

Report No.: KSEM201200154901 Page: 1 of 49

SAR TEST REPORT

Application No.:	Application No.: KSEM2012001549CR	
Applicant:	KRONOZ LLC	
Address of Applicant:	Avenue Louis Casai 18 1209 Geneva Switzerland	
Manufacturer:	KRONOZ LLC	
Address of Manufacturer:	Avenue Louis Casai 18 1209 Geneva Switzerland	
Factory:	KRONOZ LLC	
Address of Factory:	Avenue Louis Casai 18 1209 Geneva Switzerland	
Product Name:	MyScale	
Model No.(EUT):	MyScale	
Trade mark:	MYKRONOZ 🕻	
FCC ID:	2AA7D-MSCL	
IC:	12131A-MSCL	
	FCC 47CFR §2.1093	
Standard(s) :	RSS-102 Issue 5	
Date of Receipt:	2020-12-08	
Date of Test:	2020-12-11 to 2020-12-11	
Date of Issue:	2020-12-15	
Test Result:	Pass*	
* In the configuration tested, the EUT complied with the standards specified above.		

* In the configuration tested, the EUT complied with the standards specified above.

Ena fri

Eric Lin

Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limitation contained hereon reflects the Company's to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN_Doccheck@esps.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国•江苏•昆山市留学生创业园伟业路10号 邮编 215300

Test Report Form Version: Rev01

t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Report No.: KSEM201200154901 Page: 2 of 49

REVISION HISTORY

Revision Record				
Version	Description	Date	Remark	
00	Original	2020-12-15	Original	

Authorized for issue by:		
	Richard. Kong	
	Richard.Kong/ Project Engineer	
	Eni fri	
	Eric.Lin/Reviewer	

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSEM201200154901 Page: 3 of 49

TEST SUMMARY

	Maximum Reported SAR(W/kg)	
Frequency Band	Body&Head	
	Omm	
WI-FI (2.4GHz)	0.22	
SAR Limited(W/kg)	1.6	

Remark:

The product can touch the body and head of the human, but the tissue liquid and test conditions used are the same, so the test data can be shared.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Report No.: KSEM201200154901 Page: 4 of 49

CONTENTS

1	GENERAL INFORMATION	6
	1.1 General Description of EUT	7
2		11
3	SAR MEASUREMENTS SYSTEM CONFIGURATION	12
	 3.1 THE SAR MEASUREMENT SYSTEM	
4	SAR MEASUREMENT VARIABILITY AND UNCERTAINTY	21
	 4.1 SAR MEASUREMENT VARIABILITY 4.2 SAR MEASUREMENT UNCERTAINTY 	22
5		
	5.1 THE BODY TEST POSITION	
6		
	 6.1 TISSUE SIMULATE LIQUID	
7	TEST CONFIGURATION	30
	7.1 OPERATION CONFIGURATIONS 7.1.1 Wi-Fi Test Configuration 7.1.2 BLE Test Configuration	
8	TEST RESULT	34
	 8.1 MEASUREMENT OF RF CONDUCTED POWER	

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Report No.: KSEM201200154901 Page: 5 of 49

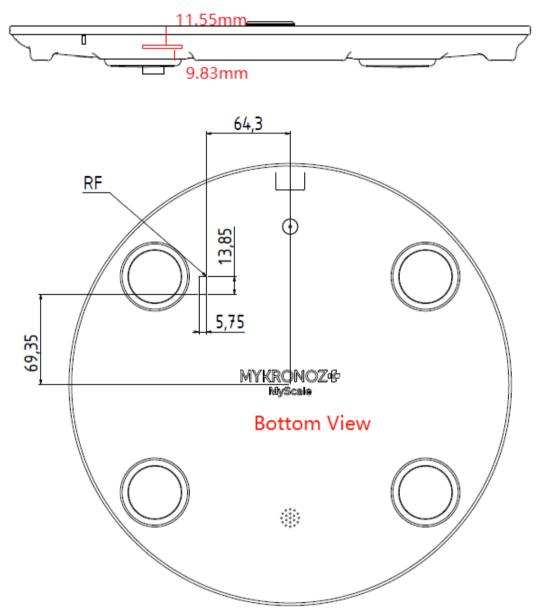
	8.6.2 Repeat SAR Measurement 8.7 MULTIPLE TRANSMITTER EVALUATION	41
8	8.7 MULTIPLE TRANSMITTER EVALUATION	42
	8.7.1 Simultaneous SAR SAR test evaluation	42
9	EQUIPMENT LIST	43
10	CALIBRATION CERTIFICATE	44
11	PHOTOGRAPHS	44
APF	PENDIX A: DETAILED SYSTEM CHECK RESULTS	45
APF	PENDIX B: DETAILED TEST RESULTS	47
APF	PENDIX C: CALIBRATION CERTIFICATE	49
APF	PENDIX D: PHOTOGRAPHS	49

