

HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

February 14, 2020

Vuzix Corporation 25 Hendrix Road Suite A West Henrietta, NY 14586

Dear Malcolm Davidson,

Enclosed is the EMC Wireless test report for compliance testing of the Vuzix Corporation, M100 Swim Project as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Part 15 Subpart C for Intentional Radiators.

Thank you for using the services of Eurofins E&E North America. If you have any questions regarding these results or if we can be of further service to you, please feel free to contact me.

Sincerely yours, EUROFINS E&E NORTH AMERICA

Michelle Tawnging

Michelle Tawmging
Documentation Department

Reference: (\Vuzix Corporation\WIR104136-FCC247)

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins E&E North America. This letter of transmittal is not a part of the attached report.

Eurofins MET Laboratories Inc. (Eurofins E&E North America) is part of the Eurofins Electrical & Electronics (E&E) global compliance network.

Electromagnetic Compatibility Criteria Test Report

for the

Vuzix Corporation M100 Swim Project

Tested under

the FCC Certification Rules contained in 15.247 Subpart C for Intentional Radiators

Report: WIR104136-FCC247

February 14, 2020

Prepared For:

Vuzix Corporation 25 Hendrix Road Suite A West Henrietta, NY 14586

> Prepared By: Eurofins E&E North America 914 W. Patapsco Avenue Baltimore, MD 21230

Electromagnetic Compatibility Criteria Test Report

for the

Vuzix Corporation M100 Swim Project

Tested under

the FCC Certification Rules contained in 15.247 Subpart C for Intentional Radiators

Deepak Giri, Project Engineer Wireless Lab

Rechale

Michelle Tawmging
Documentation Department

Michelle Lawriging

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Part 15.247 under normal use and maintenance.

Donald Salguero Manager, Wireless Lab

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	February 14, 2020	Initial Issue.

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	2
	B. Executive Summary	2
II.	Equipment Configuration	3
	A. Overview	4
	B. References	4
	C. Test Site	5
	D. Measurement Uncertainty	5
	E. Description of Test Sample	
	F. Equipment Configuration	6
	G. Support Equipment	6
	H. Ports and Cabling Information	6
	I. Mode of Operation	
	J. Method of Monitoring EUT Operation	
	K. Modifications	
	a) Modifications to EUT	
	b) Modifications to Test Standard	
	L. Disposition of EUT	
III.	Electromagnetic Compatibility Criteria for Intentional Radiators	
	§ 15.203 Antenna Requirement	
	§ 15.207(a) Conducted Emissions Limits	
	§ 15.247(a)(a) 6 dB and 99% Bandwidth	
	§ 15.247(b) Peak Power Output	
	§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge	
	§ 15.247(c) Spurious Emissions in Non-restricted Bands	
	§ 15.247(e) Peak Power Spectral Density	
	§ 15.247(i) Maximum Permissible Exposure	
IV.	Test Equipment	
V.	Certification & User's Manual Information	
••	A. Certification Information	
	R I abel and User's Manual Information	93

List of Figures

Figure 1: Executive Summary of EMC Part 15.247 ComplianceTesting	
Figure 2: EUT Summary Table	4
Figure 3: References	4
Figure 4: Uncertainty Calculations Summary	5
Figure 5: Block Diagram of Test Configuration	5
Figure 6: Equipment Configuration	6
Figure 7: Ports and Cabling Information	6
Figure 8: Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)	10
Figure 9: Conducted Emissions, Phase Line, Test Results	11
Figure 10: Conducted Emissions, Phase Line, Prescan	11
Figure 11: Conducted Emissions, Neutral Line, Test Results	
Figure 12: Conducted Emissions, Neutral Line, Prescan	12
Figure 13: Conducted Emissions, Test Setup	13
Figure 14: Block Diagram, Occupied Bandwidth Test Setup	14
Figure 15: Occupied Bandwidth, DTS Bandwidth B Mode High Channel	
Figure 16: Occupied Bandwidth, DTS Bandwidth G Mode High Channel	
Figure 17: Occupied Bandwidth, DTS Bandwidth N Mode High Channel	
Figure 18: Occupied Bandwidth, DTS Bandwidth B Mode Low Channel	
Figure 19: Occupied Bandwidth, DTS Bandwidth G Mode Low Channel	
Figure 20: Occupied Bandwidth, DTS Bandwidth N Mode Low Channel	
Figure 21: Occupied Bandwidth, DTS Bandwidth B Mode Mid Channel	18
Figure 22: Occupied Bandwidth, DTS Bandwidth G Mode Mid Channel	
Figure 23: Occupied Bandwidth, DTS Bandwidth N Mode Mid Channel	
Figure 24: Output Power Requirements from §15.247(b)	
Figure 25 : Block Diagram, Output Power Test Setup	
Figure 26: Block Diagram, Duty Cycle Test Setup	
Figure 27: B Mode Duty Cycle Period	
Figure 28: B Mode OFF Time	
Figure 29: G Mode Duty Cycle	23
Figure 30: N Mode Duty Cycle	
Figure 31: Power Output, Test Results	
Figure 32: B Mode High Channel Average Output Power	
Figure 33: B Mode Low Channel Average Output Power	
Figure 34: B Mode Mid Channel Average Output Power	
Figure 35: G Mode High Channel Average Output Power	
Figure 36: G Mode Low Channel Average Output Power	
Figure 37: G Mode Mid Channel Average Output Power	
Figure 38: N Mode High Channel Average Output Power	
Figure 39: N Mode Low Channel Average Output Power	
Figure 40: N Mode Mid Channel Average Output Power	28
Figure 41: Restricted Bands of Operation	
Figure 42: Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)	
Figure 43: 30 MHz -1 GHz, Radiated Emission B Mode High Channel	
Figure 44: 30 MHz -1 GHz, Radiated Emission B Mode Low Channel	
Figure 45: 30 MHz -1 GHz, Radiated Emission B Mode Mid Channel	
Figure 46: 30 MHz -1 GHz, Radiated Emission G Mode High Channel	
Figure 47: 30 MHz -1 GHz, Radiated Emission G Mode Low Channel	
Figure 48: 30 MHz -1 GHz, Radiated Emission G Mode Mid Channel	
Figure 49: 30 MHz -1 GHz, Radiated Emission N Mode High Channel	
Figure 50: 30 MHz -1 GHz, Radiated Emission N Mode Low Channel	

Figure 51: 30 MHz -1 GHz, Radiated Emission N Mode Mid Channel	34
Figure 52: Radiated Spurious Emissions, 1 - 18 GHz, B Mode High Channel Average	
Figure 53: Radiated Spurious Emissions, 1 - 18 GHz, B Mode High Channel Peak	
Figure 54: Radiated Spurious Emissions, 1 - 18 GHz, G Mode High Channel Average	
Figure 55: Radiated Spurious Emissions, 1 - 18 GHz, G Mode High Channel Peak	
Figure 56: Radiated Spurious Emissions, 1 - 18 GHz, N Mode High Channel Average	
Figure 57: Radiated Spurious Emissions, 1 - 18 GHz, N Mode High Channel Peak	
Figure 58: Radiated Spurious Emissions, 1 - 18 GHz, B Mode Low Channel Average	
Figure 59: Radiated Spurious Emissions, 1 - 18 GHz, B Mode Low Channel Peak	
Figure 60: Radiated Spurious Emissions, 1 - 18 GHz, G Mode Low Channel Average	
Figure 61: Radiated Spurious Emissions, 1 - 18 GHz, G Mode Low Channel Peak	
Figure 62: Radiated Spurious Emissions, 1 - 18 GHz, N Mode Low Channel Average	
Figure 63: Radiated Spurious Emissions, 1 - 18 GHz, N Mode Low Channel Peak	
Figure 64: Radiated Spurious Emissions, 1 - 18 GHz, B Mode Mid Channel Average	
Figure 65: Radiated Spurious Emissions, 1 - 18 GHz, B Mode Mid Channel Peak	
Figure 66: 1 - 18 GHz, G Mode Mid Channel Average	
Figure 67: Radiated Spurious Emissions, 1 - 18 GHz, G Mode Mid Channel Peak	
Figure 68: Radiated Spurious Emissions, 1 - 18 GHz, N Mode Mid Channel Average	
Figure 69: Radiated Spurious Emissions, 1 - 18 GHz, N Mode Mid Channel Peak	
Figure 70: Radiated Spurious Emissions, 18 - 25 GHz, B Mode High Channel Average	
Figure 71: Radiated Spurious Emissions, 18 - 25 GHz, B Mode High Channel Peak	
Figure 72: Radiated Spurious Emissions, 18 - 25 GHz, G Mode High Channel Average	
Figure 73: Radiated Spurious Emissions, 18 - 25 GHz, G Mode High Channel Peak	
Figure 74: Radiated Spurious Emissions, 18 - 25 GHz, N Mode High Channel Average	
Figure 75: Radiated Spurious Emissions, 18 - 25 GHz, N Mode High Channel Peak	
Figure 76: Radiated Spurious Emissions, 18 - 25 GHz, B Mode Low Channel Average	
Figure 77: Radiated Spurious Emissions, 18 - 25 GHz, B Mode Low Channel Peak	
Figure 78: Radiated Spurious Emissions, 18 - 25 GHz, G Mode Low Channel Average	48
Figure 79: Radiated Spurious Emissions, 18 - 25 GHz, G Mode Low Channel Peak	48
Figure 80: Radiated Spurious Emissions, 18 - 25 GHz, N Mode Low Channel Average	49
Figure 81: Radiated Spurious Emissions, 18 - 25 GHz, N Mode Low Channel Peak	49
Figure 82: Radiated Spurious Emissions, 18 - 25 GHz, B Mode Mid Channel Average	50
Figure 83: Radiated Spurious Emissions, 18 - 25 GHz, B Mode Mid Channel Peak	50
Figure 84: Radiated Spurious Emissions, 18 - 25 GHz, G Mode Mid Channel Average	51
Figure 85: Radiated Spurious Emissions, 18 - 25 GHz, G Mode Mid Channel Peak	51
Figure 86: Radiated Spurious Emissions, 18 - 25 GHz, N Mode Mid Channel Average	
Figure 87: Radiated Spurious Emissions, 18 - 25 GHz, N Mode Mid Channel Peak	
Figure 88: Radiated Band Edge, B Mode High Channel Average	
Figure 89: Radiated Band Edge, B Mode High Channel Peak	
Figure 90: Radiated Band Edge, B Mode Low Channel Average	
Figure 91: Radiated Band Edge, B Mode Low Channel Peak	
Figure 92: Radiated Band Edge, G Mode High Channel Average	
Figure 93: Radiated Band Edge, G Mode High Channel Peak	
Figure 94: Radiated Band Edge, G Mode Low Channel Average	
Figure 95: Radiated Band Edge, G Mode Low Channel Peak	
Figure 96: Radiated Band Edge, N Mode High Channel Average	
Figure 97: Radiated Band Edge, N Mode High Channel Peak	
Figure 98: Radiated Band Edge, N Mode Low Channel Average	
Figure 99: Radiated Band Edge, N Mode Low Channel Peak	
Figure 100: Radiated Spurious Emissions, 30 MHz - 1 GHz, Test Setup	
Figure 101: Radiated Spurious Emissions, 30 MHz - 1 GHz, Test Setup	
Figure 102: Radiated Spurious Emissions, 18 GHz - 25 GHz, Test Setup	
Figure 103: Block Diagram, RF Port Conducted Emission Test Setup	01

Figure 104: Spurious Emissions in Non-restricted Bands, B Mode High Channel Reference Level	62
Figure 105: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, B Mode High Channel	
Figure 106: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, B Mode High Channel	63
Figure 107: Spurious Emissions in Non-restricted Bands, B Mode Low Channel Reference Level	
Figure 108: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, B Mode Low Channel	64
Figure 109: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, B Mode Low Channel	64
Figure 110: Spurious Emissions in Non-restricted Bands, B Mode Mid Channel Reference Level	
Figure 111: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, B Mode Mid Channel	
Figure 112: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, B Mode Mid Channel	
Figure 113: Spurious Emissions in Non-restricted Bands, B Mode High Channel Band Edge	
Figure 114: Spurious Emissions in Non-restricted Bands, B Mode Low Channel Band Edge	
Figure 115: Spurious Emissions in Non-restricted Bands, G Mode High Channel Reference Level	67
Figure 116: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, G Mode High Channel	68
Figure 117: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, G Mode High Channel	
Figure 118: Spurious Emissions in Non-restricted Bands, G Mode Low Channel Reference Level	69
Figure 119: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, G Mode Low Channel	69
Figure 120: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, G Mode Low Channel	
Figure 121: Spurious Emissions in Non-restricted Bands, G Mode Mid Channel Reference Level	70
Figure 122: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, G Mode Mid Channel	71
Figure 123: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, G Mode Mid Channel	71
Figure 124: Spurious Emissions in Non-restricted Bands, G Mode High Channel Band Edge	
Figure 125: Spurious Emissions in Non-restricted Bands, G Mode Low Channel Band Edge	
Figure 126: Spurious Emissions in Non-restricted Bands, N Mode High Channel Reference Level	73
Figure 127: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, N Mode High Channel	
Figure 128: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, N Mode High Channel	74
Figure 129: Spurious Emissions in Non-restricted Bands, N Mode Low Channel Reference Level	74
Figure 130: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, N Mode Low Channel	75
Figure 131: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, N Mode Low Channel	75
Figure 132: Spurious Emissions in Non-restricted Bands, N Mode Mid Channel Reference Level	76
Figure 133: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, N Mode Mid Channel	76
Figure 120: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, N Mode Mid Channel	77
Figure 132: Spurious Emissions in Non-restricted Bands, N Mode High Channel Band Edge	
Figure 134: Spurious Emissions in Non-restricted Bands, N Mode Low Channel Band Edge	78
Figure 137: Block Diagram, Power Spectral Density Test Set Up	79
Figure 136: Power Spectral Density, Test Results	
Figure 137: Power Spectral Density, B Mode High Channel	80
Figure 138: Power Spectral Density, B Mode Low Channel	81
Figure 139: Power Spectral Density, B Mode Mid Channel	
Figure 140: Power Spectral Density, G Mode High Channel	82
Figure 141: Power Spectral Density, G Mode Low Channel	
Figure 142: Power Spectral Density, G Mode Mid Channel	
Figure 143: Power Spectral Density, N Mode High Channel	
Figure 144: Power Spectral Density, N Mode Low Channel	84
Figure 145: Power Spectral Density, N Mode Mid Channel	84
Figure 146: Test Equipment List	87

List of Terms and Abbreviations

AC	Alternating Current			
ACF	Antenna Correction Factor			
Cal	Calibration			
d	Measurement Distance			
dB	Decibels			
dBμA	Decibels above one microamp			
dBμV	Decibels above one microvolt			
dBμA/m	Decibels above one microamp per meter			
dBμV/m	Decibels above one microvolt per meter			
DC	Direct Current			
E	Electric Field			
DSL	Digital Subscriber Line			
ESD	Electrostatic Discharge			
EUT	Equipment Under Test			
f	Frequency			
FCC	Federal Communications Commission			
GRP	Ground Reference Plane			
Н	Magnetic Field			
НСР	Horizontal Coupling Plane			
Hz	Hertz			
IEC	International Electrotechnical Commission			
kHz	kilohertz			
kPa	kilopascal			
kV	kilovolt			
LISN	Line Impedance Stabilization Network			
MHz	Megahertz			
μ H	microhenry			
μ	microfarad			
μs	microseconds			
NEBS	Network Equipment-Building System			
PRF	Pulse Repetition Frequency			
RF	Radio Frequency			
RMS	Root-Mean-Square			
TWT	Traveling Wave Tube			
V/m	Volts per meter			
VCP	Vertical Coupling Plane			

Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the Vuzix Corporation M100 Swim Project with the requirements of Part 15, §15.247. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the M100 Swim Project. Vuzix Corporation should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the M100 Swim Project, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.247, in accordance with Vuzix Corporation, purchase order number 512581. All tests were conducted using measurement procedure ANSI C63.10-2013 and FCC KDB 558074 v05r02

FCC Reference Description Compliance 47 CFR Part 15.247:2005 Title 47 of the CFR, Part 15 §15.203 Antenna Requirement Compliant Title 47 of the CFR, Part 15 §15.207(a) Conducted Emission Limits Compliant Title 47 of the CFR. Part 15 6dB Occupied Bandwidth Compliant §15.247(a)(2) Title 47 of the CFR, Part 15 §15.247(b) Power Output Compliant Title 47 of the CFR, Part 15 §15.247(c) Spurious Emissions in Non-restricted Bands Compliant Title 47 of the CFR, Part 15 §15.247(d); Radiated Spurious Emissions Requirements Compliant §15.209; §15.205 Title 47 of the CFR, Part 15; §15.247(e) Compliant Power Spectral Density Title 47 of the CFR, Part 15 §15.247(i) RF Exposure Compliant

Figure 1: Executive Summary of EMC Part 15.247 Compliance Testing

Eurofins MET Laboratories Inc. (Eurofins E&E North America) is part of the Eurofins Electrical & Electronics (E&E) global compliance network.

