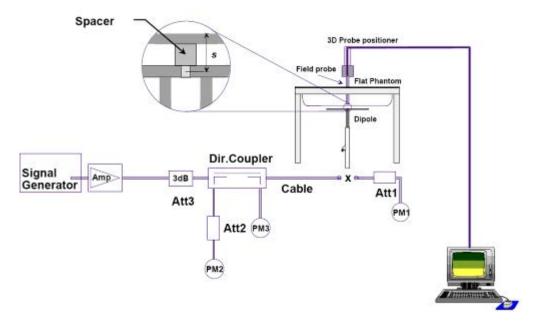
Picture 7-5: Liquid depth in the Flat Phantom (2450 MHz Head)

Picture 7-6: Liquid depth in the Flat Phantom (2450 MHz Body)

Page Number

Report Issued Date

: 18 of 205


:August 16, 2014

8. System verification

8.1. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 19 of 205 Report Issued Date : August 16, 2014

8.2. System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectricmedia, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the validrange of each probe calibration point required for testing the device.

Report No.: 2014SAR0089

Table 8.1: System Verification of Head

Verification	Verification Results						
Input power I	evel: 250mW						
	Target va	lue (W/kg)	Measured v	alue (W/kg)	Devi	ation	Toot
Frequency	10 g	1 g	10 g	1 g	10 g	1 g	Test
	Average	Average	Average	Average	Average	Average	date
835 MHz	5.98	9.12	6.08	9.32	1.67%	2.19%	2014-06-23
1900 MHz	22.2	42.7	21.76	42.32	-1.98%	-0.89%	2014-06-26
2450 MHz	23.0	49.5	23.84	50.4	3.65%	1.82%	2014-06-20

Table 8.2: System Verification of Body

Verification	Verification Results						
Input power I	evel: 250mW						
	Target va	lue (W/kg)	Measured v	alue (W/kg)	Devi	ation	Tool
Frequency	10 g	1 g	10 g	1 g	10 g	1 g	Test date
	Average	Average	Average	Average	Average	Average	uate
835 MHz	6.06	9.15	6.00	9.16	-0.99%	0.11%	2014-06-24
1900 MHz	22.7	43.4	22.48	43.76	-0.97%	0.83%	2014-06-27
2450 MHz	22.2	47.7	22.16	47.72	0.04%	-0.18%	2014-06-20

East China Institute of Telecommunications Page Number : 20 of 205 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

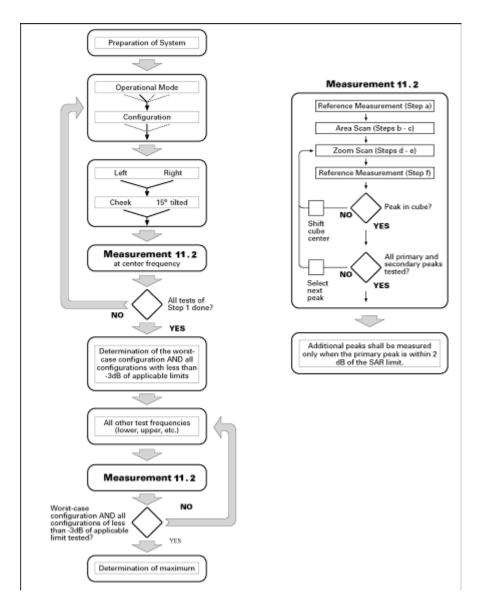
9. Measurement Procedures

9.1. Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.

Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.


If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all

frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

East China Institute of Telecommunications Page Number : 21 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

Picture 9.1Block diagram of the tests to be performed

9.2. General Measurement Procedure

The following procedure shall be performed for each of the test conditions (see Picture 11.1) described in 11.1:

- a) Measure the local SAR at a test point within 8 mm or less in the normal direction from the inner surface of the phantom.
- b) Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grip spacing of 20 mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for

Page Number

Report Issued Date

: 22 of 205

:August 16, 2014

frequencies below 3 GHz and δ In(2)/2 mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and In(x) is the natural logarithm. The maximum variation of the sensor-phantom surface shall be ± 1 mm for frequencies below 3 GHz and ± 0.5 mm for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5° . If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional uncertainty evaluation is needed.

Report No.: 2014SAR0089

- c) From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated; d) Measure the three-dimensional SAR distribution at the local maxima locations identified in step c). The horizontal grid step shall be (24/f[GHz]) mm or less but not more than 8 mm. The minimum zoom size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be (8-f[GHz]) mm or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be (12 / f[GHz]) mm or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and 5 In(2)/2 mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and $\ln(x)$ is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima found in step c). Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved is the distance between the phantom surface and physical tip of the probe is larger than probe tip diameter. Other methods may utilize correction procedures for these boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5°. If this cannot be achieved an additional uncertainty evaluation is needed.
- e) Use post processing(e.g. interpolation and extrapolation) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.

9.3. WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH &DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 23 of 205 Report Issued Date :August 16, 2014

HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta}_c$	$oldsymbol{eta_d}$	β_d (SF)	$oldsymbol{eta}_c$ / $oldsymbol{eta}_d$	$oldsymbol{eta}_{hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1. 0
3	15/15	8/15	64	15/8	30/15	1. 5
4	15/15	4/15	64	15/4	30/15	1. 5

For Release 6 HSDPA Data Devices

Sub-	$oldsymbol{eta}_c$	$oldsymbol{eta_d}$	eta_d	$oldsymbol{eta}_c$ / $oldsymbol{eta}_d$	$oldsymbol{eta_{hs}}$	$oldsymbol{eta}_{ec}$	$oldsymbol{eta}_{ed}$	$oldsymbol{eta_{ed}}$ (SF)	$eta_{\it ed}$ (codes)	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2. 0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3.0	2. 0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

9.4. Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

East China Institute of Telecommunications Page Number
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date

: 24 of 205 :August 16, 2014

Report No.: 2014SAR0089

9.5. Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 13.2 to Table 13.11 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

Report No.: 2014SAR0089

East China Institute of Telecommunications Page Number : 25 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

10. Conducted Output Power

10.1. Manufacturing tolerance

Table 10.1: GSM Speech

Tallot 10111 Com oposon							
	GSM 835						
Channel	Channel 251	Channel 190	Channel 128				
Maximum Target Value (dBm)	33	33	33				
	PCS	1900					
Channel	Channel 810	Channel 661	Channel 512				
Maximum Target Value (dBm)	29.5	29.5	29.5				

Table 10.2: GPRS (GMSK Modulation)

		GSM 850 GPRS		
	Channel	251	190	128
1 Txslots	Maximum Target Value (dBm)	33	33	33
2 Txslots	Maximum Target Value (dBm)	32	32	32
3 Txslots	Maximum Target Value (dBm)	31	31	31
4 Txslots	Maximum Target Value (dBm)	30	30	30
		GSM 1900 GPRS	8	
	Channel	810	661	512
1 Txslots	Maximum Target Value (dBm)	29.5	29.5	29.5
2 Txslots	Maximum Target Value (dBm)	28.5	28.5	28.5
3 Txslots	Maximum Target Value (dBm)	27.5	27.5	27.5
4 Txslots	Maximum Target Value (dBm)	26.5	26.5	26.5

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 26 of 205 Report Issued Date : August 16, 2014

Report No.: 2014SAR0089

Table 10.3: WCDMA

WCDMA Band V						
Channel	Channel 4132	Channel 4182	Channel 4233			
Maximum Target Value (dBm)	22.5	22.5	22.5			
	WCDM	A Band II				
Channel	Channel 9262	Channel 9400	Channel 9538			
Maximum Target Value (dBm)	21.5	21.5	21.5			

Table 10.4: HSDPA

	WCDMA Band V					
	Channel	4132	4182	4233		
1	Maximum Target Value (dBm)	21.5	21.5	21.5		
2	Maximum Target Value (dBm)	21.5	21.5	21.5		
3	Maximum Target Value (dBm)	21.5	21.5	21.5		
4	Maximum Target Value (dBm)	21.5	21.5	21.5		
		WCDMA Band II				
	Channel	9262	9400	9538		
1	Maximum Target Value (dBm)	21.0	21.0	21.0		
2	Maximum Target Value (dBm)	21.0	21.0	21.0		
3	Maximum Target Value (dBm)	21.0	21.0	21.0		
4	Maximum Target Value (dBm)	21.0	21.0	21.0		

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 27 of 205 Report Issued Date : August 16, 2014

Report No.: 2014SAR0089

Table 10.5: HSUPA

Report No.: 2014SAR0089

	WCDMA Band V					
	Channel	4132	4182	4233		
1	Maximum Target Value (dBm)	21.5	21.5	21.5		
2	Maximum Target Value (dBm)	21.5	21.5	21.5		
3	Maximum Target Value (dBm)	21.5	21.5	21.5		
4	Maximum Target Value (dBm)	21.5	21.5	21.5		
5	Maximum Target Value (dBm)	21.5	21.5	21.5		
		WCDMA Band II				
	Channel	9262	9400	9538		
1	Maximum Target Value (dBm)	21.0	21.0	21.0		
2	Maximum Target Value (dBm)	21.0	21.0	21.0		
3	Maximum Target Value (dBm)	21.0	21.0	21.0		
4	Maximum Target Value (dBm)	21.0	21.0	21.0		
5	Maximum Target Value (dBm)	21.0	21.0	21.0		

Page Number Report Issued Date

: 28 of 205

:August 16, 2014

Table 10.6: WiFi

Report No.: 2014SAR0089

	14515 10.0. 1111						
	WiFi 802.11b						
Channel	Channel 1	Channel 6	Channel 11				
Maximum Target Value (dBm)	5.0	5.0	5.0				
	WiFi 802.11g						
Channel	Channel 1	Channel 6	Channel 11				
Maximum Target Value (dBm)	3.0	3.0	3.0				
	WiFi 8	302.11n					
Channel	Channel 1	Channel 6	Channel 11				
Maximum Target Value (dBm)	3.0	3.0	3.0				

Table 10.7: Bluetooth

Bluetooth										
Channel	Channel 0 Channel 39 Channel 78									
Maximum Target Value (dBm)	2.0	2.0	2.0							

Page Number Report Issued Date

: 29 of 205

:August 16, 2014

10.2. GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 10.8: The conducted power measurement results for GSM850/1900

Frequency	Conducted Power (dBm)										
	Channel	Channel	Channel								
GSM835	251(848.8MHz)	190(836.6MHz)	128(824.2MHz)								
	32.47	32.36	32.25								
	Channel	Channel	Channel								
GSM1900	810(1909.8MHz)	661(1880MHz)	512(1850.2MHz)								
	28.71	28.85	28.27								

Table 10.9: The conducted power measurement results for GPRS

GSM 835 MHz												
GPRS (GMSK)	251	190	128	Calculation	251	190	128					
1 Txslot	32.52	32.41	32.30	-9.03dB	23.49	23.38	23.27					
2 Txslots	32.60	31.57	31.45	-6.02dB	26.58	25.55	25.43					
3Txslots	30.55	30.52	30.42	-4.26dB	26.29	26.26	26.16					
4 Txslots	29.62	29.57	29.50	-3.01dB	26.61	26.56	26.49					
			PCS 19	00 MHz								
GPRS (GMSK)	810	661	512	Calculation	810	661	512					
1 Txslot	28.79	28.91	28.33	-9.03dB	19.76	19.88	19.30					
2 Txslots	27.95	28.08	27.58	-6.02dB	21.93	22.06	21.56					
3Txslots	27.34	27.45	26.80	-4.26dB	23.08	23.19	22.54					
4 Txslots	26.45	26.48	26.21	-3.01dB	23.44	23.47	23.20					

NOTES:

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with GPRS 4Txslots for GSM850 and GSM1900.

East China Institute of Telecommunications Page Number : 30 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

¹⁾ Division Factors

10.3. WCDMA Measurement result

Table 10.10: The conducted power for WCDMA Band V

Table 101101 1110 constitution portion 101 1102 in 12 and 1										
WCDMA Band V Result (dBm)										
Mode	ARFCN	Channel 4233	Channel 4182	Channel 4132						
iviode	ARFON	(846.6MHz)	(836.4MHz)	(826.4MHz)						
WCDMA	RMC	21.80	21.71	21.66						
	1	21.15	21.13	21.02						
HCDDA	2	21.24	21.22	21.11						
HSDPA	3	21.20	21.18	21.07						
	4	21.21	21.19	21.08						
	1	21.13	21.11	21.00						
	2	21.21	21.19	21.08						
HSUPA	3	21.18	21.16	21.05						
	4	21.20	21.18	21.07						
	5	21.15	21.13	21.02						

Table 10.11: The conducted power for WCDMA Band II

Table 101111 The contacted power for the blank band in											
WCDMA Band II Result (dBm)											
Mode	ARFCN	Channel 9538	Channel 9400	Channel 9262							
iviode	ARFON	(1907.6MHz)	(1880MHz)	(1852.4MHz)							
WCDMA	RMC	21.13	21.48	21.04							
	1	20.37	20.69	20.29							
HCDDA	2	20.46	20.78	20.38							
HSDPA	3	20.43	20.75	20.35							
	4	20.46	20.78	20.38							
	1	20.33	20.65	20.25							
	2	20.35	20.70	20.27							
HSUPA	3	20.34	20.66	20.26							
	4	20.37	20.69	20.29							
	5	20.33	20.65	20.26							

Note: HSDPA/HSUPA body SAR are not required, because maximum average output power of each RF channel with HSDPA/HSUPA active is not 1/4 dB higher than that measured without HSDPA/HSUPA and the maximum SAR for WCDMA850 and WCDMA1900 are not above 75% of the SAR limit.

East China Institute of Telecommunications Page Number : 31 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

10.4. Wi-Fi and BT Measurement result

Table 10.12: The conducted power for Bluetooth

GFSK					
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)		
Conducted Output Power (dBm)	-0.581	0.551	0.246		
π/4 DQPSK					
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)		
Conducted Output Power (dBm)	-0.578	-0.044	-0.441		
8DPSK					
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)		
Conducted Output Power (dBm)	-0.532	0.009	-0.403		

NOTE:BT standalone SAR are not required, because maximum average output power is less than 10mW.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

SAR head value of BT is 0.026W/Kg. SAR body value of BT is 0.013W/Kg.

East China Institute of Telecommunications Page Number : 32 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

Table 10.13: The Peak conducted power for Wifi

Wifi Results (dBm)															
802.11b (dBm)															
Channel\data rate		1Mb	ps			2Mbps			5.5Mb	ps		111	11Mbps		
1		7.08	3			6.53				6.26			6.4	5	
6		8.26	3			7.98				7.85			7.4	0	
11		6.72	2			6.18				6.70			6.5	9	
802.11g (dBm)		-								-			·		
Channel\data rate	6N	1bps	91	1bps	121	/lbps	18	3Mbps 24		4Mbps 3		6Mbps	48M	bps	54Mbps
1	9.2	23	9.2	20	8.91		8.	74 9.4		46 9.69		.69	9.01		9.24
6	9.3	35	9.4	9.15		5	9.51		9.	9.89		.99	9.38		9.32
11	8.1	14	8.5	52	8.07		8.	8.10 8.		.20 8.91		.91	8.24		8.64
20M 802.11n (dB	m)					,									
Channel\data rate		MCS	0	MCS	S1	MCS	2	MCS	3	MCS4	MCS5		MC	S6	MCS7
1		5.84 5.9		5.92		5.43		5.89		9.47	9.74		9.3	2	9.32
6		5.24		5.36		6.13		6.08		9.75		10.08	9.0	7	9.98
11		5.76		5.17		5.08		5.02		8.97		9.07	9.0	0	8.94

East China Institute of Telecommunications Page Number : 33 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

Table 10.14: The average conducted power for Wifi

Wifi Results (dBm)															
802.11b (dBm)															
Channel\data rate		1Mb	ps			2Mbps			5.5Mb	5.5Mbps			11Mbps		
1		4.72) -			4.23				4.60			4.3	35	
6		4.82	<u> </u>			4.28				4.52			4.	54	
11		3.65	5			3.23				3.09			3.	18	
802.11g (dBm)													•		
Channel\data rate	6M	lbps	91	1bps	121	/lbps	18	Mbps	s 24Mbp		36Mbps		48N	lbps	54Mbps
1	1.9	96	2.3	37	7 2.24		2.5	56 2.5		.54	54 2.71		2.64		2.44
6	2.1	8	2.4	1.85		5	1.92		2.26		2.65		35 2.15		2.08
11	1.9	00	1.2	24	1.05		0.8	.84 3.11		.11	1.62		1.35		1.48
20M 802.11n (dB	m)														
Channel\data rate		MCS	0	MCS	31	MCS	2	MCS3	3	MCS4	MCS5		M	CS6	MCS7
1		2.22		2.15		2.11		2.65		2.28		2.94	2.8	32	2.72
6		2.12		2.38		2.24		2.31		2.63		2.75	2.7	70	2.55
11		0.96		1.12		1.35		1.65		1.72		1.79	1.5	59	1.71

SAR is not required for 802.11g/n channels if the output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels, and for each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 0.25dB higher than those measured at the lowest data rate. According to the above conducted power, the EUT should be tested for "802.11b, 1Mbps, channel 6".

East China Institute of Telecommunications Page Number : 34 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

11. Simultaneous TX SAR Considerations

11.1. Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

11.2. Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

Page Number : 35 of 205 Report Issued Date : August 16, 2014

11.3. Standalone SAR Test Exclusion Considerations

Standalone 1-g head or bodySAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 10mW.

(max. power of channel, including tune-up tolerance, mW) *√Frequency (GHz) ≤3.0 (min. test separation distance, mm)

Based on the above equation, Bluetooth SAR was not required: Evaluation=0.495<3.0

Based on the above equation, WiFi SAR was not required: Evaluation=1.970<3.0

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 36 of 205 Report Issued Date : August 16, 2014

Report No.: 2014SAR0089

12. Evaluation of Simultaneous

Table 12.1: Summary of Transmitters

Report No.: 2014SAR0089

Band/Mode	Frequency (GHz)	SAR test exclusion threshold(mW)	RF output power (mW)	
Bluetooth	2.41	10	1.585	
2.4GHz WLAN 802.11 b/g	2.45	10	6.310	

Table12.2 Simultaneous transmission SAR

Simult	aneous [·]	Transmissi	on SAR(W	/Kg)						
Toot D	osition		GSM	GSM	WCDMA	WCDMA	WCDMA	WIFI	ВТ	SUM
iest Po	osition		850	1900	ВV	BII	B IV	VVIFI	note	SUIVI
	Left	Cheek	0.695	0.933	0.605	1.078	0.998	0.027	0.026	1.105
Head	Leit	Tilt 15°	0.261	0.164	0.301	0.195	0.302	0.0048	0.026	0.328
пеац	Right	Cheek	0.541	0.666	0.637	0.536	0.679	0.022	0.026	0.705
	Rigiti	Tilt 15°	0.283	0.278	0.336	0.206	0.326	0.026	0.026	0.362
	Phantom Side		0.549	0.998	0.283	0.297	0.768	0.034	0.013	1.032
	Ground	l Side	1.168	1.090	0.666	0.512	0.811	0.147	0.013	1.315
Dody	Left Sic	de	0.439	0.249	0.371	0.176	0.251	0.026	0.013	0.465
Body	Right S	ide	0.397	0.271	0.311	0.118	0.182	0.062	0.013	0.459
	Top Sic	Top Side		N/A	N/A	N/A	N/A	0.0023	0.013	N/A
	Bottom	Side	0.124	0.861	0.072	0.346	0.460	0.0035	0.013	0.874

According to the conducted power measurement result, we can draw the conclusion that: stand-alone SAR for WiFi should be performed. Then, simultaneous transmission SAR for WiFi/BT is considered with measurement results of GSM/WCDMA and WiFi/BT. According to the above table, the sum of reported SAR values for GSM and WiFi<1.6W/kg. So the simultaneous transmission SAR isnot required for WiFi/BT transmitter.

East China Institute of Telecommunications Page Number : 37 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

13. SAR Test Result

Table 13.1: Duty Cycle

D	outy Cycle
Speech for GSM835/1900	1:8.3
GPRS for GSM835/1900	1:2
WCDMA850/1900 and WiFi	1:1

Table 13.2: SAR Values(GSM 835 MHz Band - Head)

Frequ	ency			Maximum	Measured		Measured	Reported	Power
		Side	Test Position	allowed	average	Scaling factor	SAR(1g)	SAR(1g)(Drift
MHz	Ch.		Position	Power (dBm)	power (dBm)	iacioi	(W/kg)	W/kg)	(dB)
836.6	190	Left	Touch	33	32.36	1.159	0.600	0.695	-0.14
836.6	190	Left	Tilt	33	32.36	1.159	0.225	0.261	-0.04
836.6	190	Right	Touch	33	32.36	1.159	0.467	0.541	-0.11
836.6	190	Right	Tilt	33	32.36	1.159	0.244	0.283	-0.01
824.2	128	Left	Touch	33	32.25	1.189	0.399	0.474	0.07
848.8	251	Left	Touch	33	32.47	1.130	0.592	0.669	0.06
					SIM 2				
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 13.3: SAR Values (GSM 835 MHz Band-Body)

	Table 13.3. SAR values (GSW 633 WITZ Ballu-Bouy)											
Frequ	ency	Mode	Test	Maximum allowed	Measured average	Scaling	Measured	Reported	Power			
MHz	Ch.	(number of timeslots)	Position	Power (dBm)	power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Drift (dB)			
836.6	190	GPRS (4)	Phantom	30	29.57	1.104	0.497	0.549	-0.08			
836.6	190	GPRS (4)	Ground	30	29.57	1.104	0.992	1.095	0.06			
836.6	190	GPRS (4)	Left	30	29.57	1.104	0.398	0.439	0.06			
836.6	190	GPRS (4)	Right	30	29.57	1.104	0.360	0.397	0.07			
836.6	190	GPRS (4)	Bottom	30	29.57	1.104	0.112	0.124	0.07			
824.2	128	GPRS (4)	Ground	30	29.50	1.122	0.922	1.035	0.07			
848.8	251	GPRS (4)	Ground	30	29.62	1.091	1.070	1.168	0.07			
848.8	251	Speech	Ground (Headset)	33	32.25	1.189	0.399	0.474	0.15			
				S	IM 2							
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			

Note: The distance between the EUT and the phantom bottom is 10mm.

