

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM160800711002 Page: 1 of 81

FCC REPORT

Application No.:	SZEM1608007110CR
Applicant:	Shenzhen 3Nod Digital Technology Co., Ltd.
Manufacturer:	Shenzhen 3Nod Digital Technology Co., Ltd.
Factory:	Shenzhen 3Nod Digital Technology Co., Ltd.
Product Name:	SHADOW WIRELESS
Model No.(EUT):	SOL-EP1140
Trade Mark:	SOL REPUBLIC
FCC ID:	2AA3H-SOLEP1140
Standards:	47 CFR Part 15, Subpart C (2015)
Date of Receipt:	2016-08-23
Date of Test:	2016-08-31 to 2016-09-03
Date of Issue:	2016-09-08
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM160800711002 Page: 2 of 81

2 Version

Revision Record						
Version	Chapter	Date	Modifier	Remark		
00		2016-09-08		Original		

Authorized for issue by:		
Tested By	Benson Wang (Benson Wang) /Project Engineer	2016-09-03
Checked By	Eric Fu (Eric Fu) /Reviewer	2016-09-08

Report No.: SZEM160800711002 Page: 3 of 81

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

Report No.: SZEM160800711002 Page: 4 of 81

4 Contents

Page

			1
2	VE	RSION	2
3		ST SUMMARY	
4		ONTENTS	
5	GE	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST ENVIRONMENT	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	Equipment List	
6	TE	ST RESULTS AND MEASUREMENT DATA	11
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED PEAK OUTPUT POWER	
	6.3	20dB Occupy Bandwidth	
	6.4	CARRIER FREQUENCIES SEPARATION	
	6.5	HOPPING CHANNEL NUMBER	
	6.6	DWELL TIME	
	6.7	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.8	SPURIOUS RF CONDUCTED EMISSIONS Other requirements Frequency Hopping Spread Spectrum System	
	6.9 6.10	RADIATED SPURIOUS EMISSION	
	0.10	10.1 Radiated emission below 1GHz	
		0.2 Radiated Emission below 1GHz	
		10.3 Transmitter Emission above 1GHz	
	6.11	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	PH	IOTOGRAPHS - EUT TEST SETUP	
	7.1	RADIATED EMISSION	
	7.2	RADIATED SPURIOUS EMISSION	
8	PH	IOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

Report No.: SZEM160800711002 Page: 5 of 81

5 General Information

5.1 Client Information

Applicant:	Shenzhen 3Nod Digital Technology Co., Ltd.
Address of Applicant:	Building D, No.8 Langhui Road, Tangxiayong Community, Songgang Street, Baoan District, Shenzhen City, Guangdong Province, P.R. China
Manufacturer:	Shenzhen 3Nod Digital Technology Co., Ltd.
Address of Manufacturer:	Building D, No.8 Langhui Road, Tangxiayong Community, Songgang Street, Baoan District, Shenzhen City, Guangdong Province, P.R. China
Factory:	Shenzhen 3Nod Digital Technology Co., Ltd.
Address of Factory:	Building D, No.8 Langhui Road, Tangxiayong Community, Songgang Street, Baoan District, Shenzhen City, Guangdong Province, P.R. China

5.2 General Description of EUT

-	
Product Name:	SHADOW WIRELESS
Model No.:	SOL-EP1140
Trade Mark:	SOL REPUBLIC
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V4.1 Single mode + EDR
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Portable production
Antenna Type:	Integral
Antenna Gain:	2.5dBi
Power Supply	Li-Ion Polymer Battery 3.7V 125mAh (Charge by USB port)
Modulation Technique:Modulation Type:Number of Channel:Hopping Channel Type:Sample Type:Antenna Type:Antenna Gain:	Frequency Hopping Spread Spectrum(FHSS) GFSK, π/4DQPSK, 8DPSK 79 Adaptive Frequency Hopping systems Portable production Integral 2.5dBi

Report No.: SZEM160800711002 Page: 6 of 81

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEM160800711002 Page: 7 of 81

5.3 Test Environment

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	50 % RH	
Atmospheric Pressure:	1010 mbar	

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted.

Report No.: SZEM160800711002 Page: 8 of 81

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM160800711002 Page: 9 of 81

5.10 Equipment List

RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2016-05-13	2017-05-13
2	EMI Test Receiver (9k-3GHz)	Rohde & Schwarz	ESCI	SEM004-01	2016-04-25	2017-04-25
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016-06-29	2019-06-29
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2016-07-06	2017-07-06
5	Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015-08-14	2018-08-14

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEM004-04	2016-04-25	2017-04-25
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2015-10-09	2016-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24
7	Horn Antenna(26GHz- 40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
8	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2015-10-09	2016-10-09
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

Report No.: SZEM160800711002 Page: 10 of 81

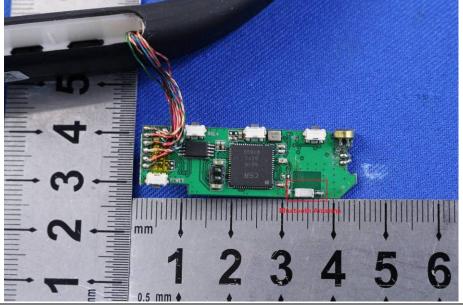
	RF connected test						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2015-10-09	2016-10-09	
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2015-10-17	2016-10-17	
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25	
4	Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2015-10-09	2016-10-09	

Report No.: SZEM160800711002 Page: 11 of 81

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

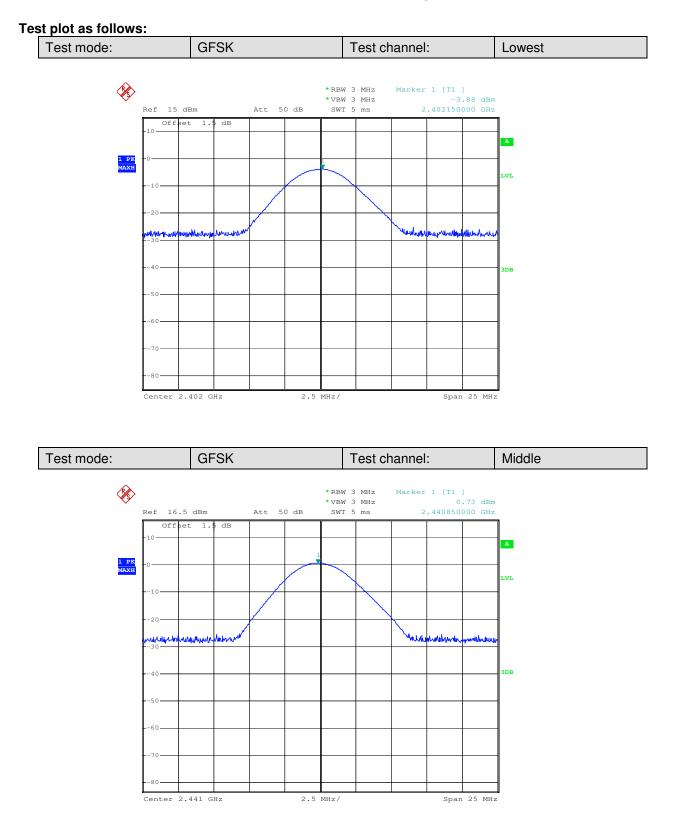
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.5dBi.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/enTerms-and-Conditions.apx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/enTerms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exconerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document can be perpoduced except in full, without prior written approval of the Company nay unauthorized alteration, forgery or falsification of the south are used sample(s) are retained for 30 days only.

Report No.: SZEM160800711002 Page: 12 of 81

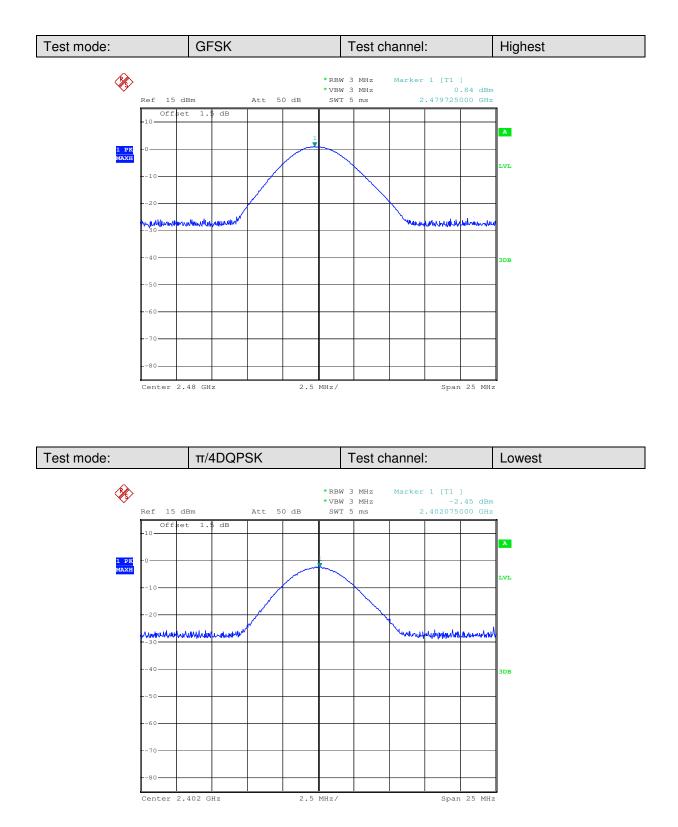
6.2 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.5		
Test Setup:	Spectrum Analyzer Image: E.U.T Non-Conducted Table Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Limit:	20.97dBm		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

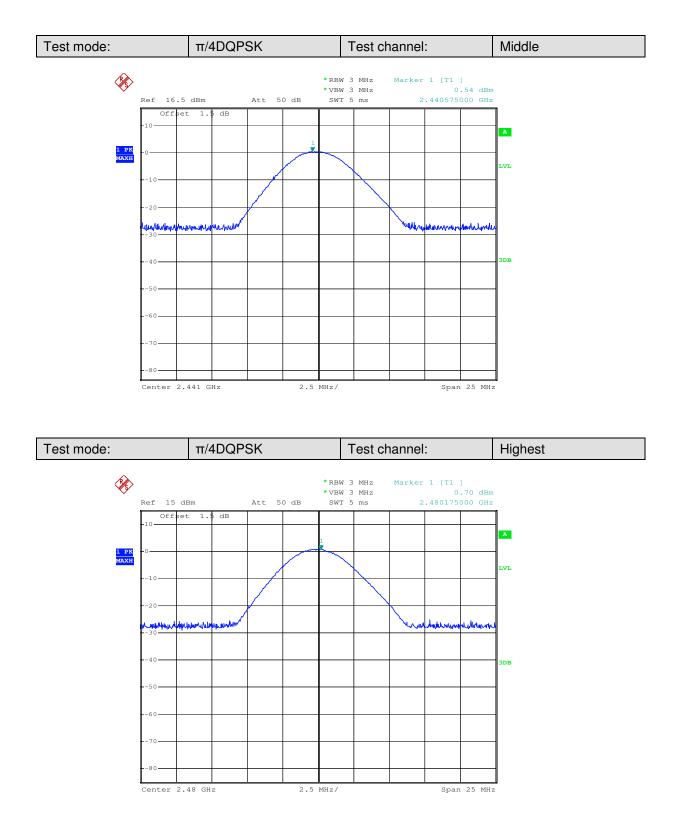

Report No.: SZEM160800711002 Page: 13 of 81

Measurement Data

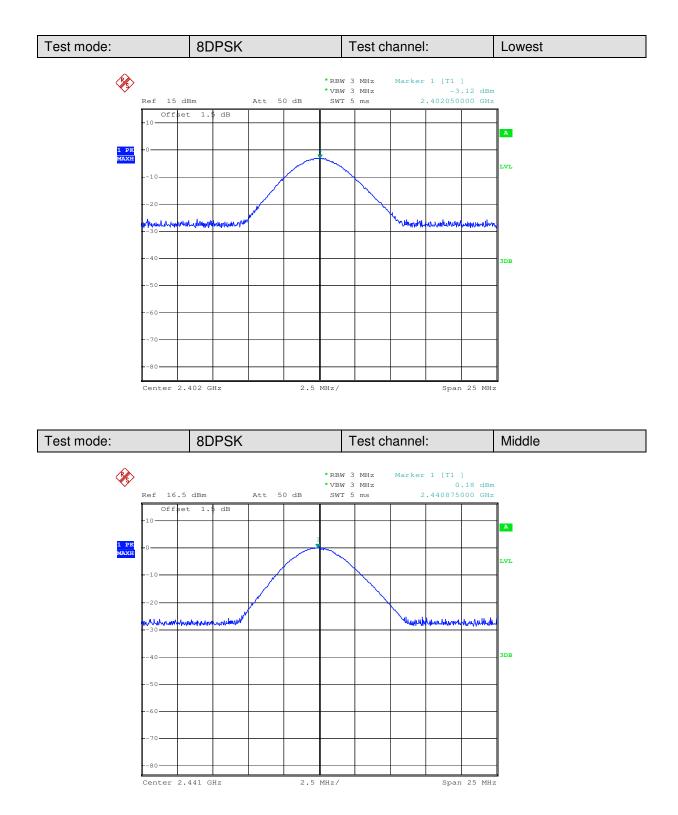
GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-3.88	20.97	Pass		
Middle	0.73	20.97	Pass		
Highest	0.84	20.97	Pass		
	π/4DQPSK m	ode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-2.45	20.97	Pass		
Middle	0.54	20.97	Pass		
Highest	0.70	20.97	Pass		
	8DPSK mo	de			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-3.12	20.97	Pass		
Middle	0.18	20.97	Pass		
Highest	0.40	20.97	Pass		