Equipment Configuration

A. Overview

Eurofins MET Laboratories, Inc. was contracted by Vuzix Corporation to perform testing on the M100 Swim Project, under Vuzix Corporation's purchase order number 512581.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Vuzix Corporation, M100 Swim Project.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	M100 Swim Project				
Model(s) Covered:	M100 Swim Project				
	Primary Power: 5 VDC				
	FCC ID: 2AA9D-467				
EUT Chasifications	Type of Modulations:	WiFi: OFDM, DSSS			
EUT Specifications:	Equipment Code:	DTS			
	RF Output Power:	13.44 dBm			
	EUT Frequency Ranges: WiFi: 2412-2462 MHz				
Analysis:	The results obtained relate only to the item(s) tested.				
	Temperature: 15-35° C				
Environmental Test Conditions:	Relative Humidity: 30-60%				
Conditions.	Barometric Pressure: 860-1060 mbar				
Evaluated by:	Deepak Giri				
Report Date:	February 14, 2020				

Figure 2: EUT Summary Table

B. References

CFR 47, Part 15, Subpart C	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 15: General Rules and Regulations, Allocation, Assignment, and Use of Radio Frequencies		
ANSI C63.4:2014	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz		
ISO/IEC 17025:2017	General Requirements for the Competence of Testing and Calibration Laboratories		
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices		
KDB 558074 v05r02	Guidance For Performing Compliance Measurements On Digital Transmission Systems (DTS) Operating Under Section 15.247		

Figure 3: References

C. Test Site

All testing was performed at Eurofins MET Laboratories, Inc., 914 W. Patapsco Avenue, Baltimore, MD 21230. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 3 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

Eurofins MET Laboratories Inc. (Eurofins E&E North America) is part of the Eurofins Electrical & Electronics (E&E) global compliance network.

D. Measurement Uncertainty

Test Method	Typical Expanded Uncertainty	K	Confidence Level
RF Frequencies	±4.52 Hz	2	95%
RF Power Conducted Emissions	±2.32 dB	2	95%
RF Power Conducted Spurious Emissions	±2.25 dB	2	95%
RF Power Radiated Emissions	±3.01 dB	2	95%

Figure 4: Uncertainty Calculations Summary

E. Description of Test Sample

The Vuzix Corporation M100 Swim Project, Equipment Under Test (EUT), is a smart wearable display that allows users to time swimming laps and track progress in open water swims via GPS.

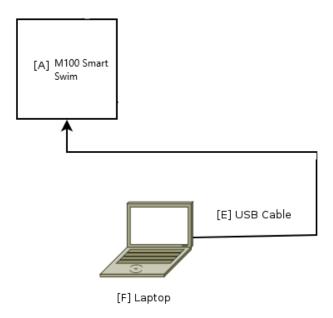


Figure 5: Block Diagram of Test Configuration

F. Equipment Configuration

The EUT was set up as outlined in Figure 5. All cards, racks, etc., incorporated as part of the EUT is included in the following list.

Ref. ID	Slot #	Name / Description	Model Number	Part Number	Serial Number	Rev. #
A	1	Smart Swim		467T00011	M001008005	
A	2	Smart Swim		467T00011	M001008007	
A	3	Smart Swim		467T00011	conducted	

Figure 6: Equipment Configuration

G. Support Equipment

Laptop was used as a supporting equipment to execute test software that was controlling the transmitting frequencies.

H. Ports and Cabling Information

Ref. ID	Port name on EUT	Cable Description or reason for no cable	Qty	Length as tested (m)	Max Length (m)	Shielded? (Y/N)	Termination Box ID & Port Name
1	USB Cable	USB-A to USB uB	1				

Figure 7: Ports and Cabling Information

I. Mode of Operation

Non-Wireless Test Mode: The Smart Swim M100 will operate all of its non-wireless peripheral functions including:, battery charging, magnetic, accelerometer, gyroscope sensors, and video display via a test application that once started will operate indefinitely.

Bluetooth Test Mode: The M100 will be configurable to continuously transmit in either normal Mode or hop Mode via a test application.

WiFi Test Mode: The M100 will be configurable to continuously transmit with modulation applied with the ability to change channels as well as changing between B, G, and N Modes via a test application.

J. Method of Monitoring EUT Operation

- 1. The unit will continue to show the display.
- 2. Any other condition or sensor readout saying FAIL.

K. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

L. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Vuzix Corporation upon completion of testing.

Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement:

§ 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Test Results:

The EUT as tested is **compliant** the criteria of §15.203. Antenna is permanently attached and is located inside enclosure. Antenna type used is chip antenna with gain of 0 dBi.

Test Engineer: Deepak Giri

Test Date: February 3, 2020

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.207(a) Conducted Emissions Limits

Test Requirement(s):

§ 15,207 (a): For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 $\mu\text{H}/50~\Omega$ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range	§ 15.207(a), Conducted Limit (dBµV)				
(MHz)	Quasi-Peak	Average			
* 0.15- 0.5	66 - 56	56 - 46			
0.5 - 5	56	46			
5 - 30	60	50			

Figure 8: Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)

Test Procedure:

The EUT was placed on a 0.8 m-high wooden table inside a screen room. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with ANSI C63.10-2013. The measurements were performed over the frequency range of 0.15 MHz to 30 MHz using a 50 Ω /50 μ H LISN as the input transducer to Spectrum analyzer. For the purpose of this testing, the transmitter was turned on. Scans were performed with the transmitter on.

Test Results: The EUT was **compliant** with this requirement.

Test Engineer: Deepak Giri

Test Date: January 24, 2020

15.207(a) Conducted Emissions Data

Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	Corrected Measurement (dBuV) QP	Limit (dBuV) QP	Pass/ Fail QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	Corrected Measurement (dBuV) Avg.	Limit (dBuV) Avg.	Pass/ Fail Avg.	Margin (dB) Avg.
0.161	43.44	0	53.44	65.41	PASS	-11.97	22.03	0	32.03	55.41	PASS	-23.38
0.224	40.78	0	50.78	62.67	PASS	-11.89	17.16	0	27.16	52.67	PASS	-25.51
0.323	40.13	0	50.13	59.63	PASS	-9.5	14.38	0	24.38	49.63	PASS	-25.25
0.678	35.64	0	45.64	56	PASS	-10.36	11.69	0	21.69	46	PASS	-24.31
1.09	30.11	0	40.11	56	PASS	-15.89	10.88	0	20.88	46	PASS	-25.12
2.15	21.2	0	31.2	56	PASS	-24.8	13.12	0	23.12	46	PASS	-22.88

Figure 9: Conducted Emissions, Phase Line, Test Results

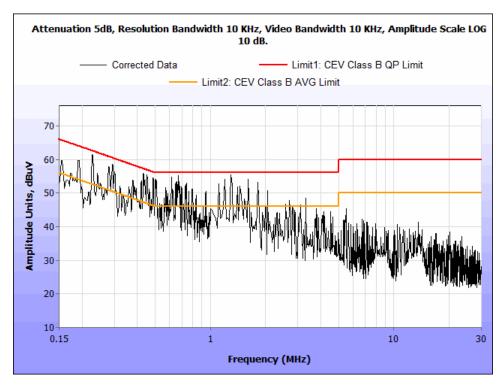


Figure 10: Conducted Emissions, Phase Line, Prescan

Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	Corrected Measurement (dBuV) QP	Limit (dBuV) QP	Pass/ Fail QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	Corrected Measurement (dBuV) Avg.	Limit (dBuV) Avg.	Pass/ Fail Avg.	Margin (dB) Avg.
0.151	38.48	0	48.48	65.95	PASS	-17.47	24.66	0	34.66	55.95	PASS	-21.29
0.266	24.75	0	34.75	61.24	PASS	-26.49	11.95	0	21.95	51.24	PASS	-29.29
0.5	26.88	0	36.88	56	PASS	-19.12	22.11	0	32.11	46	PASS	-13.89
4.7	18.56	0	28.56	56	PASS	-27.44	9.8	0	19.8	46	PASS	-26.2
8.32	21.74	0	31.74	60	PASS	-28.26	11.62	0	21.62	50	PASS	-28.38
14.35	16.96	0.02	26.98	60	PASS	-33.02	11.13	0.02	21.15	50	PASS	-28.85

Figure 11: Conducted Emissions, Neutral Line, Test Results

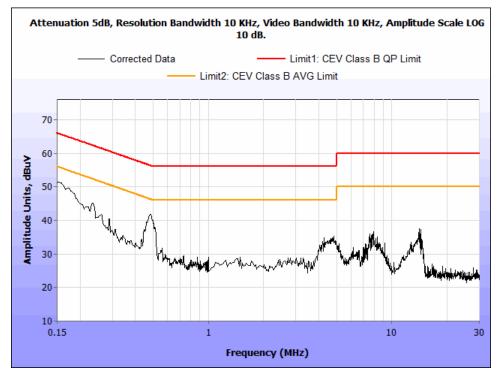


Figure 12: Conducted Emissions, Neutral Line, Prescan

15.207(a) Conducted Emissions Photographs

Figure 13: Conducted Emissions, Test Setup

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(a)(2) 6 dB Bandwidth

Test Requirements: § 15.247(a)(2): Operation under the provisions of this section is limited to frequency

hopping and digitally modulated intentional radiators that comply with the following

provisions:

For systems using digital modulation techniques, the EUT may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6dB bandwidth shall

be at least 500 kHz.

Test Procedure: The transmitter was on and transmitting at the highest output power. The bandwidth of

the fundamental frequency was measured with the spectrum analyzer using a RBW = 100kHz, VBW = 3*RBW. The 6 dB Bandwidth was measured and recorded. The measurements were performed on the low, mid and High Channels. Measurement

guidance specified in Section 11.8.2 of ANSI C63.10 2013 was used.

Test Results The EUT was **compliant** with § 15.247 (a)(2).

The 6 dB Bandwidth was determined from the plots on the following pages.