East China Institute of Telecommunications Page Number : 38 of 205 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

Table 13.4: SAR Values(GSM 1900 MHz Band - Head)

Freque	ency			Maximum	Measured	0 "	Measured	Reported	Power
MHz	Ch.	Side	Test Position	allowed Power	average power	Scaling factor	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Drift (dB)
				(dBm)	(dBm)		(**************************************	9)	(5.2)
1880	661	Left	Touch	29.5	28.85	1.161	0.716	0.832	0.08
1880	661	Left	Tilt	29.5	28.85	1.161	0.141	0.164	0.10
1880	661	Right	Touch	29.5	28.85	1.161	0.573	0.666	-0.08
1880	661	Right	Tilt	29.5	28.85	1.161	0.239	0.278	0.06
1909.8	810	Left	Touch	29.5	28.71	1.199	0.778	0.933	0.14
1850.2	512	Left	Touch	29.5	28.27	1.327	0.620	0.823	-0.02
					SIM 2				
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 13.5: SAR Values (GSM 1900 MHz Band-Body)

	Table 13.5: SAR values (GSM 1900 MHZ Band-Body)												
Freque	ency	Mode		Maximum	Measured		Measured	Reported	Power				
		(number of	Test	allowed	average	Scaling	SAR(1g)	SAR(1g)(Drift				
MHz	Ch.	timeslots)	Position	Power	power	factor	(W/kg)	W/kg)	(dB)				
				(dBm)	(dBm)		(tt//tg/	11/11.97	(42)				
1880	661	GPRS (4)	Phantom	26.5	26.48	1.005	0.878	0.882	-0.08				
1880	661	GPRS (4)	Ground	26.5	26.48	1.005	1.01	1.015	-0.03				
1880	661	GPRS (4)	Left	26.5	26.48	1.005	0.248	0.249	0.16				
1880	661	GPRS (4)	Right	26.5	26.48	1.005	0.270	0.271	0.10				
1880	661	GPRS (4)	Bottom	26.5	26.48	1.005	0.814	0.818	0.07				
1909.8	810	GPRS (4)	Phantom	26.5	26.45	1.012	0.844	0.854	-0.00				
1850.2	512	GPRS (4)	Phantom	26.5	26.21	1.069	0.934	0.998	0.11				
1909.8	810	GPRS (4)	Ground	26.5	26.45	1.012	0.972	0.983	-0.02				
1850.2	512	GPRS (4)	Ground	26.5	26.21	1.069	1.02	1.090	-0.02				
1909.8	810	GPRS (4)	Bottom	26.5	26.45	1.012	0.799	0.808	0.01				
1850.2	512	GPRS (4)	Bottom	26.5	26.21	1.069	0.805	0.861	0.01				
1850.2	512	Speech	Bottom	29.5	28.27	1.327	0.294	0.390	0.09				
1000.2	312	Speedii	(Headset)	29.5	20.21	1.321	0.294	0.390	0.09				
				SI	M 2								
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				

Note: The distance between the EUT and the phantom bottom is 10mm.

East China Institute of Telecommunications Page Number : 39 of 205 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

Table 13.6: SAR Values(WCDMA 850 MHz Band - Head)

Frequ	iency		Tast	Maximum	Measured	O a a line as	Measured	Reported	D
MHz	Ch.	Side	Test Position	allowed Power (dBm)	average power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Power Drift (dB)
836.4	4182	Left	Touch	22.5	21.71	1.178	0.504	0.605	-0.13
836.4	4182	Left	Tilt	22.5	21.71	1.178	0.251	0.301	0.05
836.4	4182	Right	Touch	22.5	21.71	1.178	0.531	0.637	-0.12
836.4	4182	Right	Tilt	22.5	21.71	1.178	0.280	0.336	0.04
846.6	4233	Right	Touch	22.5	21.8	1.175	0.530	0.623	0.14
826.4	4132	Right	Touch	22.5	21.66	1.213	0.474	0.575	-0.08

Table 13.7: SAR Values (WCDMA 850 MHz Band-Body)

				<u> </u>				
Frequ	ency	Test	Maximum allowed	Measured	Scaling	Measured	Reported	Power
MHz	Ch.	Position	Power (dBm)	average power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Drift (dB)
836.4	4182	Phantom	22.5	21.71	1.178	0.236	0.283	-0.04
836.4	4182	Ground	22.5	21.71	1.178	0.457	0.548	-0.03
836.4	4182	Left	22.5	21.71	1.178	0.309	0.371	0.12
836.4	4182	Right	22.5	21.71	1.178	0.259	0.311	0.12
836.4	4182	Bottom	22.5	21.71	1.178	0.06	0.072	-0.02
846.6	4233	Ground	22.5	21.8	1.175	0.548	0.644	0.04
826.4	4132	Ground	22.5	21.66	1.213	0.549	0.666	0.05
826.4	4132	Ground (Headset)	22.5	21.66	1.213	0.445	0.540	0.04

Note: The distance between the EUT and the phantom bottom is 10mm

East China Institute of Telecommunications Page Number : 40 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

Table 13.8: SAR Values(WCDMA1900 MHz Band - Head)

Frequ	ency		T4	Maximum	Measured	O Iii	Measured	Reported	D
MHz	Ch.	Side	Test Position	allowed Power (dBm)	average power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Power Drift (dB)
1880	9400	Left	Touch	21.5	21.48	1.005	0.838	0.842	0.04
1880	9400	Left	Tilt	21.5	21.48	1.005	0.194	0.195	0.03
1880	9400	Right	Touch	21.5	21.48	1.005	0.534	0.536	0.06
1880	9400	Right	Tilt	21.5	21.48	1.005	0.205	0.206	0.10
1907.6	9538	Left	Touch	21.5	21.13	1.089	0.981	1.068	0.06
1852.4	9262	Left	Touch	21.5	21.04	1.112	0.860	0.956	0.05

Table 13.9: SAR Values (WCDMA1900 MHz Band-Body)

Frequ	ency	Test	Maximum allowed	Measured average	Scaling	Measured	Reported	Power
MHz	Ch.	Position	Power (dBm)	power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Drift (dB)
1880	9400	Phantom	21.5	21.48	1.005	0.296	0.297	0.13
1880	9400	Ground	21.5	21.48	1.005	0.367	0.369	-0.00
1880	9400	Left	21.5	21.48	1.005	0.175	0.176	0.11
1880	9400	Right	21.5	21.48	1.005	0.117	0.118	0.11
1880	9400	Bottom	21.5	21.48	1.005	0.344	0.346	-0.09
1907.6	9538	Ground	21.5	21.13	1.089	0.470	0.512	-0.12
1852.4	9262	Ground	21.5	21.04	1.112	0.370	0.411	-0.01
1907.6	9538	Phantom (Headset)	21.5	21.13	1.089	0.412	0.449	-0.05

Note: The distance between the EUT and the phantom bottom is 10mm.

East China Institute of Telecommunications Page Number : 41 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

Table 13.10: SAR Values (Wi-Fi 802.11b - Head)

Frequ	ency		T1	Maximum	Measured	0	Measured	Reported	Power
MHz	Ch.	Side	Test Position	allowed Power (dBm)	average power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Drift (dB)
2437	6	Left	Touch	5.0	4.82	1.04	0.026	0.027	-0.14
2437	6	Left	Tilt	5.0	4.82	1.04	0.00461	0.0048	0.14
2437	6	Right	Touch	5.0	4.82	1.04	0.021	0.022	0.10
2437	6	Right	Tilt	5.0	4.82	1.04	0.025	0.026	0.18

Table 13.11: SAR Values (Wi-Fi 802.11b - Body)

Frequency		Test	Maximum allowed	Measured	Scaling	Measured	Reported	Power
MHz	Ch.	Position	Power (dBm)	average power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Drift (dB)
2437	6	Phantom	5.0	4.82	1.04	0.033	0.034	-0.03
2437	6	Ground	5.0	4.82	1.04	0.141	0.147	0.10
2437	6	Left	5.0	4.82	1.04	0.025	0.026	0.01
2437	6	Right	5.0	4.82	1.04	0.059	0.062	0.13
2437	6	Тор	5.0	4.82	1.04	0.00221	0.0023	-0.11
2437	6	Bottom	5.0	4.82	1.04	0.00337	0.0035	0.17

Note: The distance between the EUT and the phantom bottom is 10mm.

East China Institute of Telecommunications Page Number : 42 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

14. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SARprobe calibration point and tissue-equivalent medium used for the device measurements. When both headand body tissue-equivalent media are required for SAR measurements in a frequency band, the variabilitymeasurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeatedmeasurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeatedmeasurements is > 1.20.

Table 14.1: SAR Measurement Variability for Head Value (1g)

Frequency		Side	Test Original		First Repeated	Reported	The Ratio		
MHz	Ch.	Side	Position	SAR (W/kg)	SAR (W/kg)	SAR(1g)(W/kg)	THE Natio		
1880	661	Left	Touch	0.716	0.704	0.848	1.02		
1909.8	810	Left	Touch	0.778	0.765	0.956	1.02		
1850.2	512	Left	Touch	0.620	0.619	0.851	1.00		
1880	9400	Left	Touch	0.838	0.837	0.841	1.00		
1907.6	9538	Left	Touch	0.981	0.990	1.078	1.01		
1852.4	9262	Left	Touch	0.860	0.863	0.959	1.00		
SIM 2									
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		

Note: According to the KDB 865664 D01repeated measurement is not required when the original highest measured SAR is < 0.8 W/kg.

East China Institute of Telecommunications Page Number : 43 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

Table 14.2: SAR Measurement Variability for Body Value (1g)

Frequency					Original	First			
MHz	Ch.	Mode(number of timeslots)	Test Position	Spacing (mm)	Original SAR (W/kg)	Repeated SAR (W/kg)	Reported SAR(1g)(W/kg)	The Ratio	
836.6	190	GPRS (4)	Ground	10	0.992	0.982	1.003	1.01	
824.2	128	GPRS (4)	Ground	10	0.922	0.930	0.956	1.01	
848.8	251	GPRS (4)	Ground	10	1.070	1.070	1.075	1.00	
1880	661	GPRS (4)	Phantom	10	0.878	0.883	0.899	1.01	
1880	661	GPRS (4)	Ground	10	1.01	1.02	1.039	1.01	
1880	661	GPRS (4)	Bottom	10	0.814	0.766	0.780	1.06	
1909.8	810	GPRS (4)	Phantom	10	0.844	0.844	0.882	1.00	
1850.2	512	GPRS (4)	Phantom	10	0.934	0.943	1.034	1.01	
1909.8	810	GPRS (4)	Ground	10	0.972	0.970	1.013	1.00	
1850.2	512	GPRS (4)	Ground	10	1.02	1.03	1.140	1.01	
1909.8	810	GPRS (4)	Bottom	10	0.799	0.787	0.822	1.02	
1850.2	512	GPRS (4)	Bottom	10	0.805	0.776	0.891	1.04	
SIM 2									
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Note: According to the KDB 865664 D01repeated measurement is not required when the original highest measured SAR is < 0.8 W/kg.

East China Institute of Telecommunications Page Number : 44 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

15. Measurement Uncertainty

Error Description	Unc.	Prob.	Div.	Ci	Ci	Std. Unc	Std.Unc	Vi
·	value,	Dist.		1g	10g			V _{eff}
	±%					±%,1g	±%,10g	
Measurement System								
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	0.5	R	$\sqrt{3}$	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	2.6	R	$\sqrt{3}$	0.7	0.7	1.1	1.1	∞
Boundary Effects	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Linearity	0.6	R	$\sqrt{3}$	1	1	0.3	0.3	∞
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	0.7	N	1	1	1	0.7	0.7	∞
Response Time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner	1.5	R	$\sqrt{3}$	1	1	0.9	0.9	∞
Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Test Sample Related								
Device Positioning	2.9	N	1	1	1	2.9	2.9	145
Device Holder	3.6	N	1	1	1	3.6	3.6	5
Diople								
Power Drift	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Dipole Positioning	2.0	N	1	1	1	2.0	2.0	∞
Dipole Input Power	5.0	N	1	1	1	5.0	5.0	∞
Phantom and Setup								
Phantom Uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid Conductivity	2.5	N	1	0.64	0.43	1.6	1.1	∞
(meas.)	2.0	l N	'	0.04	0.40	1.0		
Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	∞
1								
Combined Std						±11.2%	±10.9%	387
Uncertainty								
Expanded Std						±22.4	±21.8	
Uncertainty						%	%	

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 45 of 205 Report Issued Date : August 16, 2014

16. Main Test Instrument

Table 16.1: List of Main Instruments

Report No.: 2014SAR0089

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	N5242A	MY51221755	Jan 08, 2014	One year
02	Power meter	NRVD	102257 Aug 31, 2013		One year
03	Power sensor	NRV-Z5	100644,100241	Aug 31, 2013	One year
04	Signal Generator	E4438C	MY49072044	Jan 08, 2014	One Year
05	Amplifier	NTWPA-0086010F	12023024	No Calibration Requeste	ed
06	Coupler	778D	MY48220551	Aug 23, 2013	One year
07	BTS	E5515C	MY50266468	Jan 08, 2014	One year
08	E-field Probe	ES3DV3	3252	Aug 5, 2013	One year
09	E-field Probe	EX3DV4	3754	Aug 8, 2013	One year
10	DAE	SPEAG DAE4	1244	Jul 9, 2013	One year
11	Dipole Validation Kit	SPEAG D835V2	4d112	Oct 9, 2013	One year
12	Dipole Validation Kit	SPEAG D1900V2	5d134	Jul 12, 2013	One year
13	Dipole Validation Kit	SPEAG D2450V2	858	Jul 13, 2013	One year

East China Institute of Telecommunications Page Number : 46 of 205 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

: 47 of 205

:August 16, 2014

Page Number

Report Issued Date

ANNEX A. GRAPH RESULTS

GSM 850MHz Left Cheek Middle

Date/Time: 2014/6/23 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919$ S/m; $\varepsilon_r = 40.986$; $\rho = 1000$ kg/m³

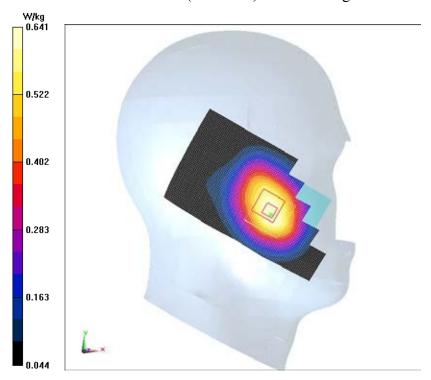
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

GSM 850MHz Left Cheek Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.667 W/kg

GSM 850MHz Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.726 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.793 W/kg

SAR(1 g) = 0.600 W/kg; SAR(10 g) = 0.423 W/kgMaximum value of SAR (measured) = 0.641 W/kg

: 48 of 205

:August 16, 2014

Page Number

Report Issued Date

GSM 850MHz Left Tilt Middle

Date/Time: 2014/6/23 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919$ S/m; $\varepsilon_r = 40.986$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

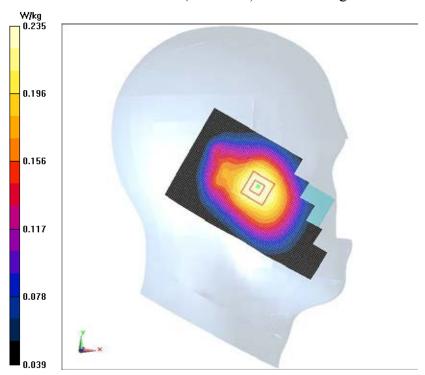
Communication System: GSM 850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

GSM 850MHz Left Tilt Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.245 W/kg


GSM 850MHz Left Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.177 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.256 W/kg

SAR(1 g) = 0.225 W/kg; SAR(10 g) = 0.168 W/kgMaximum value of SAR (measured) = 0.235 W/kg

: 49 of 205

:August 16, 2014

Page Number

Report Issued Date

GSM 850MHz Right Cheek Middle

Date/Time: 2014/6/23 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919 \text{ S/m}$; $\varepsilon_r = 40.986$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

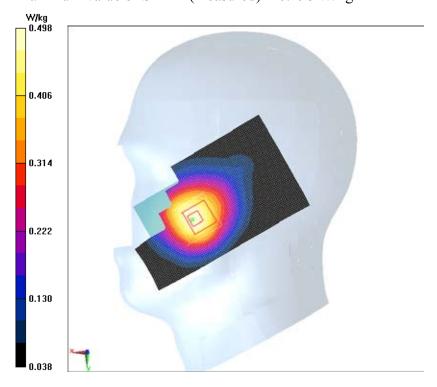
Communication System: GSM 850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

GSM 850MHz Right Cheek Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.501 W/kg


GSM 850MHz Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.896 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.595 W/kg

SAR(1 g) = 0.467 W/kg; SAR(10 g) = 0.338 W/kgMaximum value of SAR (measured) = 0.498 W/kg

: 50 of 205

:August 16, 2014

Page Number

Report Issued Date

GSM 850MHz Right Tilt Middle

Date/Time: 2014/6/23 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919$ S/m; $\varepsilon_r = 40.986$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

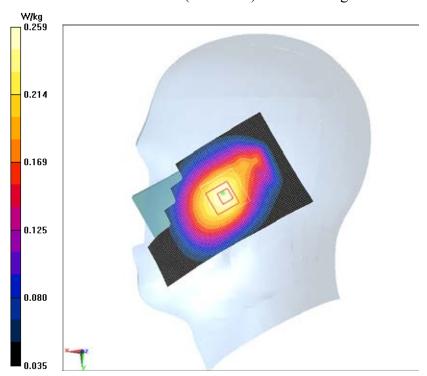
Communication System: GSM 850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

GSM 850MHz Right Tilt Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.261 W/kg


GSM 850MHz Right Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.291 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.285 W/kg

SAR(1 g) = 0.244 W/kg; SAR(10 g) = 0.181 W/kgMaximum value of SAR (measured) = 0.259 W/kg

: 51 of 205

:August 16, 2014

Page Number

Report Issued Date

GSM 850MHz Left Cheek Low

Date/Time: 2014/6/23 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 41.32$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

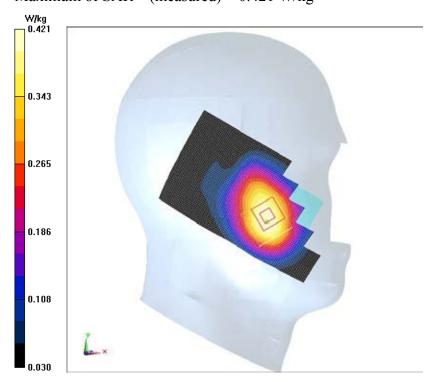
Communication System: GSM 850MHz; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

GSM 850MHz Left Cheek Low/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.442 W/kg


GSM 850MHz Left Cheek Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.829 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.569 W/kg

SAR(1 g) = 0.399 W/kg; SAR(10 g) = 0.273 W/kgMaximum of SAR (measured) = 0.421 W/kg

: 52 of 205

:August 16, 2014

Page Number

Report Issued Date

GSM 850MHz Left Cheek High

Date/Time: 2014/6/23 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 849 MHz; $\sigma = 0.929$ S/m; $\varepsilon_r = 40.788$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

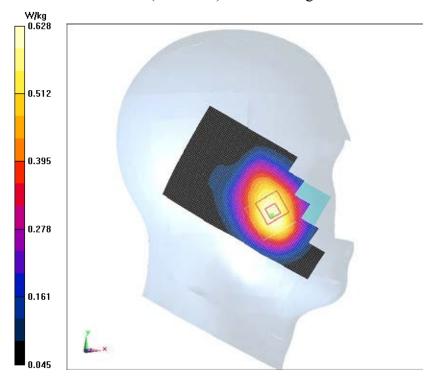
Communication System: GSM 850MHz; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

GSM 850MHz Left Cheek High/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.654 W/kg


GSM 850MHz Left Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.008 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.820 W/kg

SAR(1 g) = 0.592 W/kg; SAR(10 g) = 0.409 W/kgMaximum of SAR (measured) = 0.628 W/kg

: 53 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 850MHz 4TS Phantom Mode Middle

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

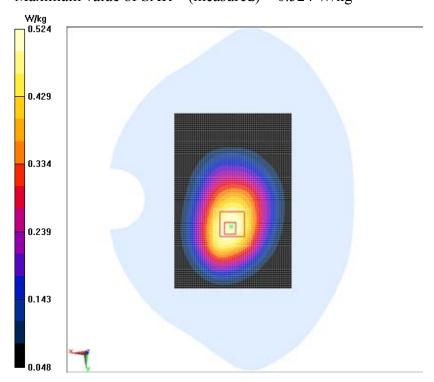
Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013 **GPRS 850MHz 4TS Phantom Mode Middle/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.535 W/kg


GPRS 850MHz 4TS Phantom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.739 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.649 W/kg

SAR(1 g) = 0.497 W/kg; SAR(10 g) = 0.364 W/kgMaximum value of SAR (measured) = 0.524 W/kg

: 54 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 850MHz 4TS Ground Mode Middle

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\varepsilon_r = 55.152$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

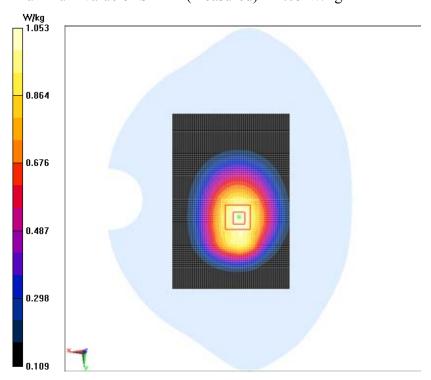
Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013 **GPRS 850MHz 4TS Ground Mode Middle/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.04 W/kg


GPRS 850MHz 4TS Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.067 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.992 W/kg; SAR(10 g) = 0.732 W/kgMaximum value of SAR (measured) = 1.05 W/kg

: 55 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 850MHz 4TS Left Mode Middle

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\varepsilon_r = 55.152$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle:

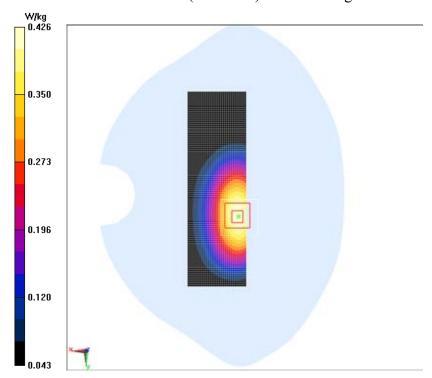
1:2

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

GPRS 850MHz 4TS Left Mode Middle/Area Scan (31x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.424 W/kg


GPRS 850MHz 4TS Left Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.227 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.532 W/kg

SAR(1 g) = 0.398 W/kg; SAR(10 g) = 0.278 W/kgMaximum value of SAR (measured) = 0.426 W/kg

: 56 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 850MHz 4TS Right Mode Middle

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\varepsilon_r = 55.152$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013 **GPRS 850MHz 4TS Right Mode Middle/Area Scan (31x101x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.387 W/kg

GPRS 850MHz 4TS Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.128 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.468 W/kg

SAR(1 g) = 0.360 W/kg; SAR(10 g) = 0.257 W/kgMaximum value of SAR (measured) = 0.384 W/kg

: 57 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 850MHz 4TS Bottom Mode Middle

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

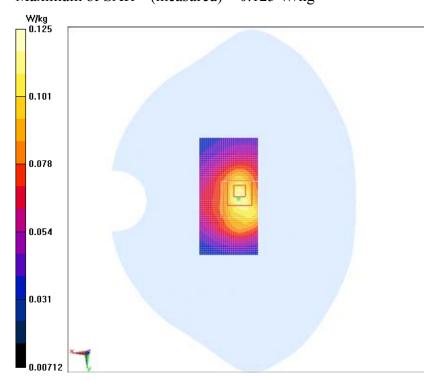
Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013 **GPRS 850MHz 4TS Bottom Mode Middle/Area Scan (31x61x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.118 W/kg


GPRS 850MHz 4TS Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.971 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.212 W/kg

SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.066 W/kgMaximum of SAR (measured) = 0.125 W/kg

GPRS 850MHz 4TS Ground Mode Low

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.993 \text{ S/m}$; $\varepsilon_r = 55.149$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz GPRS 4TS; Frequency: 824.2 MHz; Duty Cycle:

