

TEST REPORT

Applicant Name :	Vuzix Corporation
Address :	25 Hendrix Rd, West Henrietta, New York, United States 14586
Report Number :	SZNS211029-55736E-SAA1
FCC ID:	2AA9D-490
IC	11503A-490

Test Standard (s)

FCC 47 CFR part 2.1093; RSS-102 Issue 5 Amendment 1 (February 2, 2021)

Sample Description

Product Type:	M4000
Model No.:	490
Multiple Model(s) No.:	N/A
Trade Mark:	VUZIX
Date Received:	2022/1/27
Date of Test:	2022/01/21
Report Date:	2022/2/11

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

lanceli

Lance Li EMC Engineer

Approved By:

Candry . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 801: 2021-11-09

	Attest	ation of Test Results		
	HVIN	490		
	EUT Description	M4000		
	Tested Model	490		
	Multiple Model(s) No.:	N/A		
EUT Information	Trade Mark	VUZIX		
	FCC ID:	2AA9D-490		
	IC	11503A-490		
	Serial Number	SZNS211029-55736E-SAA1 -S1		
	Test Date	2022/01/21		
M	ODE	Max. SAR Level(s) Reported(W/kg)	Limit (W/kg)	
WIFI 5.3G	1g Head SAR	0.16	1.6	
WIFI 5.6G	1g Head SAR	0.27		
Applicable Standards	 RSS-102 Issue 5 Amendr Radio Frequency (RF) Exp Frequency Bands). Safety Code 6 Health Ca Limits of Human Exposur Range from 3 kHz to 30 RF Exposure Procedures IEC/IEEE 62209-1528:20 Measurement procedure for radio frequency fields from Part 1528: Human models GHz) KDB procedures KDB 447498 D01 Genera KDB 648474 D04 Handse 	exposure evaluation: portable devices nent 1 (February 2, 2021) posure Compliance of Radio communication Appendiates anda's Radiofrequency Exposure Guidelines to Radiofrequency Electromagnetic Energy in the 0 GHz TCB Workshop April 2019 200 or the assessment of specific absorption rate of hum n hand-held and body-mounted wireless community instrumentation, and procedures (Frequency ranged 1 RF Exposure Guidance v06 t SAR v01r03 feasurement 100 MHz to 6 GHz v01r04	ne Frequency man exposure to ication devices –	
General Population/Unco Guidelines and has been 62209-1528:2020 and R	ontrolled Exposure limits sp tested in accordance with the F exposure KDB procedures	bable of compliance for localized specific absorpt becified in Safety Code 6 Health Canada's Radiofr ne measurement procedures specified in IEC/IEEF S.	equency Exposure	
The results and statem	ents contained in this repo	rt pertain only to the device(s) evaluated.		

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
EUT DESCRIPTION	5
TECHNICAL SPECIFICATION	5
REFERENCE, STANDARDS, AND GUIDELINES	6
SAR LIMITS	7
FACILITIES	
DESCRIPTION OF TEST SYSTEM	9
EQUIPMENT LIST AND CALIBRATION	
EQUIPMENTS LIST & CALIBRATION INFORMATION	16
SAR MEASUREMENT SYSTEM VERIFICATION	
LIQUID VERIFICATION	
SYSTEM ACCURACY VERIFICATION SAR SYSTEM VALIDATION DATA	
EUT TEST STRATEGY AND METHODOLOGY	
TEST POSITIONS FOR CLOTHING-INTEGRATED DEVICE	
TEST DISTANCE FOR SAR EVALUATION	
CONDUCTED OUTPUT POWER MEASUREMENT	
MAXIMUM TARGET OUTPUT POWER	
TEST RESULTS:	
STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	
CORRECTED SAR EVALUATION	
SAR MEASUREMENT RESULTS	
SAR TEST DATA	
SAR MEASUREMENT VARIABILITY	
SAR SIMULTANEOUS TRANSMISSION DESCRIPTION	
SAR PLOTS	
APPENDIX A MEASUREMENT UNCERTAINTY	
APPENDIX B EUT TEST POSITION PHOTOS	39
LIQUID DEPTH ≥ 15CM	
FRONT TO PHANTOM WITH GLASS FRAME (0MM)	
APPENDIX C PROBE CALIBRATION CERTIFICATES	
APPENDIX D DIPOLE CALIBRATION CERTIFICATES	41

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	SZNS211029-55736E-SAA1	Original Report	2022/2/11

EUT DESCRIPTION

This report has been prepared on behalf of *Vuzix Corporation* and their product *M4000*, Model: *490*, FCC ID: *2AA9D-490,IC: 11503A-490* or the EUT (Equipment under Test) as referred to in the rest of this report.

Technical Specification

Device Type:	Portable
Exposure Category:	Population / Uncontrolled
Antenna Type(s):	Internal Antenna
Proximity sensor for SAR reduction:	None
Face-Head Accessories:	None
Operation Mode :	WLAN
Frequency Band:	WLAN (5.3G): 5250-5350MHz WLAN (5.6G): 5470-5725MHz
Power Source:	Rechargeable Battery
Normal Operation:	head-mounted

Note:

1. Canada does not support this frequency range (5600-5650MHz).

REFERENCE, STANDARDS, AND GUIDELINES

FCC:

- The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.
- This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

- The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.
- This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.
- The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

SAR Limits

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population /	(Occupational /	
	Uncontrolled Exposure	Controlled Exposure	
	Environment)	Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

FCC Limit(1g Tissue)

CE Limit(10g Tissue)

	SAR (W/kg)		
	(General Population /	(Occupational /	
EXPOSURE LIMITS	Uncontrolled Exposure	Controlled Exposure	
	Environment)	Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 10 g of tissue)	2.0	10	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) & 2 W/kg (CE) applied to the EUT.