Test Engineer: Deepak Giri

Test Date: January 21, 2020

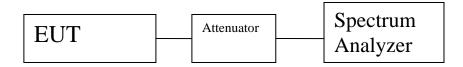


Figure 14: Block Diagram, Occupied Bandwidth Test Setup

Occupied Bandwidth Data

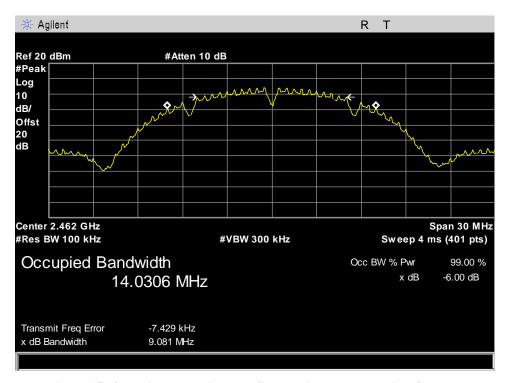


Figure 15: Occupied Bandwidth, DTS Bandwidth B Mode High Channel

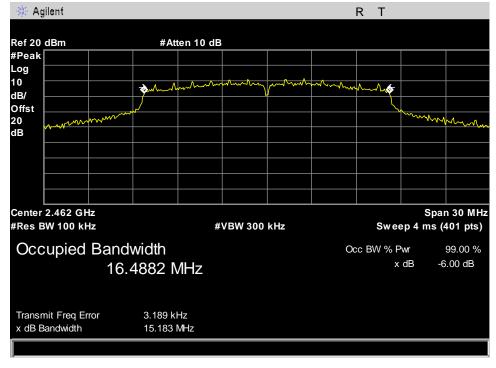


Figure 16: Occupied Bandwidth, DTS Bandwidth G Mode High Channel

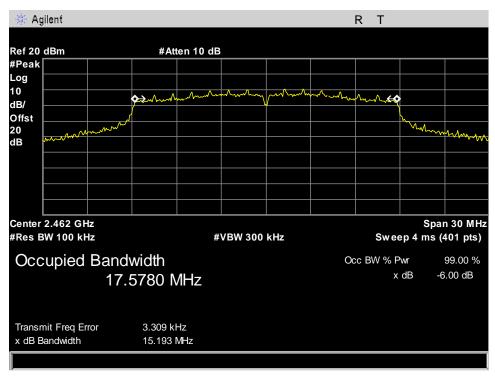


Figure 17: Occupied Bandwidth, DTS Bandwidth N Mode High Channel

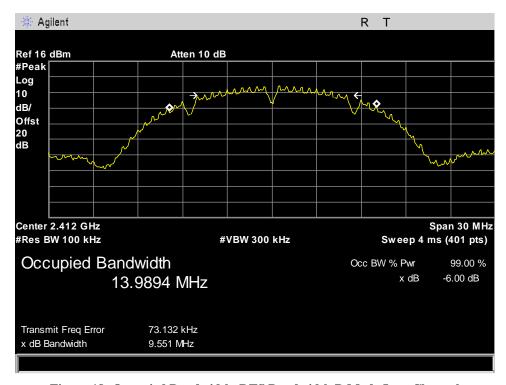


Figure 18: Occupied Bandwidth, DTS Bandwidth B Mode Low Channel

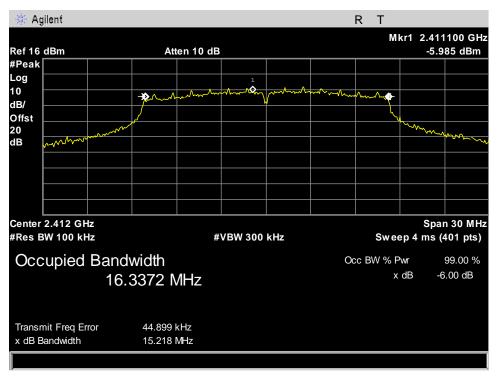


Figure 19: Occupied Bandwidth, DTS Bandwidth G Mode Low Channel

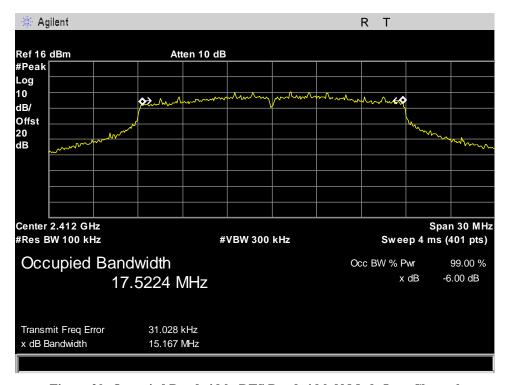


Figure 20: Occupied Bandwidth, DTS Bandwidth N Mode Low Channel

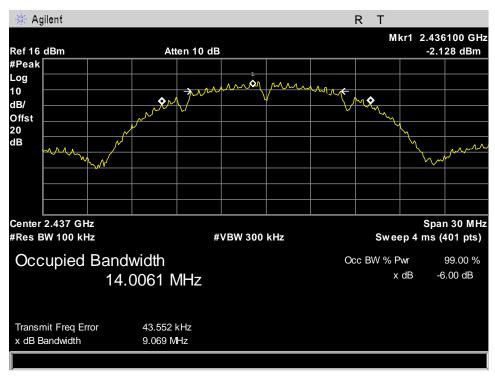


Figure 21: Occupied Bandwidth, DTS Bandwidth B Mode Mid Channel

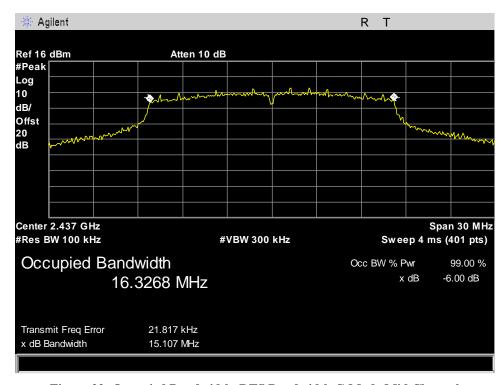


Figure 22: Occupied Bandwidth, DTS Bandwidth G Mode Mid Channel

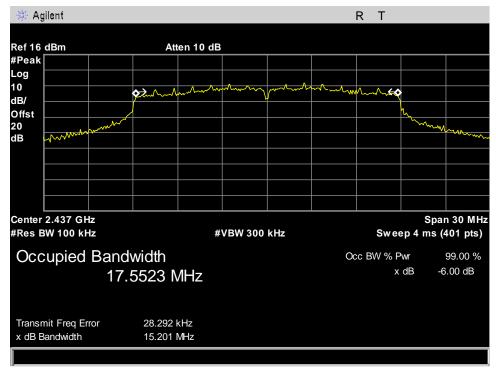


Figure 23: Occupied Bandwidth, DTS Bandwidth N Mode Mid Channel

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(b) Power Output

Test Requirements:

§15.247(b): The maximum output power of the intentional radiator shall not exceed the following:

Digital Transmission Systems	Output Limit
(MHz)	(Watts)
2400–2483.5	1.000

Figure 24: Output Power Requirements from §15.247(b)

§15.247(c): if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in the above table, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Procedure: The EUT was measured at the low, mid and High Channels at the maximum power level.

Measurements were performed conducted. Measurement was performed using the guidance provided in section 11.9.2.2.2 of ANSI C63.10 2013. EUT was transmitting

with duty cycle greater than 98%.

Test Results: The EUT was **compliant** with the Power Output limits of §15.247(b).

Test Engineer: Deepak Giri

Test Date: January 21, 2020

Figure 25: Block Diagram, Output Power Test Setup

Duty Cycle

Test Procedure:

The EUT was connected to a spectrum analyzer and was ran at the maximum achievable duty cycle for all modes. The duty cycle was measured in accordance with section 11.6 of ANSI C63.10-2013.

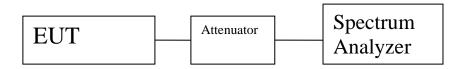


Figure 26: Block Diagram, Duty Cycle Test Setup

Duty Cycle Calculation Table

Frequency (MHz)	Mode	Bandwidth (MHz)	ON Time (ms)	OFF Time (ms)	Period (ms)	Duty Cycle (%)	Correction Factor (dB)
2412	В	20	8.418	0.022	8.44	99.7	0.01
2412	G	20	1.404	0.029	1.43	98.1	0.07
2412	N	20	1.310	0.028	1.33	98.4	0.06

Duty Cycle Measurement Plots:

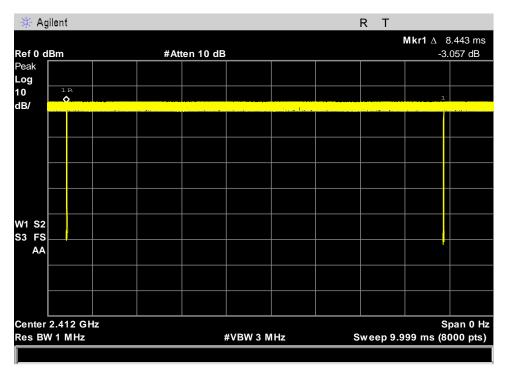


Figure 27: B Mode Duty Cycle Period

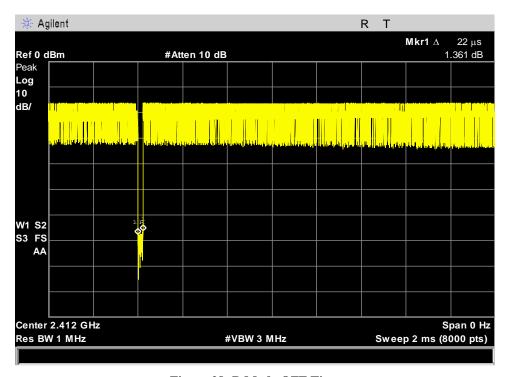


Figure 28: B Mode OFF Time

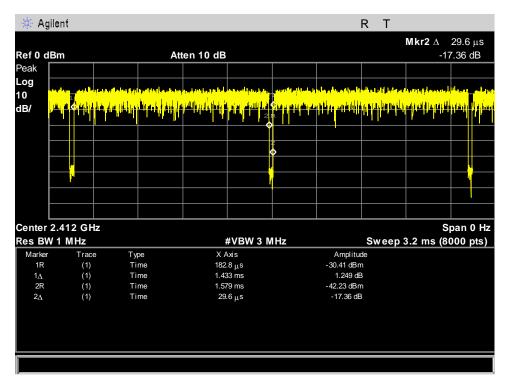


Figure 29: G Mode Duty Cycle

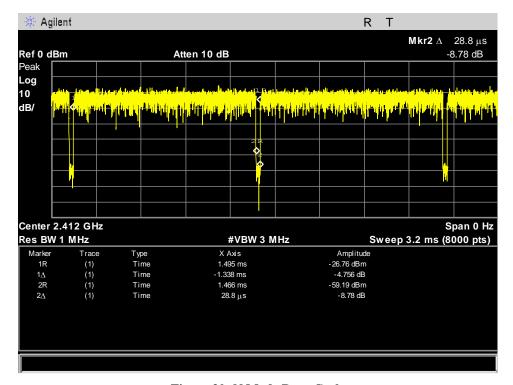


Figure 30: N Mode Duty Cycle

Power Output Data

Frequency (MHz)	Mode	Conducted Output Power Average (dBm)	Limit (dBm)	Margin (dBm)
2412	В	11.20	30	-18.80
2437	В	11.79	30	-18.21
2462	В	13.04	30	-16.96
2412	G	9.22	30	-20.78
2437	G	10.80	30	-19.20
2462	G	12.15	30	-17.85
2412	N	8.18	30	-21.82
2437	N	10.0	30	-20.00
2462	N	11.23	30	-18.77

Figure 31: Power Output, Test Results

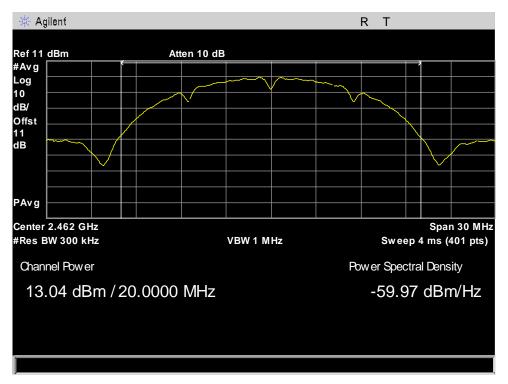


Figure 32: B Mode High Channel Average Output Power

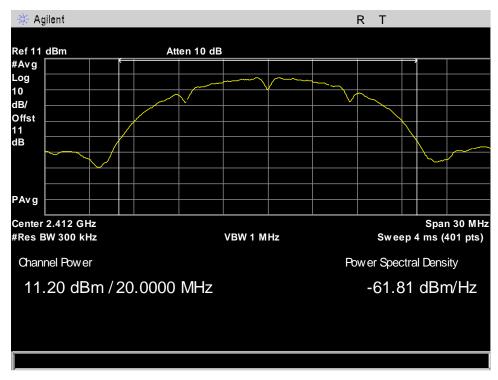


Figure 33: B Mode Low Channel Average Output Power

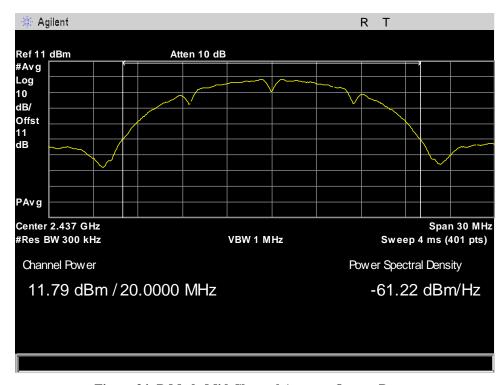


Figure 34: B Mode Mid Channel Average Output Power

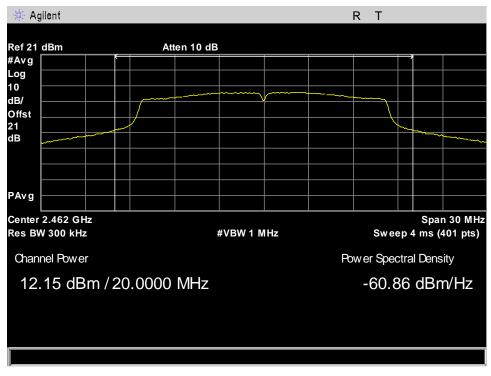


Figure 35: G Mode High Channel Average Output Power

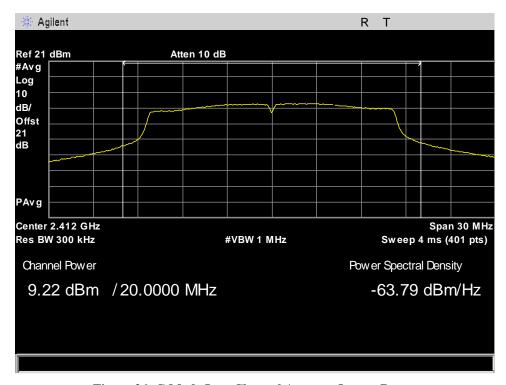


Figure 36: G Mode Low Channel Average Output Power

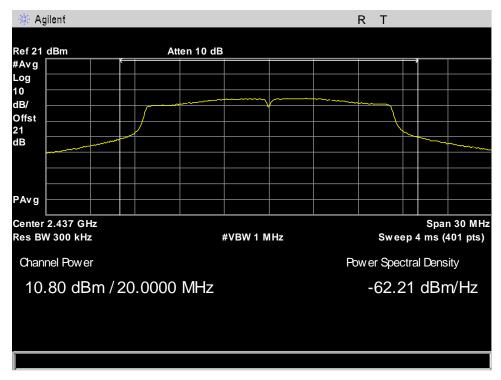


Figure 37: G Mode Mid Channel Average Output Power

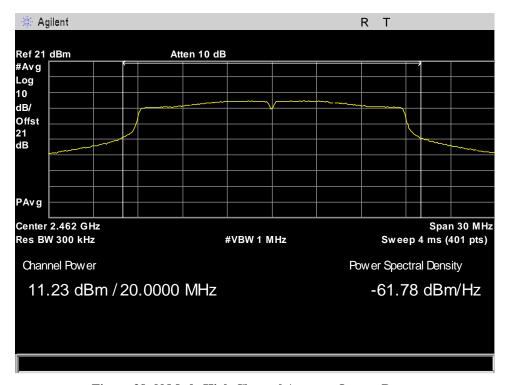


Figure 38: N Mode High Channel Average Output Power

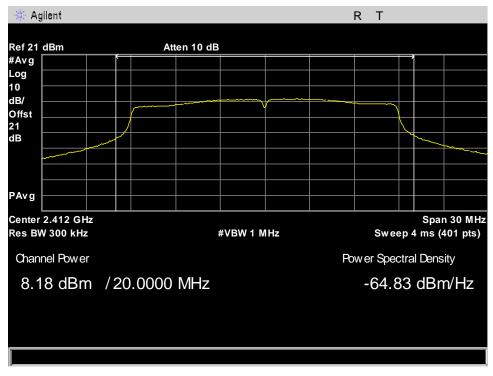


Figure 39: N Mode Low Channel Average Output Power

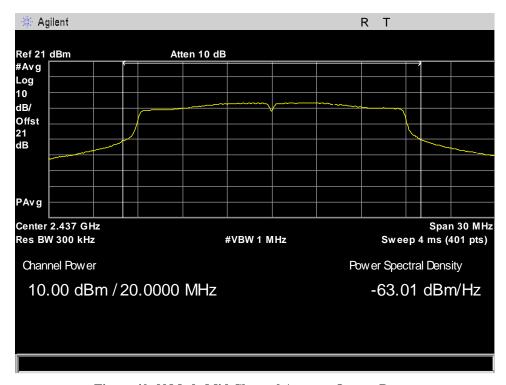


Figure 40: N Mode Mid Channel Average Output Power

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.209 Radiated Spurious Emissions Requirements and Band Edge

Test Requirements: §15.247(d); §15.205: Emissions outside the frequency band.

> §15.205(a): Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
1 0.495-0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358 36.	43–36.5
12.57675–12.57725	322–335.4	3600–4400	(²)

Figure 41: Restricted Bands of Operation

Test Requirement(s):

§ 15.209 (a): Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in Figure 42.