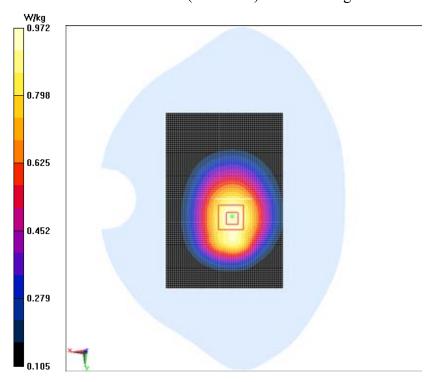
1:2

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

GPRS 850MHz 4TS Ground Mode Low/Area Scan (61x91x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.974 W/kg


GPRS 850MHz 4TS Ground Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.818 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.922 W/kg; SAR(10 g) = 0.684 W/kgMaximum value of SAR (measured) = 0.972 W/kg

Page Number : 58 of 205 Report Issued Date : August 16, 2014

: 59 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 850MHz 4TS Ground Mode high

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 849 MHz; $\sigma = 1.015$ S/m; $\varepsilon_r = 55.205$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz GPRS 4TS (0); Frequency: 848.8 MHz; Duty

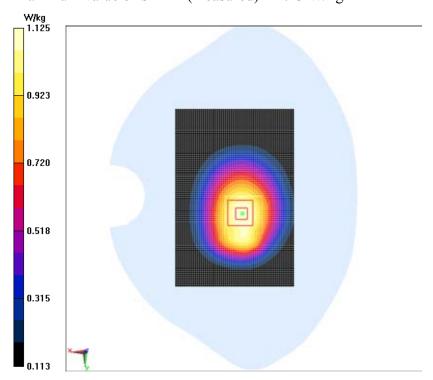
Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

GPRS 850MHz 4TS Ground Mode high/Area Scan (61x91x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.13 W/kg


GPRS 850MHz 4TS Ground Mode high/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.195 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.792 W/kgMaximum value of SAR (measured) = 1.13 W/kg

: 60 of 205

:August 16, 2014

Page Number

Report Issued Date

GSM 850MHz Ground Mode High With Headset

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 849 MHz; $\sigma = 1.015$ S/m; $\varepsilon_r = 55.205$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

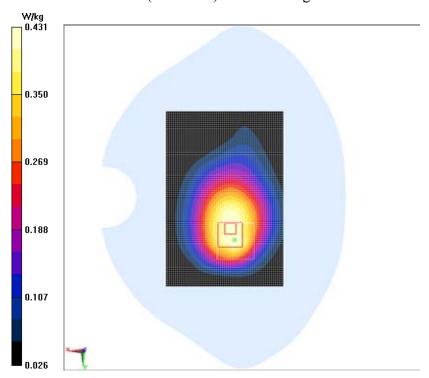
Communication System: GSM Professional 850MHz; Frequency: 848.8 MHz; Duty Cycle:

1:8.3

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013 **GSM 850MHz Ground Mode High With Headset/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.437 W/kg


GSM 850MHz Ground Mode High With Headset/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.101 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.541 W/kg

SAR(1 g) = 0.399 W/kg; SAR(10 g) = 0.280 W/kgMaximum of SAR (measured) = 0.431 W/kg

: 61 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 850MHz 4TS Ground Mode Middle 2

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\varepsilon_r = 55.152$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

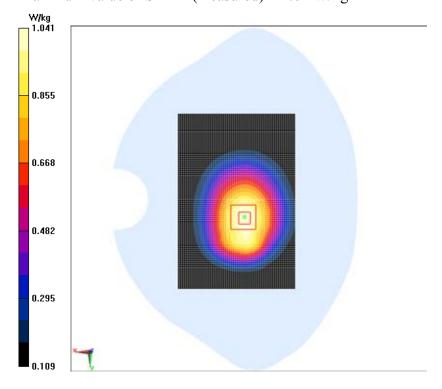
Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013 **GPRS 850MHz 4TS Ground Mode Middle 2/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.04 W/kg


GPRS 850MHz 4TS Ground Mode Middle 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.898 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.982 W/kg; SAR(10 g) = 0.727 W/kgMaximum value of SAR (measured) = 1.04 W/kg

: 62 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 850MHz 4TS Ground Mode Low 2

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.993$ S/m; $\varepsilon_r = 55.149$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

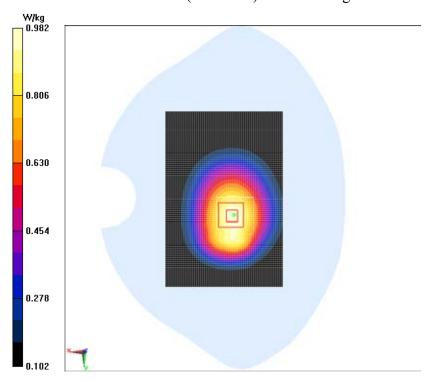
Communication System: GSM 850MHz GPRS 4TS; Frequency: 824.2 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013 **GPRS 850MHz 4TS Ground Mode Low 2/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.969 W/kg


GPRS 850MHz 4TS Ground Mode Low 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.899 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.930 W/kg; SAR(10 g) = 0.685 W/kgMaximum value of SAR (measured) = 0.982 W/kg

: 63 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 850MHz 4TS Ground Mode high 2

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 849 MHz; $\sigma = 1.015$ S/m; $\varepsilon_r = 55.205$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

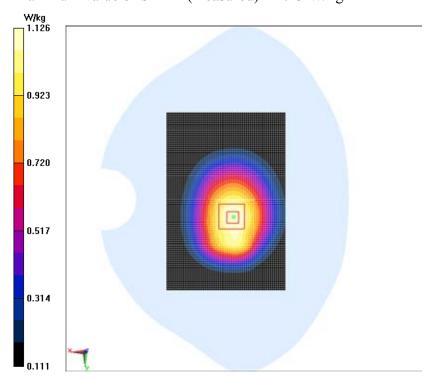
Communication System: GSM 850MHz GPRS 4TS (0); Frequency: 848.8 MHz; Duty

Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013 **GPRS 850MHz 4TS Ground Mode high 2/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.13 W/kg


GPRS 850MHz 4TS Ground Mode high 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.027 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.790 W/kgMaximum value of SAR (measured) = 1.13 W/kg

GSM 1900MHz Left Cheek Middle

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379 \text{ S/m}$; $\varepsilon_r = 39.867$; $\rho = 1000 \text{ kg/m}^3$

Report No.: 2014SAR0089

: 64 of 205

:August 16, 2014

Page Number

Report Issued Date

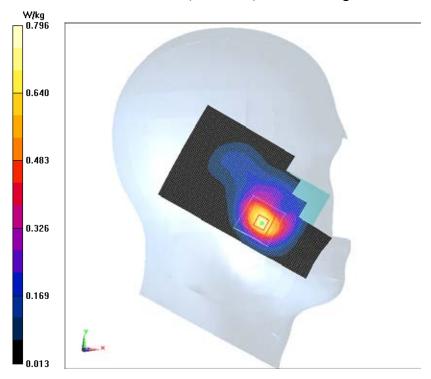
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

GSM 1900MHz Left Cheek Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.765 W/kg

GSM 1900MHz Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.754 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.716 W/kg; SAR(10 g) = 0.384 W/kgMaximum value of SAR (measured) = 0.796 W/kg

: 65 of 205

:August 16, 2014

Page Number

Report Issued Date

GSM 1900MHz Left Tilt Middle

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379 \text{ S/m}$; $\varepsilon_r = 39.867$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

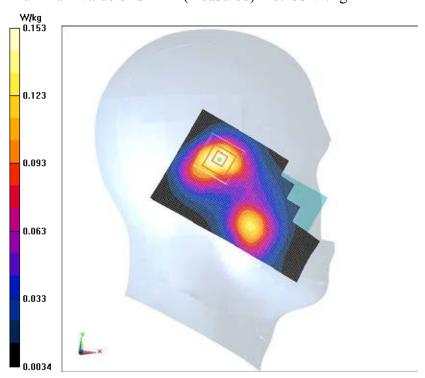
Communication System: GSM 1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

GSM 1900MHz Left Tilt Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.161 W/kg


GSM 1900MHz Left Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.245 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.213 W/kg

SAR(1 g) = 0.141 W/kg; SAR(10 g) = 0.087 W/kgMaximum value of SAR (measured) = 0.153 W/kg

GSM 1900MHz Right Cheek Middle

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379 \text{ S/m}$; $\varepsilon_r = 39.867$; $\rho = 1000 \text{ kg/m}^3$

Report No.: 2014SAR0089

: 66 of 205

:August 16, 2014

Page Number

Report Issued Date

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

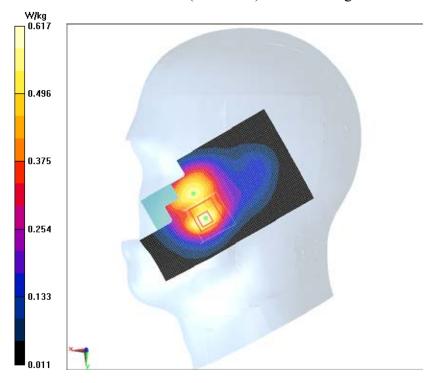
Communication System: GSM 1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

GSM 1900MHz Right Cheek Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.639 W/kg


GSM 1900MHz Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.130 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.861 W/kg

SAR(1 g) = 0.573 W/kg; SAR(10 g) = 0.345 W/kgMaximum value of SAR (measured) = 0.617 W/kg

: 67 of 205

:August 16, 2014

Page Number

Report Issued Date

GSM 1900MHz Right Tilt Middle

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379 \text{ S/m}$; $\varepsilon_r = 39.867$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

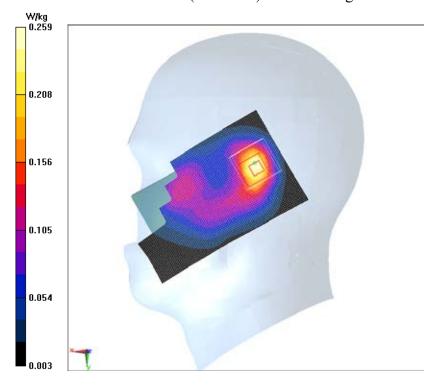
Communication System: GSM 1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

GSM 1900MHz Right Tilt Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.259 W/kg


GSM 1900MHz Right Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.216 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.371 W/kg

SAR(1 g) = 0.239 W/kg; SAR(10 g) = 0.136 W/kgMaximum value of SAR (measured) = 0.259 W/kg

: 68 of 205

:August 16, 2014

Page Number

Report Issued Date

GSM 1900MHz Left Cheek Low

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.372$ S/m; $\varepsilon_r = 40.172$; $\rho =$

 1000 kg/m^3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

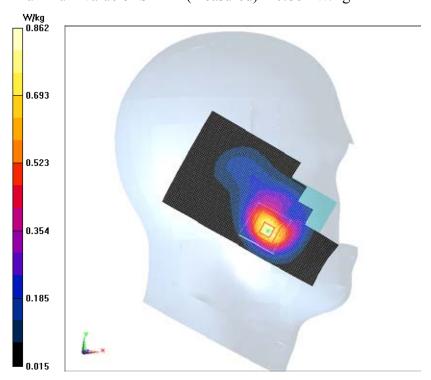
Communication System: GSM 1900MHz; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

GSM 1900MHz Left Cheek Low/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.838 W/kg


GSM 1900MHz Left Cheek Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.021 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.778 W/kg; SAR(10 g) = 0.422 W/kgMaximum value of SAR (measured) = 0.862 W/kg

: 69 of 205

:August 16, 2014

Page Number

Report Issued Date

GSM 1900MHz Left Cheek High

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.393 \text{ S/m}$; $\varepsilon_r = 39.622$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

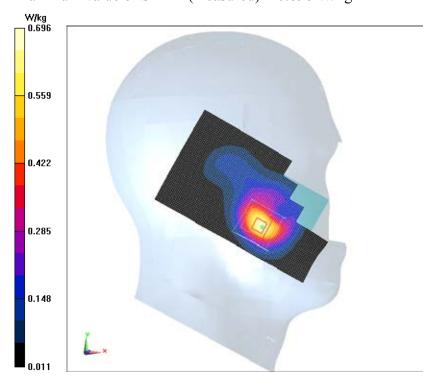
Communication System: GSM 1900MHz; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

GSM 1900MHz Left Cheek High/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.680 W/kg


GSM 1900MHz Left Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.130 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.620 W/kg; SAR(10 g) = 0.335 W/kgMaximum value of SAR (measured) = 0.696 W/kg

GPRS 1900MHz 4TS Phantom Mode Middle

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

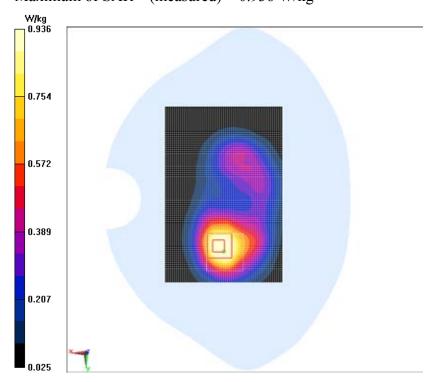
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Phantom Mode Middle/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.01 W/kg


GPRS 1900MHz 4TS Phantom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.974 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 0.878 W/kg; SAR(10 g) = 0.517 W/kgMaximum of SAR (measured) = 0.936 W/kg

Page Number : 70 of 205 Report Issued Date : August 16, 2014

: 71 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Ground Mode Middle

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

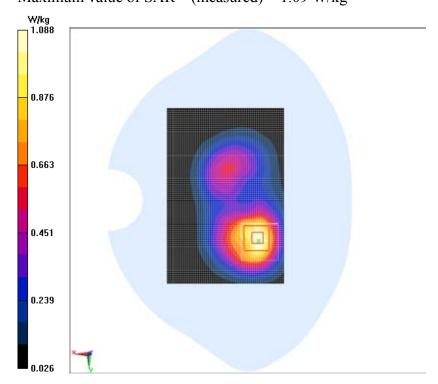
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Ground Mode Middle/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.12 W/kg


GPRS 1900MHz 4TS Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.687 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.602 W/kgMaximum value of SAR (measured) = 1.09 W/kg

GPRS 1900MHz 4TS Left Mode Middle

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

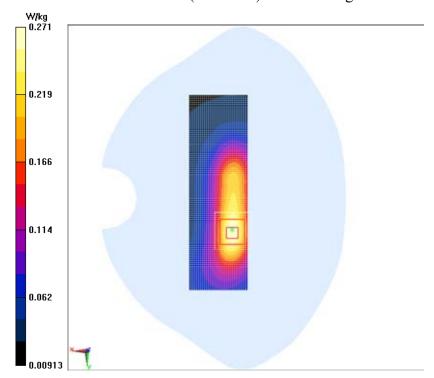
1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013

GPRS 1900MHz 4TS Left Mode Middle/Area Scan (31x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.269 W/kg


GPRS 1900MHz 4TS Left Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.443 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.398 W/kg

SAR(1 g) = 0.248 W/kg; SAR(10 g) = 0.148 W/kgMaximum value of SAR (measured) = 0.271 W/kg

Page Number : 72 of 205
Report Issued Date : August 16, 2014

: 73 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Right Mode Middle

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

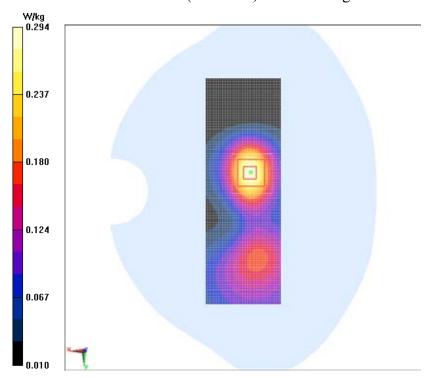
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Right Mode Middle/Area Scan (61x181x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.295 W/kg


GPRS 1900MHz 4TS Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.044 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.427 W/kg

SAR(1 g) = 0.270 W/kg; SAR(10 g) = 0.163 W/kgMaximum value of SAR (measured) = 0.294 W/kg

: 74 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Bottom Mode Middle

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

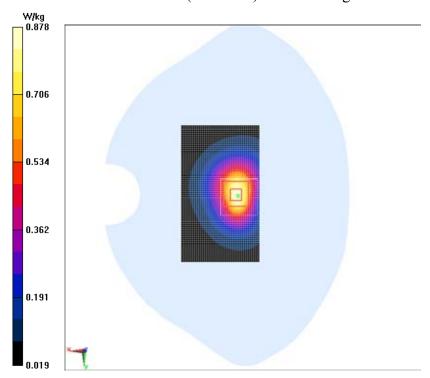
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Bottom Mode Middle/Area Scan (41x71x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.894 W/kg


GPRS 1900MHz 4TS Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.933 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.814 W/kg; SAR(10 g) = 0.462 W/kgMaximum value of SAR (measured) = 0.878 W/kg

: 75 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Phantom Mode Low

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.475$ S/m; $\varepsilon_r = 53.44$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

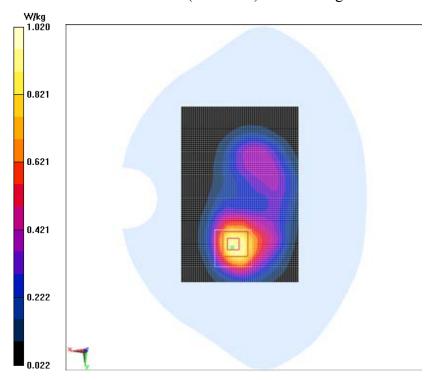
Communication System: GSM 1900MHz GPRS 4TS (0); Frequency: 1850.2 MHz; Duty

Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Phantom Mode Low/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.969 W/kg


GPRS 1900MHz 4TS Phantom Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.441 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.934 W/kg; SAR(10 g) = 0.548 W/kgMaximum value of SAR (measured) = 1.02 W/kg

: 76 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Phantom Mode High

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

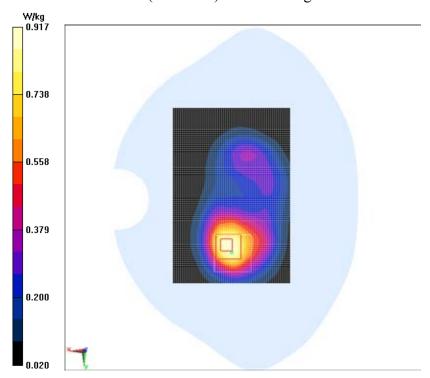
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Phantom Mode High/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.881 W/kg


GPRS 1900MHz 4TS Phantom Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.628 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.844 W/kg; SAR(10 g) = 0.494 W/kgMaximum of SAR (measured) = 0.917 W/kg

: 77 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Ground Mode Low

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.475$ S/m; $\varepsilon_r = 53.44$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 1900MHz GPRS 4TS (0); Frequency: 1850.2 MHz; Duty

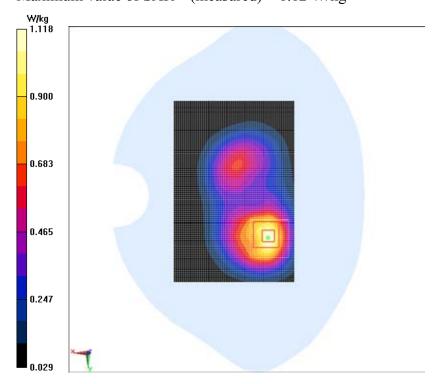
Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013

GPRS 1900MHz 4TS Ground Mode Low/Area Scan (61x91x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.14 W/kg


GPRS 1900MHz 4TS Ground Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.452 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.605 W/kgMaximum value of SAR (measured) = 1.12 W/kg

GPRS 1900MHz 4TS Ground Mode High

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

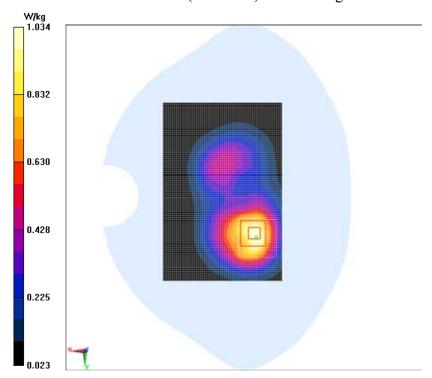
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Ground Mode High/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.08 W/kg


GPRS 1900MHz 4TS Ground Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.906 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.972 W/kg; SAR(10 g) = 0.580 W/kgMaximum value of SAR (measured) = 1.03 W/kg

Page Number : 78 of 205
Report Issued Date : August 16, 2014

GPRS 1900MHz 4TS Bottom Mode Low

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.475$ S/m; $\varepsilon_r = 53.44$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 1900MHz GPRS 4TS (0); Frequency: 1850.2 MHz; Duty

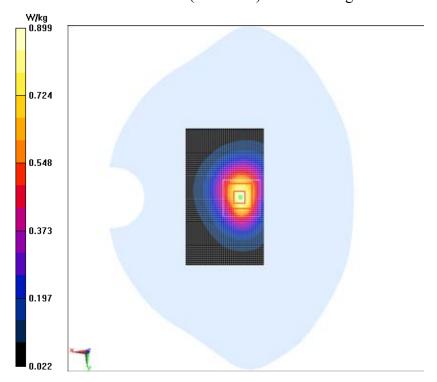
Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013

GPRS 1900MHz 4TS Bottom Mode Low/Area Scan (41x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.880 W/kg


GPRS 1900MHz 4TS Bottom Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.596 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.805 W/kg; SAR(10 g) = 0.459 W/kgMaximum value of SAR (measured) = 0.899 W/kg

: 80 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Bottom Mode High

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.534 \text{ S/m}$; $\varepsilon_r = 53.187$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 1900MHz GPRS 4TS (0); Frequency: 1909.8 MHz; Duty

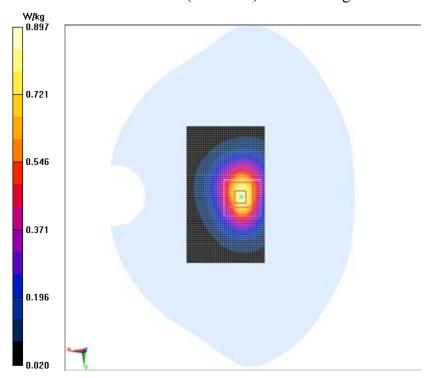
Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013

GPRS 1900MHz 4TS Bottom Mode High/Area Scan (41x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.872 W/kg


GPRS 1900MHz 4TS Bottom Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.939 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.799 W/kg; SAR(10 g) = 0.450 W/kgMaximum value of SAR (measured) = 0.897 W/kg

: 81 of 205

:August 16, 2014

Page Number

Report Issued Date

GSM 1900MHz Ground Mode Low With Headset

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.475$ S/m; $\varepsilon_r = 53.44$; $\rho = 1000$

kg/m³

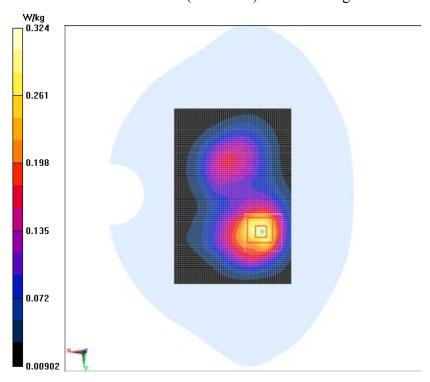
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM Professional 1900MHz; Frequency: 1850.2 MHz; Duty

Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GSM 1900MHz Ground Mode Low With Headset/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.311 W/kg

GSM 1900MHz Ground Mode Low With Headset/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.254 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.476 W/kg

SAR(1 g) = 0.294 W/kg; SAR(10 g) = 0.172 W/kgMaximum value of SAR (measured) = 0.324 W/kg

: 82 of 205

:August 16, 2014

Page Number

Report Issued Date

GSM 1900MHz Left Cheek Middle 2

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379 \text{ S/m}$; $\varepsilon_r = 39.867$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

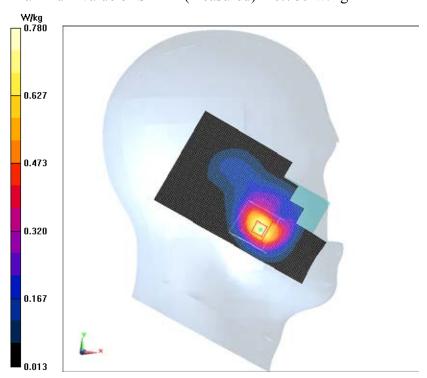
Communication System: GSM 1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

GSM 1900MHz Left Cheek Middle 2/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.757 W/kg


GSM 1900MHz Left Cheek Middle 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.690 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.704 W/kg; SAR(10 g) = 0.380 W/kgMaximum value of SAR (measured) = 0.780 W/kg

: 83 of 205

:August 16, 2014

Page Number

Report Issued Date

GSM 1900MHz Left Cheek Low 2

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.372$ S/m; $\varepsilon_r = 40.172$; $\rho =$

 1000 kg/m^3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

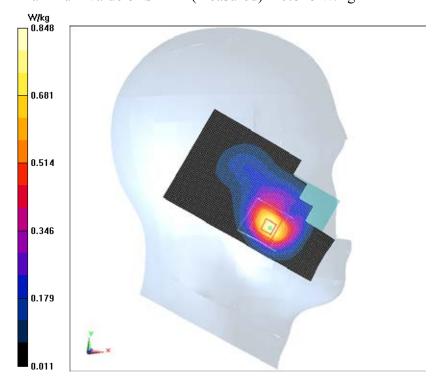
Communication System: GSM 1900MHz; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

GSM 1900MHz Left Cheek Low 2/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.846 W/kg


GSM 1900MHz Left Cheek Low 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.127 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.765 W/kg; SAR(10 g) = 0.415 W/kgMaximum value of SAR (measured) = 0.848 W/kg

: 84 of 205

:August 16, 2014

Page Number

Report Issued Date

GSM 1900MHz Left Cheek High 2

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.393 \text{ S/m}$; $\varepsilon_r = 39.622$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

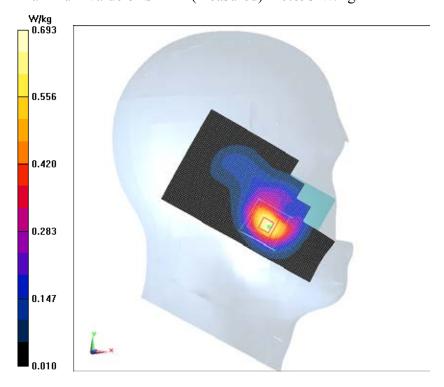
Communication System: GSM 1900MHz; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

GSM 1900MHz Left Cheek High 2/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.680 W/kg


GSM 1900MHz Left Cheek High 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.128 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.619 W/kg; SAR(10 g) = 0.334 W/kgMaximum value of SAR (measured) = 0.693 W/kg

: 85 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Phantom Mode Middle 2

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

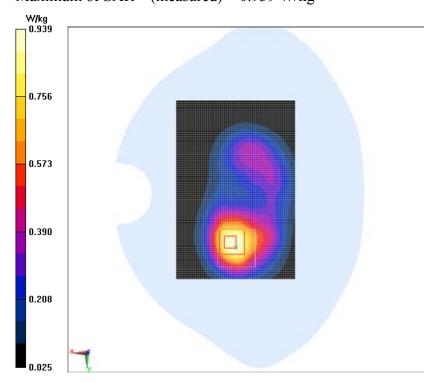
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Phantom Mode Middle 2/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.936 W/kg


GPRS 1900MHz 4TS Phantom Mode Middle 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.399 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.883 W/kg; SAR(10 g) = 0.520 W/kgMaximum of SAR (measured) = 0.939 W/kg

: 86 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Phantom Mode Low 2

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.475 \text{ S/m}$; $\varepsilon_r = 53.44$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

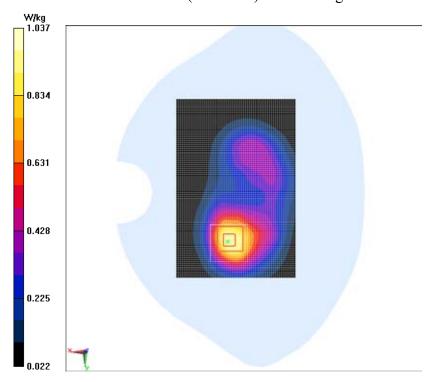
Communication System: GSM 1900MHz GPRS 4TS (0); Frequency: 1850.2 MHz; Duty

Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Phantom Mode Low 2/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.979 W/kg


GPRS 1900MHz 4TS Phantom Mode Low 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.547 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.943 W/kg; SAR(10 g) = 0.551 W/kgMaximum value of SAR (measured) = 1.04 W/kg

: 87 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Phantom Mode High 2

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

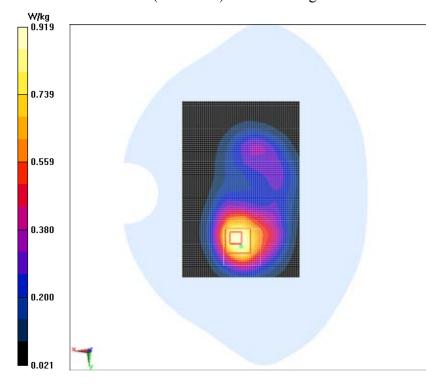
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Phantom Mode High 2/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.876 W/kg


GPRS 1900MHz 4TS Phantom Mode High 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.560 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.844 W/kg; SAR(10 g) = 0.495 W/kgMaximum of SAR (measured) = 0.919 W/kg

: 88 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Ground Mode Middle 2

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

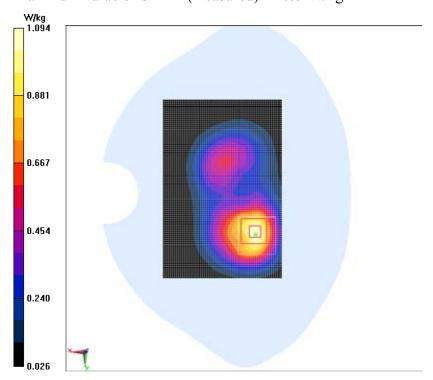
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Ground Mode Middle 2/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.13 W/kg


GPRS 1900MHz 4TS Ground Mode Middle 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.745 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.66 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.602 W/kgMaximum value of SAR (measured) = 1.09 W/kg

: 89 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Ground Mode Low 2

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.475$ S/m; $\varepsilon_r = 53.44$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

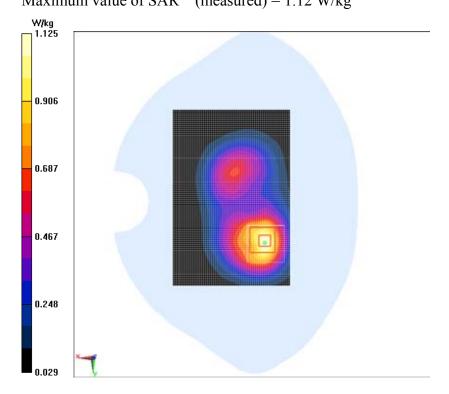
Communication System: GSM 1900MHz GPRS 4TS (0); Frequency: 1850.2 MHz; Duty

Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Ground Mode Low 2/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.14 W/kg


GPRS 1900MHz 4TS Ground Mode Low 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.366 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.609 W/kgMaximum value of SAR (measured) = 1.12 W/kg

: 90 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Ground Mode High 2

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

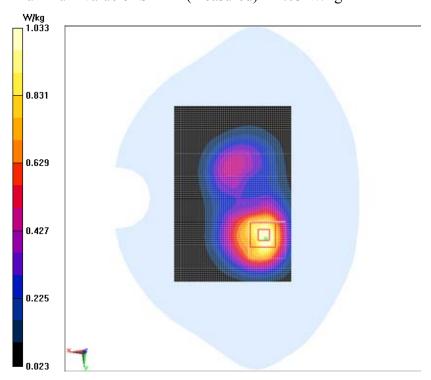
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Ground Mode High 2/Area Scan (61x91x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.08 W/kg


GPRS 1900MHz 4TS Ground Mode High 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.937 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.970 W/kg; SAR(10 g) = 0.579 W/kgMaximum value of SAR (measured) = 1.03 W/kg

: 91 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Bottom Mode Middle 2

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

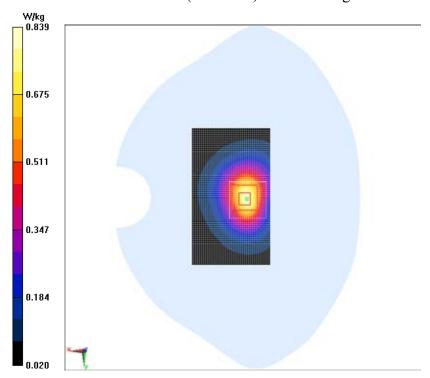
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Bottom Mode Middle 2/Area Scan (41x71x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.822 W/kg


GPRS 1900MHz 4TS Bottom Mode Middle 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.480 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.766 W/kg; SAR(10 g) = 0.437 W/kgMaximum value of SAR (measured) = 0.839 W/kg

GPRS 1900MHz 4TS Bottom Mode Low 2

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.475 \text{ S/m}$; $\varepsilon_r = 53.44$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

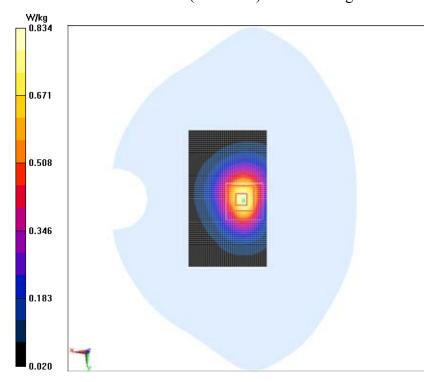
Communication System: GSM 1900MHz GPRS 4TS (0); Frequency: 1850.2 MHz; Duty

Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Bottom Mode Low 2/Area Scan (41x71x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.826 W/kg


GPRS 1900MHz 4TS Bottom Mode Low 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.813 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.776 W/kg; SAR(10 g) = 0.444 W/kgMaximum value of SAR (measured) = 0.834 W/kg

Page Number : 92 of 205 Report Issued Date : August 16, 2014

: 93 of 205

:August 16, 2014

Page Number

Report Issued Date

GPRS 1900MHz 4TS Bottom Mode High2

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.534 \text{ S/m}$; $\varepsilon_r = 53.187$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

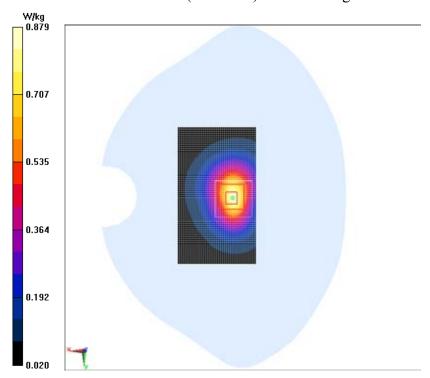
Communication System: GSM 1900MHz GPRS 4TS (0); Frequency: 1909.8 MHz; Duty

Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013 **GPRS 1900MHz 4TS Bottom Mode High2/Area Scan (41x71x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.857 W/kg


GPRS 1900MHz 4TS Bottom Mode High2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.844 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.787 W/kg; SAR(10 g) = 0.446 W/kgMaximum value of SAR (measured) = 0.879 W/kg

: 94 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band5 Left Cheek Middle

Date/Time: 2014/6/23 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919$ S/m; $\varepsilon_r = 40.986$; $\rho = 1000$ kg/m³

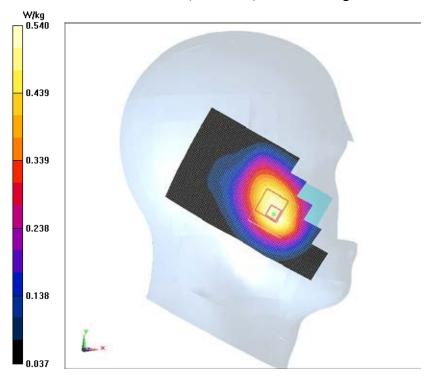
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

WCDMA Band5 Left Cheek Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.562 W/kg

WCDMA Band5 Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.680 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.707 W/kg

SAR(1 g) = 0.504 W/kg; SAR(10 g) = 0.348 W/kgMaximum value of SAR (measured) = 0.540 W/kg

: 95 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band5 Left Tilt Middle

Date/Time: 2014/6/23 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919 \text{ S/m}$; $\varepsilon_r = 40.986$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

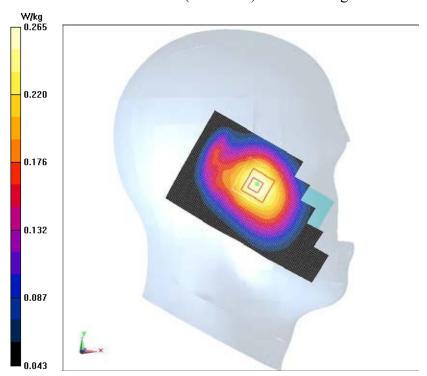
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

WCDMA Band5 Left Tilt Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.268 W/kg


WCDMA Band5 Left Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.388 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.289 W/kg

SAR(1 g) = 0.251 W/kg; SAR(10 g) = 0.186 W/kgMaximum value of SAR (measured) = 0.265 W/kg

: 96 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band5 Right Cheek Middle

Date/Time: 2014/6/23 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919 \text{ S/m}$; $\varepsilon_r = 40.986$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

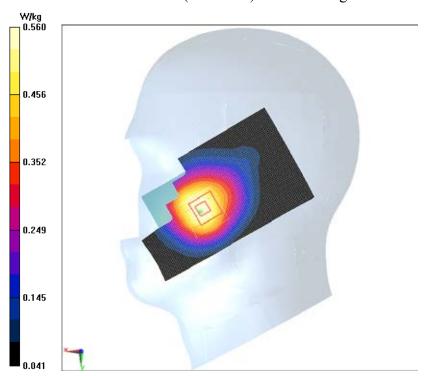
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

WCDMA Band5 Right Cheek Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.570 W/kg


WCDMA Band5 Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.070 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.669 W/kg

SAR(1 g) = 0.531 W/kg; SAR(10 g) = 0.384 W/kgMaximum value of SAR (measured) = 0.560 W/kg

: 97 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band5 Right Tilt Middle

Date/Time: 2014/6/23 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919 \text{ S/m}$; $\varepsilon_r = 40.986$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

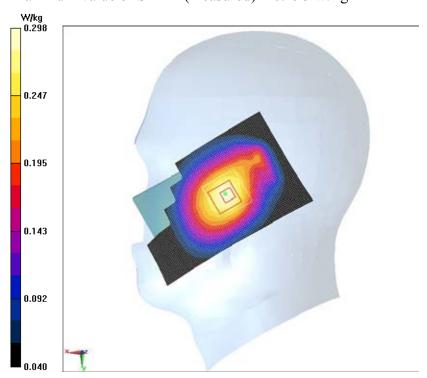
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

WCDMA Band5 Right Tilt Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.296 W/kg


WCDMA Band5 Right Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.109 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.330 W/kg

SAR(1 g) = 0.280 W/kg; SAR(10 g) = 0.206 W/kgMaximum value of SAR (measured) = 0.298 W/kg

: 98 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band5 Right Cheek Low

Date/Time: 2014/6/23 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.911$ S/m; $\varepsilon_r = 41.264$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

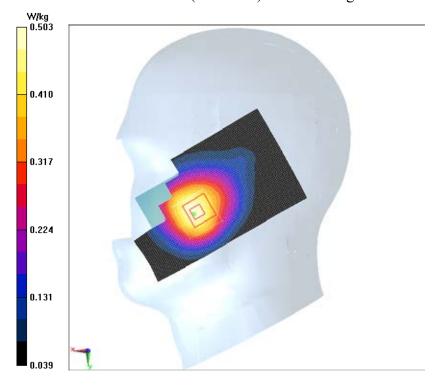
Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

WCDMA Band5 Right Cheek Low/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.497 W/kg


WCDMA Band5 Right Cheek Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.488 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.587 W/kg

SAR(1 g) = 0.474 W/kg; SAR(10 g) = 0.341 W/kgMaximum value of SAR (measured) = 0.503 W/kg

: 99 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band5 Right Cheek High

Date/Time: 2014/6/23 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 847 MHz; $\sigma = 0.927 \text{ S/m}$; $\varepsilon_r = 40.809$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

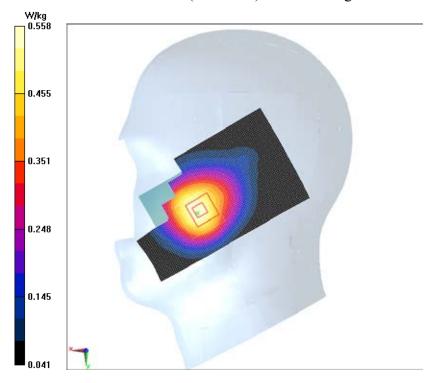
Communication System: WCDMA Band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

WCDMA Band5 Right Cheek High/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.558 W/kg


WCDMA Band5 Right Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.431 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.667 W/kg

SAR(1 g) = 0.530 W/kg; SAR(10 g) = 0.382 W/kgMaximum value of SAR (measured) = 0.558 W/kg

: 100 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band5 Phantom Mode Middle

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\varepsilon_r = 55.152$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

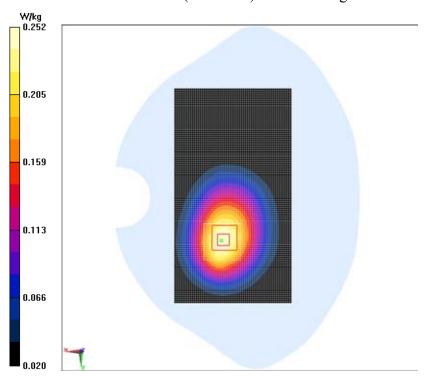
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Phantom Mode Middle/Area Scan (61x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.254 W/kg


WCDMA Band5 Phantom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.274 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.320 W/kg

SAR(1 g) = 0.236 W/kg; SAR(10 g) = 0.166 W/kgMaximum value of SAR (measured) = 0.252 W/kg

: 101 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band5 Ground Mode Middle

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\varepsilon_r = 55.152$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

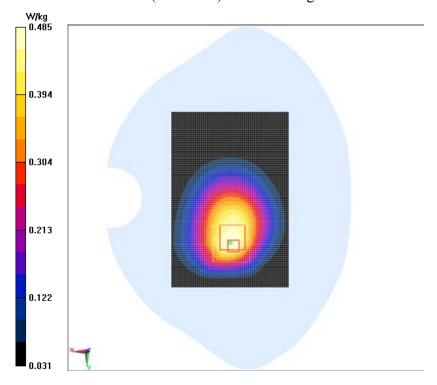
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Ground Mode Middle/Area Scan (61x91x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.508 W/kg


WCDMA Band5 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.915 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.654 W/kg

SAR(1 g) = 0.457 W/kg; SAR(10 g) = 0.322 W/kgMaximum of SAR (measured) = 0.485 W/kg

WCDMA Band5 Right Mode Middle

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\varepsilon_r = 55.152$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Report No.: 2014SAR0089

: 102 of 205

:August 16, 2014

Page Number

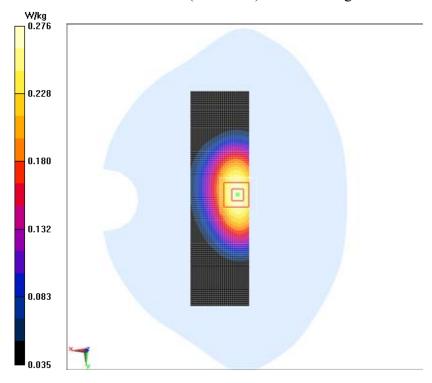
Report Issued Date

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Right Mode Middle/Area Scan (31x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.276 W/kg


WCDMA Band5 Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.527 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.343 W/kg

SAR(1 g) = 0.259 W/kg; SAR(10 g) = 0.184 W/kgMaximum value of SAR (measured) = 0.276 W/kg

WCDMA Band5 Left Mode Middle

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Report No.: 2014SAR0089

: 103 of 205

:August 16, 2014

Page Number

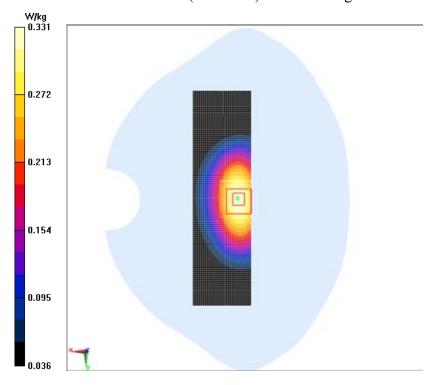
Report Issued Date

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Left Mode Middle/Area Scan (31x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.331 W/kg


WCDMA Band5 Left Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.100 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.420 W/kg

SAR(1 g) = 0.309 W/kg; SAR(10 g) = 0.215 W/kgMaximum value of SAR (measured) = 0.331 W/kg

WCDMA Band5 Bottom Mode Middle

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\varepsilon_r = 55.152$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

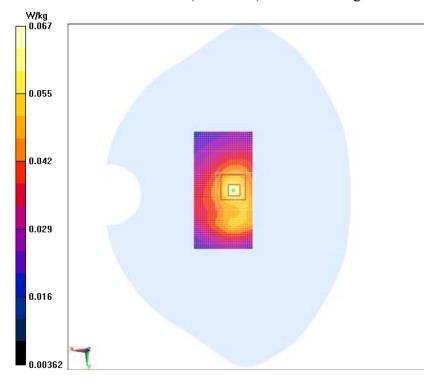
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Bottom Mode Middle/Area Scan (31x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.0674 W/kg


WCDMA Band5 Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.977 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.111 W/kg

SAR(1 g) = 0.060 W/kg; SAR(10 g) = 0.036 W/kgMaximum value of SAR (measured) = 0.0673 W/kg

: 105 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band5 Ground Mode Low

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.994$ S/m; $\varepsilon_r = 55.147$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

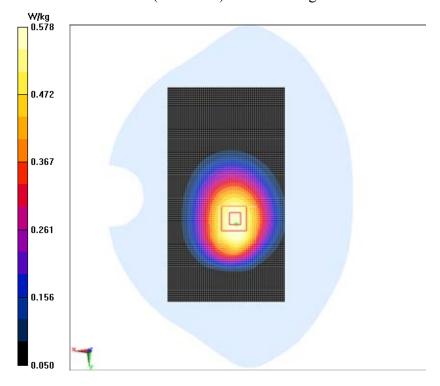
Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Ground Mode Low/Area Scan (61x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.583 W/kg