Report No.: KSEM201200154901 Page: 6 of 49

1 General Information

1.1 General Description of EUT

Device Type :	portable device	portable device		
Exposure Category:	uncontrolled environm	nent / general population		
Product Phase:	production unit			
SN:	201145200001			
Hardware Version:	COM202D1X(X: 0,1,2.)		
Software Version:	FW015, SW003			
FVIN:	RF_TEST_BIN_V1.3.	9		
HVIN:	COM202D1X(X: 0,1,2.)		
Antenna Type:	On Board antenna	On Board antenna		
Device Operating Configurations :				
Modulation Mode:	WI-FI: CCK;DSSS;OF	WI-FI: CCK;DSSS;OFDM; BLE: GFSK		
Antenna Gain:	0.5dBi (Provided by	0.5dBi (Provided by the manufacturer)		
	Band	Tx (MHz)	Rx (MHz)	
Frequency Bands:	WI-FI2.4G	2412~2462	2412~2462	
	Bluetooth	2402~2480	2402~2480	
Model: 3470100				
Battery1 Information:	Rated capacity: 3000	Rated capacity: 3000mAh		
	Manufacturer: SHEN	Manufacturer: SHEN ZHEN JIAJINYUAN TECHNOLOGY CO., LTD		


Note:

The antenna gain value is provided by the customer. The test lab will not be responsible for wrong test result due to incorrect information about antenna gain values.

Report No.: KSEM201200154901 Page: 7 of 49

1.1.1 DUT Antenna Locations

The test device is a MyScale.

According to the distance between Wi-Fi/BT antennas and the sides of the EUT we can draw the conclusion that:

EUT Sides for SAR Testing						
Mode	Front	Back	Left	Right	Тор	Bottom
2.4G Wi-Fi	No	No	No	No	Yes	No
Bluetooth	No	No	No	No	No	No

Table 1: EUT Sides for SAR Testing Note:

- 1) In fact, there would be only top side contact with human body and head.
- 2) Details please see Section 8.2 and 8.3

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 t(86-512)57355888 f(86-512)57370818

f(86-512)57370818 www.sgsgroup.com.cn f(86-512)57370818 sgs.china@sgs.com

Report No.: KSEM201200154901 Page: 8 of 49

1.2 Test Specification

Identity	Document Title	
FCC 47CFR §2.1093	Radio frequency Radiation Exposure Evaluation: Portable Devices	
ANSI/IEEE Std C95.1 – 2019	Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.	
RSS-102 Issue 5	Radio Frequency Exposure Compliance of Radio Communication Apparatus (All Frequency Bands) Issue 5 of March 2015	
Canada's Safety Code 6	Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz (99-EHD-237)	
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Avera Specific Absorption Rate (SAR) in the Human Head from Wirele Communications Devices: Measurement Techniques	
KDB 248227 D01 802.11 Wi-Fi SAR v02r02	AR SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS	
KDB 447498 D01 General RF Exposure Guidance v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies	
KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04	SAR Measurement Requirements for 100 MHz to 6 GHz	
KDB 865664 D02 RF Exposure Reporting v01r02	RF Exposure Compliance Reporting and Documentation Considerations	

Report No.: KSEM201200154901 Page: 9 of 49

1.3 RF exposure limits

	Uncontrolled Environment	Controlled Environment	
Human Exposure	General Population	Occupational	
Spatial Peak SAR*	1.60 W///.a	8.00 W//ka	
(Brain*Trunk)	1.60 W/kg	8.00 W/kg	
Spatial Average SAR**		0.40 W/kg	
(Whole Body)	0.08 W/kg		
Spatial Peak SAR***	4.00 \\\///ca	20.00 \\//ka	
(Hands/Feet/Ankle/Wrist)	4.00 W/kg	20.00 W/kg	

Notes:

* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

** The Spatial Average value of the SAR averaged over the whole body.

*** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

f(86-512)57370818 www.sgsgroup.com.cn

Report No.: KSEM201200154901 Page: 10 of 49

1.4 Test Location

Company:	Compliance Certification Services Inc. Kun shan Laboratory	
Address:	No.10 Weiye Rd., Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China	
Post code:	215300	
Telephone:	86-512-57355888	
Fax:	86-512-57370818	
E-mail:	sgs.china@sgs.com	

1.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L4354)

CNAS has accredited Compliance Certification Services (Kunshan) Inc. to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 2541.01)

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC –Designation Number: CN1172

Compliance Certification Services Inc. has been recognized as an accredited testing laboratory.

Designation Number: CN1172.

• ISED (CAB identifier: CN0072)

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory

CAB Identifier: CN0072.

• VCCI (Member No.: 1938)

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-1600, C-1707, T-1499, G-10216 respectively.

Report No.: KSEM201200154901 Page: 11 of 49

2 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C	
Relative humidity	Min. = 30%, Max. = 70%	
Ground system resistance	< 0.5 Ω	
Ambient noise is checked and found very low and in compliance with requirement of standards.		
Reflection of surrounding objects is minimized and in compliance with requirement of standards.		

Table 2: The Ambient Conditions

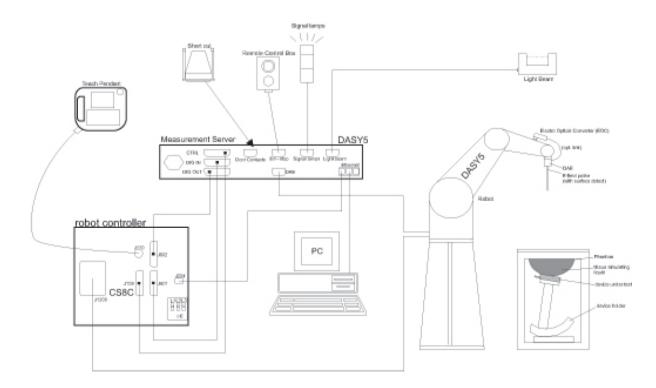
No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Report No.: KSEM201200154901 Page: 12 of 49

3 SAR Measurements System Configuration

3.1 The SAR Measurement System

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-Simulate.