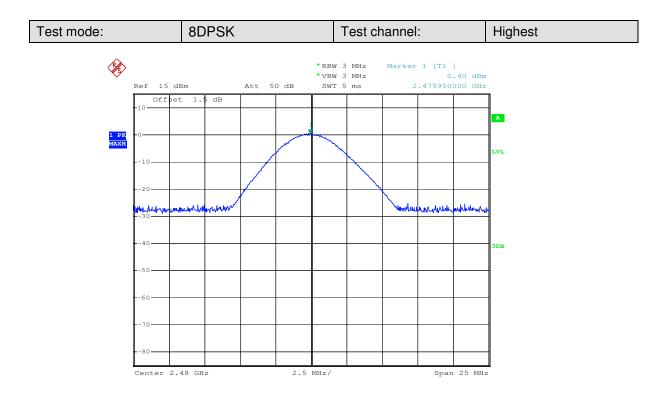
Report No.: SZEM160800711002 Page: 14 of 81



Report No.: SZEM160800711002 Page: 15 of 81



Report No.: SZEM160800711002 Page: 16 of 81

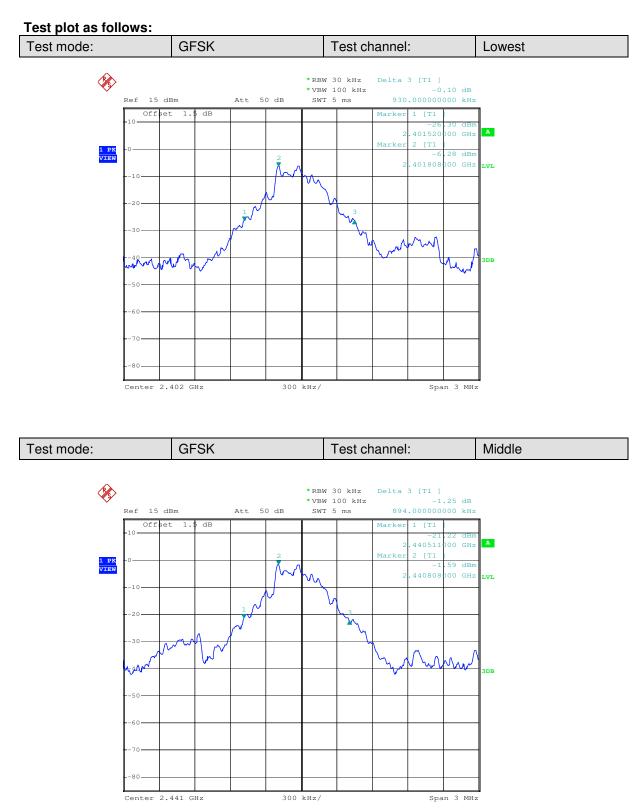


Report No.: SZEM160800711002 Page: 17 of 81

Report No.: SZEM160800711002 Page: 18 of 81

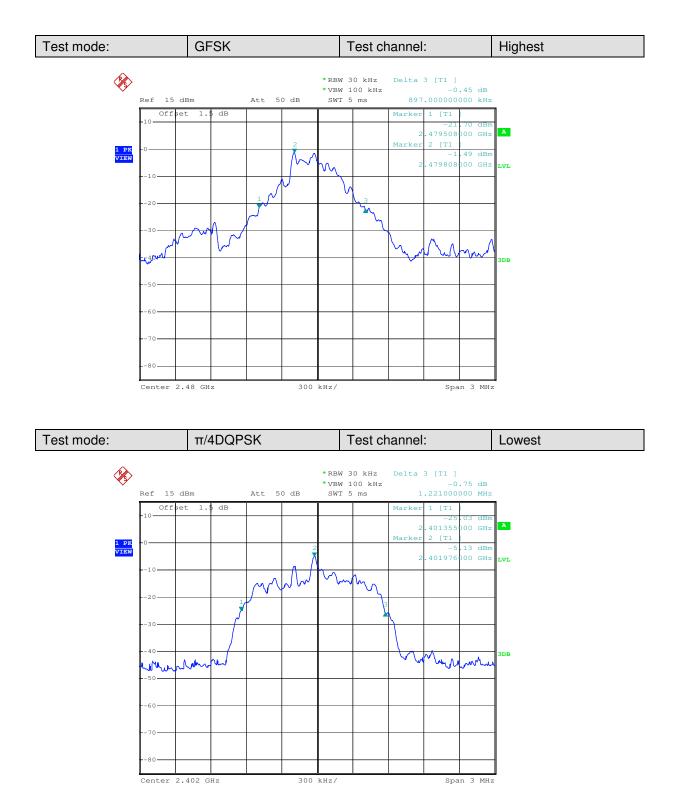
Report No.: SZEM160800711002 Page: 19 of 81

6.3 20dB Occupy Bandwidth

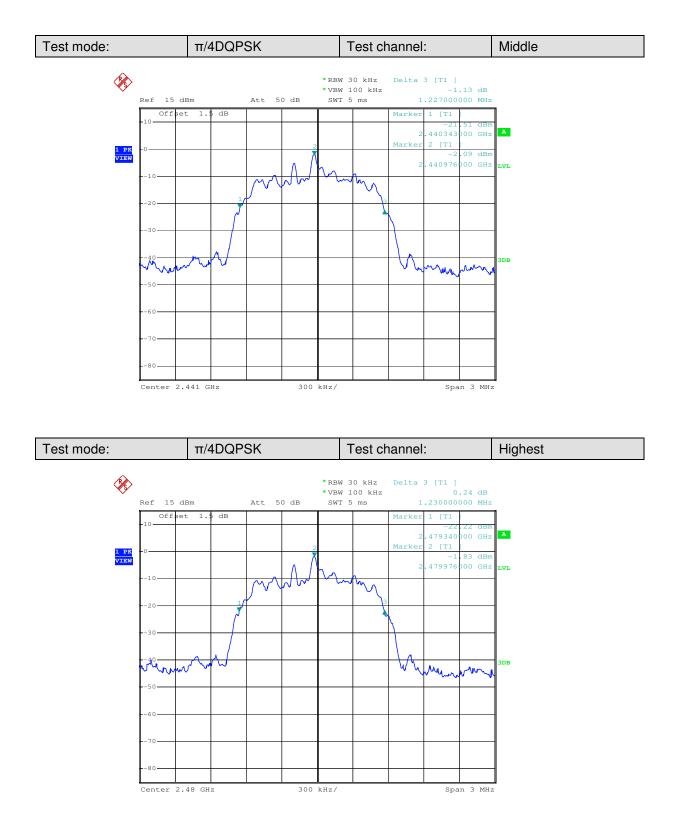

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:			
Test Setup:	ANSI C63.10:2013 Section 7.8.7		
Limit:	NA		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

Measurement Data

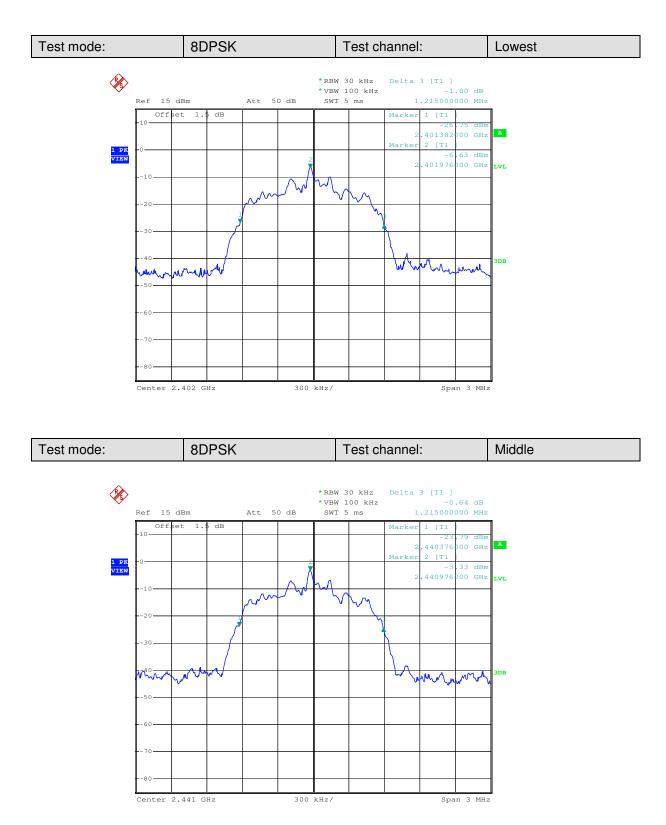
	20dB Occupy Bandwidth (kHz)			
Test channel	GFSK	π/4DQPSK	8DPSK	
Lowest	930	1221	1215	
Middle	894	1227	1215	
Highest	897	1230	1218	



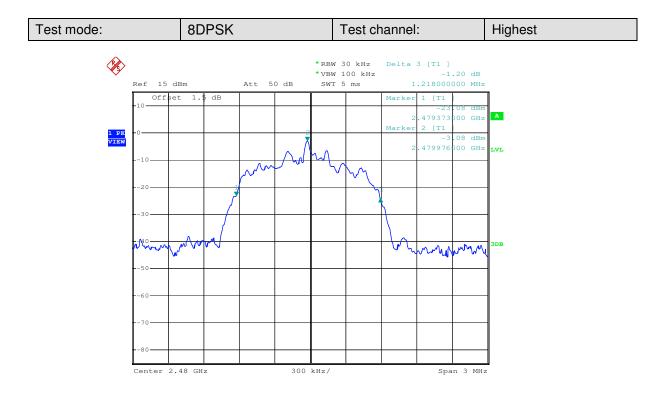
Report No.: SZEM160800711002 Page: 20 of 81



Report No.: SZEM160800711002 Page: 21 of 81



Report No.: SZEM160800711002 Page: 22 of 81



Report No.: SZEM160800711002 Page: 23 of 81

Report No.: SZEM160800711002 Page: 24 of 81

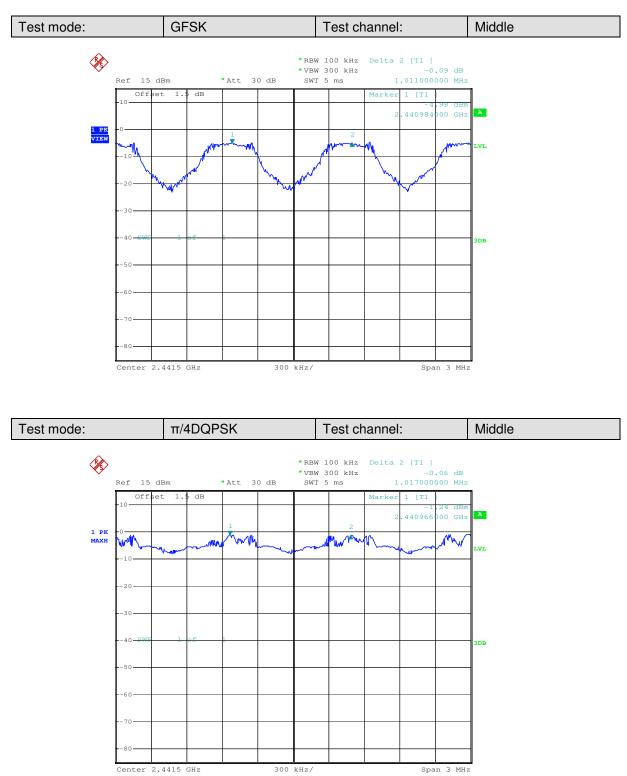
Report No.: SZEM160800711002 Page: 25 of 81

6.4 Carrier Frequencies Separation

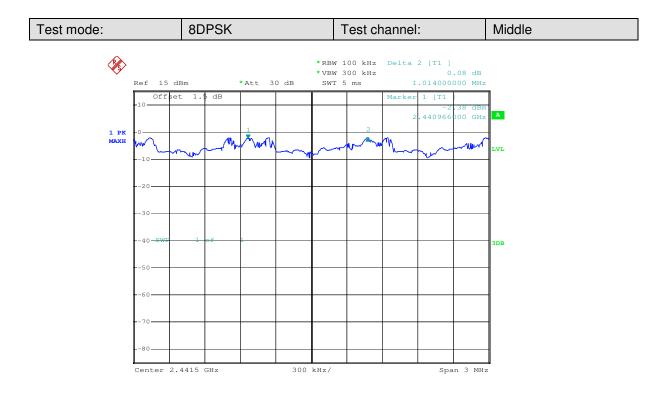
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.2		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Limit:	2/3 of the 20dB bandwidth		
	Remark: the transmission power is less than 0.125W.		
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of π /4DQPSK modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

