RF Exposure Report

FCC-ID: 2AA7KTITAN-22000 RF Exposure Measurement

The limit for Maximum Permissible Exposure (MPE) specified in FCC 1.1310 is followed. The gain of the antennas used in the product is extracted from the Antenna data sheets provided and also the maximum total power input to the antenna is measured. Through the Friis transmission formula and the maximum gain of the antenna, we can calculate the distance, away from the product, where the limit of MPE is reached.

Although the Friis Transmission formula is far field assumption, the calculated result of that is an over-prediction for near field power density. It is taken as worst case to specify the safety range.

RF Exposure Limit

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environmental impact of the human exposure to radio-frequency (RF) radiation as specified in 1.1307 (b)

Limits for Maximum Permissible Exposure (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	
Limits for Occupational / controlled Exposures				
300 - 1500			F/300	
1500 – 100000			5.0	
Limits for General population / Uncontrolled Exposure				
300 - 1500			F/1500	
1500 – 100000			1.0	

F= Frequency in MHz

Friss Formula

Friss Transmission Formula: $Pd = (Pout) / (4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

Pi = 3.1416

R = Distance between observation point and the center of radiator in cm, R=100cm

EUT Operation condition

EUT was enabled to transmit and receive at lowest, middle and highest channels.

Classification

The antenna of this product, under normal use condition, is at least 100cm away from the body of the user. Warning statement to the user for keeping at least 100cm or more separation distance from the antenna should be included in the User manual. So, this device is classified as Mobile device.

FCC Part 15.247

Worst case modulation used by the device.

KDB 594280. Professional installation or authorized service personnel is required to configure radio parameters of the transmitter using the software for adjusting total EIRP (36dBm) power at local installation to ensure compliance with FCC Rules.

Turn up

Mode	920-928MHz
Detector	PEAK
FHSS	36dBm

Protocol	Max EIRP (dBm)	Max EIRP (mW)	Power Density (mW/cm²)	Limit (mW/cm²)
FHSS	36	3981	0. 03200	0.6013

FCC Part 90.353

Note: Worst case modulation used by the device.

KDB 594280. Professional installation or authorized service personnel is required to configureradio parameters of the transmitter using the software for adjusting total EIRP (30W) powerat local installation to ensure compliance with FCC Rules.

Turn up

ruin up			
Detector	Mode	PEAK	
Dense reader mode	911.25-920.25 MHz	2014	
ISO-18000-63		30W	
Single reader mode	911.75-919.25 MHz	30/4/	
ISO-18000-63	911.75-919.25 WITZ	30W	
Low data rate	911.75-919.75 MHz	2014/	
ISO-18000-62(40kbps)	911.75-919.75 WITZ	30W	
High data rate ISO-18000-62	912.75-918.25 MHz	30W	
(80kbps)	912.75-916.25 WII 12	3000	
Unmodulated ISO-10374	902.75 MHz,903.25 MHz	30W	
Offinodulated 150-10374	910.75-920.75 MHz	JUVV	
TDM	913.75 MHz,916.25 MHz	30W	
Title 21	913.75 MHz-917.75 MHz	30W	

Protocol	Max EIRP (mW)	Power Density (mW/cm²)	Limit (mW/cm²)
Dense reader mode ISO-18000-63	30000	0. 239	0.6013
Single reader mode ISO-18000-63	30000	0. 239	0.6013
Low data rate ISO- 18000-62(40kbps)	30000	0. 239	0.6013
High data rate ISO- 18000-62 (80kbps)	30000	0. 239	0.6013
Unmodulated ISO-	30000	0. 239	0.6013
TDM	30000	0. 239	0.6013
Title 21	30000	0. 239	0.6013