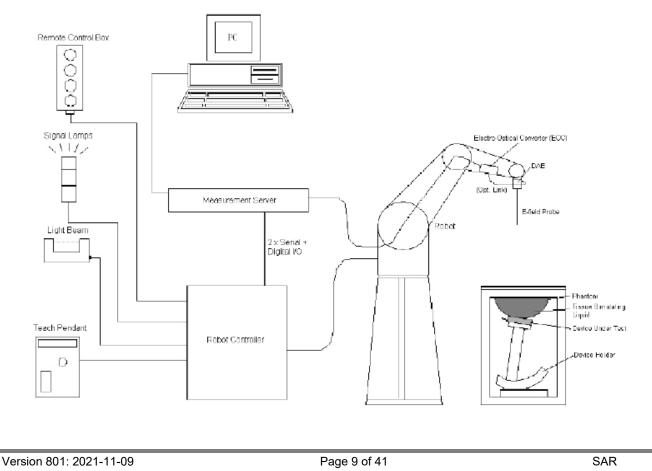
FACILITIES

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358,the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

The test site has been registered with ISED Canada under ISED Canada Registration Number CN0016.


DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY5 Measurement Server

- The DASY5 measurement server is based on a PC/104 CPU board with a 400 MHz Intel ULV Celeron, 128 MB chip-disk and 128 MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16-bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.
- The measurement server performs all real-time data evaluations of field measurements and surface detection, controls robot movements, and handles safety operations. The PC operating system cannot interfere with these time-critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program- controlled robot movements. Furthermore, the measurement server is equipped with an expansion port, which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Connection of devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

- The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.
- The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.
- The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 E-Field Probes

Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	 ± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

SAM Twin Phantom

- The SAM Twin Phantom (shown in front of DASY5) is a fiberglass shell phantom with shell thickness 2 mm, except in the ear region where the thickness is increased to 6 mm.
- When the phantom is mounted inside allocated slot of the DASY5 platform, phantom reference points can be taught directly in the DASY5 V5.2 software. When the DASY5 platform is used to mount the
- Phantom, some of the phantom teaching points cannot be reached by the robot in DASY5 V5.2. A special tool called P1a-P2aX-Former is provided to transform two of the three points, P1 and P2, to reachable locations. To use these new teaching points, a revised phantom configuration file is required.
- In addition to our standard broadband liquids, the phantom can be used with the following tissue simulating liquids:
- Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.

DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).

Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the SAM Twin phantom.

Calibration Frequency Points for EX3DV4 E-Field Probes SN: 3619 Calibrated: 2021/08/25

Calibration Frequency	Conversion Factor		
Point(MHz)	X	Y	Z
450 Head	8.89	8.89	8.89
600 Head	8.96	8.96	8.96
750 Head	8.63	8.63	8.63
835 Head	8.50	8.50	8.50
900 Head	8.28	8.28	8.28
1750 Head	7.33	7.33	7.33
1900 Head	7.07	7.07	7.07
2450 Head	6.69	6.69	6.69
2600 Head	6.53	6.53	6.53
5250 Head	4.37	4.37	4.37
5600 Head	4.03	4.03	4.03
5800 Head	3.93	3.93	3.93

Area Scans

- Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.
- Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

- The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm.
- When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.
- The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEC 62209-1528-2020

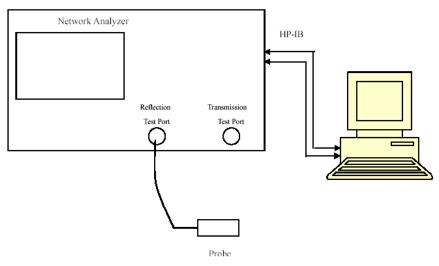
Recommended Tissue Dielectric Parameters for Head

Table 2 – Dielectric properties of the tissue-equivalent medium

Frequency	Real part of the complex relative permittivity, ε'_r	Conductivity, <i>σ</i>	Penetration depth (E-field), δ
MHz		S/m	mm
4	55,0	0,75	293,0
13	55,0	0,75	165,5
30	55,0	0,75	112,8
150	52,3	0,76	62,0
300	45,3	0,87	46,1
450	43,5	0,87	43,0
750	41,9	0,89	39,8
835	41,5	0,90	39,0
900	41,5	0,97	36,2
1 450	40,5	1,20	28,6
1 800	40,0	1,40	24,3
1 900	40,0	1,40	24,3
1 950	40,0	1,40	24,3
2 000	40,0	1,40	24,3
2 100	39,8	1,49	22,8
2 450	39,2	1,80	18,7
2 600	39,0	1,96	17,2
3 000	38,5	2,40	14,0
3 500	37,9	2,91	11,4
4 000	37,4	3,43	10,0
4 500	36,8	3,94	9,7

Frequency	Real part of the complex relative permittivity, ε'_{f}	Conductivity, σ	Penetration depth (E-field), δ
MHz		S/m	mm
5 000	36,2	4,45	1,5
5 200	36,0	4,66	8,4
5 400	35,8	4,86	8,1
5 600	35,5	5,07	7,5
5 800	35,3	5,27	7,3
6 000	35,1	5,48	7,0
6 500	34,5	6,07	6,7
7 000	33,9	6,65	6,4
7 500	33,3	7,24	6,1
8 000	32,7	7,84	5,9
8 500	32,1	8,46	5,3
9 000	31,6	9,08	4,8
9 500	31,0	9,71	4,4
10 000	30,4	10,40	4,0

NOTE For convenience, permittivity and conductivity values are linearly interpolated for frequencies that are not a part of the original data from Drossos et al. [2]. They are shown in italics in Table 2. The italicized values are linearly interpolated (below 5800 MHz) or extrapolated (above 5800 MHz) from the non-italicized values that are immediately above and below these values.


EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52 52.10.4	N/A	NCR	NCR
DASY5 Measurement Server	DASY5 6.0.31	N/A	NCR	NCR
Data Acquisition Electronics	DAE4	1562	2021/12/13	2022/12/12
E-Field Probe	EX3DV4	3619	2021/08/25	2022/08/24
Mounting Device	MD4HHTV5	SD 000 H01 KA	NCR	NCR
SAM Twin Phantom	SAM-Twin V5.0	1744	NCR	NCR
Dipole,5GHz	D5GHZV2	1301	2020/01/10	2023/01/09
Simulated Tissue Liquid Head(500-9500MHz)	HBBL600-10000V6	180622-2	Each Time	/
Network Analyzer	8753D	3410A08288	2021/7/07	2022/7/06
Dielectric Assessment Kit	DAK-3.5	1248	NCR	NCR
Signal Generator	SMB100A	108362	2021/12/24	2022/12/23
USB wideband power sensor	U2021XA	MY52350001	2021/7/31	2022/7/30
Power Amplifier	CBA 1G-070	T44328	2021/12/24	2022/12/23
Linear Power Amplifier	AS0860-40/45	1060913	2021/12/24	2022/12/23
Directional Coupler	4223-20	3.113.277	2021/12/24	2022/12/23
6dB Attenuator	8493B 6dB Attenuator	2708A 04769	2021/12/24	2022/12/23

SAR MEASUREMENT SYSTEM VERIFICATION

Liquid Verification

Liquid Verification Setup Block Diagram

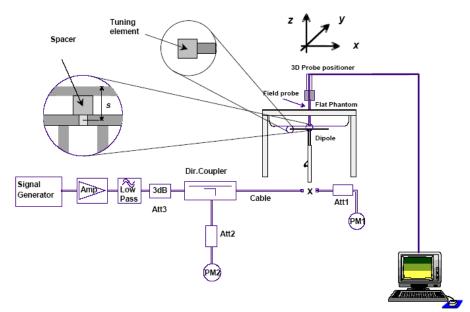
Liquid Verification Results

Frequency (MHz)	Liquid Type		luid ameter	Targe	et Value	De (%	lta 6)	Tolerance (%)
(11112)		ε _r	O(S/m)	8r	O(S/m)	$\Delta \epsilon_r$	ΔĊ	(70)
5250	Simulated Tissue Liquid Head	35.010	4.751	35.95	4.71	-2.61	0.87	±5
5260	Simulated Tissue Liquid Head	35.181	4.764	35.94	4.72	-2.11	0.93	±5
5280	Simulated Tissue Liquid Head	34.771	4.783	35.92	4.74	-3.20	0.91	±5
5320	Simulated Tissue Liquid Head	34.881	4.818	35.88	4.78	-2.78	0.79	±5

*Liquid Verification was performed on 2022/01/21.

Frequency (MHz)	Liquid Type		luid ameter	Targe	et Value	-	lta 6)	Tolerance (%)
(141112)		ε _r	O(S/m)	8r	O(S/m)	$\Delta \epsilon_r$	ΔĊ	(70)
5500	Simulated Tissue Liquid Head	34.554	5.028	35.65	4.97	-3.07	1.17	±5
5580	Simulated Tissue Liquid Head	34.697	5.092	35.53	5.05	-2.34	0.83	±5
5600	Simulated Tissue Liquid Head	34.457	5.136	35.50	5.07	-2.94	1.30	±5
5700	Simulated Tissue Liquid Head	34.604	5.228	35.40	5.17	-2.25	1.12	±5

*Liquid Verification was performed on 2022/01/21.


System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) $s = 15 \text{ mm} \pm 0.2 \text{ mm}$ for 300 MHz $\leq f \leq 1 000 \text{ MHz}$;
- b) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 1 000 MHz < f \leq 3 000 MHz;
- c) $s=10~mm\pm0.2~mm$ for 3 000 MHz $^{<}f$ \leq 6 000 MHz.

System Verification Setup Block Diagram

System Accuracy Check Results

Date	Frequency Band	Liquid Type	Input Power (mW)	:	sured SAR //kg)	Normalized to 1W (W/kg)	Target Value (W/kg)	Delta (%)	Tolerance (%)
2022/01/21	5250 MHz	Head	100	1g	7.69	76.9	80.7	-4.709	±10
2022/01/21	5600 MHz	Head	100	1g	8.07	80.7	85.1	-5.170	±10

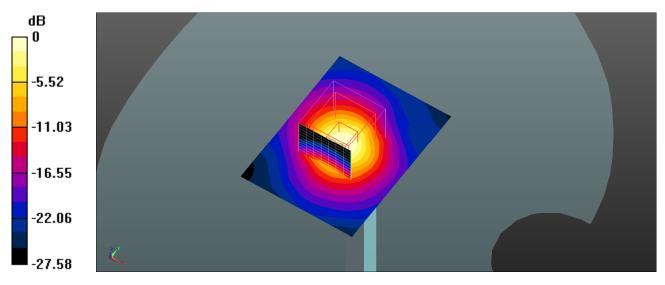
*The SAR values above are normalized to 1 Watt forward power.