The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software .An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

- F-1. SAR Measurement System Configuration
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 (186-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 (186-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Report No.: KSEM201200154901 Page: 13 of 49

- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validat the proper functioning of the system.

3.2 Isotropic E-field Probe EX3DV4

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Report No.: KSEM201200154901 Page: 14 of 49

3.3 Data Acquisition Electronics (DAE)

Model	DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	- A
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)	-
Input Offset Voltage	< 5µV (with auto zero)	
Input Bias Current	< 50 f A	
Dimensions	60 x 60 x 68 mm	

3.4 SAM Twin Phantom

Material	Vinylester, glass fiber reinforced (VE- GF)	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions	Length: 1000 mm	
(incl. Wooden Support)	Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	-
Wooden Support	SPEAG standard phantom table	

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Report No.: KSEM201200154901 Page: 15 of 49

3.5 ELI Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)	
Shell Thickness	2.0 ± 0.2 mm (bottom plate)	
Dimensions	Major axis: 600 mm Minor axis: 400 mm	
Filling Volume	approx. 30 liters	
Wooden Support	SPEAG standard phantom table	

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

Report No.: KSEM201200154901 Page: 16 of 49

3.6 Device Holder for Transmitters

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Report No.: KSEM201200154901 Page: 17 of 49

3.7 Measurement procedure

3.7.1 Scanning procedure

Step 1: Power reference measurement

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of $30mm^*30mm^*30mm$ (fine resolution volume scan, zoom scan) was assessed by measuring 5x5x7 points ($\leq 2GHz$) and 7x7x7 points ($\geq 2GHz$). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2003.

Report No.: KSEM201200154901 Page: 18 of 49

			\leq 3 GHz	> 3 GHz		
Maximum distance fro (geometric center of pr			5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle surface normal at the n			30°±1°	20°±1°		
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan sp	atial resolu	ution: Δx _{Area} , Δy _{Area}	When the x or y dimension or measurement plane orientation the measurement resolution m x or y dimension of the test d measurement point on the test	on, is smaller than the above, must be \leq the corresponding evice with at least one		
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]		
	uniform	grid: ∆z _{Zoom} (n)	\leq 5 mm	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Z_{0000}}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid Δz _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		
P1528-2011 for d * When zoom scan is KDB 447498 is ≤ 1.4	letails. required ar 4 W/kg, ≤ 3	nd the <u>reported</u> SAR fro	I incidence to the tissue mediu on the <i>area scan based 1-g SAI</i> mm zoom scan resolution may z.	Restimation procedures of		

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %

Report No.: KSEM201200154901 Page: 19 of 49

3.7.2 Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE3". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD 3.7.3

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	y	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi	
- Diode compression point	Dcpi	
Device parameters: - Frequence	су	f
- Crest factor	cf	
Media parameters: - Conduction	vity	3
- Density	ρ	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$V_i = U_i + U_i^2 \cdot c f / d c p_i$

With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

 $E_{i} = \left(V_{i} / Norm_{i} \cdot ConvF \right)^{1/2}$

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn f(86-512)57370818 sgs.china@sgs.com t(86-512)57355888

Report No.: KSEM201200154901 Page: 20 of 49

H-field probes:

$H_{i} = (V_{i})^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^{2})/f$

With Vi = compensated signal of channel i (i = x, y, z)Normi = sensor sensitivity of channel I (i = x, y, z)[mV/(V/m)2] for E-field Probes ConvF = sensitivity enhancement in solution aij = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] Ei = electric field strength of channel i in V/m Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$

The primary field data are used to calculate the derived field units.

$SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$

With SAR = local specific absorption rate in mW/g Etot = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ϵ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$P_{pwe} = E_{tot}^2 2 / 3770$ or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

Report No.: KSEM201200154901 Page: 21 of 49

4 SAR measurement variability and uncertainty

4.1 SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is remounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

f(86-512)57370818 www.sgsgroup.com.cn

f(86-512)57370818 sgs.china@sgs.com

t(86-512)57355888

t(86-512)57355888

Report No.: KSEM201200154901 Page: 22 of 49

4.2 SAR measurement uncertainty

Measurements and results are all in compliance with the standards listed in this report. All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass/ fail criteria. The Expanded uncertainty (95% CONFIDENCE INTERVAL) is **20.39% for 1g SAR**.