Report No.: SZEM160800711002 Page: 26 of 81

GFSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Middle	930	620	Pass		
	π/4DQPSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Middle	1017	820	Pass		
	8DPSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Middle	1014	812	Pass		


Note: According to section 6.4,

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	930	620
π/4DQPSK	1230	820
8DPSK	1218	812

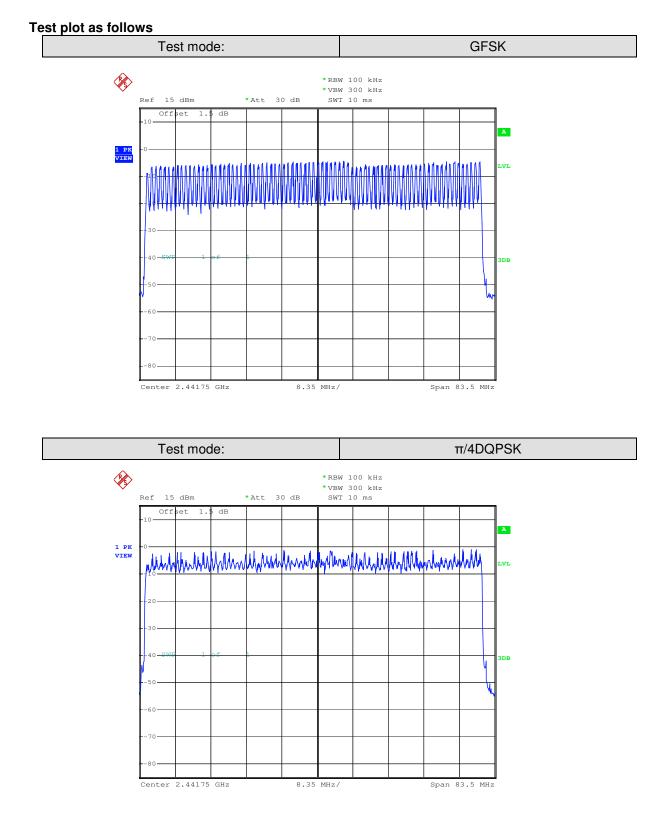

Report No.: SZEM160800711002 Page: 27 of 81

Test plot as follows:

Report No.: SZEM160800711002 Page: 28 of 81

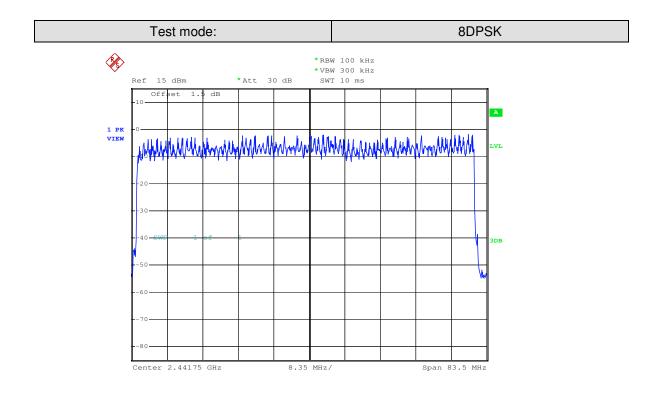
Report No.: SZEM160800711002 Page: 29 of 81

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) **Test Method:** ANSI C63.10:2013 Section 7.8.3 Test Setup: Spectrum Analyzer E.U.T Non-Conducted Table **Ground Reference Plane** Limit: At least 15 channels Hopping transmitting with all kind of modulation Test Mode: Instruments Used: Refer to section 5.10 for details Test Results: Pass


6.5 Hopping Channel Number

Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15



Report No.: SZEM160800711002 Page: 30 of 81

Report No.: SZEM160800711002 Page: 31 of 81

Report No.: SZEM160800711002 Page: 32 of 81

6.6 Dwell Time

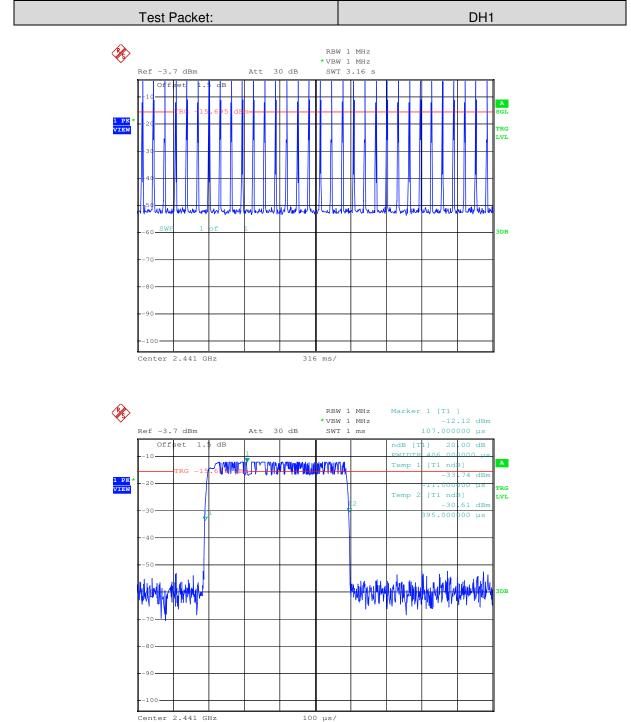
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.4		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
Instruments Used:	Refer to section 5.10 for details		
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.		
Limit:	0.4 Second		
Test Results:	Pass		

Measurement Data

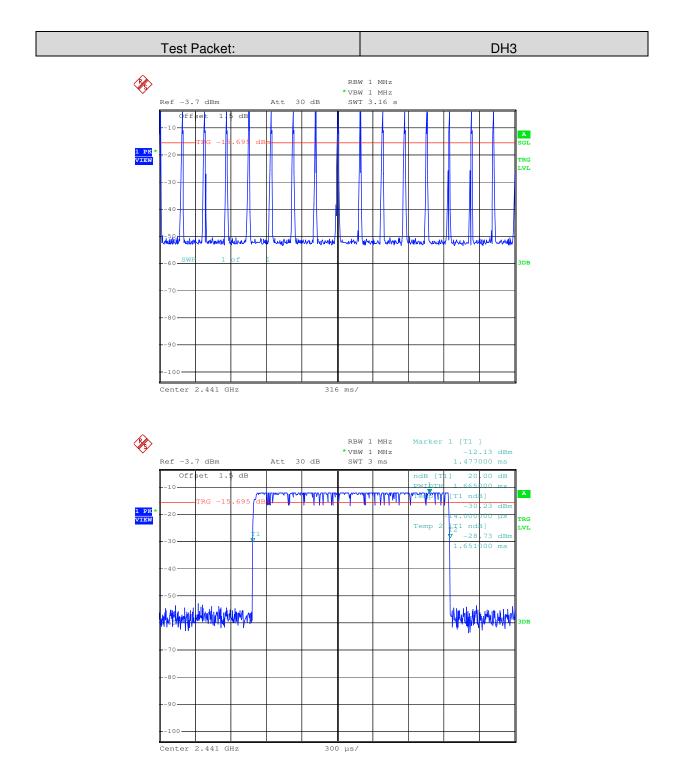
Mode	Packet	Dwell time (second)	Limit (second)
	DH1	0.13	≤0.4
GFSK	DH3	0.25	≤0.4
	DH5	0.29	≤0.4
	2-DH1	0.13	≤0.4
π/4DQPSK	2-DH3	0.27	≤0.4
	2-DH5	0.29	≤0.4
	3-DH1	0.13	≤0.4
8DPSK	3-DH3	0.25	≤0.4
	3-DH5	0.29	≤0.4

Report No.: SZEM160800711002 Page: 33 of 81

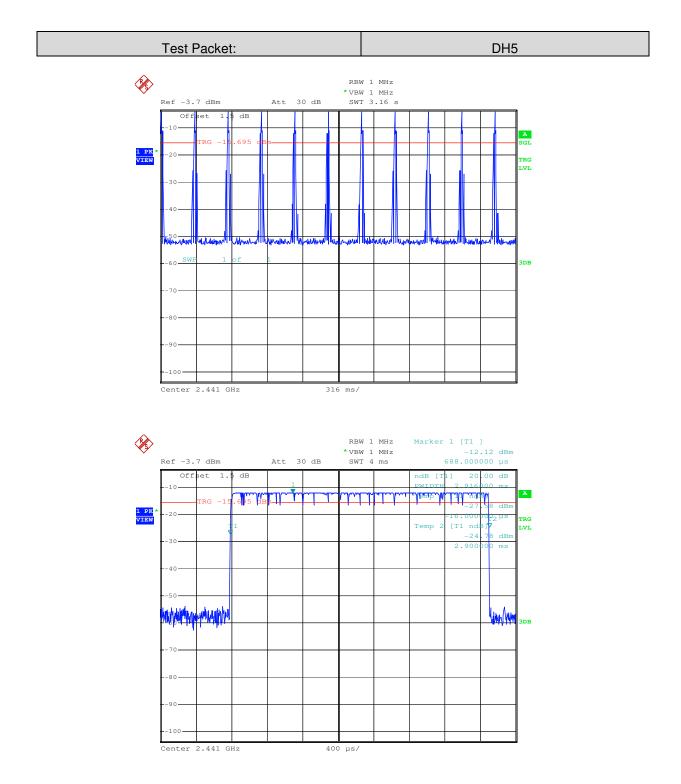
Remark:


The test period: T= 0.4 Second/Channel x 79 Channel /10= 3.16 s On (ms)*total number x 10=dwell time (ms) The lowest channel (2441MHz), as below: DH1 time slot=0.406(ms)*total number x 10= 129.92 (ms) DH3 time slot=1.665 (ms)* total number x 10= 249.75 (ms) DH5 time slot=2.916(ms)* total number x 10= 291.60 (ms) 2-DH1 time slot=0.421(ms)*total number x 10= 134.72 (ms) 2-DH3 time slot=1.674(ms)* total number x 10= 265.44 (ms) 2-DH5 time slot=2.922ms)* total number x 10= 292.20 (ms) 3-DH1 time slot=0.420(ms)*total number x 10= 134.40 (ms) 3-DH3 time slot=1.674 (ms)* total number x 10= 251.10 (ms)

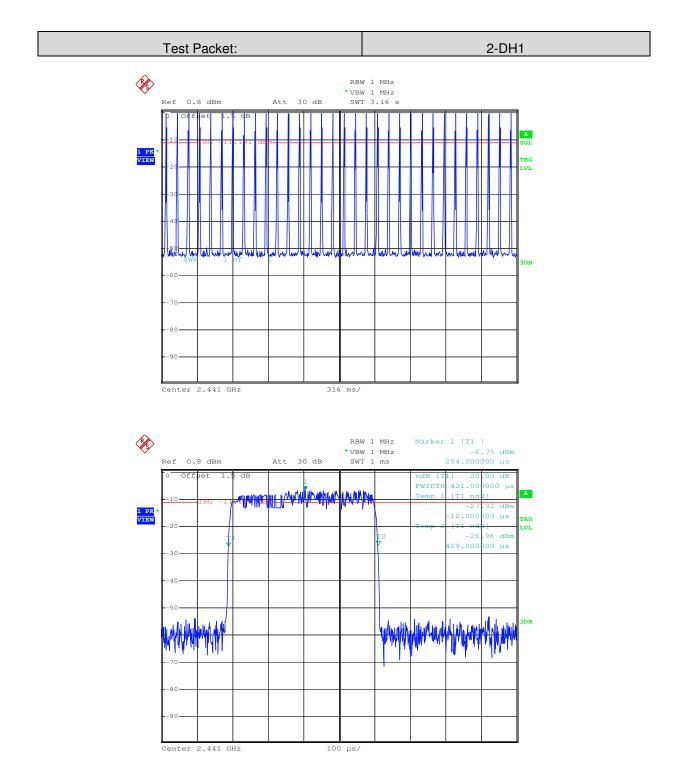
3-DH5 time slot=2.928(ms)* total number x 10= 292.80 (ms)