SAR SYSTEM VALIDATION DATA

System Performance 5250 MHz Head

DUT: Dipole 5GHz Type: D5GHZV2; Serial: 1301

Communication System: UID 0, CW (0); Frequency: 5250 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; $\sigma = 4.751$ S/m; $\epsilon_r = 35.01$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN3619; ConvF(4.37, 4.37, 4.37) @ 5250 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 2021/1/19
- Phantom: Head model; Type: QD000P40CC; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4)

Head 5250MHz Pin=100mW/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 15.9 W/kg

Head 5250MHz Pin=100mW/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 70.82 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 15.1 W/kg

0 dB = 15.1 W/kg = 11.79 dBW/kg

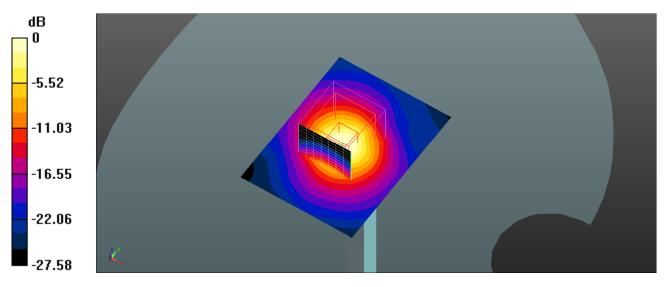
System Performance 5600 MHz Head

DUT: Dipole 5GHz Type: D5GHZV2; Serial: 1301

Communication System: UID 0, CW (0); Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; σ = 5.136 S/m; ϵ_r = 34.457; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3619; ConvF(4.03, 4.03, 4.03) @ 5600 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 2021/1/19
- Phantom: Head model; Type: QD000P40CC; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4)

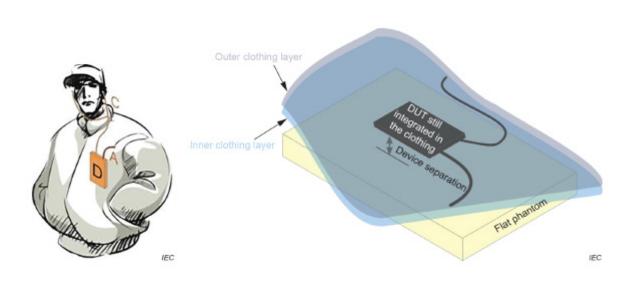

Head 5600MHz Pin=100mW/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.2 W/kg

Head 5600MHz Pin=100mW/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 78.05 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 17.5 W/kg


0 dB = 17.5 W/kg = 12.43 dBW/kg

EUT TEST STRATEGY AND METHODOLOGY

Test positions for Clothing-integrated device

A typical example of a clothing-integrated device is a wireless communication device integrated into a jacket to provide voice communications through an embedded speaker and microphone. This category also includes head-mounted devices with integrated wireless communication devices.

To assess this type of device, the following applies.

Test Distance for SAR Evaluation

Devices integrated in head-mounted devices may be tested using the SAM phantom or specific phantoms.For this case the EUT(Equipment Under Test) is set 0mm away from the phantom, the test distance is 0mm.

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

- Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.
- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.
 - All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

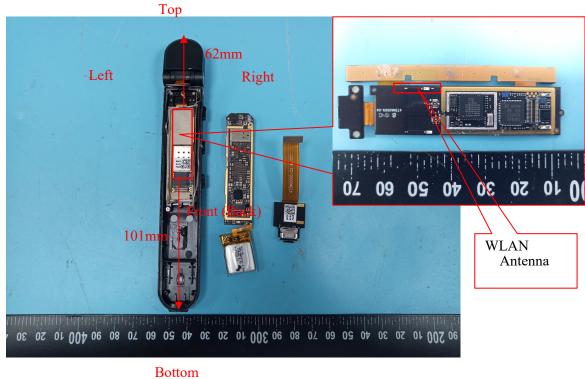
CONDUCTED OUTPUT POWER MEASUREMENT

Maximum Target Output Power

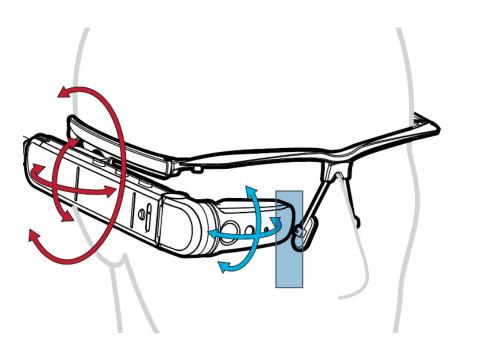
Max Target Power(dBm)							
Channel							
Mode/Band	Low Middle High						
WLAN 5.3G	12.0 12.0 12.0						
WLAN 5.6G	13.0 13.0 13.0						

Test Results:

Wi-Fi 5.3G:


Mode	Channel frequency	Data Rate	Conducted Average
	(MHz)		Output
	5260		10.21
802.11a	5280	6Mbps	10.63
	5320		10.35
	5260		10.13
802.11n20	5280	MCS0	10.55
	5320		10.36
202 11 40	5270	MCSO	11.61
802.11n40	5310	MCS0	11.17
	5260		10.55
802.11ac20	5280	MCS0	10.69
	5320		10.37
000 11 40	5270	MCGO	11.51
802.11ac40	5310	MCS0	11.19
802.11ac80	5290	MCS0	11.34

Wi-Fi 5.6G:


Mode	Channel frequency (MHz)	Data Rate	Conducted Average Output
	5500		11.11
802.11a	5580	6Mbps	11.27
	5700		11.36
	5500		10.75
802.11n20	5580	MCS0	10.66
	5700		11.21
	5510		11.97
802.11n40	5550	MCS0	11.89
	5670		12.26
	5500		10.82
802.11ac20	5580	MCS0	10.71
	5700		10.93
	5510		12.05
802.11ac40	5550	MCS0	11.89
	5670		12.66
902 1190	5530	MCSO	11.65
802.11ac80	5610	MCS0	11.97