Frequency (MHz)	§ 15.209(a),Radiated Emission Limits (dBµV) @ 3m	
30 - 88	40.00	
88 - 216	43.50	
216 - 960	46.00	
Above 960	54.00	

Figure 42: Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)

 $^{^{1}}$ Until February 1, 1999, this restricted band shall be $0.490-0.510\,\mathrm{MHz}.$

² Above 38.6

Vuzix Corporation M100 Swim Project

Test Results: The EUT was compliant with the Radiated Spurious Emission limits of § 15.247(d) and

§ 15,209. Data presented below are cumulative result of measuring antenna polarizations.

Test Engineer: Deepak Giri

Test Date: February 6, 2020

Radiated Spurious Emissions Data

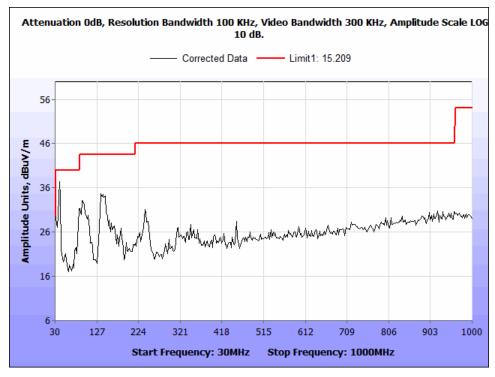


Figure 43: 30 MHz -1 GHz, Radiated Emission B Mode High Channel

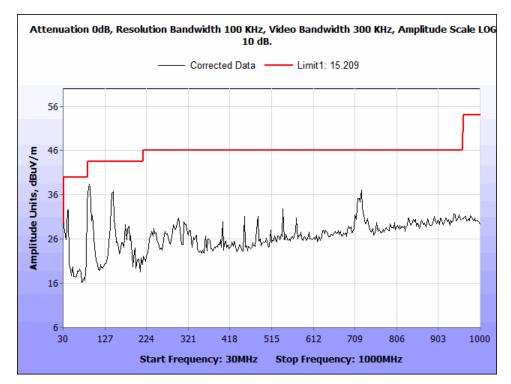


Figure 44: 30 MHz -1 GHz, Radiated Emission B Mode Low Channel

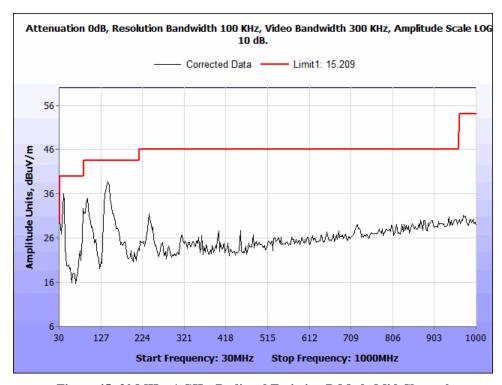


Figure 45: 30 MHz -1 GHz, Radiated Emission B Mode Mid Channel

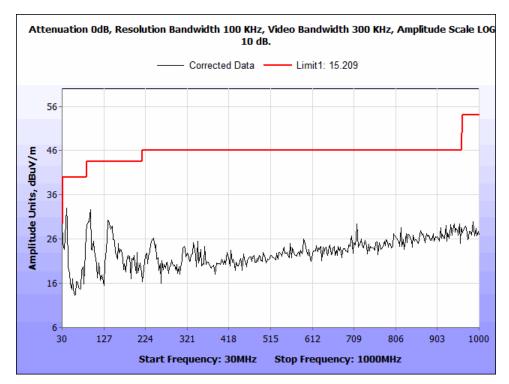


Figure 46: 30 MHz -1 GHz, Radiated Emission G Mode High Channel

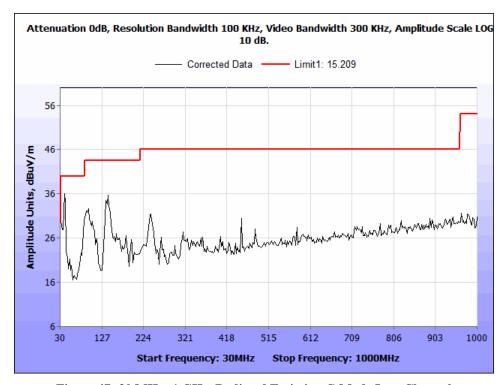


Figure 47: 30 MHz -1 GHz, Radiated Emission G Mode Low Channel

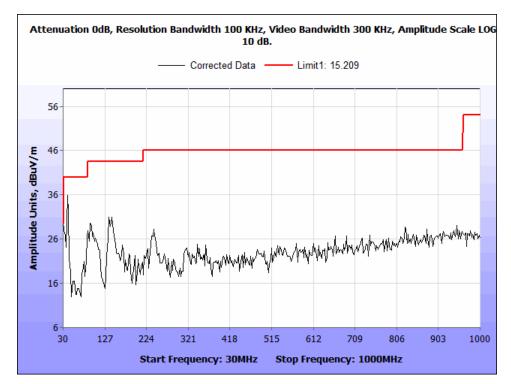


Figure 48: 30 MHz -1 GHz, Radiated Emission G Mode Mid Channel

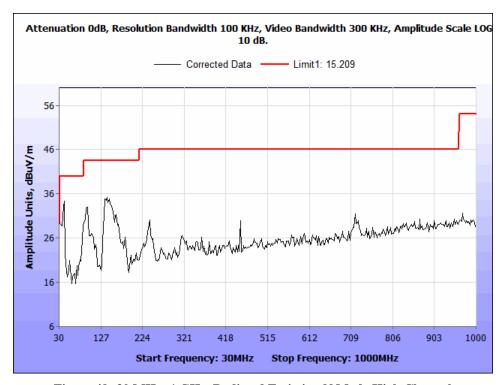


Figure 49: 30 MHz -1 GHz, Radiated Emission N Mode High Channel

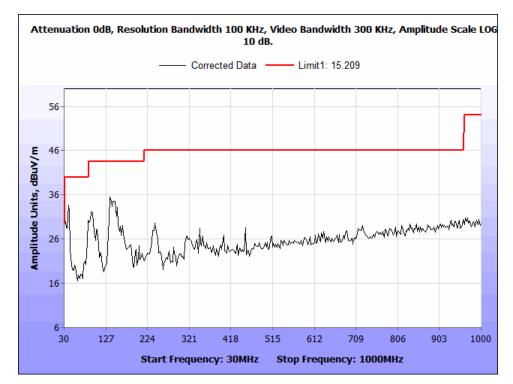


Figure 50: 30 MHz -1 GHz, Radiated Emission N Mode Low Channel

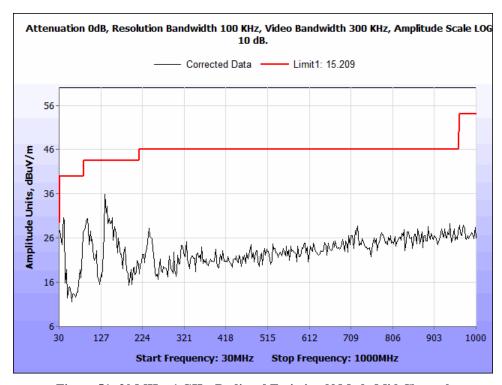


Figure 51: 30 MHz -1 GHz, Radiated Emission N Mode Mid Channel

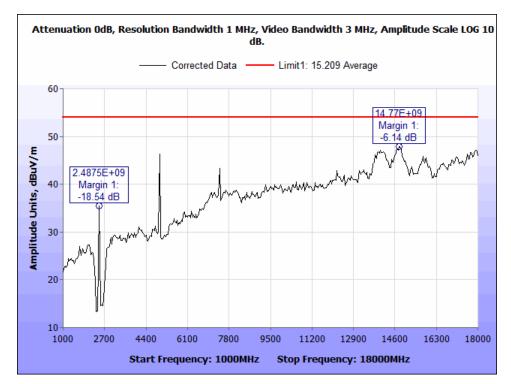


Figure 52: Radiated Spurious Emissions, 1 - 18 GHz, B Mode High Channel Average

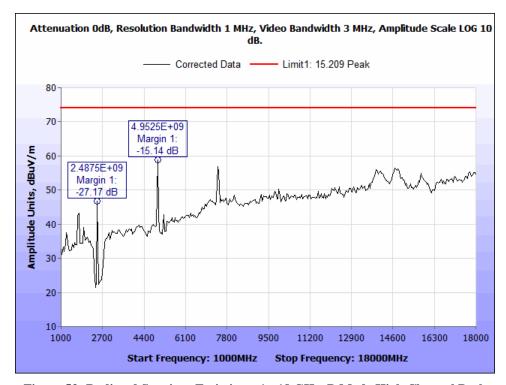


Figure 53: Radiated Spurious Emissions, 1 - 18 GHz, B Mode High Channel Peak

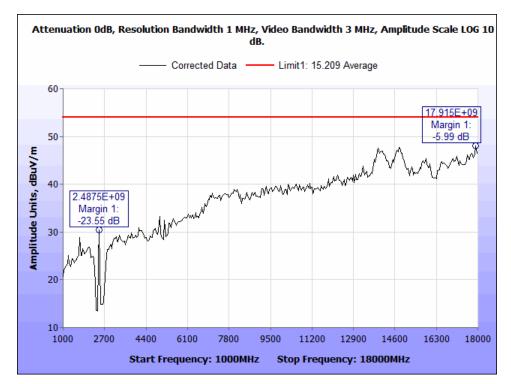


Figure 54: Radiated Spurious Emissions, 1 - 18 GHz, G Mode High Channel Average

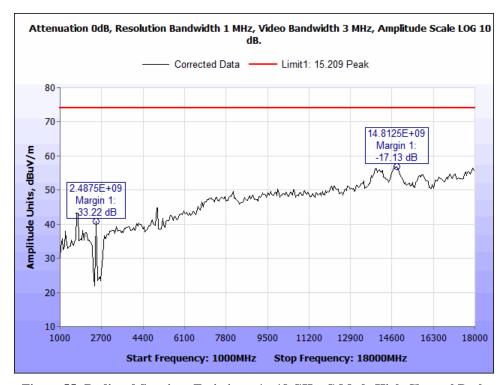


Figure 55: Radiated Spurious Emissions, 1 - 18 GHz, G Mode High Channel Peak

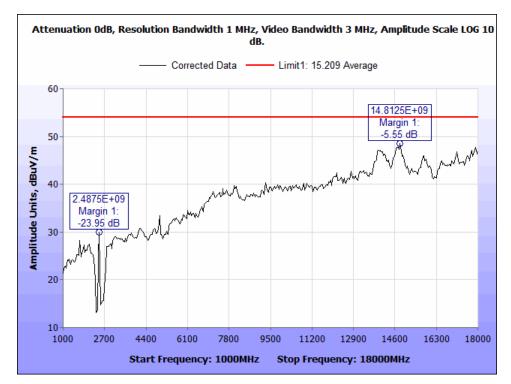


Figure 56: Radiated Spurious Emissions, 1 - 18 GHz, N Mode High Channel Average

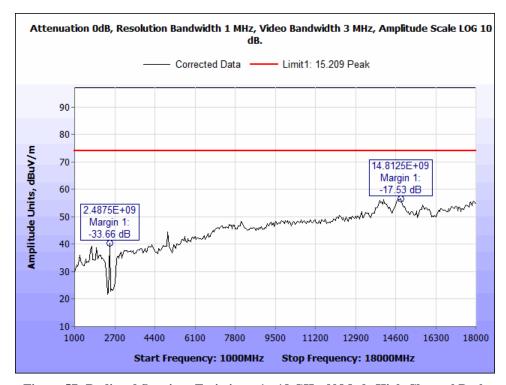


Figure 57: Radiated Spurious Emissions, 1 - 18 GHz, N Mode High Channel Peak

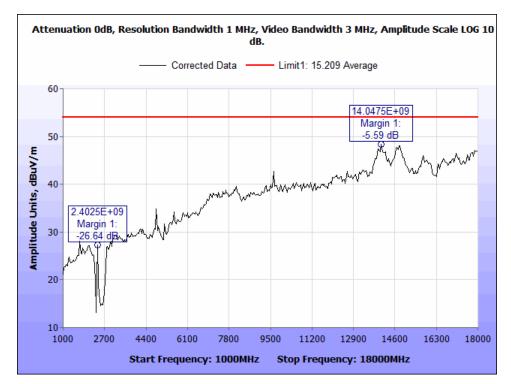


Figure 58: Radiated Spurious Emissions, 1 - 18 GHz, B Mode Low Channel Average

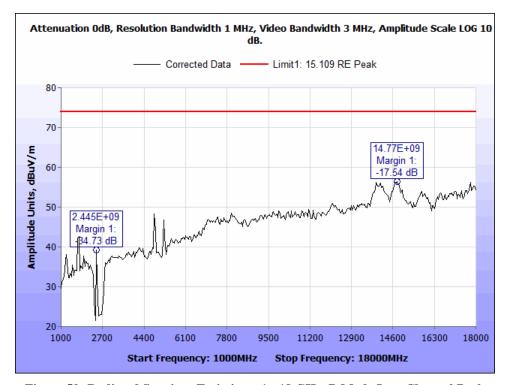


Figure 59: Radiated Spurious Emissions, 1 - 18 GHz, B Mode Low Channel Peak

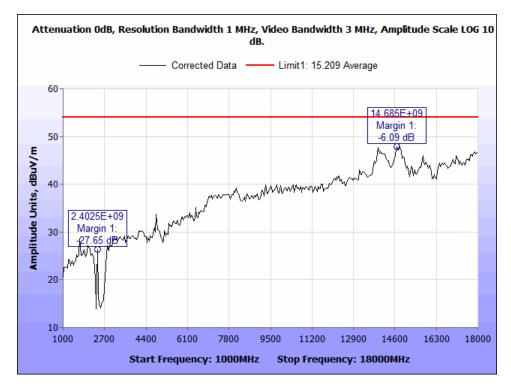


Figure 60: Radiated Spurious Emissions, 1 - 18 GHz, G Mode Low Channel Average

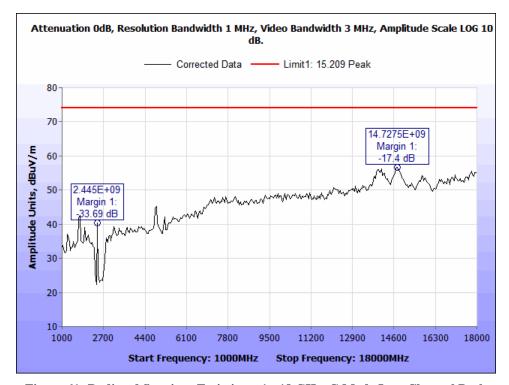


Figure 61: Radiated Spurious Emissions, 1 - 18 GHz, G Mode Low Channel Peak

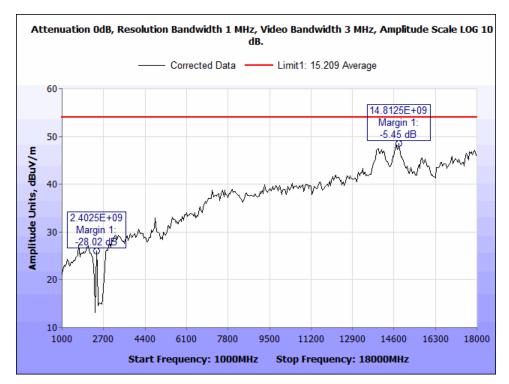