WCDMA Band5 Ground Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.799 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.700 W/kg

SAR(1 g) = 0.549 W/kg; SAR(10 g) = 0.402 W/kgMaximum of SAR (measured) = 0.578 W/kg

: 106 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band5 Ground Mode High

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 847 MHz; $\sigma = 1.012 \text{ S/m}$; $\varepsilon_r = 55.214$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

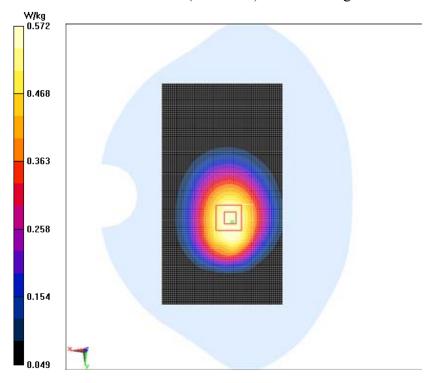
Communication System: WCDMA Band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Ground Mode High/Area Scan (61x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.579 W/kg


WCDMA Band5 Ground Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.830 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.698 W/kg

SAR(1 g) = 0.548 W/kg; SAR(10 g) = 0.400 W/kgMaximum value of SAR (measured) = 0.572 W/kg

: 107 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band5 Ground Mode Low With Headset

Date/Time: 2014/6/24 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.994$ S/m; $\varepsilon_r = 55.147$; $\rho = 1000$

kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Professional Band V; Frequency: 826.4 MHz; Duty

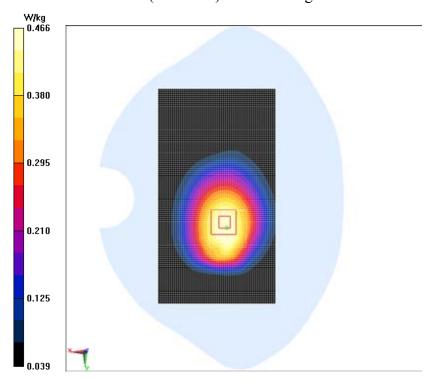
Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Ground Mode Low With Headset/Area Scan (61x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.473 W/kg


WCDMA Band5 Ground Mode Low With Headset/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.211 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.569 W/kg

SAR(1 g) = 0.445 W/kg; SAR(10 g) = 0.325 W/kgMaximum of SAR (measured) = 0.466 W/kg

: 108 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Left Cheek Middle

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379 \text{ S/m}$; $\varepsilon_r = 39.867$; $\rho = 1000 \text{ kg/m}^3$

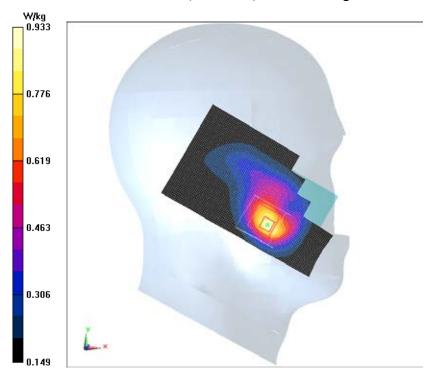
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

WCDMA Band2 Left Cheek Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.915 W/kg

WCDMA Band2 Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.235 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.838 W/kg; SAR(10 g) = 0.459 W/kgMaximum value of SAR (measured) = 0.933 W/kg

: 109 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Left Tilt Middle

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379 \text{ S/m}$; $\varepsilon_r = 39.867$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

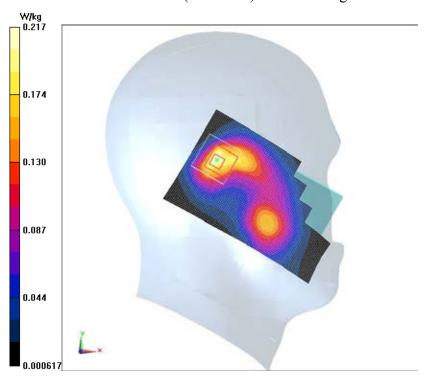
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

WCDMA Band2 Left Tilt Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.216 W/kg


WCDMA Band2 Left Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.821 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.298 W/kg

SAR(1 g) = 0.194 W/kg; SAR(10 g) = 0.114 W/kgMaximum value of SAR (measured) = 0.217 W/kg

WCDMA Band2 Right Cheek Middle

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379 \text{ S/m}$; $\varepsilon_r = 39.867$; $\rho = 1000 \text{ kg/m}^3$

Report No.: 2014SAR0089

: 110 of 205

:August 16, 2014

Page Number

Report Issued Date

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

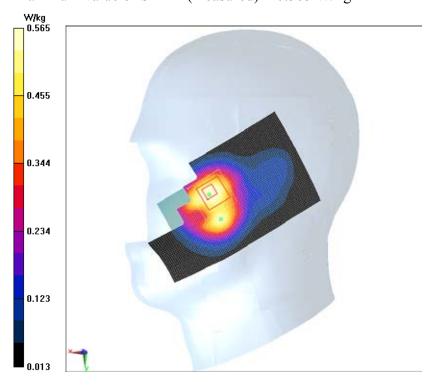
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

WCDMA Band2 Right Cheek Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.602 W/kg


WCDMA Band2 Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.298 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.838 W/kg

SAR(1 g) = 0.534 W/kg; SAR(10 g) = 0.327 W/kgMaximum value of SAR (measured) = 0.565 W/kg

: 111 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Right Tilt Middle

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379 \text{ S/m}$; $\varepsilon_r = 39.867$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

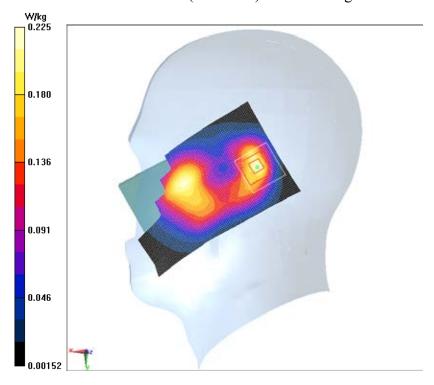
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

WCDMA Band2 Right Tilt Middle/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.223 W/kg


WCDMA Band2 Right Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.956 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.319 W/kg

SAR(1 g) = 0.205 W/kg; SAR(10 g) = 0.118 W/kgMaximum value of SAR (measured) = 0.225 W/kg

: 112 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Left Cheek Low

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.373$ S/m; $\epsilon_r = 40.159$; $\rho =$

 1000 kg/m^3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

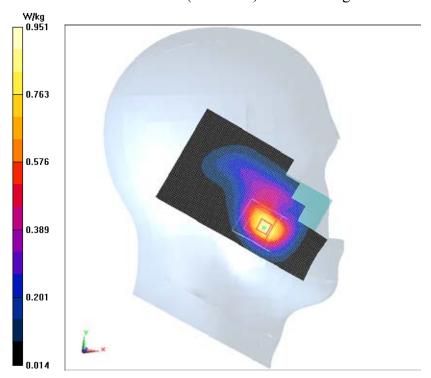
Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

WCDMA Band2 Left Cheek Low/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.925 W/kg


WCDMA Band2 Left Cheek Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.022 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.860 W/kg; SAR(10 g) = 0.480 W/kgMaximum value of SAR (measured) = 0.951 W/kg

: 113 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Left Cheek High

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1908 MHz; $\sigma = 1.391$ S/m; $\varepsilon_r = 39.62$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

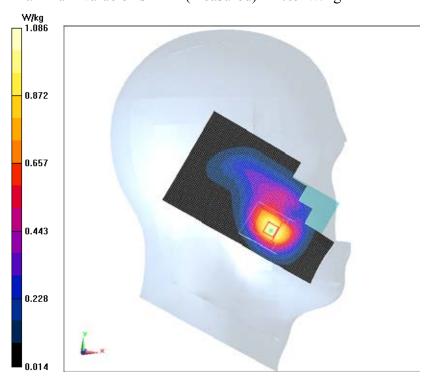
Communication System: WCDMA Band II; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

WCDMA Band2 Left Cheek High/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.07 W/kg


WCDMA Band2 Left Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.052 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 0.981 W/kg; SAR(10 g) = 0.546 W/kgMaximum value of SAR (measured) = 1.09 W/kg

: 114 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Phantom Mode Middle

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

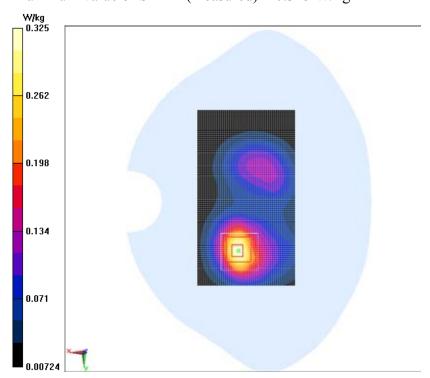
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013

WCDMA Band2 Phantom Mode Middle/Area Scan (51x91x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.330 W/kg


WCDMA Band2 Phantom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.038 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.490 W/kg

SAR(1 g) = 0.296 W/kg; SAR(10 g) = 0.169 W/kgMaximum value of SAR (measured) = 0.325 W/kg

: 115 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Ground Mode Middle

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

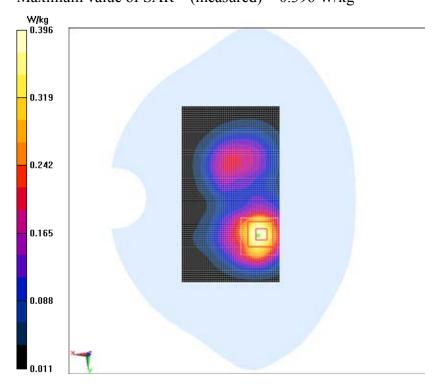
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013

WCDMA Band2 Ground Mode Middle/Area Scan (51x91x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.400 W/kg


WCDMA Band2 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.110 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.597 W/kg

SAR(1 g) = 0.367 W/kg; SAR(10 g) = 0.214 W/kgMaximum value of SAR (measured) = 0.396 W/kg

: 116 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Left Mode Middle

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

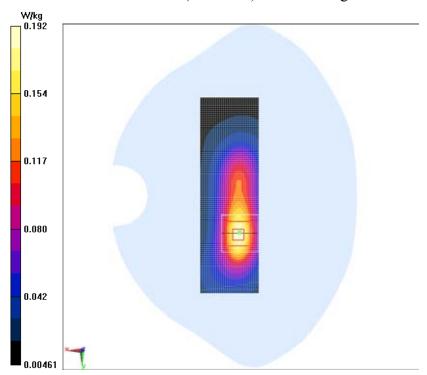
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013

WCDMA Band2 Left Mode Middle/Area Scan (31x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.194 W/kg


WCDMA Band2 Left Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.235 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.289 W/kg

SAR(1 g) = 0.175 W/kg; SAR(10 g) = 0.101 W/kgMaximum value of SAR (measured) = 0.192 W/kg

: 117 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Right Mode Middle

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

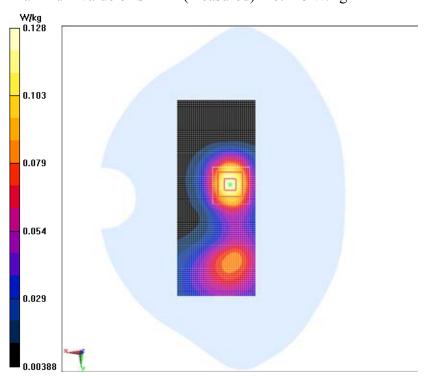
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013

WCDMA Band2 Right Mode Middle/Area Scan (41x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.131 W/kg


WCDMA Band2 Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.386 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.182 W/kg

SAR(1 g) = 0.117 W/kg; SAR(10 g) = 0.071 W/kgMaximum value of SAR (measured) = 0.128 W/kg

: 118 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Bottom Mode Middle

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.319$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

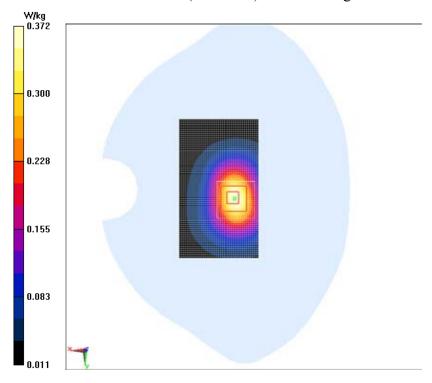
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013

WCDMA Band2 Bottom Mode Middle/Area Scan (41x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.379 W/kg


WCDMA Band2 Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.002 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.549 W/kg

SAR(1 g) = 0.344 W/kg; SAR(10 g) = 0.200 W/kgMaximum value of SAR (measured) = 0.372 W/kg

: 119 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Ground Mode Low

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.477$ S/m; $\varepsilon_r = 53.431$; $\rho =$

 1000 kg/m^3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

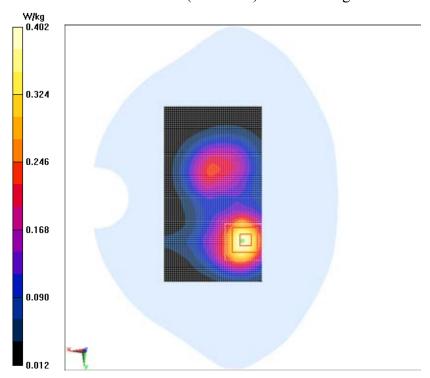
Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013

WCDMA Band2 Ground Mode Low/Area Scan (51x91x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.393 W/kg


WCDMA Band2 Ground Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.437 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.602 W/kg

SAR(1 g) = 0.370 W/kg; SAR(10 g) = 0.214 W/kgMaximum value of SAR (measured) = 0.402 W/kg

: 120 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Ground Mode High

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1908 MHz; $\sigma = 1.532$ S/m; $\varepsilon_r = 53.199$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

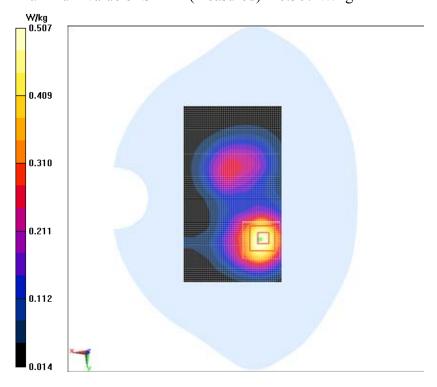
Communication System: WCDMA Band II; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013

WCDMA Band2 Ground Mode High/Area Scan (51x91x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.512 W/kg


WCDMA Band2 Ground Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.489 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.766 W/kg

SAR(1 g) = 0.470 W/kg; SAR(10 g) = 0.274 W/kgMaximum value of SAR (measured) = 0.507 W/kg

: 121 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Ground Mode High With Headset

Date/Time: 2014/6/27 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1908 MHz; $\sigma = 1.532$ S/m; $\varepsilon_r = 53.199$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Professional Band II; Frequency: 1907.6 MHz; Duty

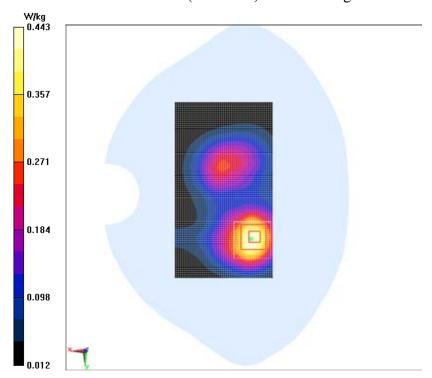
Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013

WCDMA Band2 Ground Mode High With Headset/Area Scan (51x91x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.452 W/kg


WCDMA Band2 Ground Mode High With Headset/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.383 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.670 W/kg

SAR(1 g) = 0.412 W/kg; SAR(10 g) = 0.240 W/kgMaximum value of SAR (measured) = 0.443 W/kg

: 122 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Left Cheek Middle 2

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379 \text{ S/m}$; $\varepsilon_r = 39.867$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

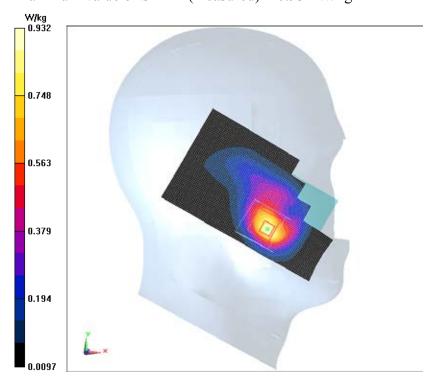
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

WCDMA Band2 Left Cheek Middle 2/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.914 W/kg


WCDMA Band2 Left Cheek Middle 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.230 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.837 W/kg; SAR(10 g) = 0.459 W/kgMaximum value of SAR (measured) = 0.932 W/kg

: 123 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Left Cheek Low 2

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.373$ S/m; $\varepsilon_r = 40.159$; $\rho =$

 1000 kg/m^3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

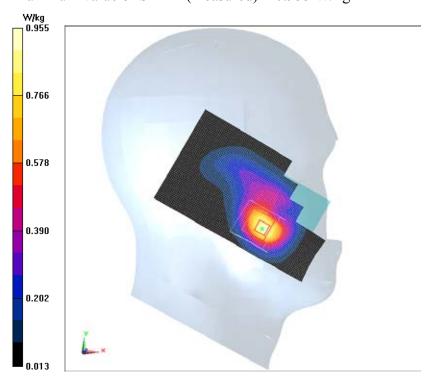
Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

WCDMA Band2 Left Cheek Low 2/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.933 W/kg


WCDMA Band2 Left Cheek Low 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.997 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.863 W/kg; SAR(10 g) = 0.483 W/kgMaximum value of SAR (measured) = 0.955 W/kg

: 124 of 205

:August 16, 2014

Page Number

Report Issued Date

WCDMA Band2 Left Cheek High 2

Date/Time: 2014/6/26 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1908 MHz; $\sigma = 1.391$ S/m; $\varepsilon_r = 39.62$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

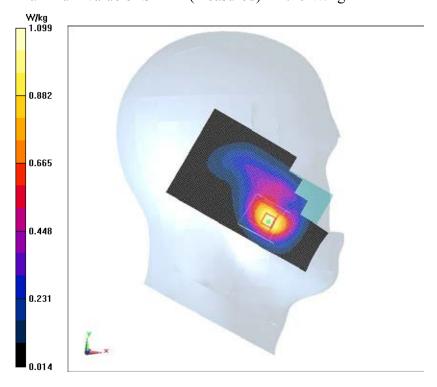
Communication System: WCDMA Band II; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

WCDMA Band2 Left Cheek High 2/Area Scan (101x61x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.07 W/kg


WCDMA Band2 Left Cheek High 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.057 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.990 W/kg; SAR(10 g) = 0.550 W/kgMaximum value of SAR (measured) = 1.10 W/kg

WiFi 802.11b Left Cheek Middle

Date/Time: 2014/6/20 Electronics: DAE4 Sn1244 Medium: Head 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.797$ S/m; $\varepsilon_r = 39.163$; $\rho = 1000$ kg/m³

Report No.: 2014SAR0089

: 125 of 205

:August 16, 2014

Page Number

Report Issued Date

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

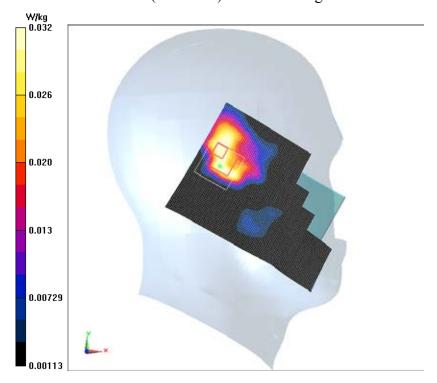
Communication System: WiFi 2450MHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(7.09, 7.09, 7.09); Calibrated: 8/8/2013

WiFi 802.11b Left Cheek Middle/Area Scan (101x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.0371 W/kg


WiFi 802.11b Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.066 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.0570 W/kg

SAR(1 g) = 0.026 W/kg; SAR(10 g) = 0.014 W/kgMaximum of SAR (measured) = 0.0319 W/kg

: 126 of 205

:August 16, 2014

Page Number

Report Issued Date

WiFi 802.11b Left Tilt Middle

Date/Time: 2014/6/20 Electronics: DAE4 Sn1244 Medium: Head 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.797$ S/m; $\varepsilon_r = 39.163$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WiFi 2450MHz; Frequency: 2437 MHz; Duty Cycle: 1:1

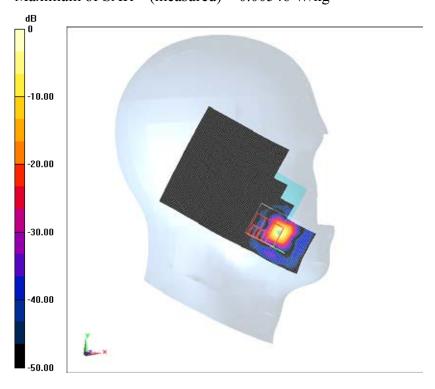
Probe: EX3DV4 - SN3754ConvF(7.09, 7.09, 7.09); Calibrated: 8/8/2013

WiFi 802.11b Left Tilt Middle/Area Scan (101x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.00431 W/kg

WiFi 802.11b Left Tilt Middle/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.600 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.0110 W/kg

SAR(1 g) = 0.00461 W/kg; SAR(10 g) = 0.000977 W/kg

Maximum of SAR (measured) = 0.00546 W/kg

WiFi 802.11b Right Cheek Middle

Date/Time: 2014/6/20 Electronics: DAE4 Sn1244 Medium: Head 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.797$ S/m; $\varepsilon_r = 39.163$; $\rho = 1000$ kg/m³

Report No.: 2014SAR0089

: 127 of 205

:August 16, 2014

Page Number

Report Issued Date

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

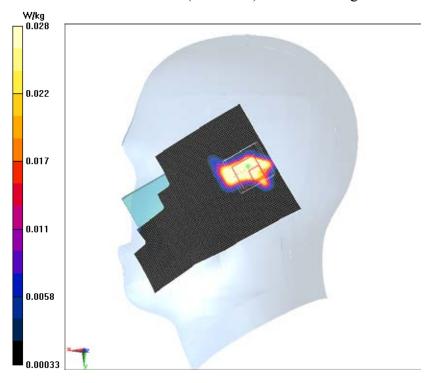
Communication System: WiFi 2450MHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(7.09, 7.09, 7.09); Calibrated: 8/8/2013

WiFi 802.11b Right Cheek Middle/Area Scan (101x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.0625 W/kg


WiFi 802.11b Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.430 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.0550 W/kg

SAR(1 g) = 0.021 W/kg; SAR(10 g) = 0.00923 W/kgMaximum value of SAR (measured) = 0.0277 W/kg

: 128 of 205

:August 16, 2014

Page Number

Report Issued Date

WiFi 802.11b Right Tilt Middle

Date/Time: 2014/6/20 Electronics: DAE4 Sn1244 Medium: Head 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.797$ S/m; $\varepsilon_r = 39.163$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