Standalone SAR test exclusion considerations

Antennas Location:

Standalone SAR test exclusion for the EUT Edge considerations [RSS-102 Issue 5 Amendment 1 (February 2, 2021)]

Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated

power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 5. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in Table 1, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

Frequency		Exemption Limits (mW)							
(MHz)	At separation distance of								
	≤5 mm	10 mm	15 mm	20 mm	25 mm				
≤300	71 mW	101 mW	132 mW	162 mW	193 mW				
450	52 mW	70 mW	88 mW	106 mW	123 mW				
835	17 mW	30 mW	42 mW	55 mW	67 mW				
1900	7 mW	10 mW	18 mW	34 mW	60 mW				
2450	4 mW	7 mW	15 mW	30 mW	52 mW				
3500	2 mW	6 mW	16 mW	32 mW	55 mW				
5800	1 mW	6 mW	15 mW	27 mW	41 mW				

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance^{4,5}

Frequency		Exemption Limits (mW)						
(MHz)	At separation distance of 30 mm	At separation distance of 35 mm	At separation distance of 40 mm	At separation distance of 45 mm	At separation distance of ≥50 mm			
≤300	223 mW	254 mW	284 mW	315 mW	345 mW			
450	141 mW	159 mW	177 mW	195 mW	213 mW			
835	80 mW	92 mW	105 mW	117 mW	130 mW			
1900	99 mW	153 mW	225 mW	316 mW	431 mW			
2450	83 mW	123 mW	173 mW	235 mW	309 mW			
3500	86 mW	124 mW	170 mW	225 mW	290 mW			
5800	56 mW	71 mW	85 mW	97 mW	106 mW			

Standalone SAR test exclusion for the EUT Edge considerations (RSS-102 issue 5)

Model	Frequency (MHz)	Peak P _{avg} (dBm)	EIRP (dBm)	EIRP (mW)	Exemption Limits (mW)	SAR Test Exclusion
WLAN 5.3G	5350	12.0	14.0	25.12	1	No
WLAN 5.6G	5700	13.0	15.0	31.62	1	No

Corrected SAR Evaluation

IEC/IEEE 62209-1528:2020

7.8.2 SAR correction formula

From Douglas et al. ([28], [29]), a linear relationship was found between the percentage change in SAR (denoted ΔSAR) and the percentage change in the permittivity and conductivity from the target values in Table 2 (denoted $\Delta \varepsilon_r$ and $\Delta \sigma$, respectively). This linear relationship agrees with the results of Kuster and Balzano [30] and Bit-Babik et al. [31]. The relationship is given by:

$$\Delta SAR = c_{\varepsilon} \Delta \varepsilon_{r} + c_{\sigma} \Delta \sigma \tag{8}$$

where

- $c_{\varepsilon} = \partial(\Delta SAR)/\partial(\Delta \varepsilon)$ is the coefficient representing the sensitivity of SAR to permittivity where SAR is normalized to output power;
- $c_{\sigma} = \partial(\Delta SAR)/\partial(\Delta \sigma)$ is the coefficient representing the sensitivity of SAR to conductivity, where SAR is normalized to output power.

The values of c_{ε} and c_{σ} have a simple relationship with frequency that can be described using polynomial equations. For dipole antennas at frequencies from 4 MHz to 6 GHz, the 1 g averaged SAR c_{ε} and c_{σ} are given by

$$c_{\varepsilon} = -7,854 \times 10^{-4} f^3 + 9,402 \times 10^{-3} f^2 - 2,742 \times 10^{-2} f - 0,2026$$
(9)

$$c_{\sigma} = 9,804 \times 10^{-3} f^3 - 8,661 \times 10^{-2} f^2 + 2,981 \times 10^{-2} f + 0,7829$$
(10)

where *f* is the frequency in GHz. Above 6 GHz, the sensitivity is non-varying with frequency due to the small penetration depth; the values of $c_{\epsilon} = -0,198$ and $c_{\sigma} = 0$ shall be used.

For frequencies from 4 MHz to 6 GHz, the 10 g averaged SAR c_{ε} and c_{σ} are given by:

$$c_{\varepsilon} = 3,456 \times 10^{-3} f^3 - 3,531 \times 10^{-2} f^2 + 7,675 \times 10^{-2} f - 0,1860$$
(11)

$$c_{\sigma} = 4,479 \times 10^{-3} f^3 - 1,586 \times 10^{-2} f^2 - 0,197 2 f + 0,771 7$$
(12)

Calibrate Date	Liquid Type	Frequency (MHz)	C _ε	$\Delta \epsilon_r$	C _ð	Δ_{δ}	ΔSAR (%)
		5250	-0.201	-2.61	-0.029	0.87	0.499
		5260	-0.201	-2.11	-0.030	0.93	0.396
		5280	-0.201	-3.2	-0.031	0.91	0.615
2022/01/21	Head	5320	-0.201	-2.78	-0.034	0.79	0.532
2022/01/21	пеац	5500	-0.200	-3.07	-0.042	1.17	0.565
		5580	-0.199	-2.34	-0.044	0.83	0.429
		5600	-0.199	-2.94	-0.045	1.3	0.527
		5700	-0.199	-2.25	-0.046	1.12	0.396

Note:

1. According to Notice 2012-DRS0529, if the correction \triangle SAR has a negative sign, the measured SAR result should be corrected, and has a positive sign, the measured SAR result shall not be corrected. 2. Scaled SAR = Correct SAR*(1- \triangle SAR%)

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

SAR Test Data

Environmental Conditions

Temperature:	22.6-23.4 °C
Relative Humidity:	46-55%
ATM Pressure:	101.3 kPa
Test Date:	2022/01/21

Testing was performed by Seven Liang, Jacky Yang.