Report No.: SZEM160800711002 Page: 34 of 81

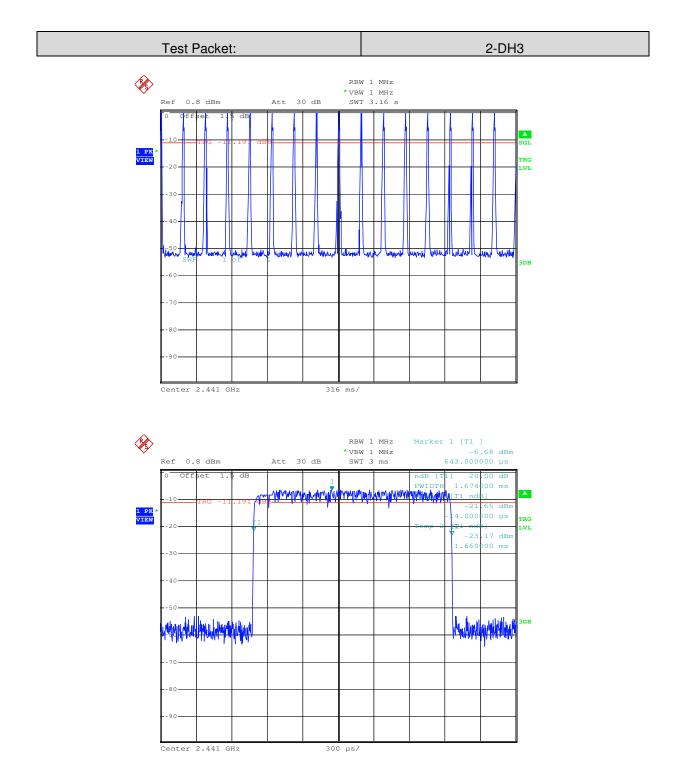
Test plot as follows:



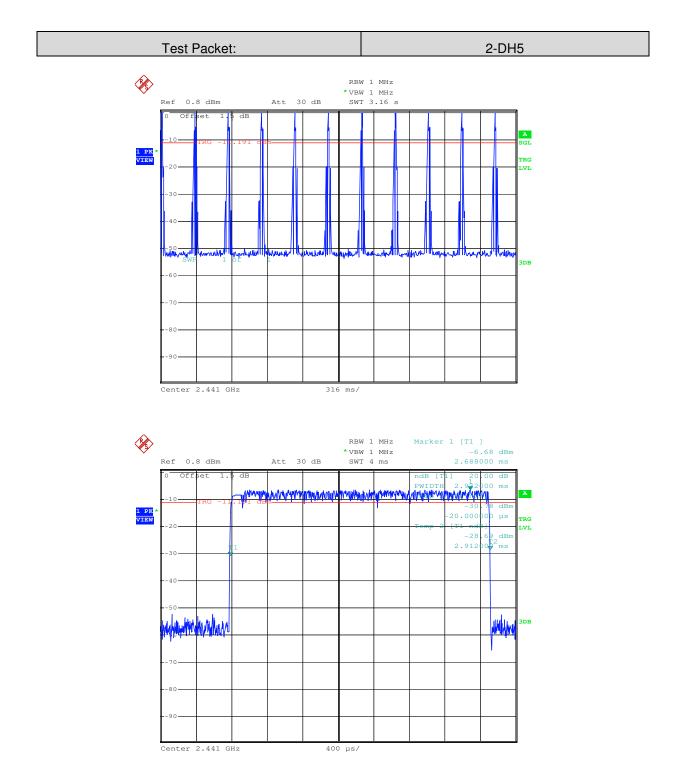
Report No.: SZEM160800711002 Page: 35 of 81



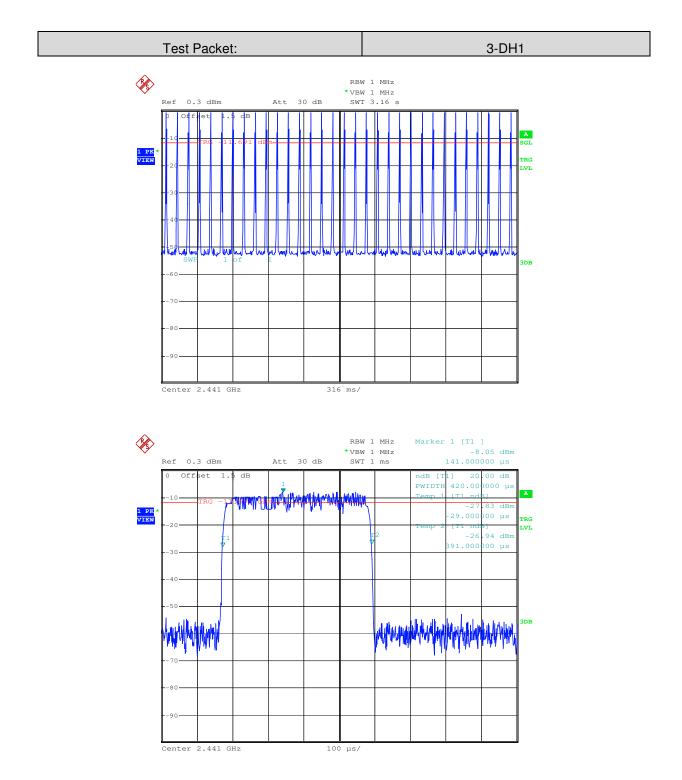
Report No.: SZEM160800711002 Page: 36 of 81



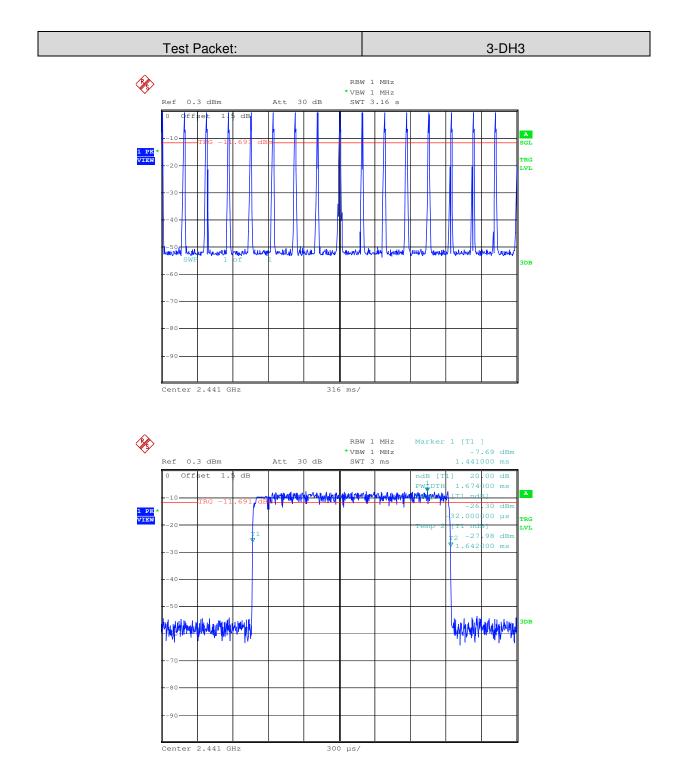
Report No.: SZEM160800711002 Page: 37 of 81



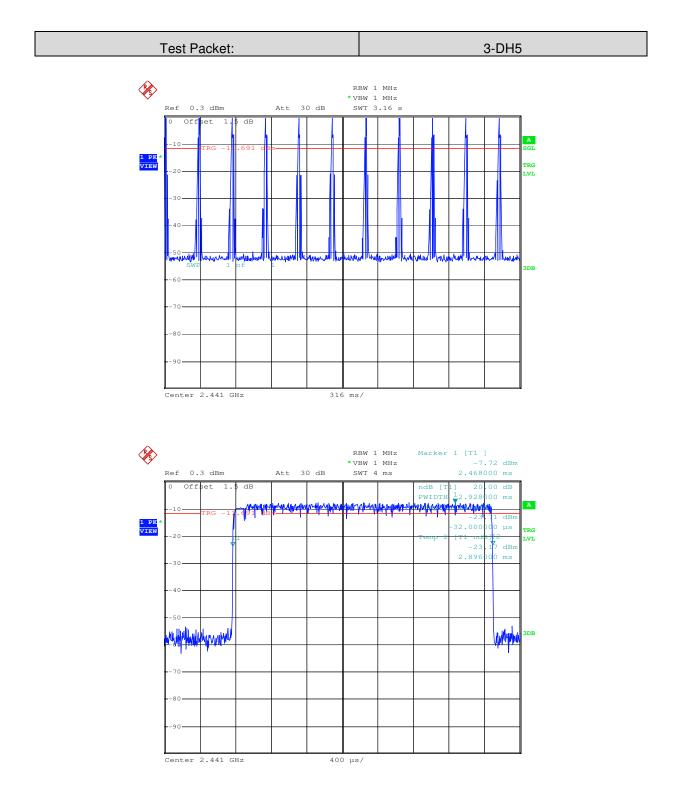
Report No.: SZEM160800711002 Page: 38 of 81



Report No.: SZEM160800711002 Page: 39 of 81

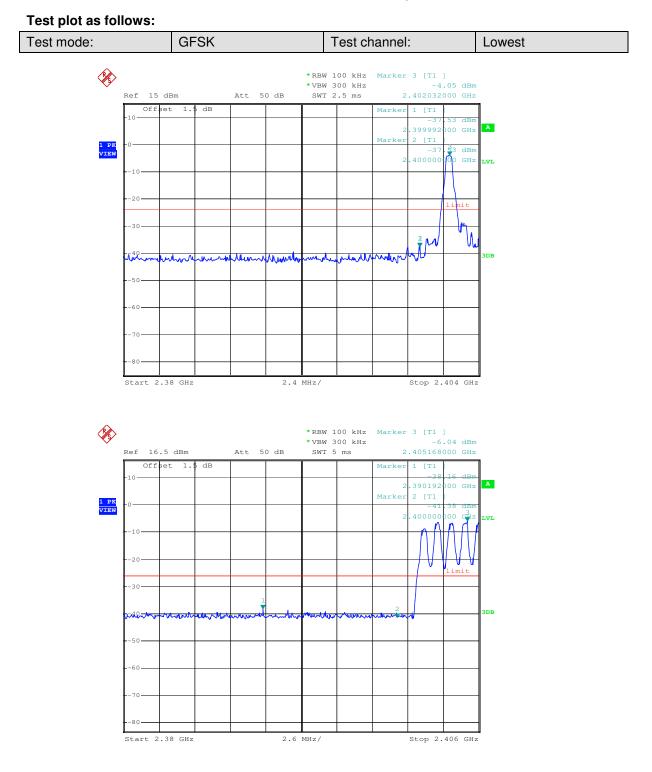


Report No.: SZEM160800711002 Page: 40 of 81



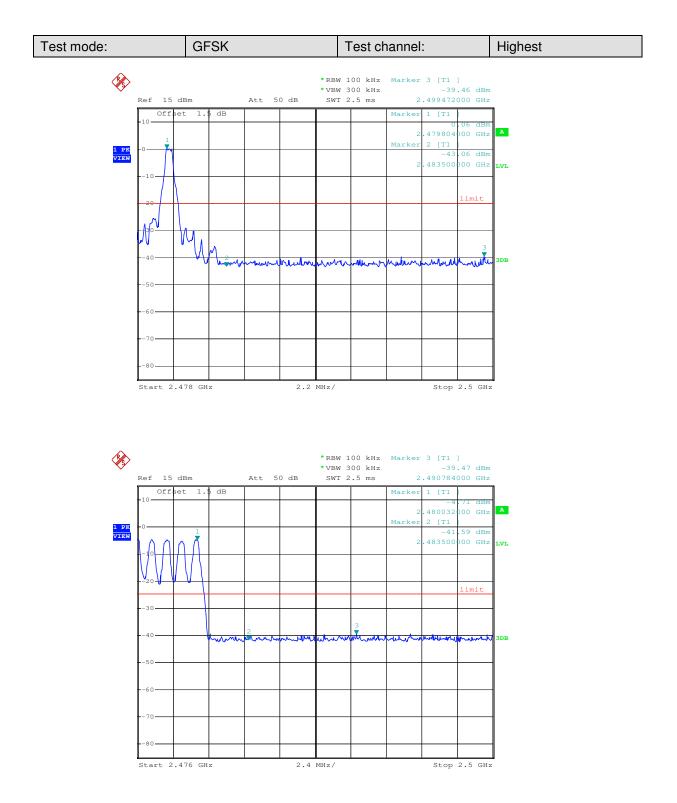
Report No.: SZEM160800711002 Page: 41 of 81