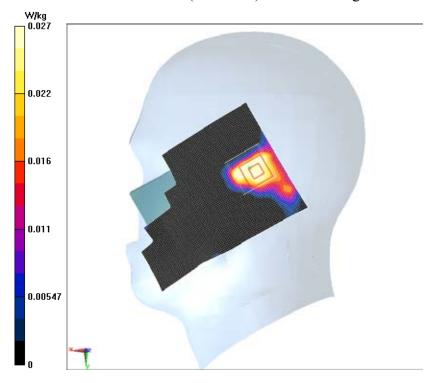
Communication System: WiFi 2450MHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(7.09, 7.09, 7.09); Calibrated: 8/8/2013

WiFi 802.11b Right Tilt Middle/Area Scan (101x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.0432 W/kg


WiFi 802.11b Right Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.972 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.0410 W/kg

SAR(1 g) = 0.025 W/kg; SAR(10 g) = 0.013 W/kgMaximum value of SAR (measured) = 0.0274 W/kg

: 129 of 205

:August 16, 2014

Page Number

Report Issued Date

WiFi 802.11b Phantom Mode Middle

Date/Time: 2014/6/20 Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.902$ S/m; $\varepsilon_r = 53.946$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

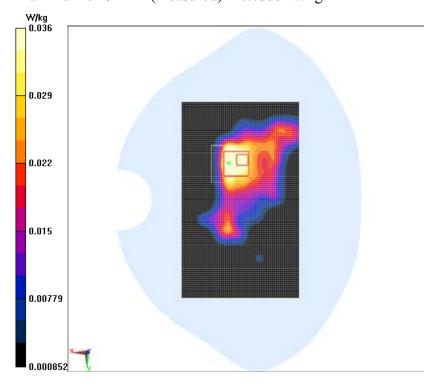
Communication System: WiFi 2450MHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(6.66, 6.66, 6.66); Calibrated: 8/8/2013

WiFi 802.11b Phantom Mode Middle/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.0509 W/kg


WiFi 802.11b Phantom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.839 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.0490 W/kg

SAR(1 g) = 0.033 W/kg; SAR(10 g) = 0.019 W/kgMaximum of SAR (measured) = 0.0355 W/kg

WiFi 802.11b Ground Mode Middle

Date/Time: 2014/6/20 Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.902$ S/m; $\varepsilon_r = 53.946$; $\rho = 1000$ kg/m³

Report No.: 2014SAR0089

: 130 of 205

:August 16, 2014

Page Number

Report Issued Date

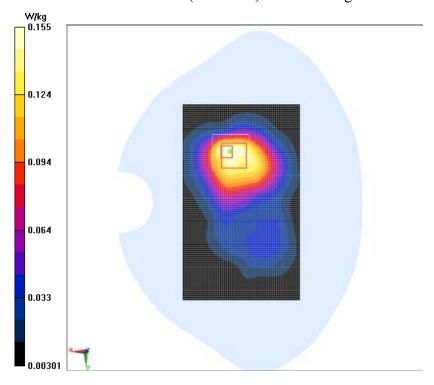
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WiFi 2450MHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(6.66, 6.66, 6.66); Calibrated: 8/8/2013

WiFi 802.11b Ground Mode Middle/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.170 W/kg

WiFi 802.11b Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.397 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.239 W/kg

SAR(1 g) = 0.141 W/kg; SAR(10 g) = 0.081 W/kgMaximum value of SAR (measured) = 0.155 W/kg

: 131 of 205

:August 16, 2014

Page Number

Report Issued Date

WiFi 802.11b Left Mode Middle

Date/Time: 2014/6/20 Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.902$ S/m; $\varepsilon_r = 53.946$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

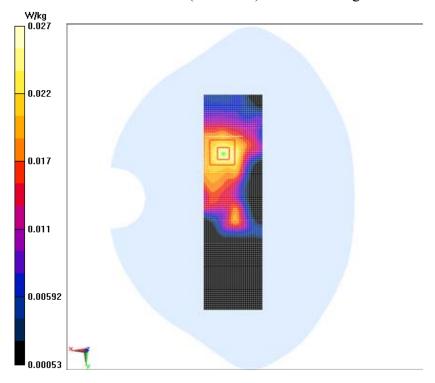
Communication System: WiFi 2450MHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(6.66, 6.66, 6.66); Calibrated: 8/8/2013

WiFi 802.11b Left Mode Middle/Area Scan (31x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.0258 W/kg


WiFi 802.11b Left Mode Middle/Zoom Scan 2 (5x5x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.866 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.0420 W/kg

SAR(1 g) = 0.025 W/kg; SAR(10 g) = 0.014 W/kgMaximum value of SAR (measured) = 0.0275 W/kg

: 132 of 205

:August 16, 2014

Page Number

Report Issued Date

WiFi 802.11b Right Mode Middle

Date/Time: 2014/6/20 Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.902$ S/m; $\varepsilon_r = 53.946$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

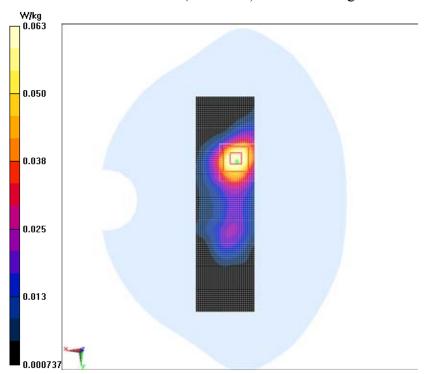
Communication System: WiFi 2450MHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(6.66, 6.66, 6.66); Calibrated: 8/8/2013

WiFi 802.11b Right Mode Middle/Area Scan (31x111x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.0721 W/kg


WiFi 802.11b Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.211 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.0990 W/kg

SAR(1 g) = 0.059 W/kg; SAR(10 g) = 0.031 W/kgMaximum value of SAR (measured) = 0.0626 W/kg

: 133 of 205

:August 16, 2014

Page Number

Report Issued Date

WiFi 802.11b Top Mode Middle

Date/Time: 2014/6/20 Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.902$ S/m; $\varepsilon_r = 53.946$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

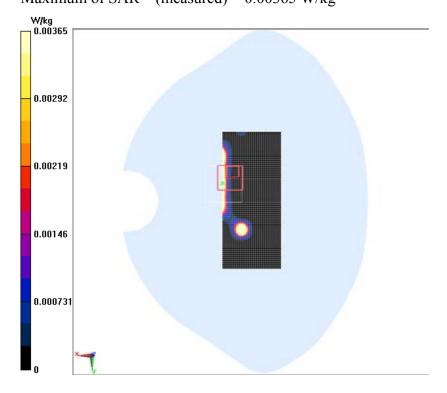
Communication System: WiFi 2450MHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(6.66, 6.66, 6.66); Calibrated: 8/8/2013

WiFi 802.11b Top Mode Middle/Area Scan (31x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.00912 W/kg


WiFi 802.11b Top Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.472 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.00565 W/kg

SAR(1 g) = 0.00221 W/kg; SAR(10 g) = 0.0008 W/kgMaximum of SAR (measured) = 0.00365 W/kg

: 134 of 205

:August 16, 2014

Page Number

Report Issued Date

WiFi 802.11b Bottom Mode Middle

Date/Time: 2014/6/20 Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.902$ S/m; $\varepsilon_r = 53.946$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WiFi 2450MHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(6.66, 6.66, 6.66); Calibrated: 8/8/2013

WiFi 802.11b Bottom Mode Middle/Area Scan (31x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.0102 W/kg

WiFi 802.11b Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.307 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.00488 W/kg

SAR(1 g) = 0.00337 W/kg; SAR(10 g) = 0.00218 W/kg

Maximum of SAR (measured) = 0.00704 W/kg

: 135 of 205

:August 16, 2014

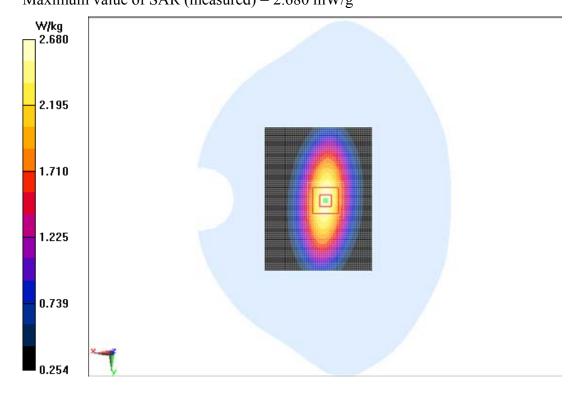
Page Number

Report Issued Date

ANNEX B. SYSTEM VALIDATION RESULTS

835MHz-Head

Date/Time: 6/23/2014 Electronics: DAE4 Sn1244 Medium: Head 835MHz


Medium parameters used: f = 835 MHz; $\sigma = 0.917$ mho/m; $\epsilon r = 41.04$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

System Validation/Area Scan(101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.64 mW/g

System Validation/Zoom Scan(7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.188 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.42 mW/g SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.680 mW/g

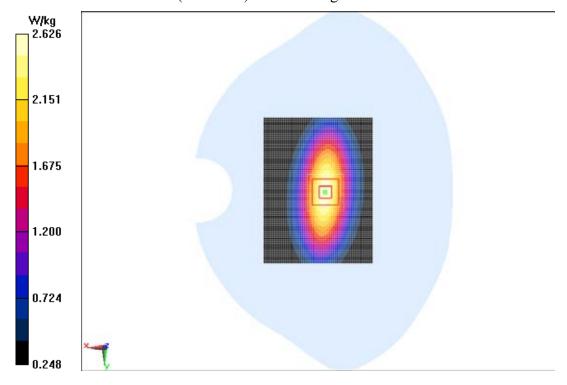
: 136 of 205

:August 16, 2014

Page Number

Report Issued Date

835MHz-Body


Date/Time: 6/24/2014 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.999$ mho/m; $\epsilon r = 55.15$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

System Validation/Area Scan(101x101x1):Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.59 mW/g

System Validation/Zoom Scan(7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.254 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.34 mW/g SAR(1 g) = 2.29 mW/g; SAR(10 g) = 1.50 mW/g Maximum value of SAR (measured) = 2.63 mW/g

1900MHz-Head

Date/Time: 6/26/2014 Electronics: DAE4 Sn1244 Medium: Head 1900 MHz

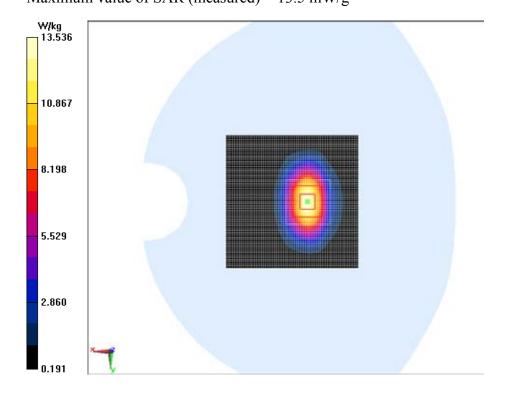
Medium parameters used: f = 1900 MHz; $\sigma = 1.385 \text{ mho/m}$; $\epsilon r = 39.64$; $\rho = 1000 \text{ kg/m}3$

Report No.: 2014SAR0089

: 137 of 205

:August 16, 2014

Page Number


Report Issued Date

Ambient Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 8/5/2013

System Validation/Area Scan(101x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 11.356 mW/g

System Validation/Zoom Scan(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.551 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.376 mW/g SAR(1 g) = 10.58mW/g; SAR(10 g) = 5.44mW/g Maximum value of SAR (measured) = 13.5 mW/g

1900MHz-Body

Date/Time: 6/27/2014 Electronics: DAE4 Sn1244 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.524 \text{ mho/m}$; $\epsilon r = 53.237$; $\rho = 1000 \text{ kg/m}3$

Report No.: 2014SAR0089

: 138 of 205

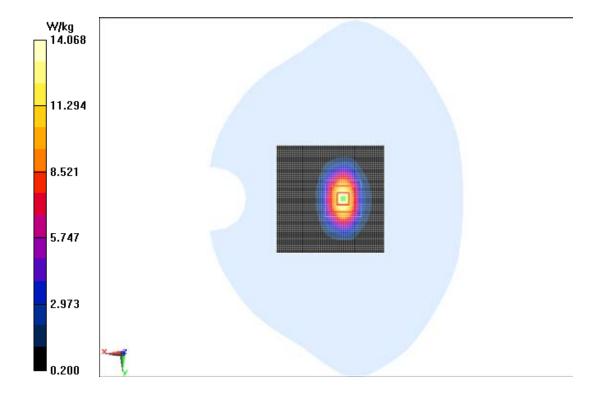
:August 16, 2014

Page Number

Report Issued Date

Ambient Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 8/5/2013

System Validation/Area Scan(101x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 13.8 mW/g

System Validation/Zoom Scan(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.783 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 18.376 mW/g

SAR(1 g) = 10.94 mW/g; SAR(10 g) = 5.62 mW/gMaximum value of SAR (measured) = 14.1 mW/g

2450MHz-Head

Date/Time: 6/20/2014 Electronics: DAE4 Sn1244 Medium: Head 2450MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.809 \text{ mho/m}$; $\epsilon r = 39.12$; $\rho = 1000 \text{ kg/m}3$

Report No.: 2014SAR0089

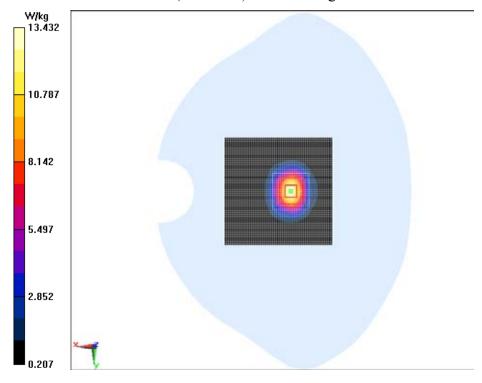
: 139 of 205

:August 16, 2014

Page Number

Report Issued Date

Ambien Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN3754ConvF(7.09, 7.09, 7.09); Calibrated: 8/8/2013


System Validation/ Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 11.68 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.813 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.423 mW/g

SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.96 mW/gMaximum value of SAR (measured) = 13.4 mW/g

: 140 of 205

:August 16, 2014

Page Number

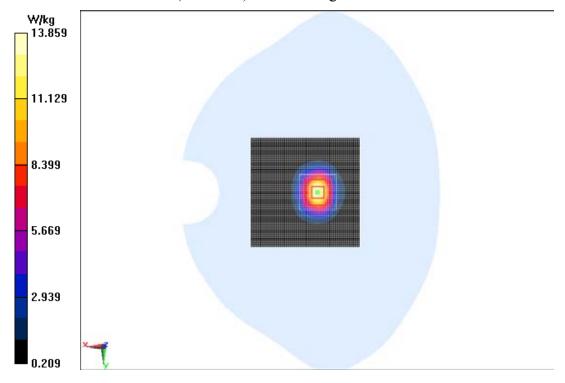
Report Issued Date

2450MHz-Body

Date/Time: 6/20/2014 Electronics: DAE4 Sn1244 Medium: Body 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.918 \text{ mho/m}$; $\epsilon r = 53.946$; $\rho = 1000 \text{ kg/m}3$

Ambien Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN3754ConvF(6.66, 6.66, 6.66); Calibrated: 8/8/2013

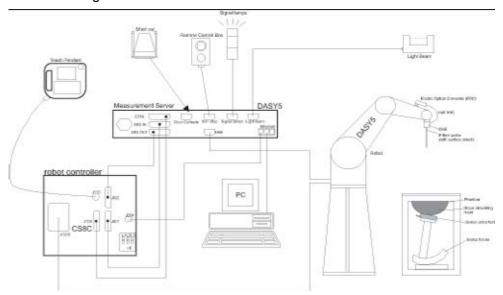

System Validation/ Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 12.962 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.436 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 24.348 mW/g

SAR(1 g) = 11.93 mW/g; SAR(10 g) = 5.54 mW/gMaximum value of SAR (measured) = 13.9 mW/g



ANNEX C. SAR Measurement Setup

C.1. Measurement Set-up

The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: ES3DV3, EX3DV4

Frequency 2.0GHz — 3.0GHz(EX3DV4)
Range: 700MHz — 2.0GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 2450MHz

Linearity: ± 0.2 dB(2.0GHz — 3.0GHz) for EX3DV4

± 0.2 dB(700MHz — 2.0GHz) for ES3DV3

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)

Application:SAR Dosimetry Testing

Compliance tests of mobile phones

Dosimetry in strong gradient fields

Picture C.3 E-field Probe

C.3. E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or

Page Number

Report Issued Date

Picture C.2 Near-field Probe

: 142 of 205

:August 16, 2014

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301

other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².

Report No.: 2014SAR0089

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4. Other Test Equipment

C.4.1. Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 143 of 205 Report Issued Date : August 16, 2014

C.4.2. Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX90L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- > Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3. Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 144 of 205 Report Issued Date : August 16, 2014

robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 5

C.4.4. Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric

parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.7: Device Holder

Picture C.8: Laptop Extension Kit

Report No.: 2014SAR0089

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 145 of 205 Report Issued Date : August 16, 2014

C.4.5. Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Report No.: 2014SAR0089

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: 2 ± 0. 2 mm Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

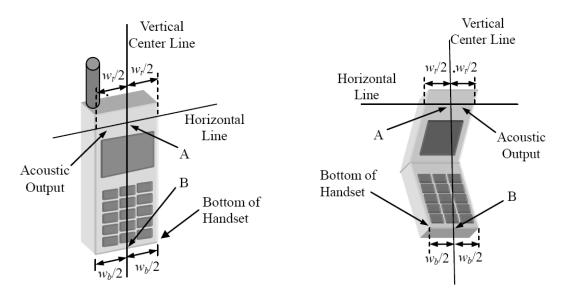
Available: Special

Picture C.9: SAM Twin Phantom

Page Number

Report Issued Date

: 146 of 205

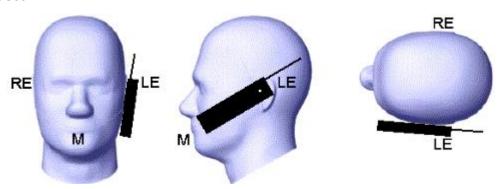

ANNEX D. Position of the wireless device in relation to the

Report No.: 2014SAR0089

phantom

D.1. General considerations

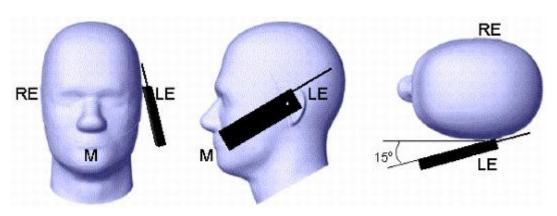
This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.


 W_t Width of the handset at the level of the acoustic

 W_b Width of the bottom of the handset

A Midpoint of the width w_i of the handset at the level of the acoustic output

B Midpoint of the width w_h of the bottom of the handset

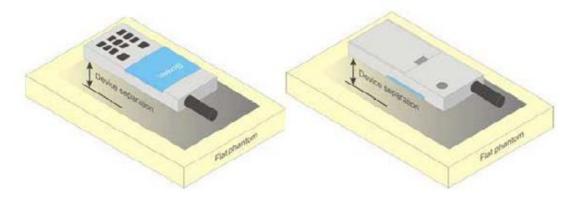

Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset

Picture D.2 Cheek position of the wireless device on the left side of SAM

East China Institute of Telecommunications Page Number : 147 of 205
TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

: 148 of 205

:August 16, 2014

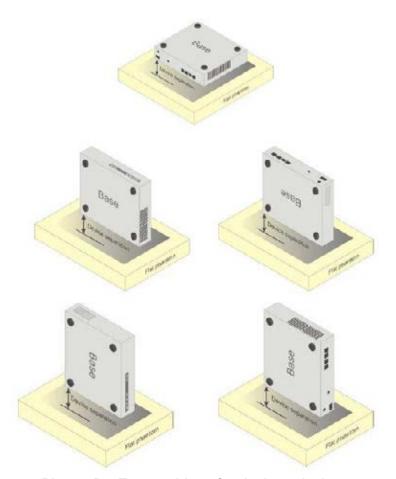

Page Number

Report Issued Date

Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2. Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4Test positions for body-worn devices

D.3. Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

: 149 of 205 :August 16, 2014

Page Number Report Issued Date

Picture D.5 Test positions for desktop devices

: 150 of 205

:August 16, 2014

Page Number

Report Issued Date

D.4. DUT Setup Photos

Picture D.6 DSY5 system Set-up

Note:

The photos of test sample and test positions show in additional document.