Figure 62: Radiated Spurious Emissions, 1 - 18 GHz, N Mode Low Channel Average

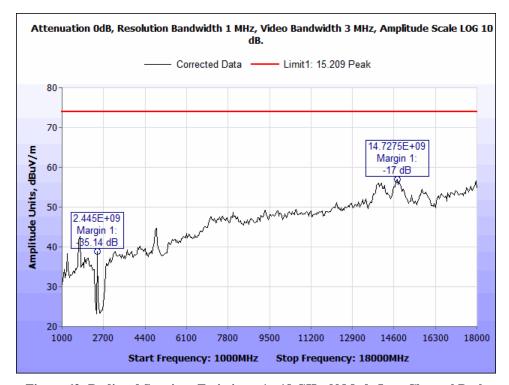


Figure 63: Radiated Spurious Emissions, 1 - 18 GHz, N Mode Low Channel Peak

Figure 64: Radiated Spurious Emissions, 1 - 18 GHz, B Mode Mid Channel Average

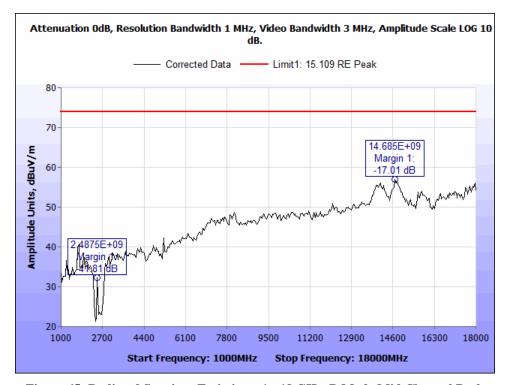


Figure 65: Radiated Spurious Emissions, 1 - 18 GHz, B Mode Mid Channel Peak

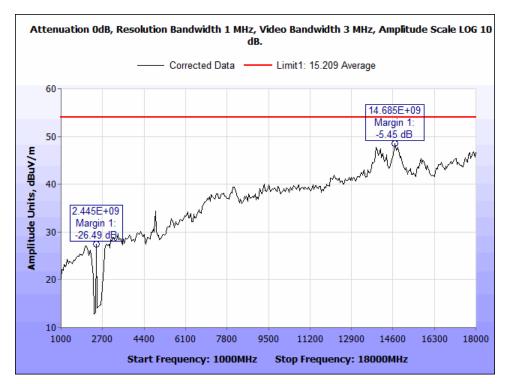


Figure 66: 1 - 18 GHz, G Mode Mid Channel Average

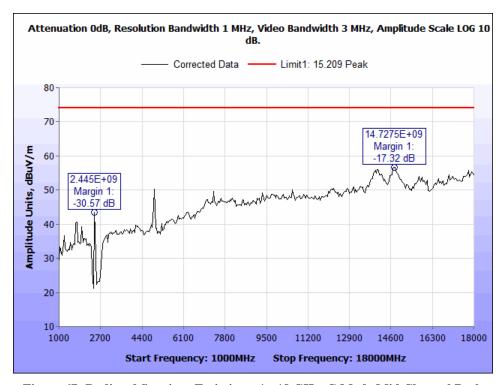


Figure 67: Radiated Spurious Emissions, 1 - 18 GHz, G Mode Mid Channel Peak

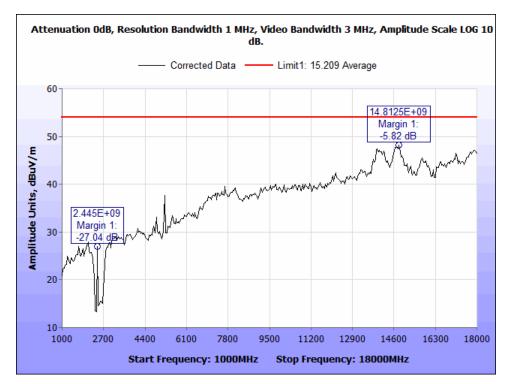


Figure 68: Radiated Spurious Emissions, 1 - 18 GHz, N Mode Mid Channel Average

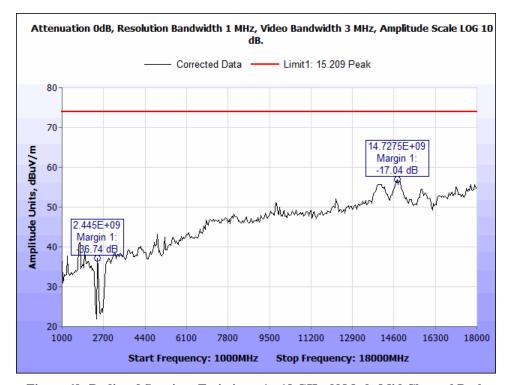


Figure 69: Radiated Spurious Emissions, 1 - 18 GHz, N Mode Mid Channel Peak

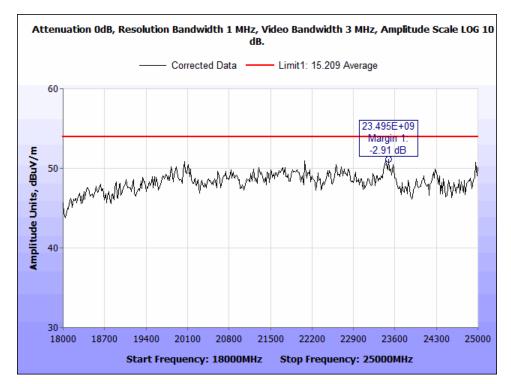


Figure 70: Radiated Spurious Emissions, 18 - 25 GHz, B Mode High Channel Average

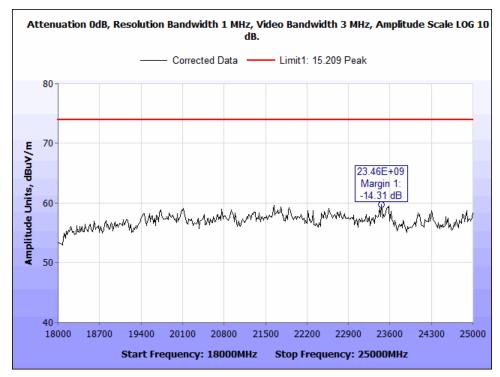


Figure 71: Radiated Spurious Emissions, 18 - 25 GHz, B Mode High Channel Peak

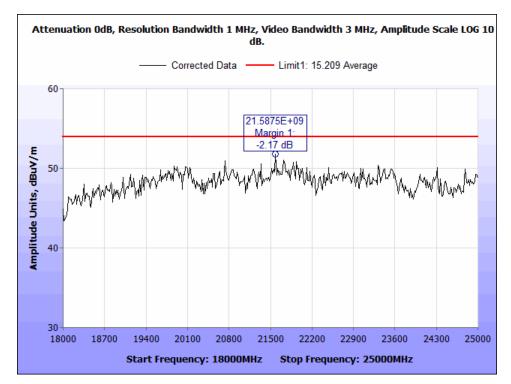


Figure 72: Radiated Spurious Emissions, 18 - 25 GHz, G Mode High Channel Average

Figure 73: Radiated Spurious Emissions, 18 - 25 GHz, G Mode High Channel Peak

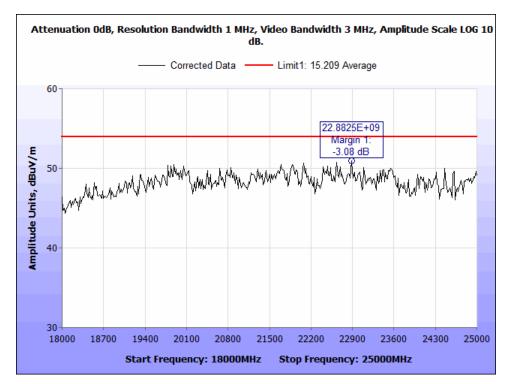


Figure 74: Radiated Spurious Emissions, 18 - 25 GHz, N Mode High Channel Average

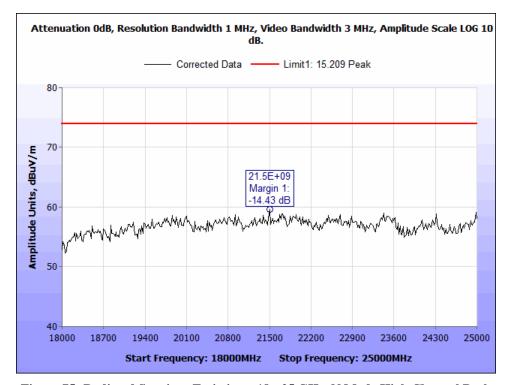


Figure 75: Radiated Spurious Emissions, 18 - 25 GHz, N Mode High Channel Peak

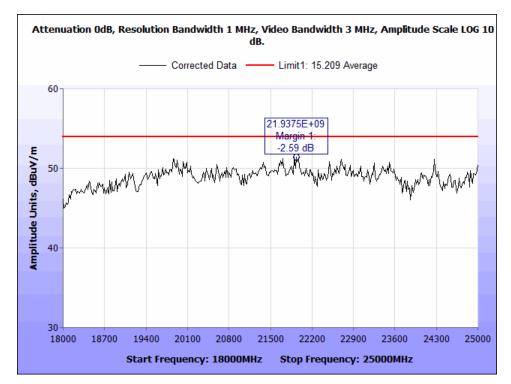


Figure 76: Radiated Spurious Emissions, 18 - 25 GHz, B Mode Low Channel Average

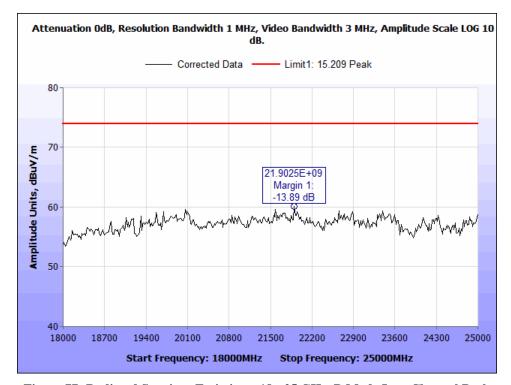


Figure 77: Radiated Spurious Emissions, 18 - 25 GHz, B Mode Low Channel Peak

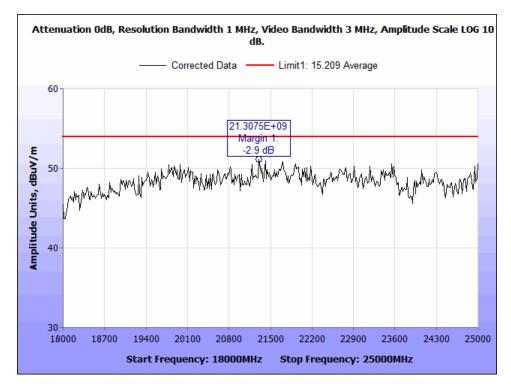


Figure 78: Radiated Spurious Emissions, 18 - 25 GHz, G Mode Low Channel Average

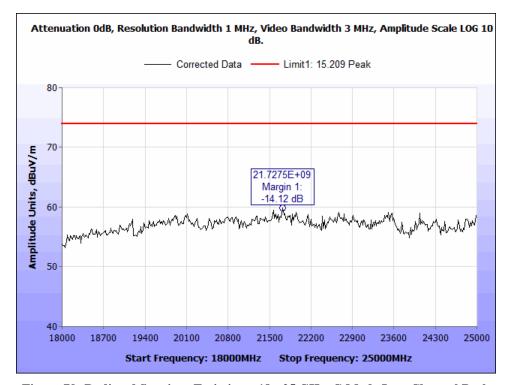


Figure 79: Radiated Spurious Emissions, 18 - 25 GHz, G Mode Low Channel Peak

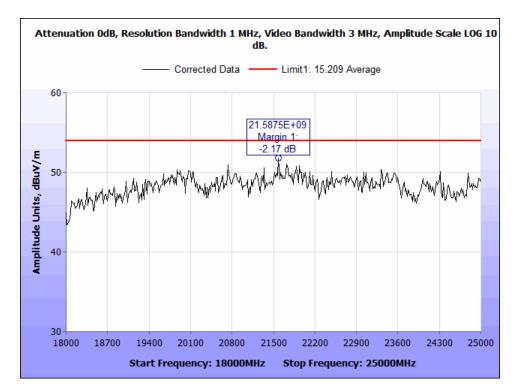


Figure 80: Radiated Spurious Emissions, 18 - 25 GHz, N Mode Low Channel Average

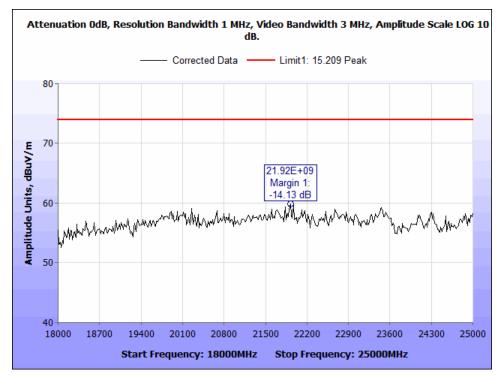


Figure 81: Radiated Spurious Emissions, 18 - 25 GHz, N Mode Low Channel Peak

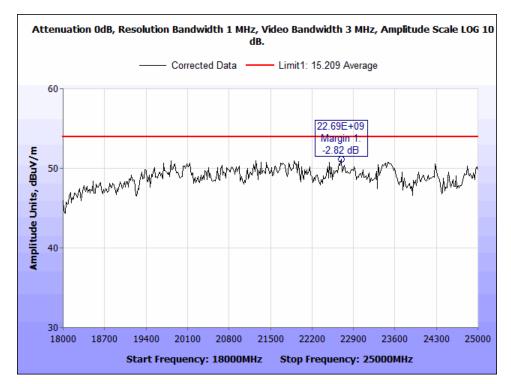


Figure 82: Radiated Spurious Emissions, 18 - 25 GHz, B Mode Mid Channel Average

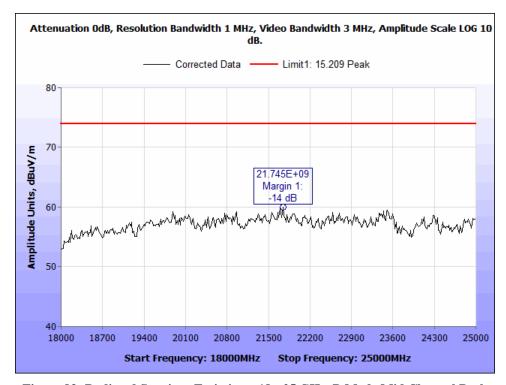


Figure 83: Radiated Spurious Emissions, 18 - 25 GHz, B Mode Mid Channel Peak

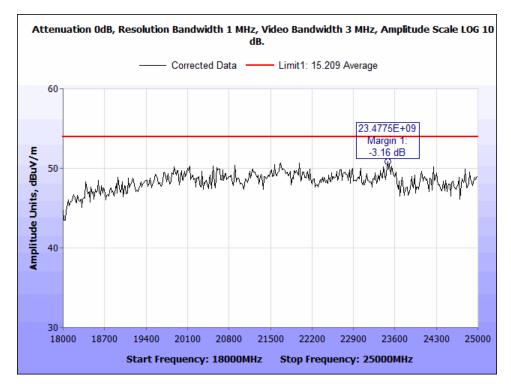


Figure 84: Radiated Spurious Emissions, 18 - 25 GHz, G Mode Mid Channel Average

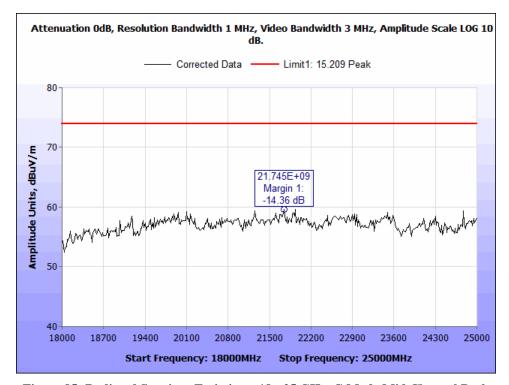


Figure 85: Radiated Spurious Emissions, 18 - 25 GHz, G Mode Mid Channel Peak

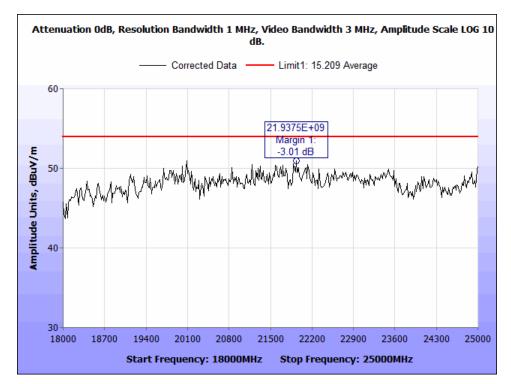


Figure 86: Radiated Spurious Emissions, 18 - 25 GHz, N Mode Mid Channel Average