A	b1	С	d	e=f(d,K)	f	g	i=C*g/e	i=C*g/e	k
Uncertainty Component	Section in P1528	Tol (%)	Prob. Dist	Div.	c _{i (1g)}	c _{i (10g)}	1-g ui(%)	10-g ui(%)	V _{i (Veff)}
Measurement System									
Probe Calibration (k=1)	E.2.1	6.3	N	1	1	1	6.30	6.30	∞
Axial Isotropy	E.2.2	0.5	R	√3	0.7	0.7	0.20	0.20	∞
Hemispherical Isotropy	E.2.2	2.6	R	√3	0.7	0.7	1.06	1.06	8
Boundary Effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	∞
Linearity	E.2.4	0.6	R	√3	1	1	0.35	0.35	~
System Detection LimitS	E.2.4	0.25	R	√3	1	1	0.14	0.14	∞
Modulation Response	E.2.5	2.4	R	√3	1	1	1.39	1.39	~
Readout Electronics	E.2.6	0.3	N	1	1	1	0.30	0.30	∞
Response Time	E.2.7	0.0	R	√3	1	1	0.00	0.00	~
Integration Time	E.2.8	2.6	R	√3	1	1	1.50	1.50	∞
RF Ambient Condition-Noise	E.6.1	3.0	R	√3	1	1	1.73	1.73	∞
RF Ambient Condition- Reflections	E.6.1	3.0	R	√3	1	1	1.73	1.73	∞
Probe Positioning-Mechanical Tolerance	E.6.2	1.5	R	√3	1	1	0.87	0.87	8
Probe Positioning-with Respect to Phantom	E.6.3	2.9	R	√3	1	1	1.67	1.67	∞
Max. SAR Evaluation	E.5	1.0	R	√3	1	1	0.58	0.58	~
Test sample Related									
Test sample Positioning	E.4.2	3.7	N	1	1	1	3.70	3.70	9
Device Holder Uncertainty	E.4.1	3.6	N	1	1	1	3.60	3.60	∞
Output Power Variation-SAR Drift Measurement	E.2.9	5	R	√3	1	1	2.89	2.89	∞
Output Power Variation-SAR Drift Measurement	E.6.5	0	R	√3	1	1	0.00	0.00	∞
Phantom and Tissue Paramete	ers								
Phantom Uncertainty(Shape and Thickness Tolerances)	E.3.1	4	R	√3	1	1	2.31	2.31	8
SAR Correction	E.3.2	1.9	N	1	1	0.84	1.90	1.60	∞
Liquid Conductivity (Measurement Uncertainty)	E.3.3	0.89	N	1	0.78	0.71	0.69	0.632	5
Liquid Permittivity (Measurement Uncertainty)	E.3.3	2.21	N	1	0.23	0.26	0.51	0.575	5
Liquid Conductivity (Temperature Uncertainty)	E.3.4	4.2	R	√3	0.78	0.71	1.89	1.72	∞
Liquid Permittivity ((Temperature Uncertainty)	E.3.4	3.7	R	√3	0.23	0.26	0.49	0.56	∞
Combined Standard Uncertainty				RSS			10.20	10.12	430
Expanded Uncertainty (95% Confidence Interval)				k=2			20.39%	20.23%	

Report No.: KSEM201200154901 Page: 23 of 49

5 Description of Test Position

5.1 The Body Test Position

SAR can test the sides near the antenna, the surface of the device should be tested for SAR compliance with the device touching the phantom. The SAR Exemption Limits in RSS-102 Issue 5 for IC and the Exclusion Threshold in KDB 447498 D01 for FCC can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent device surface is used to determine if SAR testing is required for the adjacent surfaces, with the adjacent surface positioned against the phantom and the surface containing the antenna positioned perpendicular to the phantom.

f(86-512)57370818 www.sgsgroup.com.cn

t(86-512)57355888

Report No.: KSEM201200154901 Page: 24 of 49

6 SAR System Verification Procedure

6.1 Tissue Simulate Liquid

6.1.1 Recipes for Tissue Simulate Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

Ingredients					Frequ (MI	uency Hz)		· ·		
(% by weight)	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78
HSL5GHz is compos	ed of the	following	ingredier	nts:						
Water: 50-65%										
Mineral oil: 10-30%										
Emulsifiers: 8-25%										
Sodium salt: 0-1.5%)									
MSL5GHz is compos	ed of the	following	, ingredie	nts:						
Water: 64-78%										
Mineral oil: 11-18%										
Emulsifiers: 9-15%										
Sodium salt: 2-3%										

Table 3: Recipe of Tissue Simulate Liquid

f(86-512)57370818 www.sgsgroup.com.cn

t(86-512)57355888

Report No.: KSEM201200154901 Page: 25 of 49

6.1.2 Test Liquids Confirmation

Simulated tissue liquid parameter confirmation

The dielectric parameters were checked prior to assessment using the SPEAG DAK3.5 dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

IEEE SCC-34/SC-2 P1528 recommended tissue dielectric parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in P1528

Target Frequency	He	ad	Bo	ody	
(MHz)	٤r	σ (S/m)	٤r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Report No.: KSEM201200154901 Page: 26 of 49

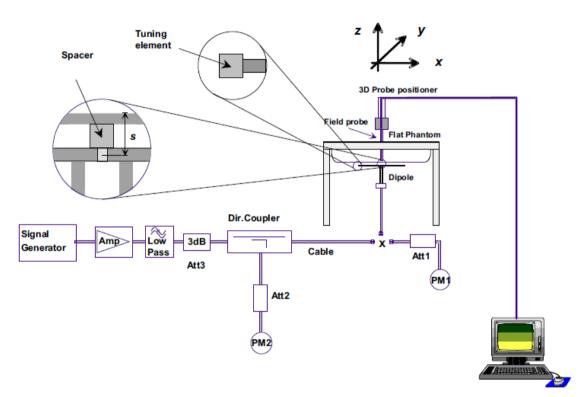
6.1.3 Measurement for Tissue Simulate Liquid

The dielectric properties for this Tissue Simulate Liquids were measured by using the Agilent Model 85070E Dielectric Probe in conjunction with Agilent E5071C Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in bellow table. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C.