Report No.: SZEM160800711002 Page: 42 of 81

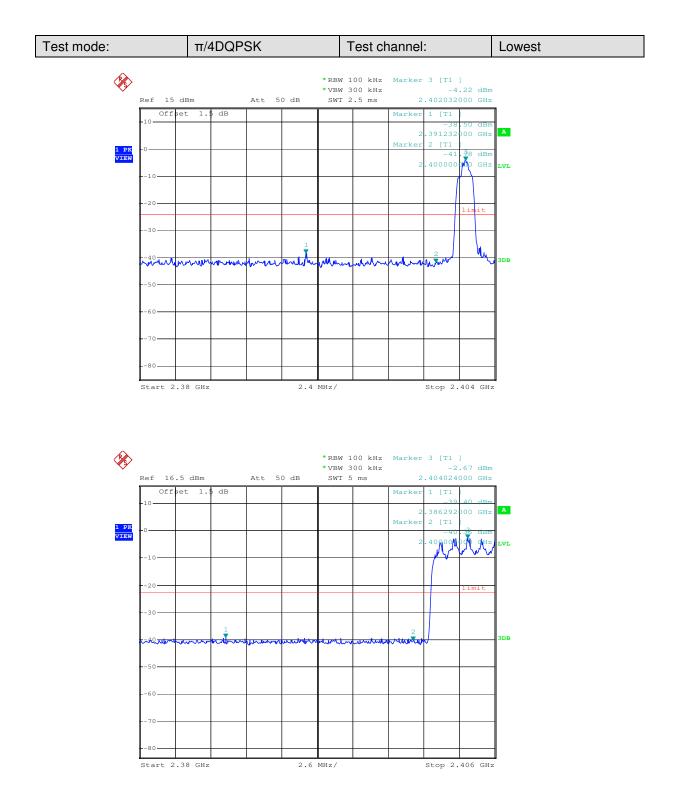

Report No.: SZEM160800711002 Page: 43 of 81

Test Requirement: 47 CFR Part 15C Section 15.247 (d) Test Method: ANSI C63.10:2013 Section 7.8.6 Test Setup: Spectrum Analyzer E.U.T 6 Non-Conducted Table **Ground Reference Plane** Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Exploratory Test Mode: Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of π /4DQPSK modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type. Instruments Used: Refer to section 5.10 for details **Test Results:** Pass

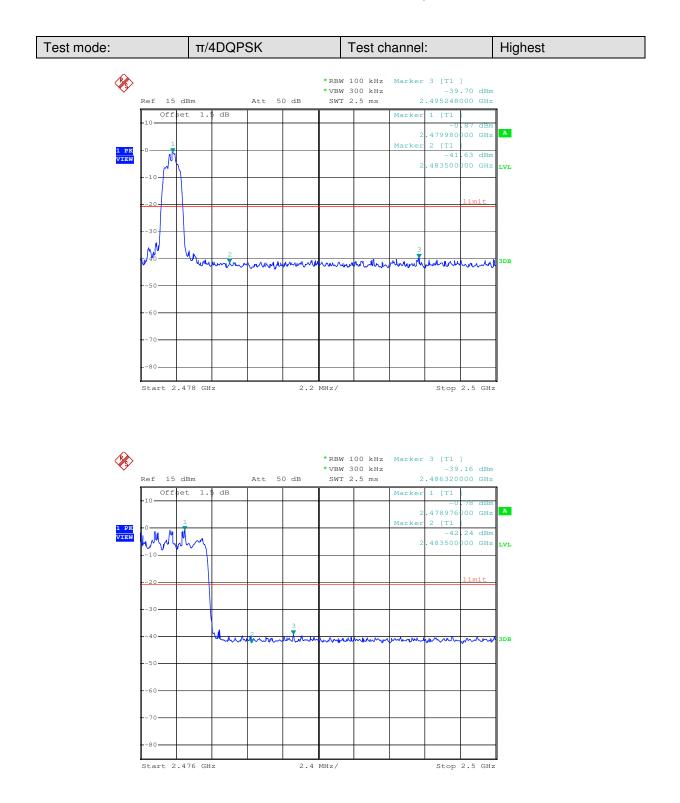
6.7 Band-edge for RF Conducted Emissions



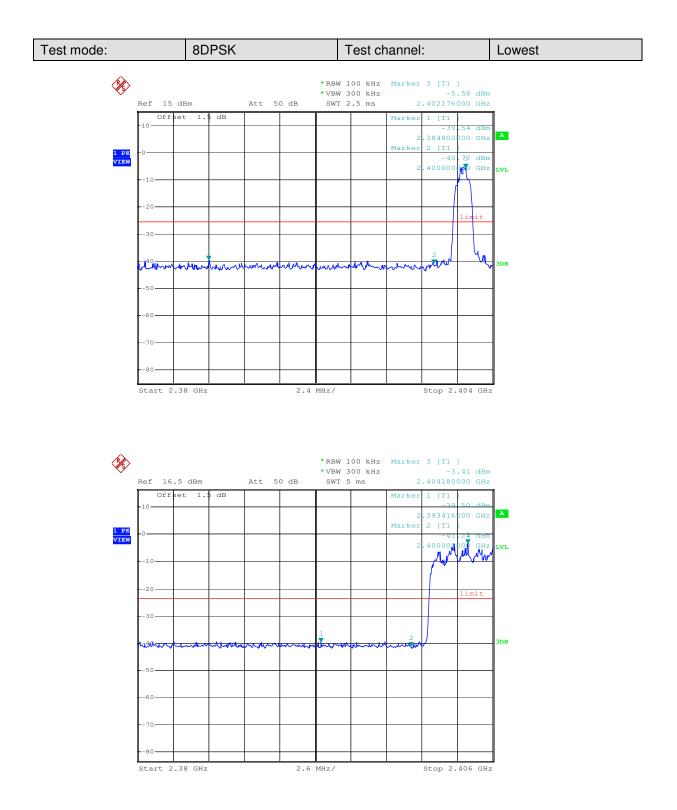
Report No.: SZEM160800711002 Page: 44 of 81



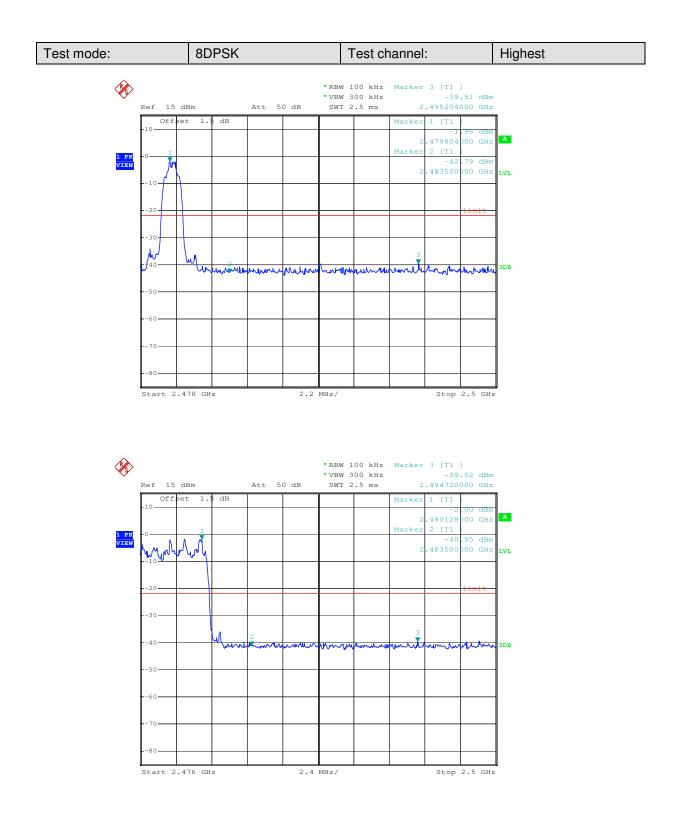
Report No.: SZEM160800711002 Page: 45 of 81



Report No.: SZEM160800711002 Page: 46 of 81



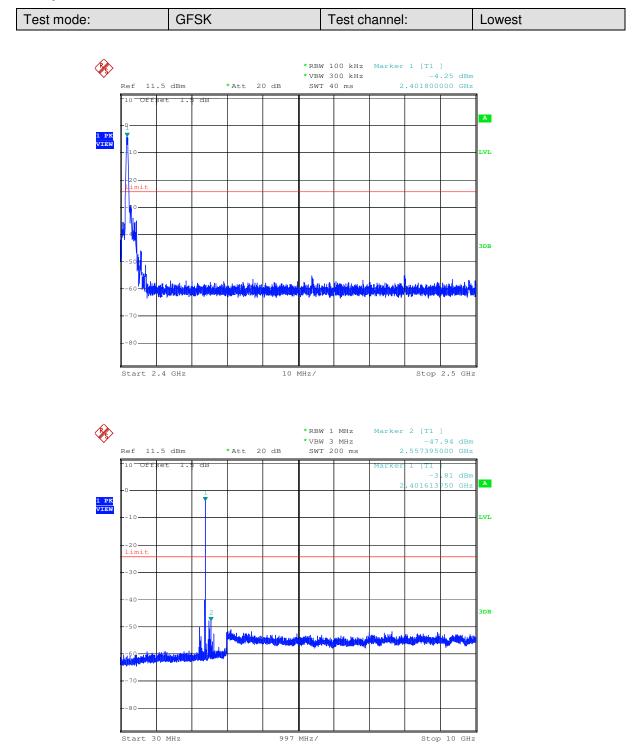
Report No.: SZEM160800711002 Page: 47 of 81



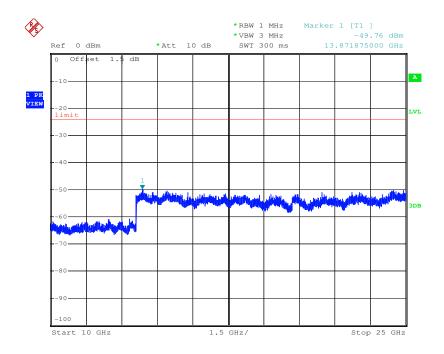
Report No.: SZEM160800711002 Page: 48 of 81

Report No.: SZEM160800711002 Page: 49 of 81

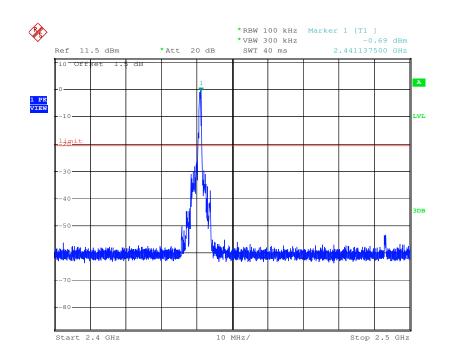
Report No.: SZEM160800711002 Page: 50 of 81


6.8 Spurious RF Conducted Emissions

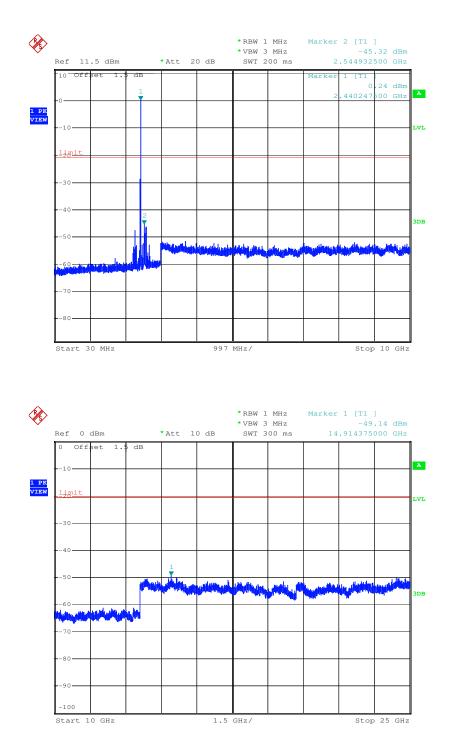
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 Section 7.8.8
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of π /4DQPSK modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass


Report No.: SZEM160800711002 Page: 51 of 81

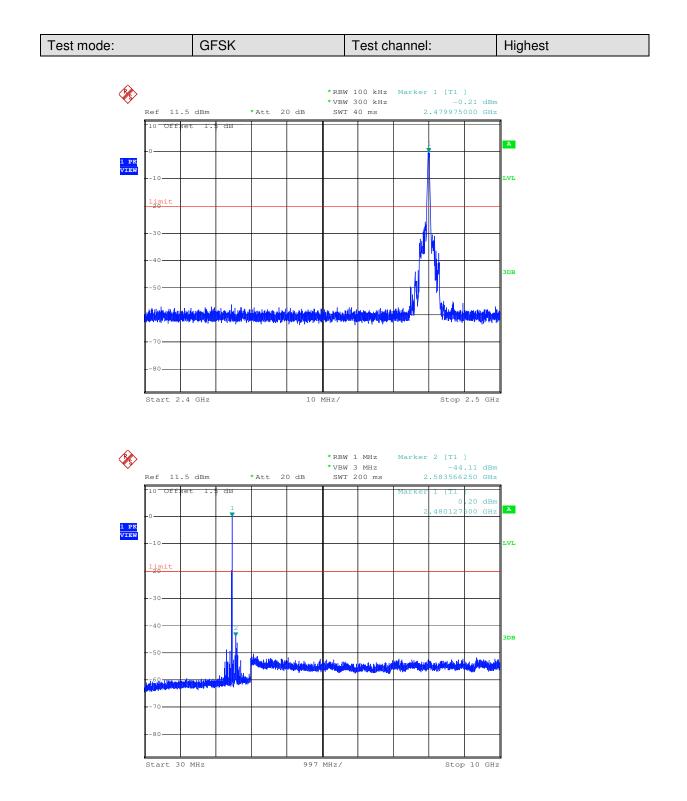
Test plot as follows:



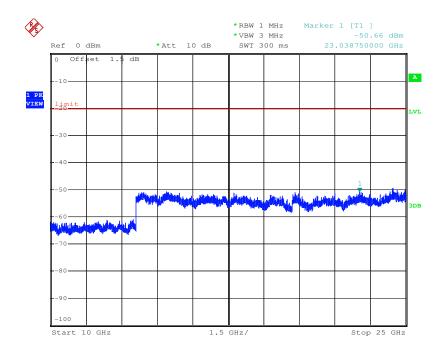
Report No.: SZEM160800711002 Page: 52 of 81



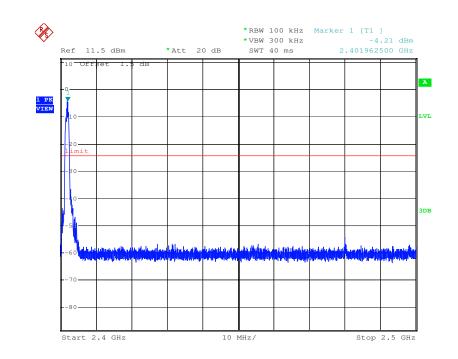
٦	Fest mode:	GFSK	Test channel:	Middle



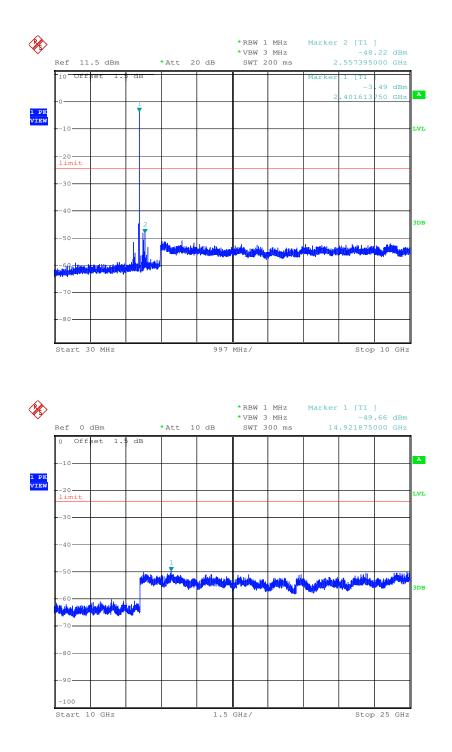
Report No.: SZEM160800711002 Page: 53 of 81



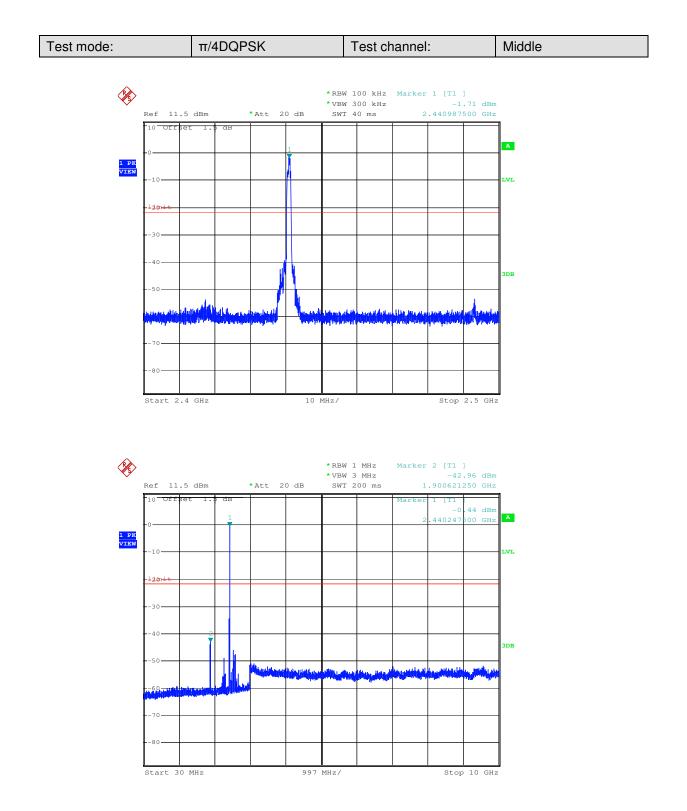
Report No.: SZEM160800711002 Page: 54 of 81



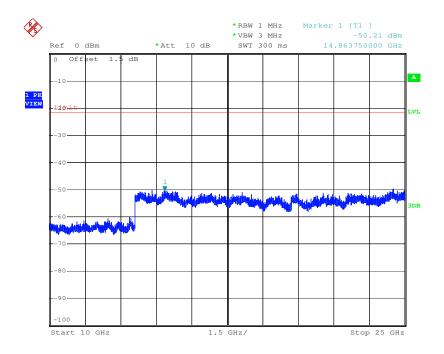
Report No.: SZEM160800711002 Page: 55 of 81



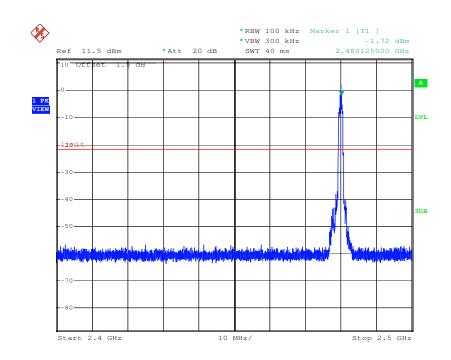
Test mode:	π/4DQPSK	Test channel:	Lowest



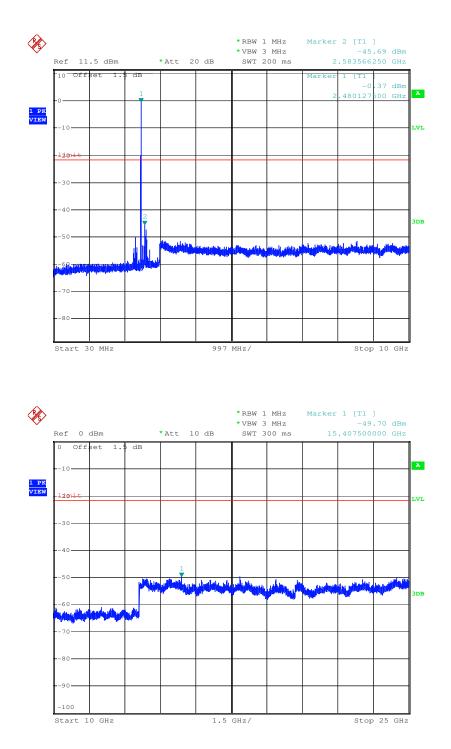
Report No.: SZEM160800711002 Page: 56 of 81



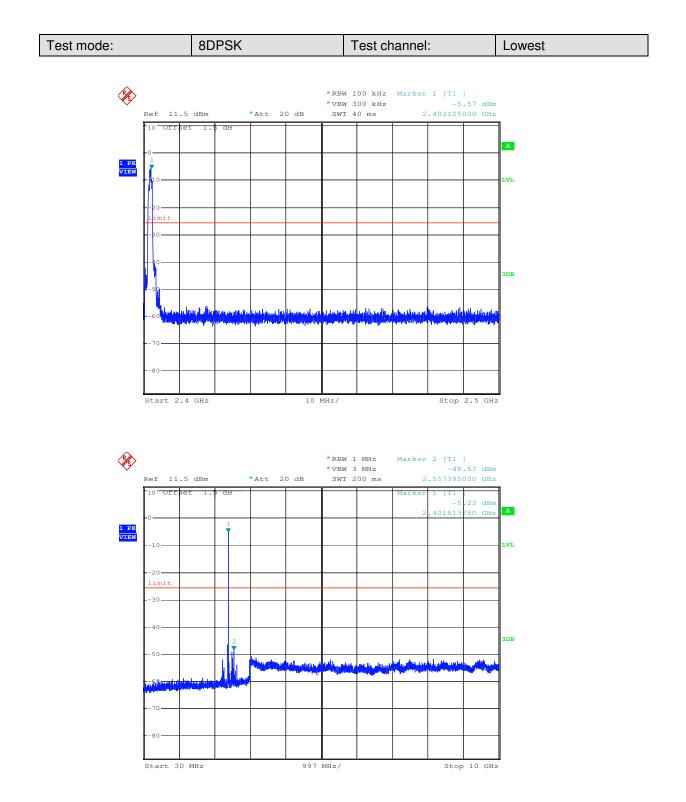
Report No.: SZEM160800711002 Page: 57 of 81



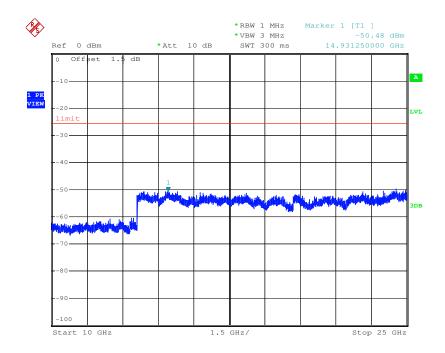
Report No.: SZEM160800711002 Page: 58 of 81



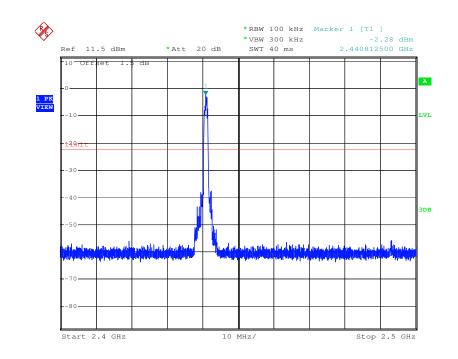
	Test mode:	π/4DQPSK	Test channel:	Highest
--	------------	----------	---------------	---------



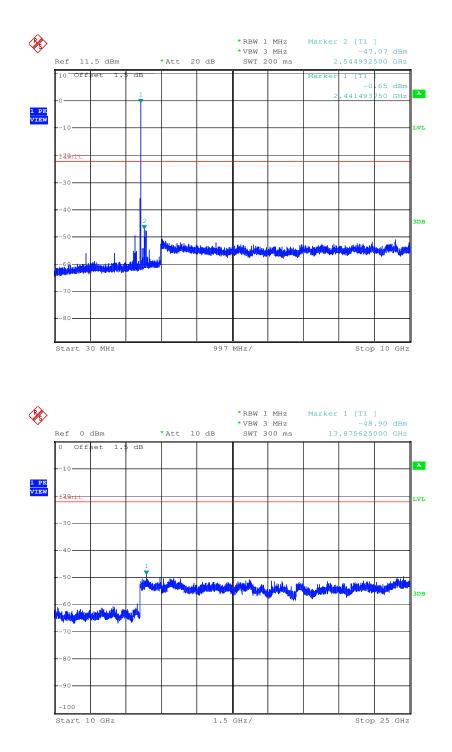
Report No.: SZEM160800711002 Page: 59 of 81



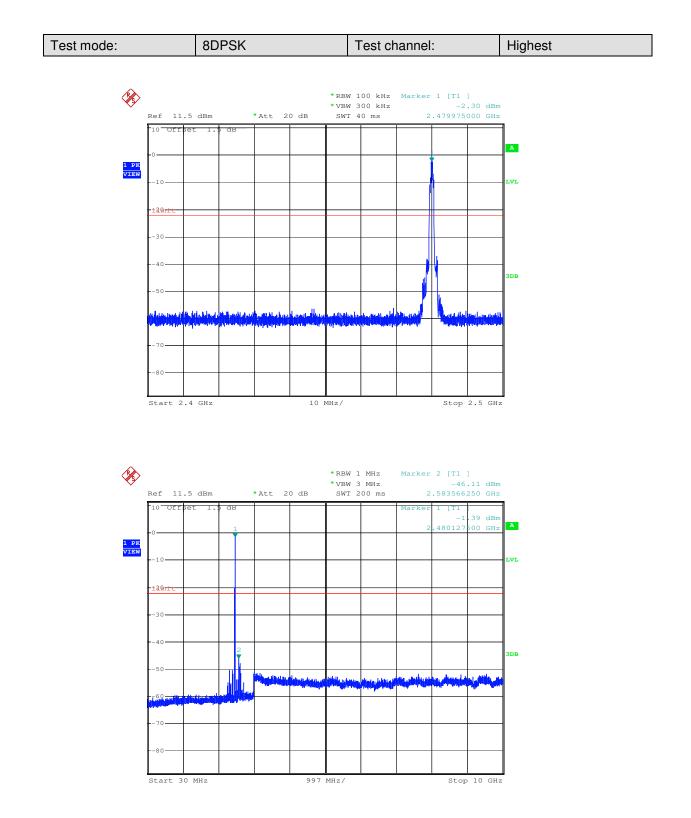
Report No.: SZEM160800711002 Page: 60 of 81



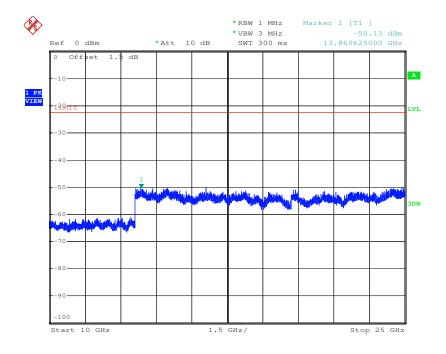
Report No.: SZEM160800711002 Page: 61 of 81



Test mode:	8DPSK	Test channel:	Middle



Report No.: SZEM160800711002 Page: 62 of 81



Report No.: SZEM160800711002 Page: 63 of 81

Report No.: SZEM160800711002 Page: 64 of 81

Remark:

Use 100kHz RBW to determine the relative limit in the band 2.4GHz to 2.5GHz, and Use 1MHz RBW to measure spurious emissions in the band 30MHz to 10GHz and 10GHz to 25GHz. The sweep points set to 30001.

