

RF Exposure Evaluation Declaration

Product Name	: LIFX Module Board
Model No.	: LMB
FCC ID.	:2AA53-LIFX01

Applicant : LIFI LABS INC.

Address : 524 UNION STREET #309, SAN FRANCISCO, CA, USA 94133

lac-m	Alla	Testing Laboratory 1313
Report Version	:	V1.0
Report No.	:	139516R-RF-US-Exp-A
Date of Declaration	:	2013/10/23
Date of Receipt	:	2013/09/25

The declaration results relate only to the samples calculated. The declaration shall not be reproduced except in full without the written approval of QuieTek Corporation.

1

30

1. **RF Exposure Evaluation**

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

--

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)				
Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)
(A) Limits for Occupational/ Control Exposures				
300-1500			F/300	6
1500-100,000			5	6
(B) Limits for General Population/ Uncontrolled Exposures				6
300-1500			F/1500	6

--

F= Frequency in MHz

1500-100,000

Friis Formula Friis transmission formula: $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$

Where $Pd = power density in mW/cm^{2}$ Pout = output power to antenna in mW G = gain of antenna in linear scale Pi = 3.1416R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. **Test Procedure**

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°C and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product	LIFX Module Board
Test Mode	Transmit
Test Condition	RF Exposure Evaluation

Antenna Gain

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 1.92dBi or 1.56 in linear scale.

Output Power into Antenna & RF Exposure Evaluation Distance:

Zigbee Function					
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)		
1	2405	0.4227	0.00013		
8	2440	0.4276	0.00013		
15	2480	0.3972	0.00012		