Tissue	Frequency	Conductivity	Permittivity	Conductivity	Permittivity	Delta (σ)	Delta (ε _r)	Limit	Measured
Type	(MHz)	(σ)	(ε _r)	Target (σ)	Target (ε _r)	(%)	(%)	(%)	Data
2450 Head	2450	1.816	40.068	1.80	39.20	0.89	2.21	±5	2020/12/11

Table 4: Measurement result of Tissue electric parameters

	Measurement for Tissue Simulate Liquid													
Liquid	uid Band Chann	Channel	Measured Frequency	Target Tiss	sue (±5%)		sured ssue	Liquid Temp.	Measured					
Туре	Type Band Channel (MHz)		٤r	σ(S/m)	٤r	σ(S/m)	(°C)	Date						
Head		1	2412	39.27	1.77	40.24	1.783	22	2020/12/11					
Tieau		I	2412	(37.30~41.23)	(1.68~1.85)	40.24	1.705	22	2020/12/11					
Hood		0	0407	39.22	1.79	40.13	1.806	22	2020/12/11					
пеац	Head WI-FI2.4G 6		2437	(37.26~41.18)	(1.7~1.88)	40.13	1.000	22	2020/12/11					
Hood		11	2462	39.18	1.81	40.01	1 9 2 0	22	2020/12/11					
пеац	Head		2402	(37.22~41.14)	(1.72~1.90)	40.01 1.829		22	2020/12/11					


 Table 5:
 Measurement result of Tissue electric parameters for 3 channels

Report No.: KSEM201200154901 Page: 27 of 49

6.2 SAR System Check

The microwave circuit arrangement for system check is sketched in bellow figure. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table. During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-3. the microwave circuit arrangement used for SAR system verification

Report No.: KSEM201200154901 Page: 28 of 49

6.2.1 Justification for Extended SAR Dipole Calibrations

1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.

- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.

2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

f(86-512)57370818 www.sgsgroup.com.cn

t(86-512)57355888

t(86-512)57355888

Report No.: KSEM201200154901 Page: 29 of 49

6.2.2 Summary System Check Result(s)

Validation Kit		Measured SAR 250mW	Measured SAR 250mW	Measured SAR (normalized to 1w)	Measured SAR (normalized to 1w)	Target SAR (normalized to 1w) (±10%)	Target SAR (normalized to 1w) (±10%)	Liquid Temp. (°C)	Measured Date
		1g (W/kg)			10g (W/kg)	1-g(W/kg)	1-g(W/kg) 10-g(W/kg)		
D2450V2	Head	13.3	6.32	53.2	25.28	53 (47.70~58.30)	24.6 (22.14~27.60)	22	2020/12/11

Table 6: SAR System Check Result

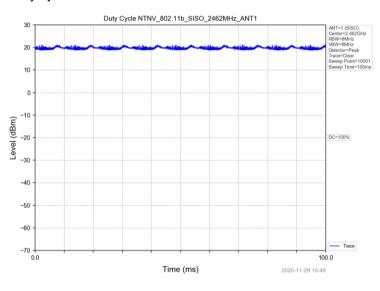
6.2.3 Detailed System Check Results

Please see the Appendix A

Report No.: KSEM201200154901 Page: 30 of 49

7 Test Configuration

7.1 Operation Configurations


7.1.1 Wi-Fi Test Configuration

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.

7.1.1.1 Duty cycle

1) 2.4GHz Wi-Fi 802.11b:

WI-FI 802.11b 1M: Duty cycle=100%

7.1.1.2 Initial Test Position SAR Test Reduction Procedure

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. The initial test position procedure is described in the following:

- When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2) .When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3) . For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. a) Additional power measurements may be required for this step, which should be limited to those

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Report No.: KSEM201200154901 Page: 31 of 49

necessary for identifying the subsequent highest output power channels.

7.1.1.3 Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required. SAR test reduction for subsequent highest output test channels is determined according to *reported* SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration.

When the *reported* SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until *reported* SAR is \leq 1.2 W/kg or all required channels are tested.

7.1.1.4 Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- 2) When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- 3) The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
 - a) SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
 - b) SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the *reported* SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. i) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.
- 4) SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by recursively applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
 - a) replace "subsequent test configuration" with "next subsequent test configuration" (i.e.,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu,	China 215300	t(86-512)57355888	f(86-512)57370818	www.sgsgroup.com.cn
中国・江苏・昆山市留学生创业园伟业路10号	邮编 215300	t(86-512)57355888	f(86-512)57370818	sgs.china@sgs.com

Report No.: KSEM201200154901 Page: 32 of 49

subsequent next highest specified maximum output power configuration)replace "initial test configuration" with "all tested higher output power configurations"

7.1.1.5 2.4 GHz Wi-Fi SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in following.

• 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) . When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

• 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) . When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

t(86-512)57355888

f(86-512)57370818 www.sgsgroup.com.cn

Report No.: KSEM201200154901 Page: 33 of 49

7.1.2 BLE Test Configuration

During Bluetooth SAR testing EUT is configured with the Bluetooth continuous TX tool, and the transmission duty factor was monitored on the spectrum analyzer with zero-span setting.