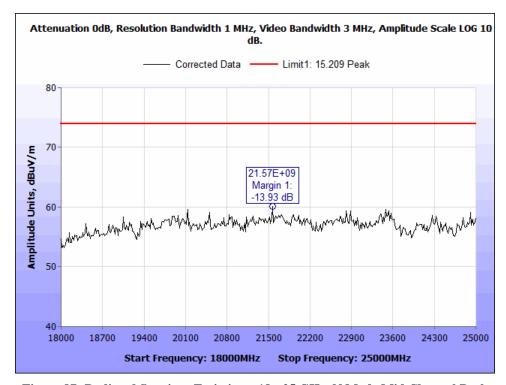


Figure 87: Radiated Spurious Emissions, 18 - 25 GHz, N Mode Mid Channel Peak

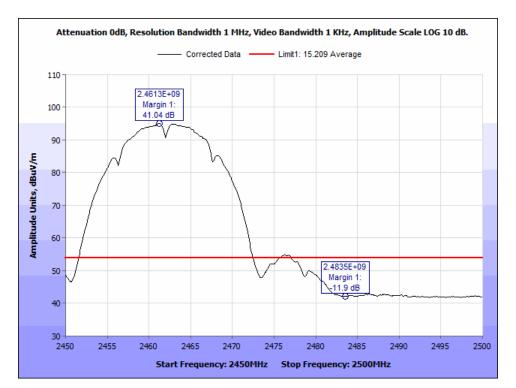


Figure 88: Radiated Band Edge, B Mode High Channel Average

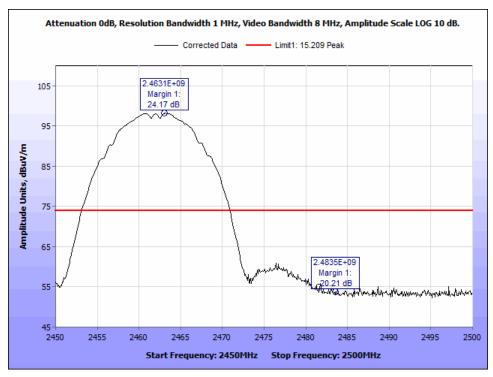


Figure 89: Radiated Band Edge, B Mode High Channel Peak

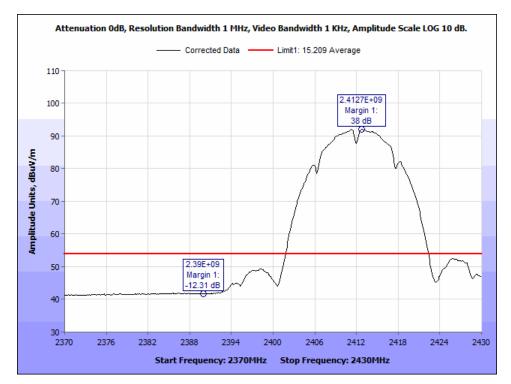


Figure 90: Radiated Band Edge, B Mode Low Channel Average

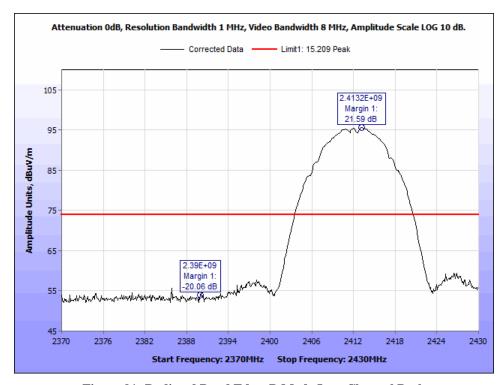


Figure 91: Radiated Band Edge, B Mode Low Channel Peak

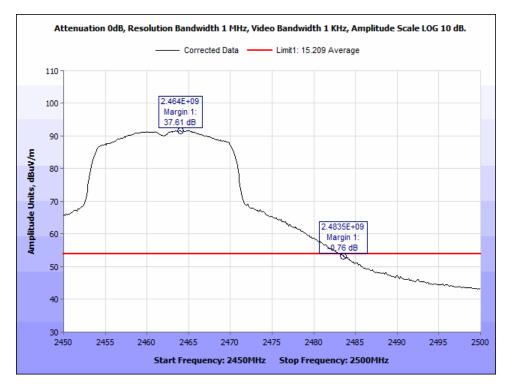


Figure 92: Radiated Band Edge, G Mode High Channel Average

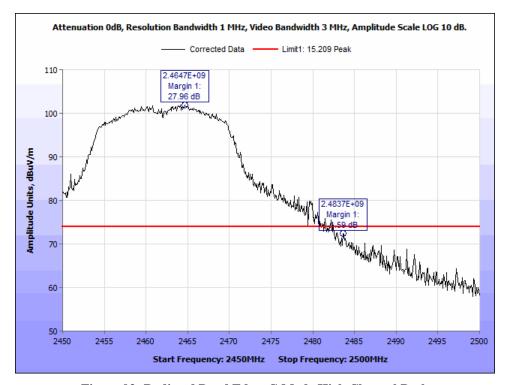


Figure 93: Radiated Band Edge, G Mode High Channel Peak

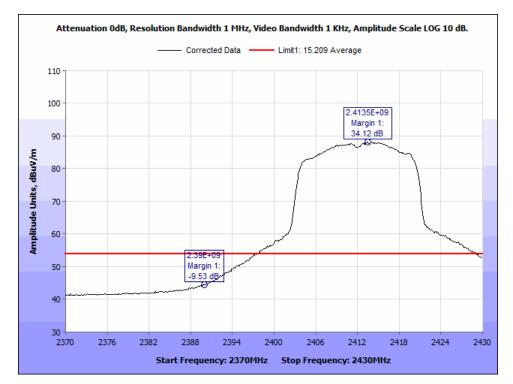


Figure 94: Radiated Band Edge, G Mode Low Channel Average

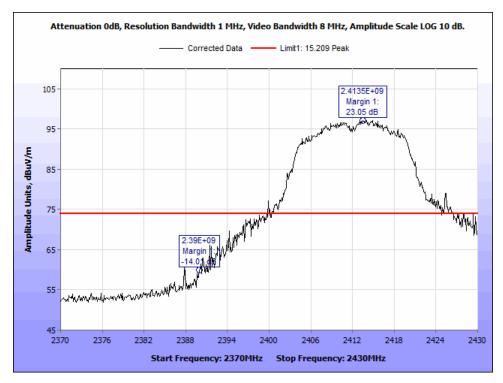


Figure 95: Radiated Band Edge, G Mode Low Channel Peak

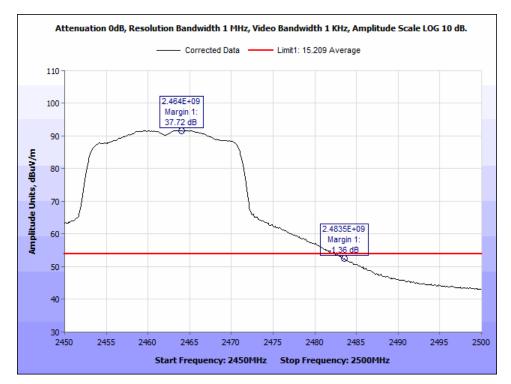


Figure 96: Radiated Band Edge, N Mode High Channel Average

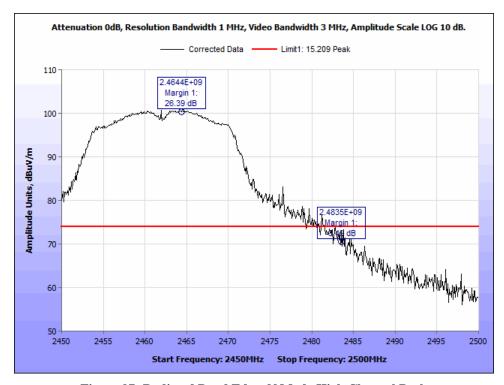


Figure 97: Radiated Band Edge, N Mode High Channel Peak

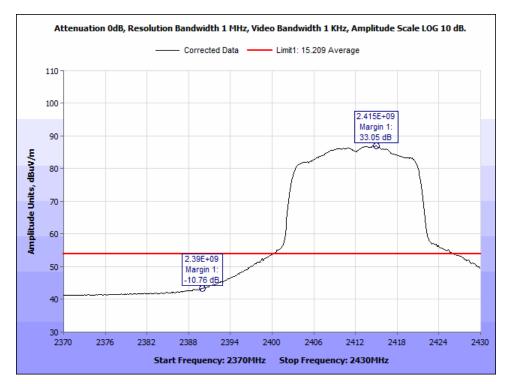


Figure 98: Radiated Band Edge, N Mode Low Channel Average

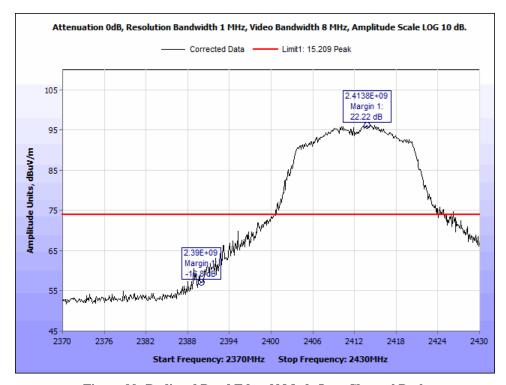


Figure 99: Radiated Band Edge, N Mode Low Channel Peak

Radiated Spurious Emissions Photographs

Figure 100: Radiated Spurious Emissions, 30 MHz - 1 GHz, Test Setup



Figure 101: Radiated Spurious Emissions, 1 GHz -18 GHz, Test Setup

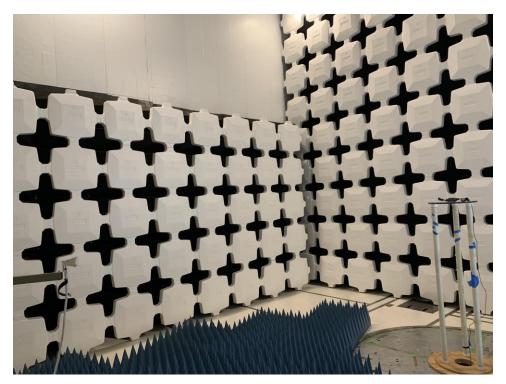


Figure 102: Radiated Spurious Emissions, 18 GHz - 25 GHz, Test Setup

Vuzix Corporation M100 Swim Project

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(d) Spurious Emissions in Non-restricted Bands

Test Requirement:

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Procedure:

For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per §15.33(a)(1) and §15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Antenna port conducted measurements was performed. Test guidance stated in section 11.11.1, 11.11.2 and 11.11.3 were used. Plots shown below are corrected for applicable offset factors.

Test Results:

The EUT was **compliant** with the Spurious Emission limits of §15.247(d).

Test Engineer:

Deepak Giri

Test Date:

January 21, 2020

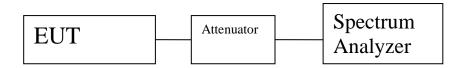


Figure 103: Block Diagram, RF Port Conducted Emission Test Setup

Spurious Emissions in Non-restricted Bands Data

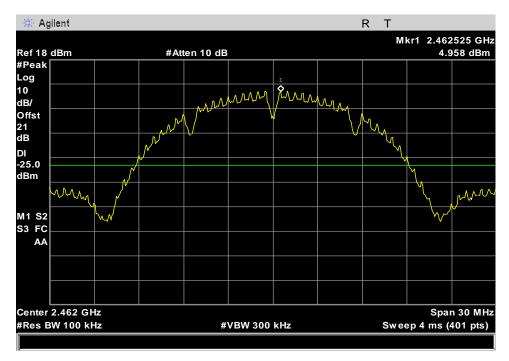


Figure 104: Spurious Emissions in Non-restricted Bands, B Mode High Channel Reference Level

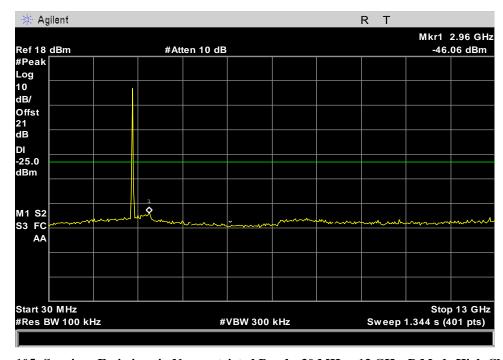


Figure 105: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, B Mode High Channel

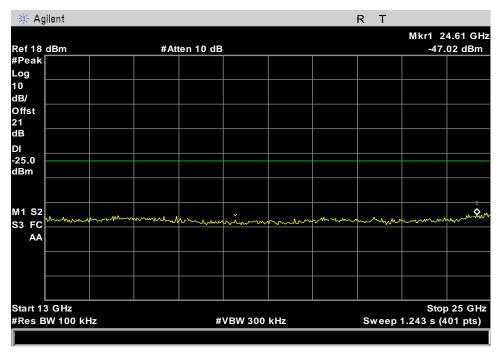


Figure 106: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, B Mode High Channel