WLAN 5.3G:

Test Mode	EUT Position	Frequency (MHz)	Max. Meas. Power (dBm)	Power	1g SAR (W/Kg), Limited=1.6 W/kg				
					Scaled Factor	Meas.	Scaled SAR	Correct SAR	Plot
802.11a	Front to Phantom (0mm)	5260	10.21	11.0	1.199	0.108	0.13	0.13	1#
		5280	10.63	11.0	1.089	0.142	0.15	0.15	2#
		5320	10.35	11.0	1.161	0.134	0.16	0.16	3#

WLAN 5.6G:

Test Mode	EUT Position		Max. Meas. Power (dBm)	Power	1g SAR (W/Kg), Limited=1.6 W/kg				
						Meas.	Scaled SAR	Correct SAR	Plot
802.11a	Front to Phantom (0mm)	5500	11.11	12.0	1.227	0.207	0.25	0.25	4#
		5580	11.27	12.0	1.183	0.229	0.27	0.27	5#
		5700	11.36	12.0	1.159	0.188	0.22	0.22	6#

Note:

1. When SAR or MPE is not measured at the maximum power level allowed for production to the individual channels tested to determine compliance.

2. According to Notice 2012-DRS0529, if the correction \triangle SAR has a negative sign, the measured SAR result should be corrected, and has a positive sign, the measured SAR result shall not be corrected.

3. Based on the IEEE1528 and IEC 62209 requirements, the low, mid and high frequency channels for the configuration with the highest SAR value must be tested regardless of the SAR value measured.

SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

The Highest Measured SAR Configuration in Each Frequency Band

SAR probe calibration point	Frequency			Meas. SA	Largest to	
	Band	Freq.(MHz)	EUT Position	Original	Repeated	Smallest SAR Ratio
/	/	/	/	/	/	/

Note:

- 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.
- 2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.

3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements..

SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

This portable device has no Simultaneous Transmission

SAR Plots

Plot 1#

DUT: M4000; Type: 490; Serial: SZNS211029-55736E-SAA1-S1

Communication System: UID 0, 5.3G WiFi (0); Frequency: 5260 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5260 MHz; $\sigma = 4.764 \text{ S/m}$; $\varepsilon_r = 35.181$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY5 Configuration:

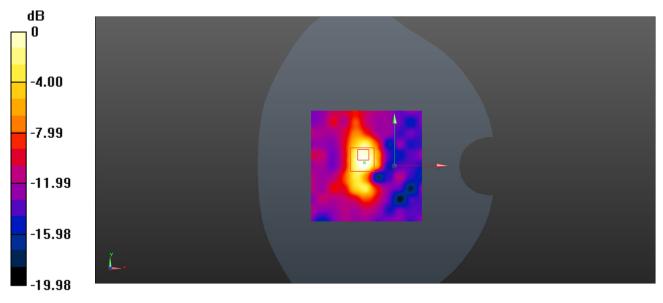
- Probe: EX3DV4 SN3619; ConvF(4.37, 4.37, 4.37) @ 5260 MHz;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 2021/12/13
- Phantom: Head model; Type: QD000P40CC; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Front to Phantom/WLAN 5.3G 802.11n40 Low/Area Scan (81x111x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Maximum value of SAR (interpolated) = 0.165 W/kg

Front to Phantom/WLAN 5.3G 802.11n40 Low/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 6.294 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.433 W/kg

SAR(1 g) = 0.108 W/kg; SAR(10 g) = 0.034 W/kg

Maximum value of SAR (measured) = 0.169 W/kg

0 dB = 0.169 W/kg = -7.72 dBW/kg

Version 801: 2021-11-09

Plot 2#

DUT: M4000; Type: 490; Serial: SZNS211029-55736E-SAA1-S1

Communication System: UID 0, 5.3G WiFi (0); Frequency: 5280 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5280 MHz; $\sigma = 4.783$ S/m; $\epsilon_r = 34.771$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

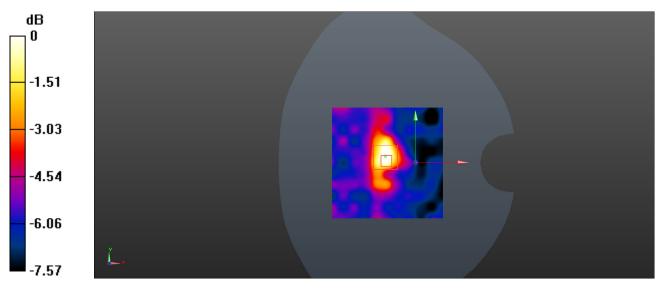
- Probe: EX3DV4 SN3619; ConvF(4.37, 4.37, 4.37) @ 5280 MHz;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 2021/12/13
- Phantom: Head model; Type: QD000P40CC; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Front to Phantom/WLAN 5.3G 802.11n40 Mid/Area Scan (81x111x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Maximum value of SAR (interpolated) = 0.202 W/kg

Front to Phantom/WLAN 5.3G 802.11n40 Mid/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 7.847 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.492 W/kg

SAR(1 g) = 0.142 W/kg; SAR(10 g) = 0.044 W/kg

Maximum value of SAR (measured) = 0.198 W/kg

0 dB = 0.198 W/kg = -7.03 dBW/kg

Plot 3#

DUT: M4000; Type: 490; Serial: SZNS211029-55736E-SAA1-S1

Communication System: UID 0, 5.3G WiFi (0); Frequency: 5320 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5320 MHz; $\sigma = 4.818$ S/m; $\epsilon_r = 34.881$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