For Bluetooth SAR testing, Bluetooth engineering test software installed on the EUT can provide continuous transmitting RF signal.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSEM201200154901 Page: 34 of 49

8 Test Result

8.1 Measurement of RF Conducted Power

8.1.1 Conducted Power Of Wi-Fi and BT

Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Average Power (dBm)	Tune up	Power setting
	1	2412		17.78	18.5	0
802.11b	6	2437	1	16.52	18.5	0
	11	2462		18.44	18.5	0
	1	2412		11.99	13.5	28
802.11g	6	2437	6	13.08	13.5	28
	11	2462		13.3	13.5	28
802.11n HT20 SISO	1	2412		12.46	13.5	28
	6	2437	6.5	12.76	13.5	28
	11	2462		12.97	13.5	28
802.11n HT40 SISO	3	2422		13.21	14	28
	6	2437	13.5	13.35	14	28
	9	2452		13.52	14	28

Table 7: Conducted Power Of Wi-Fi

Note:

a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.

b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.

1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.

2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.

c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

	BLE	Average	Tupo up	Dowor		
Modulation	Channel	Frequency (MHz)	Conducted Power(dBm)	Tune up (dBm)	Power setting	
	0	2402	-3.5	-2	4	
GFSK	19	2440	-2.49	-2	4	
	39	2480	-2.87	-2	4	

Table 8: Conducted Power Of BLE

Report No.: KSEM201200154901 Page: 35 of 49

8.2 Stand-alone SAR test evaluation for FCC

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

Freq. Band	Frequency (GHz)	Position	Average	Separation		Calculate Value	Exclusion Threshold	Exclusion (Y/N)
			dBm	mW	(mm)			
Wi-Fi	2.45	Body&Head	18.5	70.8	0	22.2	3	Ν
Bluetooth	2.48	Body&Head	-2	0.6	0	0.2	3	Y

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

• f(GHz) is the RF channel transmit frequency in GHz

• Power and distance are rounded to the nearest mW and mm before calculation

• The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Remark:

In fact, there would be only top side contact with human body and head.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Report No.: KSEM201200154901 Page: 36 of 49

8.3 Stand-alone SAR test evaluation for IC

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in the following table.

	Exemption Limits (mW)								
Frequency	At	At	At	At	At				
(MHz)	separation	separation	separation	separation	separation				
	distance of	distance of	distance of	distance of	distance of				
	≤5 mm	10 mm	15 mm	20 mm	25 mm				
≤300	71 mW	101 mW	132 mW	162 mW	193 mW				
450	52 mW	70 mW	88 mW	106 mW	123 mW				
835	17 mW	30 mW	42 mW	55 mW	67 mW				
1900	7 mW	10 mW	18 mW	34 mW	60 mW				
2450	4 mW	7 mW	15 mW	30 mW	52 mW				
3500	2 mW	6 mW	16 mW	32 mW	55 mW				
5800	1 mW	6 mW	15 mW	27 mW	41 mW				
	Exemption Limits (mW)								
Frequency	At	At	At	At	At				
(MHz)	separation	separation	separation	separation	separation				
(11112)	distance of	distance of	distance of	distance of	distance of				
	30 mm	35 mm	40 mm	45 mm	≥50 mm				
≤300	223 mW	254 mW	284 mW	315 mW	345 mW				
450	141 mW	159 mW	177 mW	195 mW	213 mW				
835	80 mW	92 mW	105 mW	117 mW	130 mW				
1900	99 mW	153 mW	225 mW	316 mW	431 mW				
2450	83 mW	123 mW	173 mW	235 mW	309 mW				
3500	86 mW	124 mW	170 mW	225 mW	290 mW				
5800	56 mW	71 mW	85 mW	97 mW	106 mW				

Note:

- 1) . Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in the above table are multiplied by a factor of 5. For limb-worn devices where the 10gram value applies, the exemption limits for routine evaluation in the above table are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in the above table linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.
- 2) . For medical implants devices, the exemption limit for routine evaluation is set at 1mW. The output power of a medical implants device is defined as the higher of the conducted or e.i.r.p to determine whether the device is exempt from the SAR evaluation.

Report No.: KSEM201200154901 Page: 37 of 49

8.4 Body Test Exclusion Thresholds For FCC

The following SAR test exclusion Thresholds based on KDB 447498 D01 General RF Exposure Guidance v06) 4.3.1)

	Wireless Interface	WIFI 2.4GHz	BLE	
Exposure	wireless intenace	802.11b	GFSK	
Position	Maximum power (dBm)	18.5	-2	
	Maximum rated power(mW)	70.8	0.6	
	Separation distance(mm)	-	-	
Front	exclusion threshold	-	-	
	Testing required?	NO(Remark)	NO(Remark)	
	Separation distance(mm)	-	-	
Back	exclusion threshold	-	-	
	Testing required?	NO(Remark)	NO(Remark)	
	Separation distance(mm)	-	-	
Left	exclusion threshold	-	-	
	Testing required?	NO(Remark)	NO(Remark)	
	Separation distance(mm)	-	-	
Right	exclusion threshold	-	-	
	Testing required?	NO(Remark)	NO(Remark)	
	Separation distance(mm)	11.6	11.6	
Тор	exclusion threshold	9.6	0.1	
	Testing required?	Yes	Νο	
	Separation distance(mm)	-	-	
Bottom	exclusion threshold	-	-	
	Testing required?	NO(Remark)	NO(Remark)	

Remark: In fact, there would be only top side contact with human body and head.

Note:

- 1. Maximum power is the source-based time-average power and represents the maximum RF output power among production units
- 2. Per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 3. Per KDB 447498 D01, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is < 5mm, 5mm is used to determine SAR exclusion threshold

4. Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for

1-g SAR and \leq 7.5 for 10-g extremity SAR

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

For < 50 mm distance, we just calculate mW of the exclusion threshold value (3.0) to do compare.