ANNEX E. Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Report No.: 2014SAR0089

Table E.1: Composition of the Tissue Equivalent Matter

Francisco (MILL)	835	835	1900	1900	2450	2450
Frequency (MHz)	Head	Body	Head	Body	Head	Body
Ingredients (% by v	weight)					
Water	41.45	52.5	55.242	69.91	58.79	72.60
Sugar	56.0	45.0	\	/	1	/
Salt	1.45	1.4	0.306	0.13	0.06	0.18
Preventol	0.1	0.1	\	1	\	\
Cellulose	1.0	1.0	\	1	\	\
Glycol Monobutyl	\	1	44.452	29.96	41.15	27.22
Dielectric Parameters Target Value	ε=41.5 σ=0.90	ε=55.2 σ=0.97	ε=40.0 σ=1.40	ε=53.3 σ=1.52	ε=39.2 σ=1.80	ε=52.7 σ=1.95

-

Report No.: 2014SAR0089

ANNEX F. System Validation

The SAR system must be validated against its performance specifications before it is deployed. WhenSAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table F.1: System Validation Part 1

System	Probe SN.	Liquid nama	Validation	Frequency	Permittivity	Conductivity
No.	PIODE SIN.	Liquid name	date	point	ε	σ (S/m)
1	3252	Head 835MHz	Aug 15,2013	835MHz	41.01	0.923
2	3252	Head 1900MHz	Aug 15,2013	1900MHz	39.66	1.424
3	3754	Head 2450MHz	Aug 15,2013	2450MHz	39.13	1.794
4	3252	Body 835MHz	Aug 15,2013	835MHz	55.13	0.979
5	3252	Body 1900MHz	Aug 15,2013	1900MHz	53.22	1.528
6	3754	Body 2450MHz	Aug 15,2013	2450MHz	53.94	1.946

Table F.2: System Validation Part 2

	Sensitivity	PASS	PASS
CW Validation	Probe linearity	PASS	PASS
	Probe Isotropy	PASS	PASS
	MOD.type	GMSK	GMSK
Mod	MOD.type	OFDM	OFDM
Validation	Duty factor	PASS	PASS
	PAR	PASS	PASS

East China Institute of Telecommunications Page Number : 152 of 205 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date :August 16, 2014

Page Number : 153 of 205 Report Issued Date : August 16, 2014

ANNEX G. Probe and DAE Calibration Certificate

Client :	CATR-SH		Cortificate N	No:JZ13-2-2040	0
CALIBRATIO			oor arroade 1	10.02 10 2 20 11	
Object	DAE	4 - SN: 1244			
Calibration Procedure	TMC	C-OS-E-01-198 prasion Procedure for the Ex)	Data Acquisit	ion Electronics	
Calibration date:	July	9, 2013		1000	
ar and all the artificiant	been conducted i				
Calibration Equipmen	nt used (M&TE critica		ificate No.)	Scheduled Cali	bration
Calibration Equipmen Primary Standards	nt used (M&TE critica	al for calibration)	100000000000000000000000000000000000000	Scheduled Cali July-14	bration
Calibration Equipmen Primary Standards	nt used (M&TE critica	al for calibration) Cal Date(Calibrated by, Cert	100000000000000000000000000000000000000	701101010101010101	bration
Calibration Equipmen Primary Standards Documenting Process Calibrator 75	ID # 0	al for calibration) Cal Date(Calibrated by, Cert 01-July-13 (TMC, No:JW	100000000000000000000000000000000000000	701101010101010101	bration
Calibration Equipmen Primary Standards Documenting Process Calibrator 75 Calibrated by:	ID # 0	al for calibration) Cal Date(Calibrated by, Cert 01-July-13 (TMC, No:JW)	100000000000000000000000000000000000000	July-14	bration
humidity<70%. Calibration Equipment Primary Standards Documenting Process Calibrator 75 Calibrated by: Reviewed by:	ID # 0	al for calibration) Cal Date(Calibrated by, Cert 01-July-13 (TMC, No:JW Function SAR Test Engineer	13-049)	July-14	bration
Calibration Equipmen Primary Standards Documenting Process Calibrator 75 Calibrated by:	ID # 053 1971018 Name Zhao Jing	al for calibration) Cal Date(Calibrated by, Cert 01-July-13 (TMC, No:JW Function SAR Test Engineer	13-049)	July-14	bration

Report No.: 2014SAR0089

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2594 E-mail: Info@cmcite.com Http://www.emcite.com Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. Methods Applied and Interpretation of Parameters: DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. . Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. . The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: JZ13-2-2040 Page 2 of 3

Page Number

Report Issued Date

: 154 of 205

p e a CALIBRATION LABORATORY Add: No.52 Huayuunbel Road, Haidian District, Beijing, 100193, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@cmcite.com Https://www.emcite.com

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: 1LSB = 6.1µV, full range = -100...+300 mV
Low Range: 1LSB = 61nV, full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	z
High Range	403.907 ± 0.15% (k=2)	403.655 ± 0.15% (k=2)	404.564 ± 0.15% (k=2)
Low Range	3.98600 ± 0.7% (k=2)	3.96971 ± 0.7% (k=2)	4.01324 ± 0.7% (k=2)

Report No.: 2014SAR0089

Connector Angle

Connector Angle to be used in DASY system 46°±1°

Certificate No: JZ13-2-2040

Page 3 of 3

Page Number

Report Issued Date

: 155 of 205

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

Calibration Procedures for Dosimetric E-field Probes

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

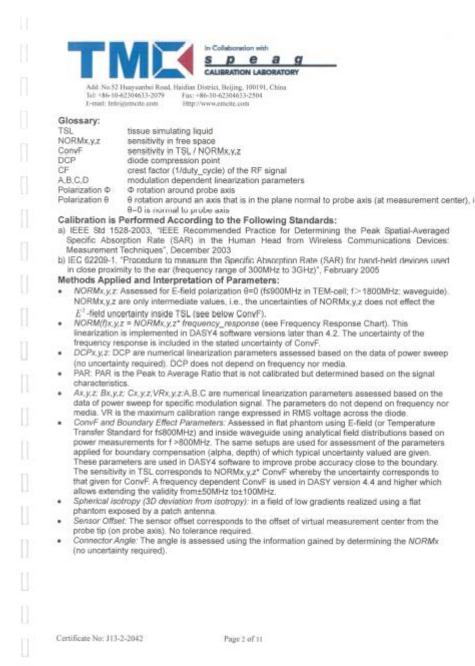
Calibration date:

Primary Standards	ID W	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Power sensor NRP-Z91	101547	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Power sensor NRP-Z91	101548	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Reference10dBAttenuator	BT0520	12-Dec-12(TMC,No.JZ12-867)	Dec-14
Reference20dBAttenuator	BT0267	12-Dec-12(TMC,No.JZ12-866)	Dec-14
Reference Probe EX3DV4	SN 3846	20-Dec-12(SPEAG,No.EX3-3846_Dec12)	Dec-13
DAE4	SN 777	22-Feb-13 (SPEAG, DAE4-777_Feb13)	Feb -14
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	01-Jul-13 (TMC, No.JW13-045)	Jun-14
Network Analyzer E5071C	MY46110673	15-Feb-13 (TMC, No.JZ13-781)	Feb-14
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	支索
Reviewed by:	Qi Dianyuan	SAR Project Leader	sinh -

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page 1 of 11

Deputy Director of the laboratory


Issued: August 7, 2013

Certificate No: J13-2-2042

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 156 of 205 Report Issued Date : August 16, 2014

Report No.: 2014SAR0089

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301

Page Number : 157 of 205 Report Issued Date : August 16, 2014

Report No.: 2014SAR0089

Probe ES3DV3

SN: 3252

Calibrated: August 5, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: J13-2-2042

Page 3 of 11

Page Number

Report Issued Date

: 158 of 205

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2) ^	1.29	1.34	1.32	±10.8%
DCP(mV) ⁸	103.4	104.6	102.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc E (k=2)
0	cw	×	0.0	0.0	1.0	0.00	207.8	±3.3%
	11120	Υ	0.0	0.0	1.0		209.7	
		Z	0.0	0.0	1.0		209.5	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J13-2-2042

Page 4 of 11

Page Number

Report Issued Date

: 159 of 205

^A The uncertainties of Norm X, Y, Z do not affect the E^S-field uncertainty inside TSL (see Page 5 and Page 6).
^B Numerical linearization parameter: uncertainty not required.
^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
850	41.5	0.92	6.10	6.10	6.10	0.27	1.98	±12%
900	41.5	0.97	6.19	6.19	6.19	0.31	1.79	±12%
1750	40.1	1.37	5.58	5.58	5.58	0.37	1.87	±12%
1900	40.0	1.40	5.24	5.24	5.24	0.43	1.82	土12%

⁶ Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ⁶ At frequency below 3 GHz, the validity of tissue parameters (c and d) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (r and ri) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: J13-2-2042

Page 5 of 11

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 160 of 205 Report Issued Date : August 16, 2014

Calibration Parameter Determined in Body Tissue Simulating Media

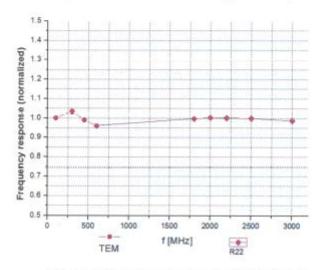
f [MHz] [©]	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
850	55.2	0.99	6.14	6.14	6.14	0.40	1.69	±12%
900	55.0	1.05	6.11	6.11	6.11	0.39	1.60	±12%
1750	53.4	1.49	5.20	5.20	5.20	0.43	1.94	±12%
1900	53.3	1.52	5.03	5.03	5.03	0.46	1.85	±12%

⁰ Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of CorwF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^r At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the CorwF uncertainty for indicated target tissue parameters.

Certificate No: J13-2-2042

Page 6 of 11


East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 161 of 205 Report Issued Date : August 16, 2014

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Report No.: 2014SAR0089

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

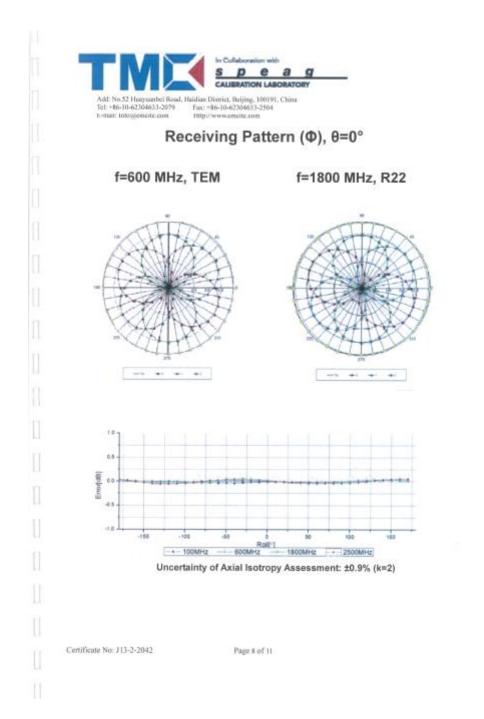
Certificate No. J13-2-2042

Page 7 of 11

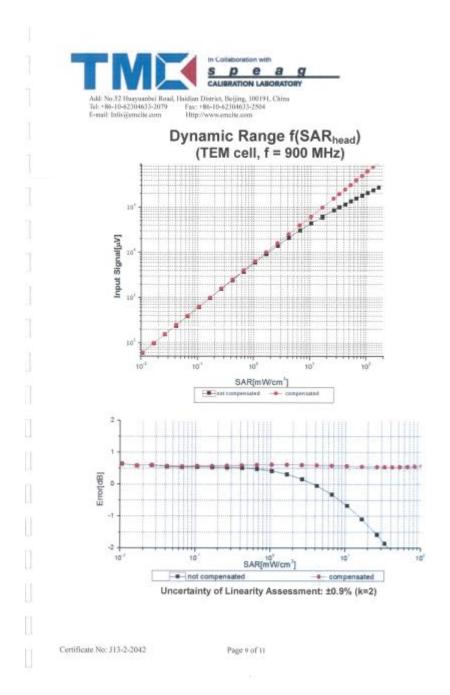
Page Number

Report Issued Date

: 162 of 205

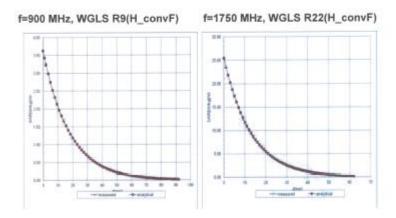

: 163 of 205

:August 16, 2014

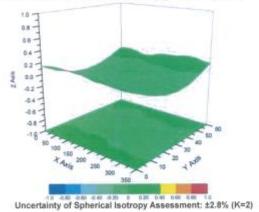

Page Number

Report Issued Date

: 164 of 205


:August 16, 2014

Report No.: 2014SAR0089



Conversion Factor Assessment

Deviation from Isotropy in Liquid

Certificate No: J13-2-2042

Page 10 of 11

: 165 of 205

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	129.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: J13-2-2042

Page 11 of 11

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number Report Issued Date : 166 of 205 :August 16, 2014

Report No.: 2014SAR0089

Report No.: 2014SAR0089

: 167 of 205

:August 16, 2014

Page Number

Report Issued Date

Certificate No: 313-2-2041

Page 1 of 11

nerbei Road, Haidian District, Beijing, 100191, China 633-2079 Fax: +86-10-62304633-2504 sle.com HHgg/www.emeste.com Tel: +86-10-62304633-2079

Glossary:

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point NORMx,y,z ConvF DCP

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A.B.C.D

Polarization Φ Φ rotation around probe axis

 θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta{=}0$ is normal to probe axis Polarization 6

Report No.: 2014SAR0089

: 168 of 205

:August 16, 2014

Page Number

Report Issued Date

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

EC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

NORMx,y,z: Assessed for E-field polarization 8=0 (fs900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the

 E^2 -field uncertainty inside TSL (see below ConvF). $NORM(f)x,y,z = NORMx,y,z^*$ frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

DCPx,y,z; DCP are numerical linearization parameters assessed based on the data of power sweep

(no uncertainty required). DCP does not depend on frequency nor media.

PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.

Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media, VR is the maximum calibration range expressed in RMS voltage across the diode.

ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature

Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters power measurements for 1-200winz, the same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.

Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat

phantom exposed by a patch antenna.

Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: J13-2-2041

Page 2 of 11

Probe EX3DV4

Report No.: 2014SAR0089

SN: 3754

Calibrated: August 8, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: J13-2-2041

Page 3 of 11

Page Number

Report Issued Date

: 169 of 205

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2) ^	0.40	0.45	0.45	±10.8%
DCP(mV) ⁸	104.0	104.0	103.1	

Modulation Calibration Parameters

UID	Communication System Name		A dD	B dBõV	С	D dB	VR mV	Unc E (k=2)
0	CW	х	0.0	0.0	1.0	0.00	108.0	±3.2%
	10.870	Y	0.0	0.0	1.0	-	115.1	
		Z	0.0	0.0	1.0	10	115.7	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J13-2-2041

Page 4 of 11

Page Number

Report Issued Date

: 170 of 205

⁶ The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).
⁸ Numerical linearization parameter: uncertainty not required.
⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
2000	40.0	1.40	7.57	7.57	7.57	0.13	3.89	±12%
2300	39.5	1.67	7.33	7.33	7.33	0.17	2.17	±12%
2450	39.2	1.80	7.09	7.09	7.09	0.14	2.92	±12%
2600	39.0	1.96	6.72	6.72	6.72	0.14	2.89	±12%

^c Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^c At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: J13-2-2041

Page 5 of 11

Page Number

Report Issued Date

: 171 of 205

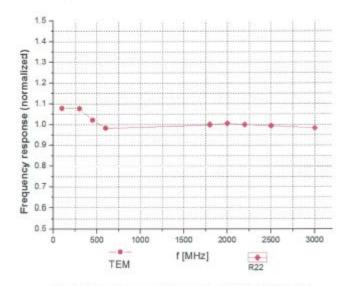
Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^G	Relative Permittivity ^F	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
2000	53.3	1.52	7.61	7.61	7.61	0.17	2.87	土12%
2300	52.9	1.81	7.20	7.20	7.20	0.19	2.05	±12%
2450	52.7	1.95	6.66	6.66	6.66	0.17	3.22	±12%
2600	52.5	2.16	6.29	6.29	6.29	0.14	3.23	±12%

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^P At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: J13-2-2041

Page 6 of 11


East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number Report Issued Date : 172 of 205 :August 16, 2014

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Report No.: 2014SAR0089

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No: J13-2-2041

Page 7 of 11

Page Number

Report Issued Date

: 173 of 205

In Collabourder with

Solve a grant CALBERATION LABORATORY

Add; No.32 Hauyuarhei Road, Haidian Districe, Beijing, 100191, China
Tel: +88-10-42304633-2079 Fac: +88-10-42304633-2594

Email: India glencite.com Hupo/www.cmicle.com

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM f=1800 MHz, R22

Certificate No: J13-2-2041

Page 8 of 11

Roll!-1

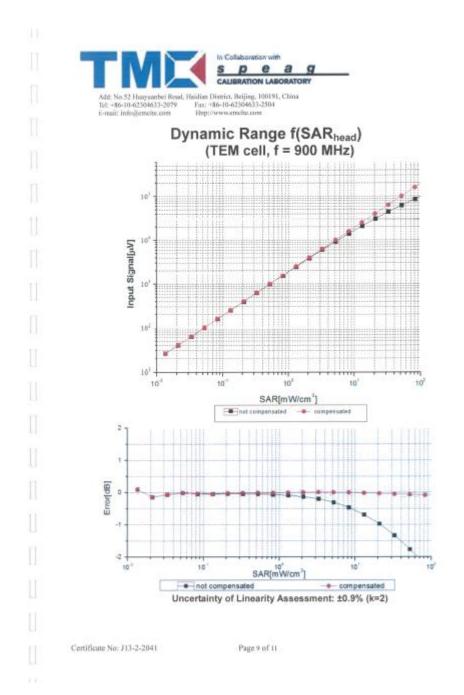
-- 100MHz -- 600MHz -- 1800MHz -- 2500MHz

Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2)

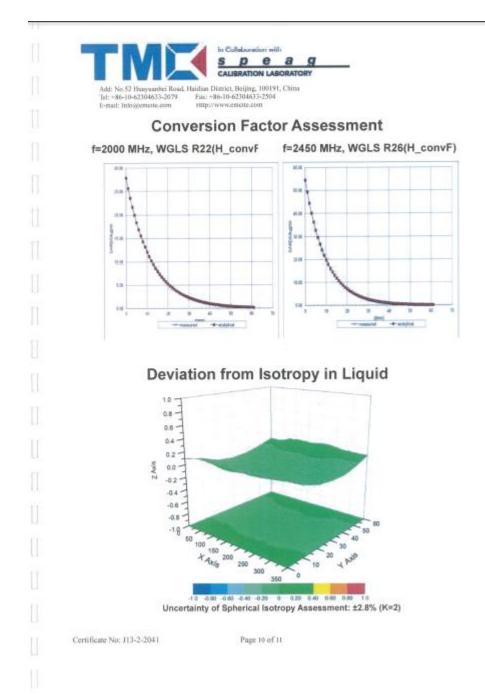
: 174 of 205

:August 16, 2014

Report No.: 2014SAR0089


: 175 of 205

:August 16, 2014


Page Number

Report Issued Date

Page Number

Report Issued Date

: 176 of 205

DASY - Parameters of Probe: EX3DV4 - SN: 3754

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	15.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	2mm

Certificate No: J13-2-2041

Page 11 of 11

Page Number

Report Issued Date

: 177 of 205

ANNEX H. DipoleCalibration Certificate

Tel: +86-10 E-mail: Info	@emcite.com	Http://www.ec	52304633-2504 noite.com	
Client	ATR-SH		Certificate No: J13-2-2032	
CALIBRAT	TION CE	RTIFICATE		
Object		D835V2 -	SN: 4d112	
Calibration Procedure(s)		TMC-OS-	E-02-194 n procedure for dipole validation kits	
		Canonador	i procedure for dipole validation risa	
Calibration date:		October 9	, 2013	
units of measur given on the folk All calibrations h and humidity<70	ements(SI). 1 owing pages a nave been co %.	The measurement and are part of the	losed laboratory facility: environment temper	obability are
units of measur given on the folk All calibrations hand humidity<70 Calibration Equip Primary Standard	ements(SI). 1 owing pages a nave been co %. oment used (N	The measurement and are part of the inducted in the conducted in the conducted for con	nts and the uncertainties with confidence pr e certificate. losed laboratory facility: environment temper calibration)	obability are
units of measur given on the folk All calibrations h and humidity<70	ements(SI). 1 owing pages a nave been co %. oment used (N ds	The measurement and are part of the inducted in the conducted in the conducted for con	nts and the uncertainties with confidence pre- e certificate. losed laboratory facility: environment temper calibration) (Calibrated by, Certificate No.) Schedule 11-Sep-13 (TMC, No.JZ13-443)	d Calibration
units of measur given on the folk All calibrations hand humidity<70 Calibration Equip Primary Standard Power Meter	ements(SI). 1 owing pages a nave been co %. oment used (N ds NRVD NRV-Z5	The measurement and are part of the inducted in the conducted in the conducted for con	nts and the uncertainties with confidence pre- e certificate. losed laboratory facility: environment temper calibration) (Calibrated by, Certificate No.) Schedule	d Calibration
units of measur given on the folk All calibrations hand humidity<70 Calibration Equip Primary Standard Power Meter 1 Power sensor Reference Prot DAE4	ements(SI). 1 owing pages a nave been co %. oment used (N ds NRVD NRV-25 be EX3DV4	The measurement and are part of the inducted in the confidence of	its and the uncertainties with confidence pre- e certificate. Iosed laboratory facility: environment temper calibration) (Calibrated by, Certificate No.) Schedule 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No.JZ13-443) 3-Sep-13 (SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13)	d Calibration Sep-14 Sep-14 Sep-14 Feb-14
units of measur given on the folk All calibrations hand humidity<70 Calibration Equip Primary Standard Power Meter Reference Prot	ements(SI). 10 owing pages a nave been config. Doment used (Note that the configuration of t	The measurement and are part of the inducted in the conducted in the conducted for con	nts and the uncertainties with confidence pre- e certificate. Iosed laboratory facility: environment temper calibration) (Calibrated by, Certificate No.) Schedule 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No.JZ13-443) 3- Sep-13 (SPEAG, No.EX3-3846_Sep13)	d Calibration Sep-14 Sep-14 Sep-14
units of measur given on the folk All calibrations hand humidity<70 Calibration Equip Primary Standard Power Meter Power sensor Reference Prot DAE4 Signal Generate	ements(SI). 1 owing pages a nave been co %. oment used (N ds NRVD NRV-Z5 pe EX3DV4 or E4438C er E8362B	The measurement and are part of the inducted in the conficulty of	nts and the uncertainties with confidence pre- e certificate. losed laboratory facility: environment temper calibration) (Calibrated by, Certificate No.) Schedule 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 3- Sep-13 (SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, No.EX3-3846_Sep13) 13-Nov-12 (TMC, No.JZ12-394) 19-Oct-12 (TMC, No.JZ13-278)	d Calibration Sep-14 Sep-14 Sep-14 Feb-14 Nov-13 Oct-13
units of measur given on the folk All calibrations hand humidity<70 Calibration Equip Primary Standard Power Meter 1 Power sensor Reference Prob DAE4 Signal Generate Network Analyz	ements(SI). 10 owing pages a nave been confidence of the confidenc	The measurement and are part of the inducted in the conducted in the condu	nts and the uncertainties with confidence pre- e certificate. losed laboratory facility: environment temper calibration) (Calibrated by, Certificate No.) Schedule 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 3- Sep-13 (SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, No.EX3-3846_Sep13) 13-Nov-12 (TMC, No.JZ12-394) 19-Oct-12 (TMC, No.JZ13-278)	d Calibration Sep-14 Sep-14 Sep-14 Feb-14 Nov-13
units of measur given on the folk All calibrations hand humidity<70 Calibration Equip Primary Standard Power Meter Power sensor Reference Prot DAE4 Signal Generate	ements(SI). 10 owing pages a nave been config. oment used (Modes and Modes	The measurement and are part of the inducted in the conficulty of	ts and the uncertainties with confidence pre- e certificate. losed laboratory facility: environment temper calibration) (Calibrated by, Certificate No.) Schedule 11-Sep-13 (TMC, No. JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 3-Sep-13 (SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13) 13-Nov-12 (TMC, No.JZ12-394) 19-Oct-12 (TMC, No.JZ13-278) Function	d Calibration Sep-14 Sep-14 Sep-14 Feb-14 Nov-13 Oct-13
units of measur given on the folk All calibrations hand humidity<70 Calibration Equip Primary Standard Power Meter 1 Power sensor Reference Prot DAE4 Signal Generate Network Analyz Calibrated by:	ements(SI). 10 owing pages a nave been config. oment used (Modes a nave been config.) oment used (Modes a nave been config.)	The measurement and are part of the inducted in the conficulty of	its and the uncertainties with confidence pre- e certificate. losed laboratory facility: environment temper calibration) (Calibrated by, Certificate No.) Schedule 11-Sep-13 (TMC, No. JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 3-Sep-13 (SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13) 13-Nov-12 (TMC, No.JZ12-394) 19-Oct-12 (TMC, No.JZ13-278) Function SAR Test Engineer	d Calibration Sep-14 Sep-14 Sep-14 Feb-14 Nov-13 Oct-13
units of measur given on the folk All calibrations hand humidity Calibration Equip Primary Standard Power Meter Power sensor Reference Prob DAE4 Signal Generate Network Analyz Calibrated by: Reviewed by: Approved by:	ements(SI). Towing pages a nave been config. Doment used (Note that the configuration of the	The measurement and are part of the inducted in the confidence of the inducted in the confidence of the inducted in the inducted	nts and the uncertainties with confidence pre- e certificate. losed laboratory facility: environment temper calibration) (Calibrated by, Certificate No.) Schedule 11-Sep-13 (TMC, No. JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 3-Sep-13 (SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13) 13-Nov-12 (TMC, No.JZ12-394) 19-Oct-12 (TMC, No.JZ13-278) Function SAR Test Engineer	d Calibration Sep-14 Sep-14 Sep-14 Feb-14 Nov-13 Oct-13 Signature