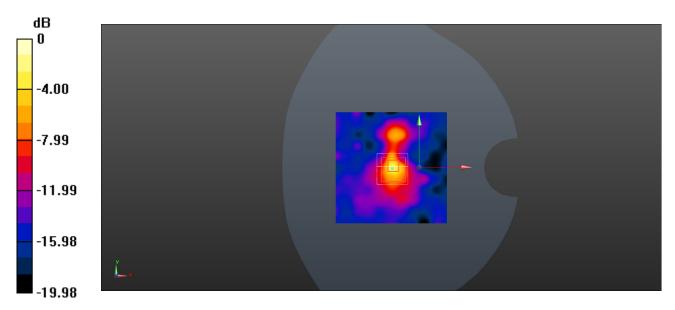
- Probe: EX3DV4 SN3619; ConvF(4.37, 4.37, 4.37) @ 5320 MHz;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 2021/12/13
- Phantom: Head model; Type: QD000P40CC; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Front to Phantom/WLAN 5.3G 802.11n40 High/Area Scan (81x111x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Maximum value of SAR (interpolated) = 0.208 W/kg

Front to Phantom/WLAN 5.3G 802.11n40 High/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 8.171 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.482 W/kg

SAR(1 g) = 0.134 W/kg; SAR(10 g) = 0.039 W/kg

Maximum value of SAR (measured) = 0.215 W/kg

 $^{0 \}text{ dB} = 0.215 \text{ W/kg} = -6.68 \text{ dBW/kg}$

Plot 4#

DUT: M4000; Type: 490; Serial: SZNS211029-55736E-SAA1-S1

Communication System: UID 0, 5.6G WiFi (0); Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5500 MHz; $\sigma = 5.028$ S/m; $\epsilon_r = 34.554$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3619; ConvF(4.03, 4.03, 4.03) @ 5500 MHz;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 2021/12/13
- Phantom: Head model; Type: QD000P40CC; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Front to Phantom/WLAN 5.3G 802.11n40 Low/Area Scan (81x111x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Maximum value of SAR (interpolated) = 0.447 W/kg

Front to Phantom/WLAN 5.3G 802.11n40 Low/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 9.875 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.928 W/kg

SAR(1 g) = 0.207 W/kg; SAR(10 g) = 0.082 W/kg

Maximum value of SAR (measured) = 0.445 W/kg

0 dB = 0.445 W/kg = -3.52 dBW/kg

Plot 5#

DUT: M4000; Type: 490; Serial: SZNS211029-55736E-SAA1-S1

Communication System: UID 0, 5.6G WiFi (0); Frequency: 5580 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5580 MHz; $\sigma = 5.092$ S/m; $\epsilon_r = 34.697$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

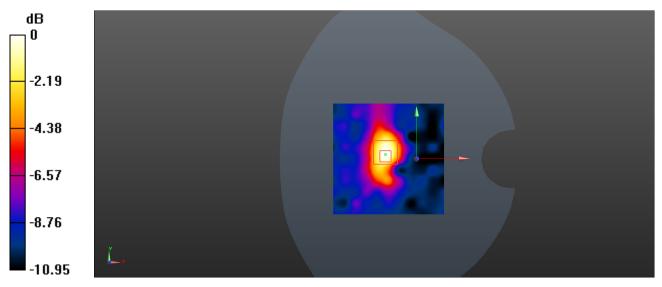
- Probe: EX3DV4 SN3619; ConvF(4.03, 4.03, 4.03) @ 5580 MHz;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 2021/12/13
- Phantom: Head model; Type: QD000P40CC; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Front to Phantom/WLAN 5.3G 802.11n40 Mid/Area Scan (81x111x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Maximum value of SAR (interpolated) = 0.487 W/kg

Front to Phantom/WLAN 5.3G 802.11n40 Mid/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 13.02 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.924 W/kg

SAR(1 g) = 0.229 W/kg; SAR(10 g) = 0.088 W/kg

Maximum value of SAR (measured) = 0.482 W/kg

 $^{0 \}text{ dB} = 0.482 \text{ W/kg} = -3.17 \text{ dBW/kg}$

Plot 6#

DUT: M4000; Type: 490; Serial: SZNS211029-55736E-SAA1-S1-S1

Communication System: UID 0, 5.6G WiFi (0); Frequency: 5700 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5700 MHz; $\sigma = 5.228$ S/m; $\epsilon_r = 34.604$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

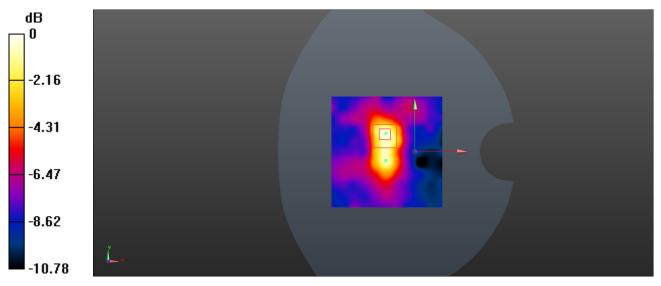
- Probe: EX3DV4 SN3619; ConvF(4.03, 4.03, 4.03) @ 5700 MHz;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 2021/12/13
- Phantom: Head model; Type: QD000P40CC; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Front to Phantom/WLAN 5.3G 802.11n40 High/Area Scan (81x111x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Maximum value of SAR (interpolated) = 0.405 W/kg

Front to Phantom/WLAN 5.3G 802.11n40 High/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 10.87 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.872 W/kg