This formula is [3.0] / $[\sqrt{f}(GHz)]$ · [(min. test separation distance, mm)] = exclusion threshold of mW.

5. Per KDB 447498 D01, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following

a) [Threshold at 50 mm in step 1) + (test separation distance - 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz

b) [Threshold at 50 mm in step 1) + (test separation distance - 50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China	215300	t(86-512)57355888	f(86-512)57370818	www.sgsgroup.com.cn
中国・江苏・昆山市留学生创业园伟业路10号 邮编	215300	t(86-512)57355888	f(86-512)57370818	sgs.china@sgs.com

Report No.: KSEM201200154901 Page: 38 of 49

6. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSEM201200154901 Page: 39 of 49

8.5 Body Test Exclusion Thresholds For IC

The following SAR test exclusion Thresholds based on RSS102 issue5 2.5.1.

	Wireless Interface	WIFI 2.4GHz	BLE
Eveneration	Wireless interface	802.11b	GFSK
Exposure Position	Maximum power (dBm)	18.5	-2
1 03/00/1	Antenna Gain (dBi)	0.5	0.5
	Maximum rated power(mW)	79.4	0.7
	Separation distance(mm)	-	-
Front	Exemption Limits (mW)	-	-
	Testing required?	NO(Remark)	NO(Remark)
	Separation distance(mm)	-	-
Back	Exemption Limits (mW)	-	-
	Testing required?	NO(Remark)	NO(Remark)
	Separation distance(mm)	-	-
Left	Exemption Limits (mW)	-	-
	Testing required?	NO(Remark)	NO(Remark)
	Separation distance(mm)	-	-
Right	Exemption Limits (mW)	-	-
	Testing required?	NO(Remark)	NO(Remark)
	Separation distance(mm)	11.6	11.6
Тор	Exemption Limits (mW)	15	15
	Testing required?	Yes	No
	Separation distance(mm)	-	-
Bottom	Exemption Limits (mW)	-	-
	Testing required?	NO(Remark)	NO(Remark)

Remark: In fact, there would be only top side contact with human body and head.

Note:

1. SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table. If the Maximum rated power is larger than Exemption Limits, the SAR is required.

Report No.: KSEM201200154901 Page: 40 of 49

8.6 Measurement of SAR Data

8.6.1 SAR Result Of 2.4GHz Wi-Fi

Test position	Test mode	Test Ch./Freq.	Duty Cycle %	Duty Cycle Scaled factor	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power drift (dB)	Cond ucted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp.
	Test data (separate 0mm)											
Top Side	802.11b	11/2462	100	1.000	0.085	0.066	-0.16	18.44	18.50	1.014	0.086	22.0
Top Side	802.11b	1/2412	100	1.000	0.090	0.066	0.03	17.78	18.50	1.180	0.106	22.0
Top Side	802.11b	6/2437	100	1.000	0.137	0.077	0.12	16.52	18.50	1.578	0.216	22.0

Table 9: SAR Result Of 2.4GHz Wi-Fi

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). Per Kdb248227 D01, When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel.
- 3) Each channel was tested at the lowest data rate.
- 4) Per KDB248227 D01, for Body SAR test of Wi-Fi2.4G, SAR is measured for 2.4 GHz 802.11b DSSS using the initial test position procedure. The highest reported SAR for DSSS is adjusted by the ratio of OFDM 802.11g/n to DSSS specified maximum output power and the adjusted SAR is < 1.2 W/kg, so SAR for 802.11g/n is not required.</p>

Report No.: KSEM201200154901 Page: 41 of 49

8.6.2 Repeat SAR Measurement

Band	Mode	Test Position	Test Ch./Freq.	Original Measured SAR1g (mW/g)	1st Repeated SAR1g (mW/g)	Ratio
Wi-Fi2.4GHz	802.11b	Top side	6/2437	0.137	NA	NA

Note:

1) Per KDB 865664 D01v01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥ 0.8W/Kg

 Per KDB 865664 D01v01, if the ratio of largest to smallest SAR for the original and first repeated measurement is ≤1.2 and the measured SAR <1.45W/Kg, only one repeated measurement is required

3) The ratio is the difference in percentage between original and repeated measured SAR.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSEM201200154901 Page: 42 of 49

8.7 Multiple Transmitter Evaluation

8.7.1 Simultaneous SAR SAR test evaluation

Simultaneous Transmission

NO.	Simultaneous Transmission Configuration	Head&Body		
1	BT+ Wi-Fi	No		

Note:

1) Wi-Fi and Bluetooth share the same Tx antenna and can't transmit simultaneously.

