FCC 47 CFR MPE REPORT

Rockford Corporation

DIGITAL MEDIA RECEIVER

Model Number: PMX-8BB

Additional Model: PMX-8, PMX-CAN, PMX-8DH

FCC ID: 2AA7S-PMX-8BB

Applicant:	Rockford Corporation			
Address:	600 South Rockford Drive, Tempe, Arizona, United States			
Prepared By: EST Technology Co., Ltd.				
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China			
Tel: 86-769-83081888-808				

Report Number:	ESTE-R2206114		
Date of Test:	Apr. 27~Jun. 09, 2022		
Date of Report:	Jun. 13, 2022		

Maximum Permissible Exposure

1. Applicable Standards

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

1.1. Limits for Maximum Permissible Exposure (MPE)

(a) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^2, H ^2 \text{ or } S$
(MHz)	(V/m)	(A/m)		(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range (MHz)	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^{2}$, $ H ^{2}$ or S
	(V/m)	(A/m)		(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-10000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd $(W/m^2) = \frac{E^2}{377}$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

2. Conducted Power Result

Mode	Frequency (MHz)	Peak output power (dBm)	Peak output power (mW)	Target power (dBm)	
GFSK	2402	-4.73	0.3365	-4±1	
	2441	-8.41	0.1442	-8±1	
	2480	-11.82	0.0658	-11±1	
8-DPSK	2402	-4.94	0.3206	-4±1	
	PSK 2441 -8.72		0.1343	-8±1	
	2480	-12.43	0.0571	-12±1	

3. Calculated Result and Limit

Antenna	MODE	Channel	MAX Target power (dBm)		nna gain (Linear)	Density (S)	Limited of Power Density (S) (mW/cm ²)	Test Result
1	GFSK	2402	-3	0	1	0.00010	1	Complies

End of Test Report