Report No.: SZEM160800711002 Page: 65 of 81

6.9 Other requirements Frequency Hopping Spread Spectrum System

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:
rate from a Pseudorandom on the average by each tra	annel frequencies that are selected at the system hopping ordered list of hopping frequencies. Each frequency must be used equally nsmitter. The system receivers shall have input bandwidths that match the ns of their corresponding transmitters and shall shift frequencies in ansmitted signals.
channels during each trans receiver, must be designed transmitter be presented w employing short transmissi	I spectrum systems are not required to employ all available hopping smission. However, the system, consisting of both the transmitter and the d to comply with all of the regulations in this section should the rith a continuous data (or information) stream. In addition, a system ion bursts must comply with the definition of a frequency hopping system smissions over the minimum number of hopping channels specified in
the system to recognize of independently chooses and The coordination of freque	gence within a frequency hopping spread spectrum system that permits her users within the spectrum band so that it individually and d adapts its hopsets to avoid hopping on occupied channels is permitted. ncy hopping systems in any other manner for the express purpose of occupancy of individual hopping frequencies by multiple transmitters is
	5.247(a)(1)
Compliance for section 1 According to Bluetooth Cor stage shift register whose 5	e Specification, the pseudorandom sequence may be generated in a nine-
According to Bluetooth Cor stage shift register whose s outputs are added in a moo stage. The sequence begin with nine ones. • Number of shift register s	re Specification, the pseudorandom sequence may be generated in a nine- 5th and 9th stage dulo-two addition stage. And the result is fed back to the input of the first his with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized tages: 9 In sequence: $2^9 - 1 = 511$ bits
According to Bluetooth Cor stage shift register whose S outputs are added in a moo stage. The sequence begin with nine ones. • Number of shift register s • Length of pseudo-random	re Specification, the pseudorandom sequence may be generated in a nine- 5th and 9th stage dulo-two addition stage. And the result is fed back to the input of the first his with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized tages: 9 In sequence: $2^9 - 1 = 511$ bits
According to Bluetooth Cor stage shift register whose S outputs are added in a moo stage. The sequence begin with nine ones. • Number of shift register s • Length of pseudo-random • Longest sequence of zero	re Specification, the pseudorandom sequence may be generated in a nine- 5th and 9th stage dulo-two addition stage. And the result is fed back to the input of the first as with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized tages: 9 a sequence: $2^9 - 1 = 511$ bits bs: 8 (non-inverted signal)
According to Bluetooth Constage shift register whose soutputs are added in a modestage. The sequence beginwith nine ones. • Number of shift register soutputs are added in a modestage. The sequence beginwith nine ones. • Number of shift register soutputs are sequence of zero. • Longest sequence of zero. <i>Linear Feedback</i>	re Specification, the pseudorandom sequence may be generated in a nine- 5th and 9th stage dulo-two addition stage. And the result is fed back to the input of the first his with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized tages: 9 In sequence: $2^9 - 1 = 511$ bits
According to Bluetooth Constage shift register whose soutputs are added in a moostage. The sequence beginwith nine ones. Number of shift register so Length of pseudo-random Longest sequence of zero Linear Feedback An example of Pseudorand	The Specification, the pseudorandom sequence may be generated in a nine- Specification, the pseudorandom sequence may be generated in a nine- Specification, the pseudorandom sequence may be generated in a nine- Specification, the pseudorandom sequence may be generated in a nine- Shift Register for Generation of the PRBS sequence Mom Frequency Hopping Sequence as follow:
According to Bluetooth Constage shift register whose soutputs are added in a modestage. The sequence beginwith nine ones. Number of shift register so Length of pseudo-random Longest sequence of zero Linear Feedback An example of Pseudorand 20 62 46 77 Each frequency used equa	The Specification, the pseudorandom sequence may be generated in a nine- Sth and 9th stage dulo-two addition stage. And the result is fed back to the input of the first as with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized tages: 9 in sequence: $2^9 - 1 = 511$ bits bits: 8 (non-inverted signal) Shift Register for Generation of the PRBS sequence dom Frequency Hopping Sequence as follow: 7 64 8 73 16 75 1 Illy on the average by each transmitter.
According to Bluetooth Cor stage shift register whose s outputs are added in a moo stage. The sequence begin with nine ones. • Number of shift register s • Length of pseudo-random • Longest sequence of zero <i>Linear Feedback</i> An example of Pseudorand 20 62 46 77 Each frequency used equa According to Bluetooth Co bandwidths that match th	The Specification, the pseudorandom sequence may be generated in a nine- Sth and 9th stage dulo-two addition stage. And the result is fed back to the input of the first as with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized tages: 9 a sequence: $2^9 - 1 = 511$ bits bits as: 8 (non-inverted signal) Shift Register for Generation of the PRBS sequence Mom Frequency Hopping Sequence as follow: 7 64 8 73 16 75 1
According to Bluetooth Cor stage shift register whose s outputs are added in a moo stage. The sequence begin with nine ones. • Number of shift register s • Length of pseudo-random • Longest sequence of zero <i>Linear Feedback</i> An example of Pseudorand 20 62 46 77 Each frequency used equa According to Bluetooth Co bandwidths that match th	The specification, the pseudorandom sequence may be generated in a nine- Sth and 9th stage dulo-two addition stage. And the result is fed back to the input of the first as with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized tages: 9 a sequence: $2^9 - 1 = 511$ bits bits 8 (non-inverted signal) Shift Register for Generation of the PRBS sequence tom Frequency Hopping Sequence as follow: 7 64 8 73 16 75 1 Illy on the average by each transmitter. bore Specification, Bluetooth receivers are designed to have input and IF e hopping channel bandwidths of any Bluetooth transmitters and shift tion with the transmitted signals.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions-aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-eDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is and/or the socure except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

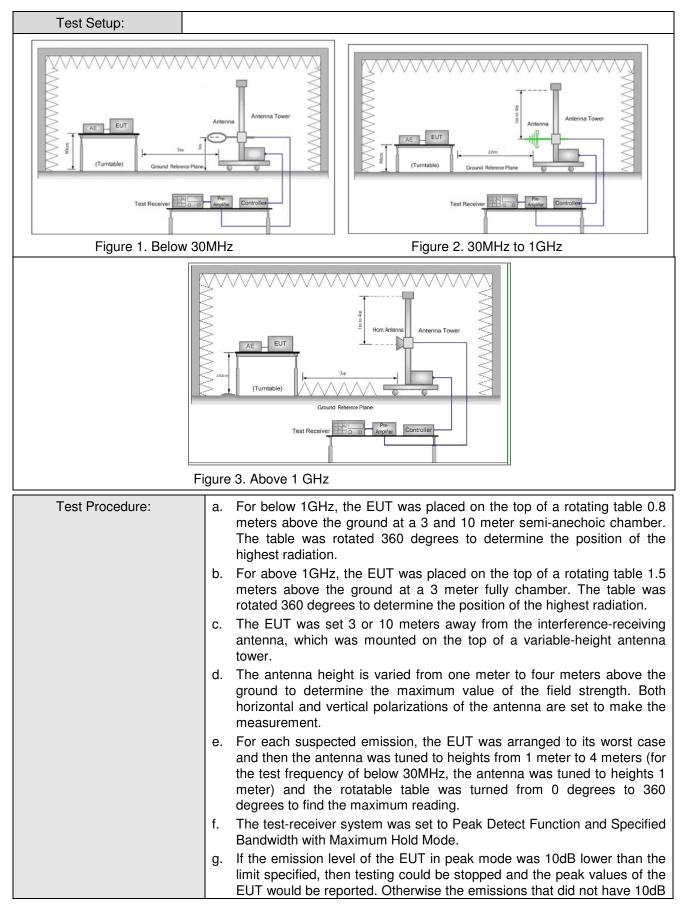
Report No.: SZEM160800711002 Page: 66 of 81

pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.


Report No.: SZEM160800711002 Page: 67 of 81

6.10 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber and Fully Chamber)							
	Measurement Distance: 10m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency	Frequency Detector RBW VBW Remark						
	0.009MHz-0.090MH	Z	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz	30MHz-1GHz Quasi-peak 100 kHz 300kHz Quasi-peak						
	Above 1GHz		Peak	1MHz	3MHz	Peak		
	Above TGHZ		Peak	1MHz	10Hz	Average		
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m		
	0.009MHz-0.490MHz	`	400/F(kHz)	-	-	300		
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30		
	1.705MHz-30MHz		30	-	-	30		
	30MHz-88MHz		100	40.0	Quasi-peak	3		
	88MHz-216MHz		150	43.5	Quasi-peak	3		
	216MHz-960MHz 200 46.0 Quasi-peak 3							
	960MHz-1GHz 500 54.0 Quasi-peak 3			3				
	Above 1GHz		500	54.0	Average	3		
	Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	3 ab equi	ove the maxim	um permit est. This pe	ted average	emission limit		

Report No.: SZEM160800711002 Page: 68 of 81

Report No.: SZEM160800711002 Page: 69 of 81

	margin would be re-tested one by one using peak, quasi-peak or
	average method as specified and then reported in a data sheet.
	h. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of
	data type
	Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH1 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode
	For below 1GHz part, through pre-scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM160800711002 Page: 70 of 81

6.10.1 Radiated emission below 1GHz

The test was performed at a 10m test site. According to below formulate and the test data at 10m test distance,

 $L_3 / L_{10} = D_{10} / D_3$

Note:

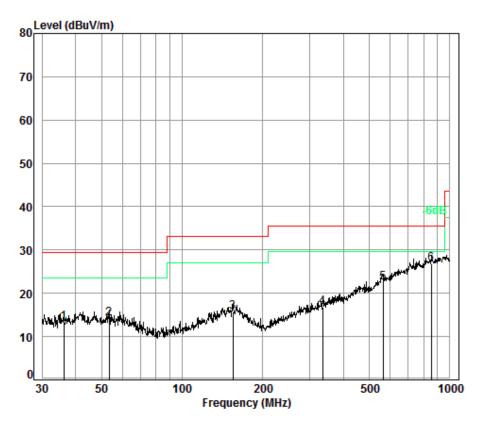
L₃: Level @ 3m distance. Unit: uV/m;

L₁₀: Level @ 10m distance. Unit: uV/m;

D₃: 3m distance. Unit: m

D₁₀: 10m distance. Unit: m

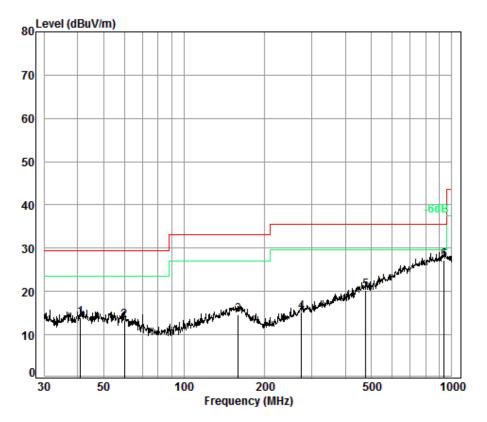
The level at 3m test distance is below:


Frequency (MHz)	Level @ 10m (dBuV/m)	Level @ 10m (uV/m)	Level @ 3m (uV/m)	Level @ 3m (dBuV/m)	Limit @ 3m (dBuV/m)	Margin (dB)	Ant. Polarization
36.13	13.38	4.67	15.56	23.84	40.00	-16.16	V
53.51	14.06	5.05	16.82	24.52	40.00	-15.48	V
154.82	15.60	6.03	20.09	26.06	43.50	-17.44	V
334.86	16.74	6.87	22.90	27.20	46.00	-18.80	V
562.66	22.44	13.24	44.14	32.90	46.00	-13.10	V
851.04	16.80	6.92	23.06	27.26	46.00	-18.74	V
40.99	13.88	4.94	16.48	24.34	40.00	-15.66	Н
59.86	13.40	4.68	15.59	23.86	40.00	-16.14	Н
159.23	14.55	5.34	17.80	25.01	43.50	-18.49	Н
275.16	15.19	5.75	19.16	25.65	46.00	-20.35	Н
477.17	20.28	10.33	34.43	30.74	46.00	-15.26	Н
935.56	27.33	23.25	77.51	37.79	46.00	-8.21	Н

Report No.: SZEM160800711002 Page: 71 of 81

6.10.2 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Vertical


Condition: 10m VERTICAL Job No. : 7110CR Test Mode: TX mode

	Freq			Preamp Factor				Over Limit
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	36.13	6.72	12.80	32.98	26.84	13.38	29.50	-16.12
2	53.51	6.97	12.49	32.98	27.58	14.06	29.50	-15.44
3	154.82	7.48	13.40	32.74	27.46	15.60	33.10	-17.50
4	334.86	8.18	13.56	32.60	27.60	16.74	35.60	-18.86
5	562.66	8.81	17.96	32.60	28.27	22.44	35.60	-13.16
6 pp	851.04	9.36	21.61	32.55	28.38	26.80	35.60	-8.80

Report No.: SZEM160800711002 Page: 72 of 81

Test mode: Transmitting Horizontal

Condition: 10m HORIZONTAL Job No. : 7110CR

Test Mode: TX mode

	Freq			Preamp Factor		Level		Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	40.99	6.80	13.23	32.99	26.84	13.88	29.50	-15.62
2	59.86	7.00	12.01	32.95	27.34	13.40	29.50	-16.10
3	159.23	7.50	13.39	32.73	26.39	14.55	33.10	-18.55
4	275.16	7.98	12.01	32.62	27.82	15.19	35.60	-20.41
5 6 pp	477.17 935.55	8.49 9.54		32.60 32.50				

Report No.: SZEM160800711002 Page: 73 of 81

6.10.3 Transmitter Emission above 1GHz

Test mode:		GFSK(DH1)	Test	channel:	Lowest	Rema	ırk:	Peak
Frequency (MHz)	Antenna factors (dB/m)	a Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3759.672	32.74	7.73	38.47	45.02	47.02	74.00	-26.98	Vertical
4804.000	34.10	8.87	38.75	47.01	51.23	74.00	-22.77	Vertical
6069.413	34.74	10.47	38.87	45.84	52.18	74.00	-21.82	Vertical
7206.000	35.60	10.68	37.64	43.32	51.96	74.00	-22.04	Vertical
9608.000	37.10	12.50	36.35	36.04	49.29	74.00	-24.71	Vertical
12676.420	37.94	14.65	37.82	38.07	52.84	74.00	-21.16	Vertical
3599.965	32.10	7.67	38.41	46.04	47.40	74.00	-26.60	Horizontal
4804.000	34.10	8.87	38.75	49.76	53.98	74.00	-20.02	Horizontal
5964.939	34.61	10.46	38.95	46.52	52.64	74.00	-21.36	Horizontal
7206.000	35.60	10.68	37.64	42.99	51.63	74.00	-22.37	Horizontal
9608.000	37.10	12.50	36.35	36.00	49.25	74.00	-24.75	Horizontal
12639.790	37.92	14.55	37.79	38.82	53.50	74.00	-20.50	Horizontal

Test mode:		GF	GFSK(DH1)		Test channel:		Middle		Rema	rk:	Peak
Frequency (MHz)	Antenr factors (dB/m	S	Cable Loss (dB)	Lo	ıble oss IB)	Reading Level (dBµV)	Emission Level (dBµV/m)		imit uV/m)	Over limit (dB)	Polarization
3684.279	32.44		7.70	38	.44	46.10	47.80	74	l.00	-26.20	Vertical
4882.000	34.18	;	8.98	38	.77	47.76	52.15	74	1.00	-21.85	Vertical
6069.413	34.74		10.47	38	.87	46.20	52.54	74	1.00	-21.46	Vertical
7323.000	35.54		10.72	37	.59	44.82	53.49	74	l.00	-20.51	Vertical
9764.000	37.10)	12.58	36	.14	40.15	53.69	74	l.00	-20.31	Vertical
12639.790	37.92		14.55	37	.79	38.46	53.14	74	1.00	-20.86	Vertical
3926.464	33.03	;	7.78	38	.53	45.89	48.17	74	1.00	-25.83	Horizontal
4882.000	34.18	;	8.98	38	.77	46.69	51.08	74	1.00	-22.92	Horizontal
6087.002	34.74		10.45	38	.85	46.25	52.59	74	l.00	-21.41	Horizontal
7323.000	35.54		10.72	37	.59	42.48	51.15	74	l.00	-22.85	Horizontal
9764.000	37.10)	12.58	36	.14	39.54	53.08	74	1.00	-20.92	Horizontal
12566.850	37.87	,	14.34	37	.72	38.07	52.56	74	l.00	-21.44	Horizontal

Report No.: SZEM160800711002 Page: 74 of 81

Test mode:		GFSK(DH1)	Tes	st channel:	Highest	Rema	ırk:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Loss	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
3814.467	32.91	7.75	38.49	45.60	47.77	74.00	-26.23	Vertical
4960.000	34.26	9.09	38.78	46.05	50.62	74.00	-23.38	Vertical
6069.413	34.74	10.47	38.87	46.68	53.02	74.00	-20.98	Vertical
7440.000	35.60	10.77	37.54	40.94	49.77	74.00	-24.23	Vertical
9920.000	37.22	12.67	35.93	39.00	52.96	74.00	-21.04	Vertical
12639.790	37.92	14.55	37.79	38.85	53.53	74.00	-20.47	Vertical
3870.060	32.97	7.77	38.51	45.01	47.24	74.00	-26.76	Horizontal
4960.000	34.26	9.09	38.78	48.80	53.37	74.00	-20.63	Horizontal
5930.516	34.53	10.37	38.95	45.86	51.81	74.00	-22.19	Horizontal
7440.000	35.60	10.77	37.54	42.43	51.26	74.00	-22.74	Horizontal
9920.000	37.22	12.67	35.93	39.04	53.00	74.00	-21.00	Horizontal
12676.420	37.94	14.65	37.82	37.30	52.07	74.00	-21.93	Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

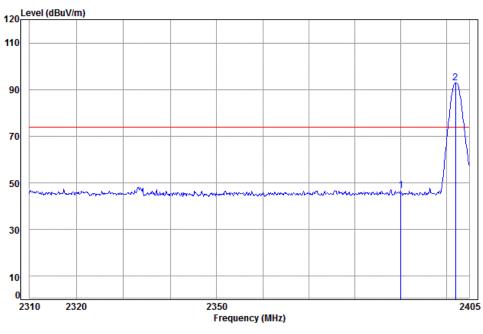
2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM160800711002 Page: 75 of 81

6.11 Restricted bands around fundamental frequency

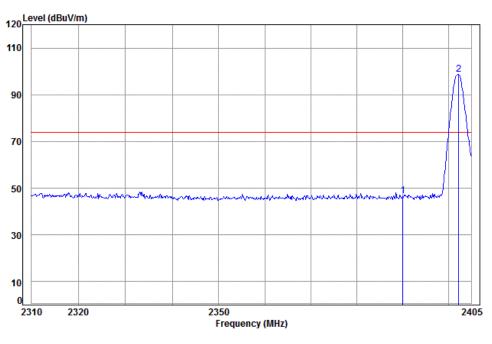
		<u> </u>				
Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205				
Test Method:	ANSI C63.10: 2013					
Test Site:	Measurement Distance: 3m	(semi-anechoic chamber	and fully chamber)			
Limit:	Frequency	Limit (dBuV/m @3m)	Remark			
	30MHz-88MHz	40.0	Quasi-peak Value			
	88MHz-216MHz	43.5	Quasi-peak Value			
	216MHz-960MHz	46.0	Quasi-peak Value			
	960MHz-1GHz	54.0	Quasi-peak Value			
	Above 1GHz	54.0	Average Value			
		74.0	Peak Value			
Test Setup:		~ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^				
AE EUT (Turritable) Ground Reference Test Receiver		AE EUT (Turntable) Ground Reference Plane Test Receiver	Antenna Tower			
Figure 1. 30MH	Iz to 1GHz	Figure 2. Abov	re 1 GHz			


Report No.: SZEM160800711002 Page: 76 of 81

Test Procedure:	a. For below 1GHz, the EUT was placed on the top of a rotating table
	0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
	 b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
	c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	 d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	h. Test the EUT in the lowest channel , the Highest channeli. The radiation measurements are performed in X, Y, Z axis
	positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details

Report No.: SZEM160800711002 Page: 77 of 81

Test plot as follows:										
Worse case mode:	GFSK (DH5)	Test channel:	Lowest	Remark:	Peak	Vertical				

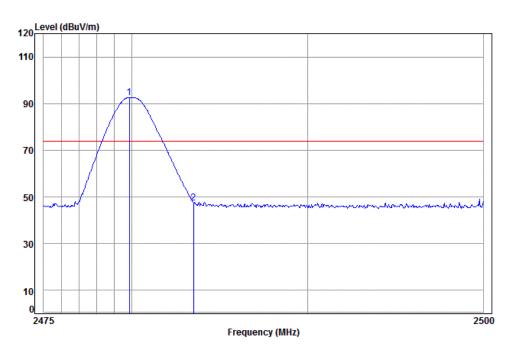


Conditio Job No:			al						
Mode:	: 240	2 Band	edge						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	90.000			38.11					
2 pp 24	01.997	5.35	28.61	38.11	97.06	92.91	74.00	18.91	

Report No.: SZEM160800711002 Page: 78 of 81

Worse case mode: GFSK ((H5) Test channel:	Lowest Re	emark: Peak	Horizontal
-------------------------	--------------------	-----------	-------------	------------

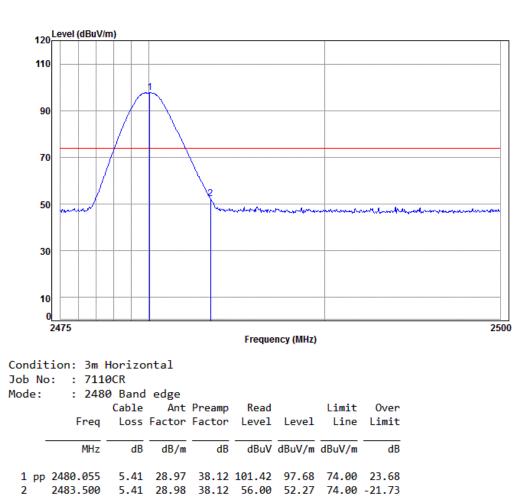
Limit Over Line Limit


Condition	1:	3m Horizontal						
Job No:	:	7110	OCR					
Mode:	:	2402	2 Band	edge				
			Cable	Ant	Preamp	Read		
	F	req	Loss	Factor	Factor	Level	Level	

	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	2390.000	5.34	28.57	38.11	51.09	46.89	74.00	-27.11
2 pp	2402.288	5.35	28.61	38.11	102.82	98.67	74.00	24.67

Report No.: SZEM160800711002 Page: 79 of 81

Worse case mode:	GFSK (DH5)	Test channel:	Highest	Remark:	Peak	Vertical	
------------------	------------	---------------	---------	---------	------	----------	--



Condition: 3m Vertical												
Job No	: : 711	ØCR										
Mode:	: 248	0 Band	edge									
		Cable	Ant	Preamp	Read		Limit	0ver				
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit				
_												
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB				
1 pp	2479.855	5.41	28.97	38.12	96.26	92.52	74.00	18.52				
2	2483.500	5.41	28.98	38.12	51.24	47.51	74.00	-26.49				

Report No.: SZEM160800711002 Page: 80 of 81

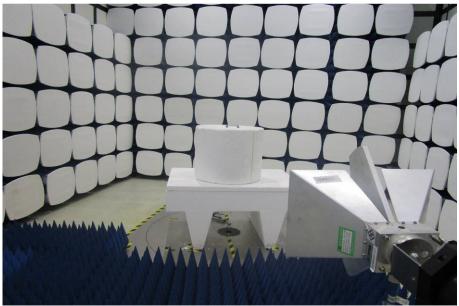
Worse case mode:	GFSK(DH5)	Test channel:	Highest	Remark:	Peak	Horizontal
------------------	-----------	---------------	---------	---------	------	------------

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

Report No.: SZEM160800711002 Page: 81 of 81


7 Photographs - EUT Test Setup

Test Model No.: SOL-EP1140

7.1 Radiated Emission

7.2 Radiated Spurious Emission

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1608007110CR.