f(86-512)57370818 www.sgsgroup.com.cn

f(86-512)57370818 sgs.china@sgs.com

t(86-512)57355888

t(86-512)57355888

Report No.: KSEM201200154901 Page: 43 of 49

9 Equipment list

	Test Platform SPEAG DASY5 Professional										
Location SGS-CCS Standards Technical Services Co., Ltd. Kunshan Branch											
	Description	SAR Test System (F	Frequency range 300MHz-6GHz)								
So	Software Reference DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)										
	Hardware Reference										
	Equipment Manufacturer Model Serial Number Calibration Due date calibration										
\boxtimes	РC	HP	Core(rm)3.16G	CZCO48171H	N/A	N/A					
\square	Signal Generator	Agilent	E5182A	MY50142015	2020/09/25	2021/09/24					
\square	S-Parameter Network Analyzer	Agilent	E5071B	MY42301382	2020/02/24	2021/02/23					
\boxtimes	DAK-3.5 probe	SPEAG	DAK-3.5	1102	N/A	N/A					
\square	Power meter	Anritsu	ML2495A	1445010	2020/04/21	2021/04/20					
\boxtimes	Power sensor	Anritsu	MA2411B	1339220	2020/04/21	2021/04/20					
\boxtimes	DAE	SPEAG	DAE4	1245	2020/05/27	2021/05/26					
\square	E-field PROBE	SPEAG	EX3DV4	3798	2020/05/29	2021/05/28					
\square	Dipole	SPEAG	D2450V2	817	2019/06/10	2022/06/09					
\square	Electro Thermometer	DTM	DTM3000	3030	2020/10/24	2021/10/23					
\square	Amplifier	Mini-circuits	ZVE-8G	110405	N/A	N/A					
\square	Amplifier	Mini-circuits	ZHL-42	QA1331003	N/A	N/A					
\square	3db ATTENUATOR	MINI	MCL BW-S3W5	0533	N/A	N/A					
\square	DUMMY PROBE	SPEAG	DP_2	SPDP2001AA	N/A	N/A					
\boxtimes	Dual Directional Coupler	Woken	20W couple	DOM2BHW1A1	N/A	N/A					
	SAM PHANTOM (ELI4 v4.0)	SPEAG	QDOVA001BB	1102	N/A	N/A					
\square	Twin SAM Phanton	n SPEAG	QD000P40CD	1609	N/A	N/A					
\square	ROBOT	SPEAG	TX60	F10/5E6AA1/A101	N/A	N/A					
\boxtimes	ROBOT KRC	SPEAG	CS8C	F10/5E6AA1/C101	N/A	N/A					
	LIQUID CALIBRATION KIT	ANTENNESSA	41/05 OCP9	00425167	N/A	N/A					

Note: All the equipments are within the valid period when the tests are performed.

All measurement facilities used to collect the measurement data are located at

No.10, Weiye Rd., Innovation Park, Eco & Tec. Development Part, Kunshan City, Jiangsu Province, China.

Report No.: KSEM201200154901 Page: 44 of 49

10 Calibration certificate

Please see the Appendix C

11 Photographs

Please see the Appendix D

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSEM201200154901 Page: 45 of 49

Appendix A: Detailed System Check Results

The plots are showing as followings.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSEM201200154901 Page: 46 of 49

Date: 2020/12/11

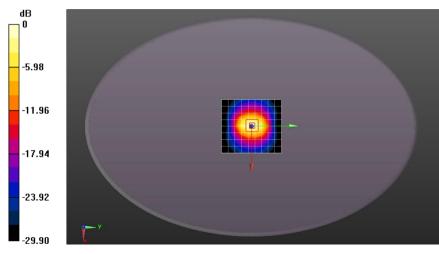
Test Laboratory: Compliance Certification Services Inc.

System Performance Check-Head 2450MHz

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 817

Communication System: UID 0, CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.816 S/m; ϵ_r = 40.068; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: EX3DV4 SN3798; ConvF(7.27, 7.27, 7.27); Calibrated: 2020/05/29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 2020/05/27
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1102
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Body/Pin=250 mW, dist=10mm (EX-Probe)/Area Scan (9x10x1): Measurement grid:

dx=12mm, dy=12mm Maximum value of SAR (measured) = 16.6 W/kg

Body/Pin=250 mW, dist=10mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.4 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.32 W/kg Maximum value of SAR (measured) = 18.2 W/kg

0 dB = 18.2 W/kg = 12.60 dBW/kg

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Report No.: KSEM201200154901 Page: 47 of 49

Appendix B: Detailed Test Results

The plots of worse case are showing as followings.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSEM201200154901 Page: 48 of 49

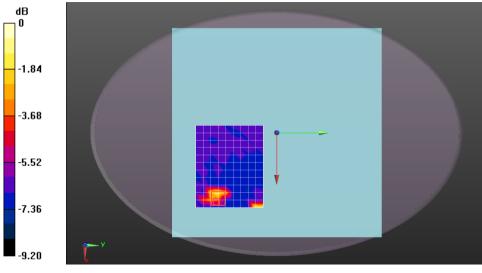
Date: 2020/12/11

Test Laboratory: Compliance Certification Services Inc.

WLAN2.4GHz 802.11b 1Mbps Top Side 0mm Ch6

DUT: MyScale; Type: MyScale; Serial: 201145200001

Communication System: UID 0, WiFi (0); Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; σ = 1.806 S/m; ϵ_r = 40.128; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY5 Configuration:

- Probe: EX3DV4 SN3798; ConvF(7.27, 7.27, 7.27); Calibrated: 2020/05/29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 2020/05/27
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1102
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (12x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.188 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 5.659 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.339 W/kg SAR(1 g) = 0.137 W/kg; SAR(10 g) = 0.077 W/kg Maximum value of SAR (measured) = 0.244 W/kg

0 dB = 0.244 W/kg = -6.13 dBW/kg

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 t(86-512)5735888 f(86-512)57370818 www.sgsgroup.com.cn 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)5735888 f(86-512)57370818 sgs.china@sgs.com

Report No.: KSEM201200154901 Page: 49 of 49

Appendix C: Calibration certificate

Appendix D: Photographs

---END----

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300