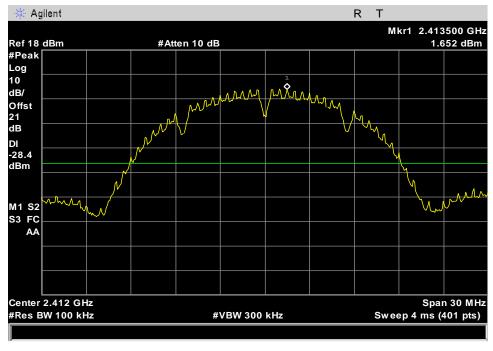


Figure 107: Spurious Emissions in Non-restricted Bands, B Mode Low Channel Reference Level

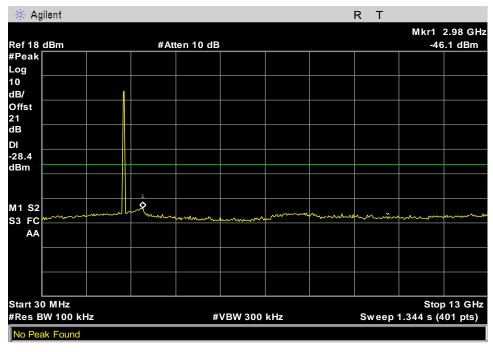


Figure 108: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, B Mode Low Channel

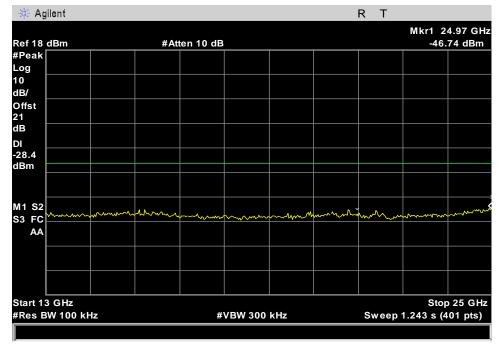


Figure 109: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, B Mode Low Channel

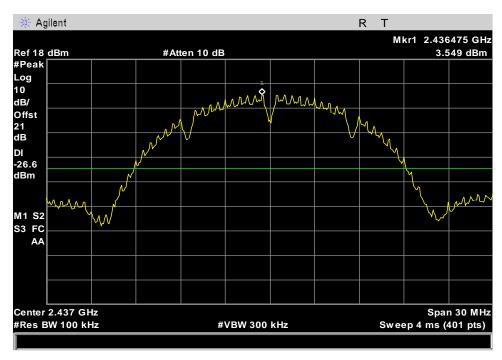


Figure 110: Spurious Emissions in Non-restricted Bands, B Mode Mid Channel Reference Level

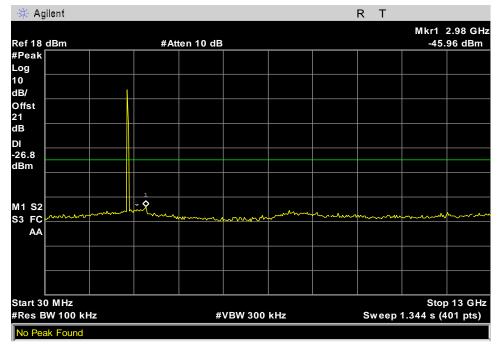


Figure 111: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, B Mode Mid Channel

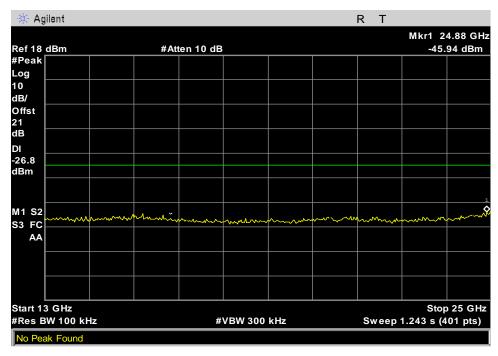


Figure 112: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, B Mode Mid Channel

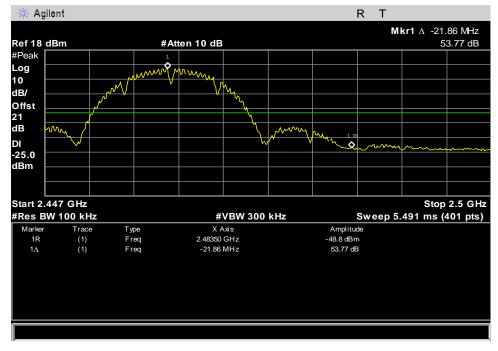


Figure 113: Spurious Emissions in Non-restricted Bands, B Mode High Channel Band Edge

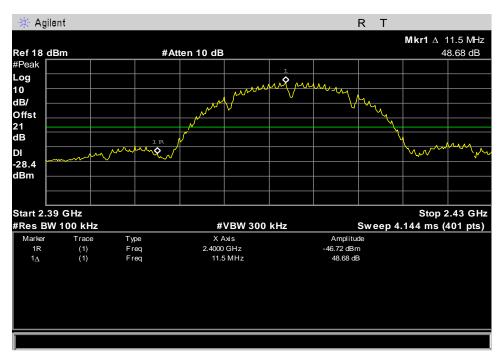


Figure 114: Spurious Emissions in Non-restricted Bands, B Mode Low Channel Band Edge

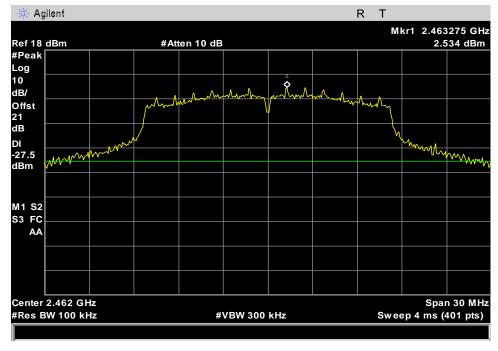


Figure 115: Spurious Emissions in Non-restricted Bands, G Mode High Channel Reference Level

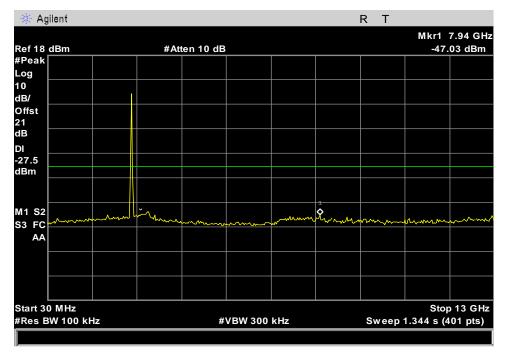


Figure 116: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, G Mode High Channel

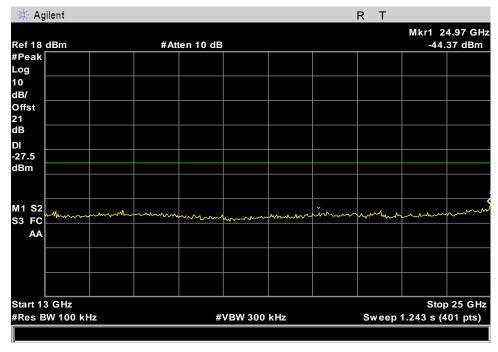


Figure 117: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, G Mode High Channel

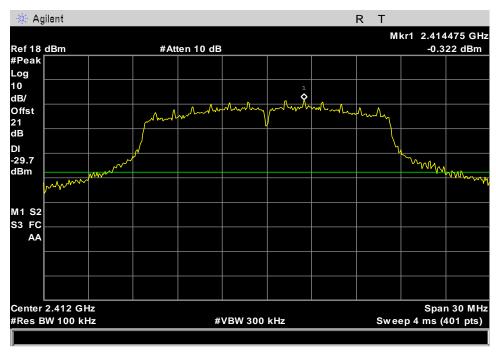


Figure 118: Spurious Emissions in Non-restricted Bands, G Mode Low Channel Reference Level

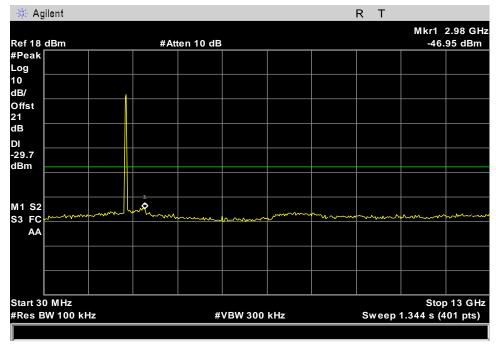


Figure 119: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, G Mode Low Channel

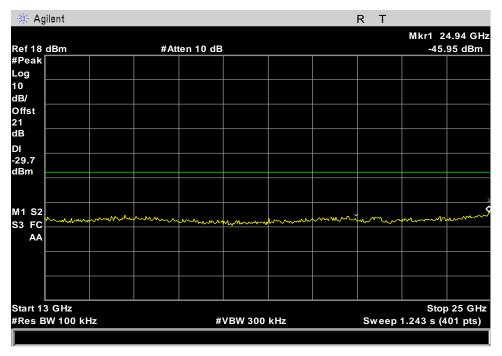


Figure 120: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, G Mode Low Channel

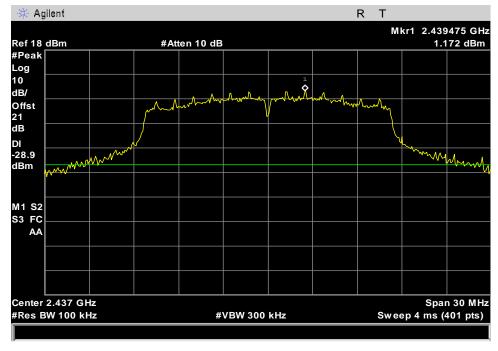


Figure 121: Spurious Emissions in Non-restricted Bands, G Mode Mid Channel Reference Level

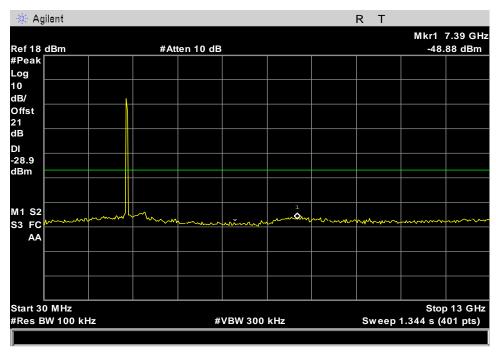


Figure 122: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, G Mode Mid Channel

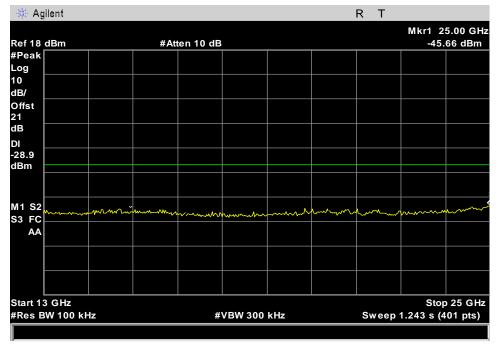


Figure 123: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, G Mode Mid Channel

MET Labs

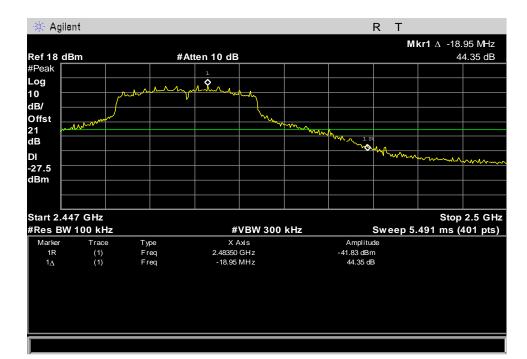


Figure 124: Spurious Emissions in Non-restricted Bands, G Mode High Channel Band Edge

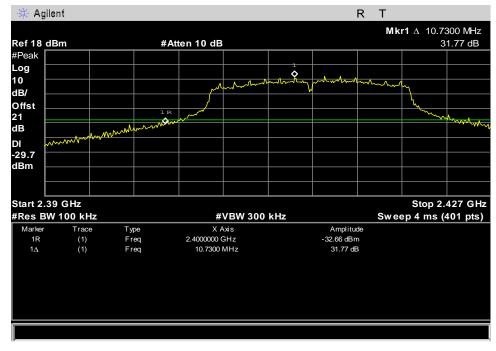


Figure 125: Spurious Emissions in Non-restricted Bands, G Mode Low Channel Band Edge

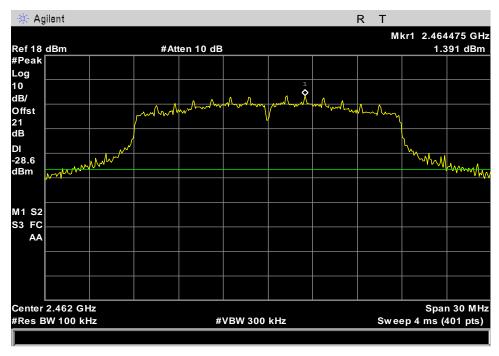


Figure 126: Spurious Emissions in Non-restricted Bands, N Mode High Channel Reference Level

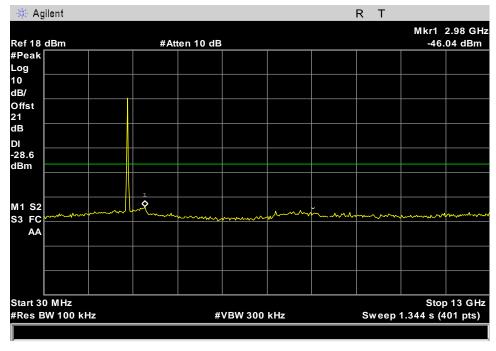


Figure 127: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, N Mode High Channel

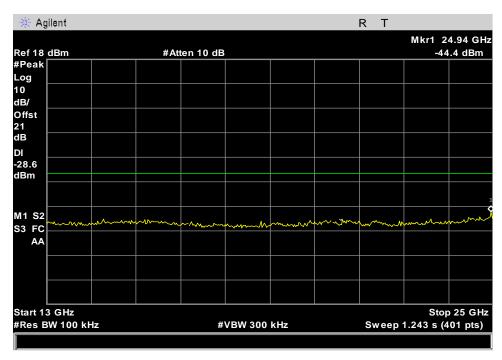


Figure 128: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, N Mode High Channel

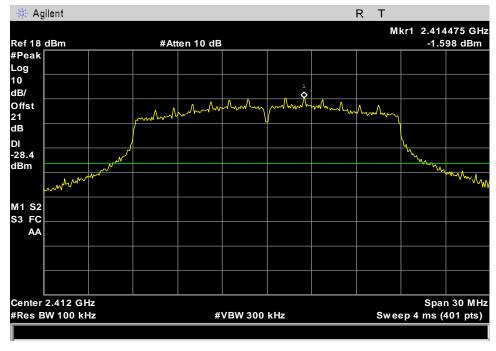


Figure 129: Spurious Emissions in Non-restricted Bands, N Mode Low Channel Reference Level

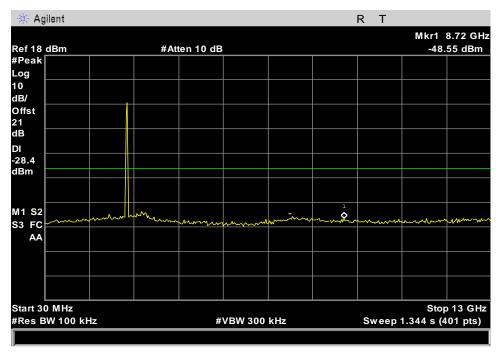


Figure 130: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, N Mode Low Channel