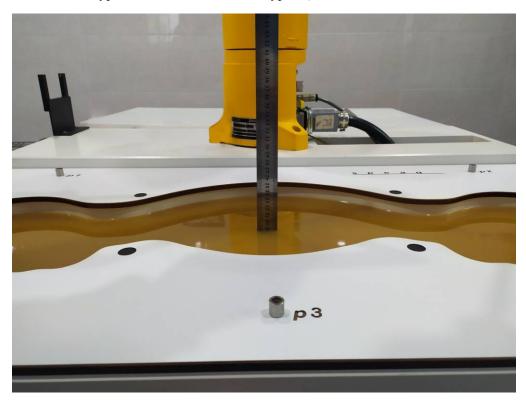
SAR(1 g) = 0.188 W/kg; SAR(10 g) = 0.079 W/kg

Maximum value of SAR (measured) = 0.397 W/kg

 $^{0 \}text{ dB} = 0.397 \text{ W/kg} = -4.01 \text{ dBW/kg}$

APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table. Measurement uncertainty evaluation for IEC/IEEE 62209-1528:2020 SAR test


$\Delta SAR = LIN + ISO + DAE + AMB + \frac{2}{\delta}\Delta_{xyz} + DAT + 2DIS + H + D_{xyz} + MOD + RF_{drift}$

Symbol	Input quantity X _i (source of uncertainty)	Ref.	Prob Dist.ª PDF _i	Unc. a(x _i)	Div. ^a q _i	u(x _i)= a(x _i)/q _i	Ci	u(y)= c _i ·u(x _i)	Vi		
	Measurement system errors										
CF	Probe calibration	8.4.1.1	N (k=2)	6.55	2	3.3	1	3.3	œ		
CF _{drift}	Probe calibration drift	8.4.1.2	R	1.0	$\sqrt{3}$	0.6	1	0.6	œ		
LIN	Probe linearity and detection limit	8.4.1.3	R	4.7	$\sqrt{3}$	3.3	1	3.3	œ		
BBS	Boundary signal	8.4.1.4	R	1.0	$\sqrt{3}$	0.6	1	0.6	8		
ISO	Probe isotropy	8.4.1.5	R	9.6	$\sqrt{3}$	5.5	1	5.5	8		
DAE	Other probe and data acquistion errors	8.4.1.6	Ν	1.0	1	1.0	1	1.0	8		
AMB	RF ambient and noise	8.4.1.7	Ν	1.0	1	1.0	1	1.0	œ		
Δ_{xyz}	Probe positioning errors	8.4.1.8	Ν	0.8	1	0.8	2/δ	0.9	œ		
DAT	Data processing errors	8.4.1.9	Ν	2.0	1	2.0	1	2.0	œ		
	Phantom and device(DUT or validation antenna)errors										
$LIQ(\sigma)$	Measurement of phantom conductivity(σ)	8.4.2.1	N	2.5	1	2.5	1	2.5	x		
LIQ(Tc)	Temperature effects(medium)	8.4.2.2	R	0.1	$\sqrt{3}$	0.05	1	0.05	00		
EPS	Shell permittivity	8.4.2.3	R	4.0	√3	2.3	$c_{f} = \begin{cases} 0 & f \leq 3 \text{ GHz} \\ 0,25 & 3 \text{ GHz} < f \leq 6 \text{ GHz} \\ 0,5 & 6 \text{ GHz} < f \leq 10 \text{ GHz} \end{cases}$	0	00		
DIS	Distance between the radiating element of the DUT and the phantom medium	8.4.2.4	N	5.0	1	5.0	2	10.0	00		
D_{xyz}	Repeatability of positioning the DUT or source against the phantom	8.4.2.5	N	2.8	1	2.8	1	2.8	5		
Н	Device holder effects	8.4.2.5	N	6.3	1	6.3	1	6.3	œ		
MOD	Effect of operating mode on	8.4.2.7	R	9.0	√3	5.2	1	5.2	00		
TAS	Time-average SAR	8.4.2.8	R	2.0	$\sqrt{3}$	1.1	1	1.1	œ		
RF _{drift}	Variation in SAR due to drift in output of DUT	8.4.2.9	N	1.0	1	1.0	1	1.0	œ		
VAL	Validation antenna uncertainty(validation measurement only)	8.4.2.10	N	5.0	1	5.0	1	5.0	×		
P _{in}	Uncertainty in accepted power(validation measurement only)	8.4.2.11	N	5.0	1	5.0	1	5.0	80		
			Cor	rections to the	SAR result(if a	applied)					
$C(\varepsilon',\sigma)$	Phantom deviation from $target(\varepsilon', \sigma)$	8.4.3.1	Ν	1.9	1	1.9	1	1.9	œ		
C(R)	SAR scaling	8.4.3.2	R	4.0	$\sqrt{3}$	2.3	1	2.3	œ		
$u(\Delta SAR)$	Combined uncertainty		RSS	7.4	1	7.4	1	7.4	8		
U	Expanded uncertainty and effective degrees of freedom		K=2	7.4	1	7.4	U=K	14.8	veff		
	Expanded uncertainty and effective	ions and divise	K=2	7.4	1	7.4	U=K	14.8			

Version 801: 2021-11-09

APPENDIX B EUT TEST POSITION PHOTOS

Liquid depth ≥ 15cm Phantom Type: Twin SAM Phantom ; Type: QD000 P40 CD; Serial: TP:1744

Front to Phantom with Glass Frame (0mm)

Version 801: 2021-11-09

APPENDIX C PROBE CALIBRATION CERTIFICATES

Please Refer to the Attachment.

APPENDIX D DIPOLE CALIBRATION CERTIFICATES

Please Refer to the Attachment.

***** END OF REPORT *****

Version 801: 2021-11-09