East China Institute of Telecommunications Page Number : 178 of 205 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : August 16, 2014

Add: No.52 Hueyuanbei Roed, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Http://www.emcite.com

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)".
 February 2005

Report No.: 2014SAR0089

: 179 of 205

:August 16, 2014

c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- . SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J13-2-2032

Page 2 of 8

Page Number

Report Issued Date

Add. No.52 Huayuanbel Road, Haidian District, Beijing, 100191, China fei: +88-10-82304833-2079 Fax: +88-10-82304833-2504 E-mail: Info@emcite.com Http://www.emcite.com Tel: +88-10-62304633-2079 E-mail: Info@emcite.com

Measurement Conditions

ASY system configuration, as far as	not given on page 1.	
DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	
Phantom	Twin Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
F	935 MUs + 4 MUs	

Report No.: 2014SAR0089

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.3 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	<0.5 °C		****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2,31 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	9.12 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.51 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	5.98 mW/g ± 20.4 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.1 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C		-

SAR result with Body TSL

Condition	
250 mW input power	2.26 mW/g
normalized to 1W	9.15 mW /g ± 20.8 % (k=2)
Condition	
250 mW input power	1.5 mW/g
normalized to 1W	6.06 mW /g ± 20.4 % (k=2)
	250 mW input power normalized to 1W Condition 250 mW input power

Certificate No: J13-2-2032

Page 3 of 8

Page Number

Report Issued Date

: 180 of 205

Add: No.52 Huayuanbel Road, Haldian District, Beijing, 100191, China Tei: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.0Ω - 4.61jΩ
Return Loss	- 24.1dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	42.6Ω - 5.07]Ω
Return Loss	- 20.4dB

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
10100000000000000000000000000000000000	

Certificate No: J13-2-2032

Page 4 of 8

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number Report Issued Date : 181 of 205 :August 16, 2014

Report No.: 2014SAR0089

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Telt. +86-10-62304633-2079 Fax. +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com E-mail: Info@emcite.com

DASY5 Validation Report for Head TSL

Date: 09.10.2013

Report No.: 2014SAR0089

: 182 of 205

:August 16, 2014

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d112 Communication System: CW; Frequency: 835 MHz

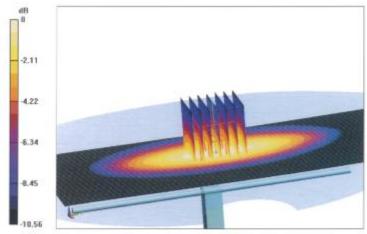
Medium parameters used: f = 835 MHz; σ = 0.914 mho/m; ϵr = 41.328; ρ = 1000

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(9.32,9.32,9.32); Calibrated: 2013/9/3
- Sensor-Surface: 2mm (Mechanical Surface Detection); 1.0, 31.0
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: SAM 1593; Type: QD000P40CC;
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10


Dipole Calibration for Head Tissue/Pin=250mW, d=15mm/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.960 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 3.46 W/kg

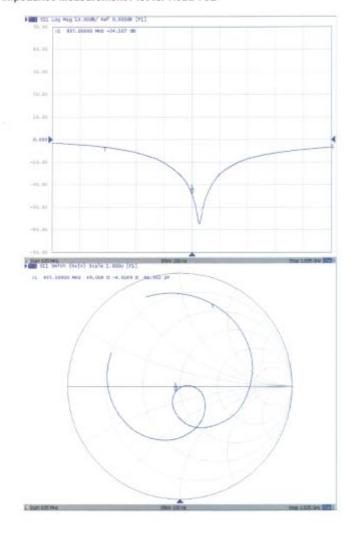
SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.51 W/kg Maximum value of SAR (measured) = 2.93 W/kg

0 dB = 2.93 W/kg = 4.67 dBW/kg

Certificate No: J13-2-2032

Page 5 of 8

Page Number


Report Issued Date

Report No.: 2014SAR0089

Impedance Measurement Plot for Head TSL

Certificate No: J13-2-2032

Page 6 of 8

Page Number

Report Issued Date

: 183 of 205

E-mail: Info@emcite.com

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY5 Validation Report for Body TSL

Date: 09:10:2013

Report No.: 2014SAR0089

: 184 of 205

:August 16, 2014

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d112

Communication System: CW; Frequency: 835 MHz;

Medium parameters used: f = 835 MHz; $\sigma = 0.959$ mho/m; $\epsilon r = 56.13$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(8.96,8.96,8.96); Calibrated: 2013/9/3
- Sensor-Surface: 2mm (Mechanical Surface Detection); 1.0, 31.0
- · Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: SAM 1186; Type: QD000P40CC;
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10

Dipole Calibration for Body Tissue/Pin=250mW, d=15mm/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.919 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 3.37 W/kg

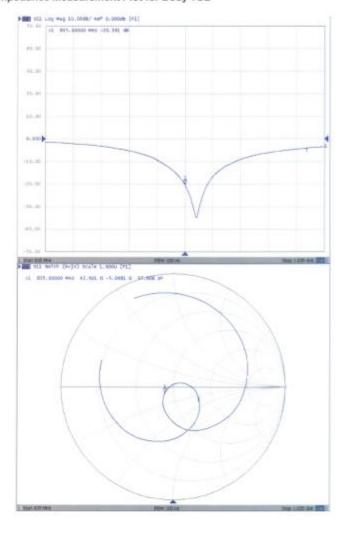
SAR(1 g) = 2.26 W/kg; SAR(10 g) = 1.5 W/kgMaximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Certificate No: J13-2-2032

Page 7 of 8

Page Number


Report Issued Date

Report No.: 2014SAR0089

Impedance Measurement Plot for Body TSL

Certificate No: J13-2-2032

Page 8 of 8

Page Number

Report Issued Date

: 185 of 205

Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to Support FCC Equipment Certification

The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (Telecommunication Metrology Center of MITT in Beijing, China), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (Schmid & Partner Engineering AG, Switzerland) and TMC, to support FCC (U.S. Federal Communications Commission) equipment certification are defined and described in the following.

- 1) The agreement established between SPEAG and TMC is only applicable to calibration services performed by TMC where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. This agreement is subject to renewal at the end of each calendar year between SPEAG and TMC. TMC shall inform the FCC of any changes or early termination to the agreement.
- 2) Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following.
 - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx.
 - Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification.
 - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements."
 - b) Calibration of SAR system validation dipoles, excluding HAC dipoles.
 - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx.
 - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this document).
 - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by TMC.
 - The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or higher version systems.

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number : 186 of 205 Report Issued Date : August 16, 2014

Report No.: 2014SAR0089

: 187 of 205

:August 16, 2014

Page Number

Report Issued Date

- 3) The SPEAG-TMC agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by TMC under this SPEAG-TMC Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. TMC shall, upon request, provide copies of documentation to the FCC to substantiate program implementation.
 - n) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA protocol shall be performed between SPEAG and TMC at least once every 12 months. The ILCE acceptance criteria defined in the TMC QA protocol shall be satisfied for the TMC, SPEAG and FCC agreements to remain valid.
 - b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by TMC. Written confirmation from SPEAG is required for TMC to issue calibration certificates under the SPEAG-TMC Dual-Logo calibration program. Quarterly reports for all calibrations performed by TMC under the program are also issued by SPEAG.
 - c) The calibration equipment and measurement system used by TMC shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the TMC QA protocol before each actual calibration can commence. TMC shall maintain records of the measurement and calibration system verification results for all calibrations.
 - d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit TMC facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates.
- A copy of this document, to be updated annually, shall be provided to TMC clients that accept calibration services according to the SPEAG-TMC Dual-Logo calibration program, which should be presented to a TCB (Telecommunication Certification Body), to facilitate FCC equipment approval.
- TMC shall address any questions raised by its clients or TCBs relating to the SPEAG-TMC Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues.

Change Note: Revised on June 26 to clarify the applicability of PMR and Bundled probe calibrations according to the requirements of KDB 865664.

S P C A C

Report No.: 2014SAR0089

Huayuanbei Road, Haidien District, Beijing, 100191, China 22304833-2079 Faix +86-10-62304633-2804 Bemcitle com Http://www.smcitle.com Certificate No: J13-2-2035 CATR-SH CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d134 Calibration Procedure(s) TMC-OS-E-02-194 Calibration procedure for dipole validation kits Calibration date: July 12, 2013 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±5) C Calibration Equipment used (M&TE critical for calibration) ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Primary Standards Sep-13 11-Sep-12 (TMC, No.JZ12-443) Power Meter NRVD 102083 Sep -13 11-Sep-12 (TMC, No. JZ12-443) Power sensor NRV-Z5 100595 Dec-13 20- Dec-12 (SPEAG, No.EX3-3846_Dec12) Reference Probe EX3DV4 SN 3846 22-Feb-13 (SPEAG, DAE4-777_Feb13) Feb -14 SN 777 DAF4 MY49070393 13-Nov-12 (TMC, No.JZ12-394) Signal Generator E4438C MY43021135 19-Oct-12 (TMC, No.JZ13-278) Oct-13 Network Analyzer E8362B Signature Function Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: SAR Project Leader Qi Dianyuan Approved by: Deputy Director of the laboratory Xiao Li Issued: July 26, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: J13-2-2035

Page 1 of 8

Page Number

Report Issued Date

: 188 of 205

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tal: +86-10-62304633-2679 Fax: +86-10-62304633-2504 E-mai: info@emcire.com Hitp://www.waru.liv.com

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KD8865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized; SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No. J13-2-2035

Page 2 of 8

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number Report Issued Date : 189 of 205 :August 16, 2014

Report No.: 2014SAR0089

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tet.+86-10-82304633-2079 Fax: +86-10-82304633-2654 E-mail: Info@emoite.com Http://www.emotes.com

Measurement Conditions

DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	
Phantom	Twin Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.37 mho/m ± 6 %
Head TSI, temperature change during test	<0.5 °C		222

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.6 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	42.7 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.2 mW /g ± 20.4 % (k=2)

Body TSL parameters

he following parameters and calculations were	applied.		
	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.8 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C	- bear	Takes

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.9 mW / g
SAR for nominal Body TSL parameters	normalized to TW	43.4 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.7 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	22.7 mW/g ± 20.4 % (k=2)

Certificate No: J13-2-2035

Page 3 of 8

East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Page Number Report Issued Date : 190 of 205 :August 16, 2014

Report No.: 2014SAR0089

In Collaboration with Sea Gradulle Sea Gradu

Report No.: 2014SAR0089

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.5Ω+0.78jΩ	
Return Loss	- 26.8dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9Ω+ 3.49jΩ	
Return Loss	- 24.3dB	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	April 14, 2010	

Certificate No: J13-2-2035

Page 4 of 8

Page Number

Report Issued Date

: 191 of 205

Add: No.52 Huayuanbei Road, Haldian District, Beijing, 100191, China Tel: +85-10-52304533-2079 Fax: +85-10-52304533-2504 E-mail: info@emcite.com

Http://www.emdle.com

DASY5 Validation Report for Head TSL

Date: 12.07.2013

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d134

Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.365 mho/m; ϵ r = 38.576; ρ = 1000

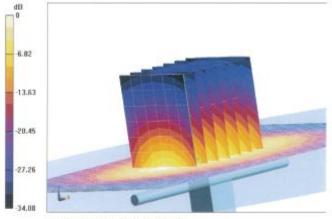
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(8.01,8.01,8.01); Calibrated:20,12,2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: Flat Phantom; Type: QD000P40CC;
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10

Dipole Calibration for Head Tissue/Pin=250mW, d=10mm/Zoom Scan


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.229 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 19.8 W/kg

SAR(1 g) = 10.6 W/kg; SAR(10 g) = 5.52 W/kg

Maximum value of SAR (measured) = 12.0 W/kg

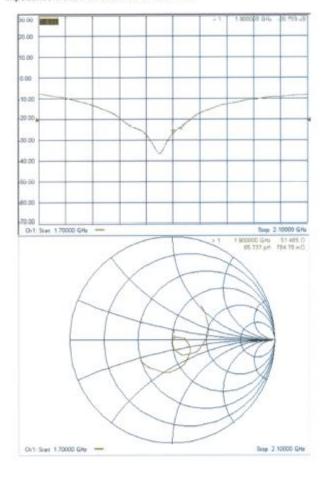
0 dB = 12.3 W/kg = 10.91 dBW/kg

Certificate No: J13-2-2035

Page 5 of 8

Page Number

Report Issued Date


: 192 of 205

Impedance Measurement Plot for Head TSL

Certificate No: J13-2-2035

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 12.07.2013

Report No.: 2014SAR0089

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d134

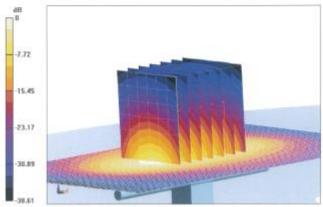
Communication System: CW; Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; σ = 1.502 mho/m; ϵr = 50.787; ρ = 1000 kg/m³ Phantom section: Flat Phantom

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(7.37,7.37,7.37); Calibrated:20.12.2012
- . Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- . Phantom: Flat Phantom; Type: QD000P40CC
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

Dipole Calibration for Body Tissue/Pin=250mW, d=10mm/Zoom Scan


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 74.485 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 19.8 W/kg

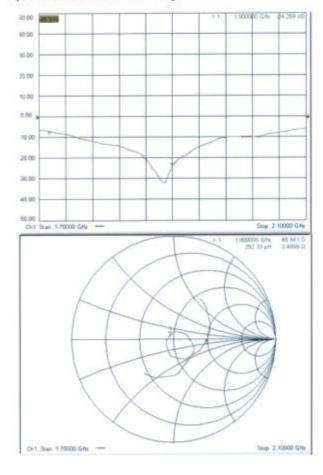
SAR(1 g) = 10.9 W/kg; SAR(10 g) = 5.7 W/kg

Maximum value of SAR (measured) = 12.3 W/kg

0 dB = 12.4 W/kg = 10.95 dBW/kg

Certificate No: J13-2-2035

Page 7 of 8


: 194 of 205

Impedance Measurement Plot for Body TSL

Certificate No: J13-2-2035

Page 8 of 8

Report No.: 2014SAR0089

Report No.: 2014SAR0089

: 196 of 205

:August 16, 2014

Page Number

Report Issued Date

Certificate No: J13-2-2038

Page 1 of 8

P e CALIBRATION LABORATORY dd: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China el: +86-10-62304633-2079 Fax: +86-10-62304633-2504 mail: Info@emoite.com Http://www.emcite.com Tel: +86-10-62304633-2079 E-mail: Info@emcite.com Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz Additional Documentation: d) DASY4/5 System Handbook Methods Applied and Interpretation of Parameters: Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. SAR measured: SAR measured at the stated antenna input power.

Report No.: 2014SAR0089

: 197 of 205

:August 16, 2014

Page Number

Report Issued Date

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna

SAR for nominal TSL parameters: The measured TSL parameters are used to calculate

Certificate No: J13-2-2038

connector.

the nominal SAR result.

Page 2 of 8

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tal: +86-10-82304633-2079 Fax: +86-10-82304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY52	52.8.7.1137
Advanced Extrapolation	
Twin Phantom	
10 mm	with Spacer
dx, dy, dz = 5 mm	
2450 MHz ± 1 MHz	
	Advanced Extrapolation Twin Phantom 10 mm dx, dy, dz = 5 mm

Report No.: 2014SAR0089

Head TSL parameters

The following parameters and calculations were applied

322	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.6 ± 6 %	1.78 mho/m ± 6 %
Head TSL temperature change during test	<0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.4 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	49.5 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.76 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.0 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	1.93 mho/m ± 6 %
Body TSL temperature change during test	≪0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	11.9 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	47.7 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ⁻¹ (10 g) of Body TSL.	Condition	
SAR measured	250 mW input power	5.55 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	22.2 mW /g ± 20.4 % (k=2)

Certificate No: J13-2-2038

Page 3 of 8

Page Number

Report Issued Date

: 198 of 205

Report No.: 2014SAR0089

Add: No.52 Huayuanbei Road Tel: +86-10-62304633-2079 E-mail: Info@emcite.com

Janbei Road, Haidian District, Beijing, 100191, China 1633-2079 Fax: +86-10-62304633-2504 ite.com <u>Http://www.emcile.com</u>

CALIBRATION LABORATORY

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.9Ω+4.50jΩ	
Return Loss	- 24 0dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.9Ω+ 5.86jΩ	
Return Loss	- 24.6dB	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 23, 2010

Certificate No: J13-2-2038

Page 4 of 8

Page Number

Report Issued Date

: 199 of 205

p e

Report No.: 2014SAR0089

: 200 of 205

:August 16, 2014

Page Number

Report Issued Date

Date: 13.07.2013

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

CALIBRATION LABORATORY

DASY5 Validation Report for Head TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 858

Communication System: CW; Frequency: 2450 MHz.

Medium parameters used: f = 2450 MHz; σ = 1.777 mho/m; εr = 37.61; ρ = 1000

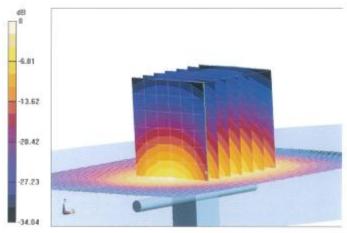
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(7.13,7.13,7.13); Calibrated:20,12,2012
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- · Phantom: Flat Phantom; Type: QD000P40CC;
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10

Dipole Calibration for Head Tissue/Pin=250mW, d=10mm/Zoom Scan


(7x7x7)/Cube 0: Messurement grid: dx=5mm, dy=5mm, dz=5mm

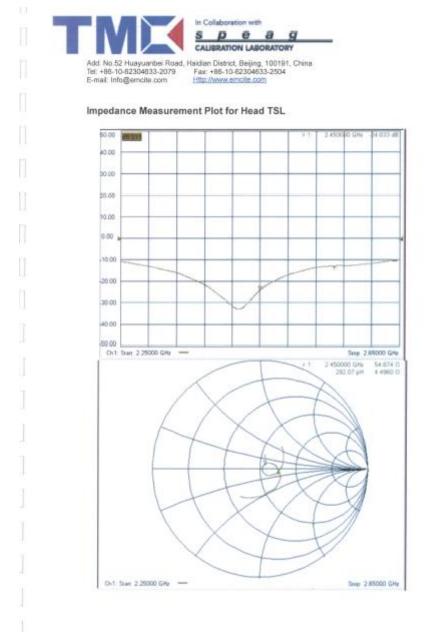
Reference Value = 82.927 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 26.0 W/kg

SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.76 W/kg

Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.4 W/kg = 11.57 dBW/kg


Certificate No: J13-2-2038

Page 5 of 8

Report No.: 2014SAR0089

Certificate No: J13-2-2038

Page 6 of 8

Page Number

Report Issued Date

: 201 of 205

Add: No.52 Husyuanbei Road, Haidian District, Beijing, 100191, China Tei: +86-10-82304833-2079 Fax: +86-10-82304833-2504 E-mail: Info@emcite.com Hittp://www.emcite.com E-mail: Info@emcite.com

DASY5 Validation Report for Body TSL Test Laboratory: TMC, Beijing, China

Date: 11.07.2013

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 858
Communication System: CW; Frequency: 2450 MHz;
Medium parameters used: f = 2450 MHz; σ = 1.927 mho/m; εr = 51.858; ρ = 1000 kg/m³

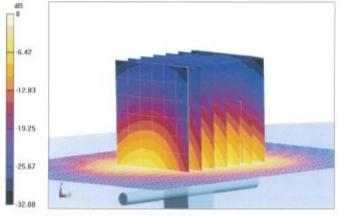
Phantom section: Flat Phantom

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(7,7,7); Calibrated:20.12.2012
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- . Phantom: Flat Phantom; Type: QD000P40CC
- Measurement SW; DASY52 52.8.7(1137); SEMCAD X Version 14.6.10

Dipole Calibration for Body Tissue/Pin=250mW, d=10mm/Zoom Scan


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.465 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 24.1 W/kg

SAR(1 g) = 11.9 W/kg; SAR(10 g) = 5.55 W/kg

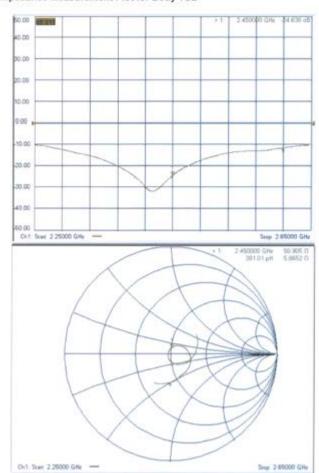
Maximum value of SAR (measured) = 13.7 W/kg

0 dB = 13.6 W/kg = 11.32 dBW/kg

Certificate No: J13-2-2038

Page 7 of 8

: 202 of 205



Report No.: 2014SAR0089

Impedance Measurement Plot for Body TSL

Certificate No: J13-2-2038

Page 8 of 8

Page Number

Report Issued Date

: 203 of 205

Report No.: 2014SAR0089

Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to Support FCC Equipment Certification

The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (Telecommunication Metrology Center of MITT in Beijing, China), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (Schmid & Partner Engineering AG, Switzerland) and TMC, to support FCC (U.S. Fesheral Communications Commission) equipment certification are defined and described in the following.

- The agreement established between SPEAG and TMC is only applicable to
 calibration services performed by TMC where its clients (companies and divisions of
 such companies) are headquartered in the Greater China Region, including Taiwan
 and Hong Kong. This agreement is subject to renewal at the end of each calendar
 year between SPEAG and TMC. TMC shall inform the FCC of any changes or early
 termination to the agreement.
- Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following.
 - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx.
 - Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification.
 - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements."
 - b) Calibration of SAR system validation dipoles, excluding HAC dipoles.
 - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx.
 - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this document).
 - The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by TMC.
 - The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or higher version systems.

Page Number

Report Issued Date

: 204 of 205

Report No.: 2014SAR0089

3) The SPEAG-TMC agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by TMC under this SPEAG-TMC Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. TMC shall, upon request, provide copies of documentation to the FCC to substantiate program implementation. a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA protocol shall be performed between SPEAG and TMC at least once every 12 months. The ILCE acceptance criteria defined in the TMC QA protocol shall be satisfied for the TMC, SPEAG and FCC agreements to remain valid.

b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by TMC. Written confirmation from SPEAG is required for TMC to issue calibration certificates under the SPEAG-TMC Dual-Logo calibration program. Quarterly reports for all calibrations performed by TMC under the program are also issued by SPEAG.
c) The calibration equipment and measurement system used by TMC shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the TMC QA protocol hefore each actual calibration can commence. TMC shall maintain records of the measurement and calibration system verification results for all calibrations d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit TMC facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates A copy of this document, to be updated annually, shall be provided to TMC clients that accept calibration services according to the SPEAG-TMC Dual-Logo calibration program, which should be presented to a TCB (Telecommunication Certification Body), to facilitate FCC equipment approval.

5) TMC shall address any questions raised by its clients or TCBs relating to the SPEAG-TMC Dual-Logo calibration program and inform the FCC and SPEAG of any critical Change Note: Revised on June 26 to clarify the applicability of PMR and Bundled probe calibrations according to the requirements of KDB 865664.

*******End The Report******

Page Number

Report Issued Date

: 205 of 205