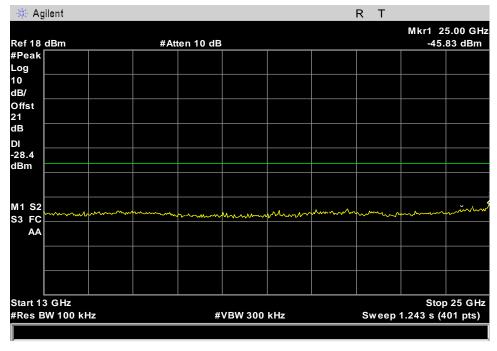


Figure 131: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, N Mode Low Channel

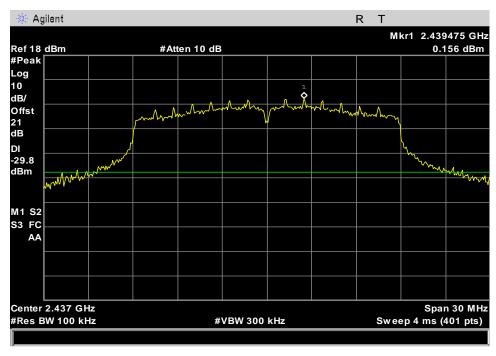


Figure 132: Spurious Emissions in Non-restricted Bands, N Mode Mid Channel Reference Level

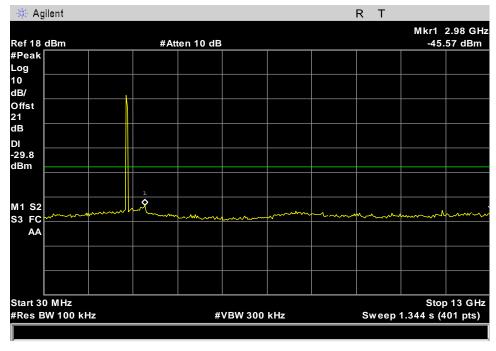


Figure 133: Spurious Emissions in Non-restricted Bands, 30 MHz - 13 GHz, N Mode Mid Channel

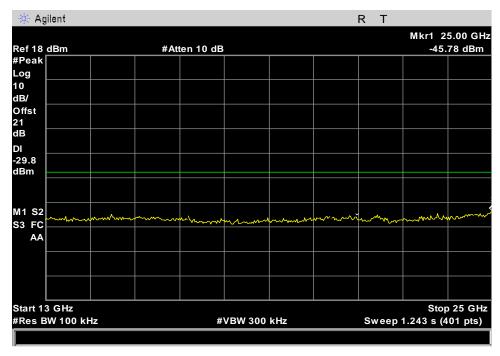


Figure 134: Spurious Emissions in Non-restricted Bands, 13 GHz - 25 GHz, N Mode Mid Channel

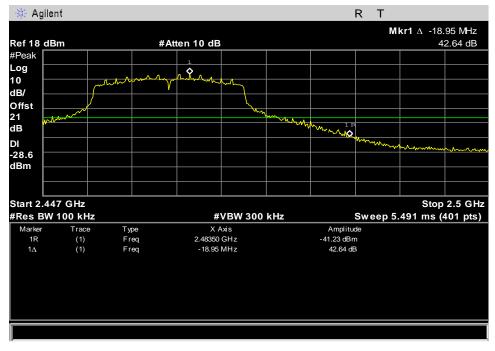


Figure 135: Spurious Emissions in Non-restricted Bands, N Mode High Channel Band Edge

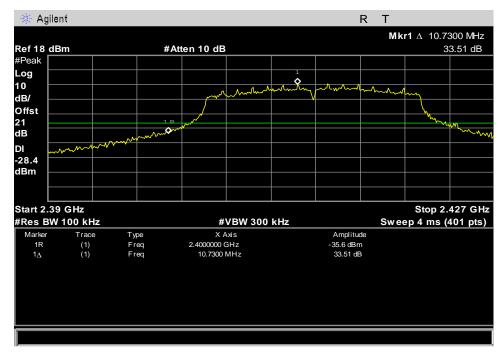


Figure 136: Spurious Emissions in Non-restricted Bands, N Mode Low Channel Band Edge

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(e) Power Spectral Density

Test Requirements: §15.247(e): For digitally modulated systems, the peak power spectral density conducted

from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz

band during any time interval of continuous transmission.

Test Procedure: EUT was transmitting continuously with duty cycle greater than 98%. Measurement was

performed using the guidance stated in section 11.10.3 of ANSI C63.10 2013 where RBV

was set to 10 KHz.

Test Results: The EUT was **compliant** with the power spectral density limits of § **15.247** (e).

The power spectral density was determined from plots on the following page(s).

Test Engineer: Deepak Giri

Test Date: January 21, 2020

Figure 137: Block Diagram, Power Spectral Density Test Set Up

Power Spectral Density Data

Frequency (MHz)	Mode	Power Spectral Density Average (dBm)	Limit (dBm)	Margin (dBm)
2412	В	-16.54	8	-24.54
2437	В	-15.16	8	-23.16
2462	В	-13.51	8	-21.51
2412	G	-19.23	8	-27.23
2437	G	-17.77	8	-25.77
2462	G	-16.55	8	-24.55
2412	N	-20.48	8	-28.48
2437	N	-18.76	8	-26.76
2462	N	-17.58	8	-25.58

Figure 138: Power Spectral Density, Test Results

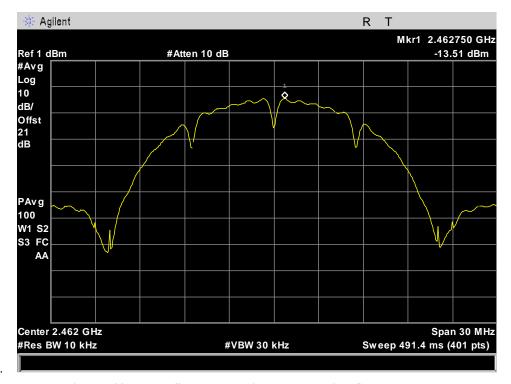


Figure 139: Power Spectral Density, B Mode High Channel

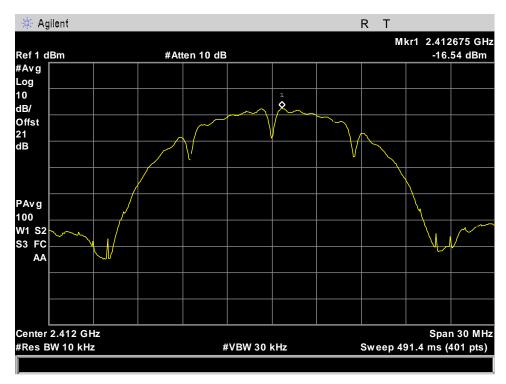


Figure 140: Power Spectral Density, B Mode Low Channel

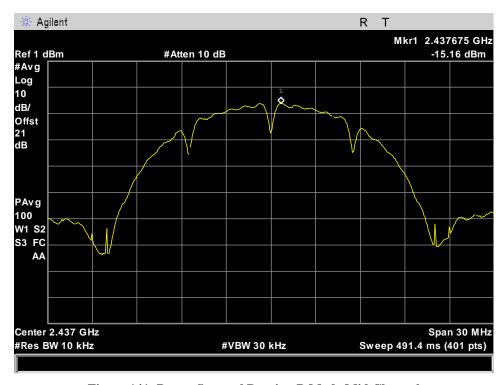


Figure 141: Power Spectral Density, B Mode Mid Channel

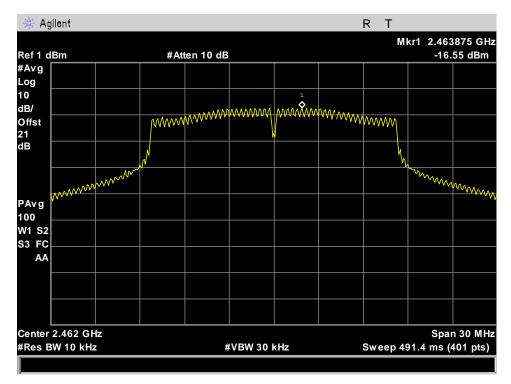


Figure 142: Power Spectral Density, G Mode High Channel

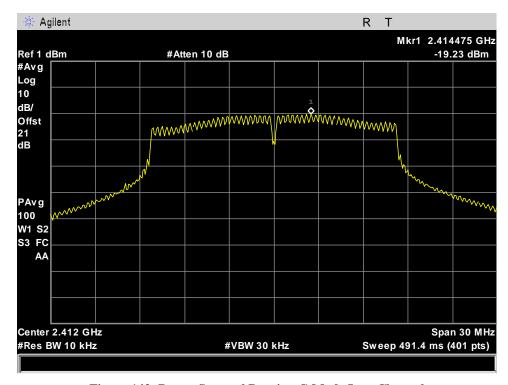


Figure 143: Power Spectral Density, G Mode Low Channel

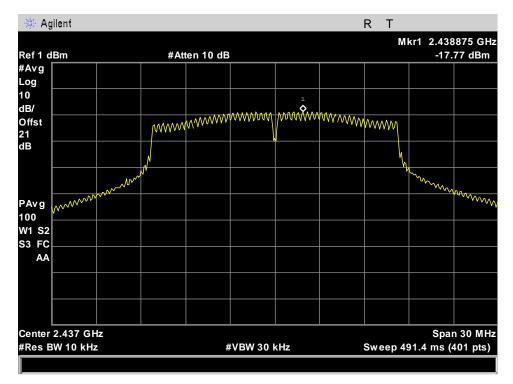


Figure 144: Power Spectral Density, G Mode Mid Channel

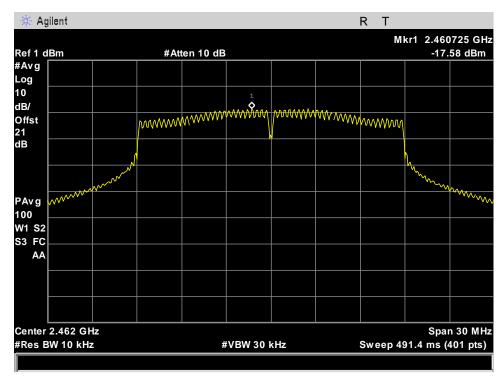


Figure 145: Power Spectral Density, N Mode High Channel

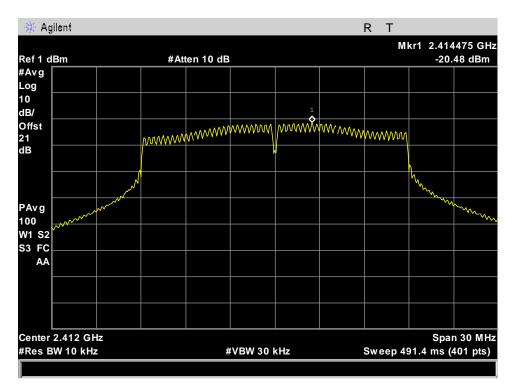


Figure 146: Power Spectral Density, N Mode Low Channel

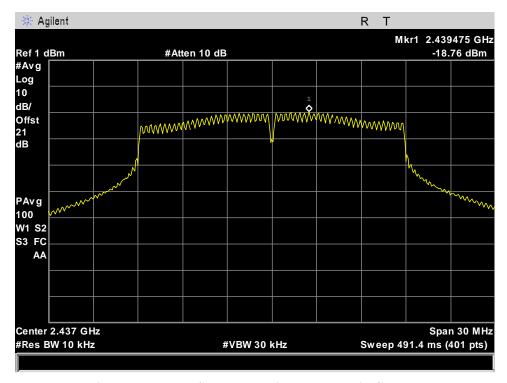


Figure 147: Power Spectral Density, N Mode Mid Channel

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(i) **Maximum Permissible Exposure**

RF Exposure Requirements: $\S1.1307(b)(1)$ and $\S1.1307(b)(2)$: Systems operating under the provisions of

> this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's

guidelines.

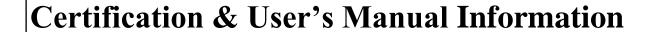
RF Radiation Exposure Limit: §1.1310: As specified in this section, the Maximum Permissible Exposure

> (MPE) Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which shall be evaluated according to the

provisions of Sec. 2.1093 of this chapter.

Note: EUT is portable and is compliant for RF exposure requirements. Compliance was determined performing SAR measurement. Please refer to SAR test report exhibit.

Test Equipment


Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

ASSET #	EQUIPMENT	MANUFACTURER	MODEL	LAST CAL	CAL DUE
1T4829	SPECTRUM ANALYZER	AGILENT TECHNOLOGIES	E4407B	09/28/2018	03/28/2020
1T4565	LISN (24 AMP)	SOLAR ELECTRONICS COMPANY	9252-50-R-24-BNC	04/03/2019	10/03/2020
1T4504	SHIELDED ROOM	UNIVERSAL SHIELDING CORP	N/A	NOT REQUIRED	NOT REQUIRED
1T4300	SEMI-ANECHOIC CHAMBER (NSA)	EMC TEST SYSTEMS	NONE	06/30/2019	06/30/2020
1T4409	EMI RECEIVER	ROHDE & SCHWARZ	ESIB7	01/04/2019	01/04/2021
1T4745	ANTENNA, HORN	ETS-LINDGREN	3116	11/27/2018	05/27/2020
1T4752	PRE-AMPLIFIER	MITEQ	JS44-18004000-35-8P	FUNC VERIFY	
1T4817	PREAMPLIFIER	A.H. SYSTEMS, INC.	PAM-0118P	FUNC VERIFY	
1T4814	COMB GENERATOR	COM-POWER	CGO-5100	FUNC VERIFY	
1T4149A	HF WIRELESS CHAMBER - NSA	RAY PROOF	81	06/30/2019	06/30/2020
1T4905	ANTENNA; HORN	COM-POWER	AH-118	05/07/2019	11/07/2020

Figure 148: Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

Certification & User's Manual Information

M. Certification Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio-frequency devices include, but are not limited to:

- (a) The various types of radio communication transmitting devices described throughout this chapter.
- (b) The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- (d) Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- (a) Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - (1) In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or pre-production stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements *provided* that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

- (e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:
 - (i) Compliance testing;
 - (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device:
 - (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
 - (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.
- (e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.
- (f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

Certification & User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment Authorization Procedures:

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated. In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer, be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- (b) The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

- (a) Certification is an equipment authorization issued by the Commission, based on representation and test data submitted by the applicant.
- (b) Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

¹ In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

Certification & User's Manual Information

§ 2.948 Description of measurement facilities.

- (a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.
 - (1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.
 - (i) If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.
 - (ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.
 - (2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

Certification & User's Manual Information

1. Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

- In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification (a) shall be labeled as follows:
 - (1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- When the device is so small or for such use that it is not practicable to place the statement (5) specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The user's manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Verification & User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B — Unintentional Radiators:

§ 15.105 Information to the user.

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

End of Report