

FCC - TEST REPORT

Report Number	: 60.790.23.007.01R02 Date of Issue : <u>5 May 2023</u>		
Model	: CamLock, PlungerLock		
Product Type	: SmartLock		
Applicant	: Mobile Technologies Inc.		
Address	: 1050 NE 67th Ave, Hillsboro, Oregon, 97124, United States		
Production Facility (1)	: e-BI International Technologies (Shenzhen) Co., Ltd.		
Address	: Floor 13, Tower C, Chuangwei Building, 008 Gaoxin South First Road, High-Tech Park, Nanshan, Shenzhen, China 518057		
Production Facility (2)	: IBE Electronics Co., Ltd.		
Address	: IBE Industry Mansion, TangTou No.1 Industry Estate, Shiyan Town, Bao'an District, Shenzhen, China.		
Production Facility (3)	: VIETNAM IBE LASER TECHNOLOGY CO LTD.		
Address	Lot CN-34 and lot CN-39, Thuan Thanh II Industrial Park, An Binh & Mao Dien Commune, Thuan Thanh District, Bac Ninh Province, Vietnam.		
Test Result	nPositive oNegative		
Total pages including Appendices	22		

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1 Table of Contents	2
2 Description of Equipment Under Test	3
3 Summary of Test Standards	4
4 Details about the Test Laboratory	5
4.1 Test Equipment Site List	6
4.2 Measurement System Uncertainty	7
5 Summary of Test Results	8
6 General Remarks	9
7 Test Setups10	0
7.1 Radiated test setups 9kHz-30MHz1	0
7.2 Radiated test setups 30MHz-1GHz1	0
7.3 Radiated test setups Above 1GHz1	0
7.4 AC Power Line Conducted Emission test setups1	1
7.5 Conducted RF test setups1	1
8 Emission Test Results12	2
8.1 Spurious Radiated Emission1	2
8.2 20dB & 99% Bandwidth1	5
9 Test setup procedure	6
10 Appendix A – General Models Information20	0
11 Appendix B – General Product Information2	1

2 Description of Equipment Under Test

Description of the Equipment Under Test

Product:	SmartLock
Model no.:	CamLock, PlungerLock
FCC ID:	2AA2X-15000333
Rating:	3.0V DC (CR2477 battery)
Frequency:	125 kHz (TX and RX)
Modulation:	AM

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.	REMARK
MTI Connect HUB	MTI		System Monitoring
User Tags	MTI		System Monitoring

Auxiliary Software Used during Test:

DESCRIPTION	SOFTWARE NAME	VERSION	REMARK
/	/	/	/

3 Summary of Test Standards

Test Standards

FCC Part 15 Subpart C 10-1-20 Edition Federal Communications Commission, PART 15 — Radio Frequency Devices, Subpart C — Unintentional Radiators

All the tests were performed using the procedures from ANSI C63.4(2014) and ANSI C63.10 (2013).

4 Details about the Test Laboratory

Site 1

Company name:

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13 Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Shenzhen 518052, P.R.China FCC Registration Number: 514049 ISED test site number: 10320A

Emission Tests		
Test Item Test Site		
FCC Part 15 Subpart C		
FCC Title 47 Part 15.205, 15.209 Spurious Radiated Emission	Site 1	
FCC Title 47 Part 15.207 Conduct Emission	N/A	
FCC Title 47 Part 15.215 20dB & 99%Bandwidth	Site 1	

4.1 Test Equipment Site List

Radiated emission Test - Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2023-5-28
Signal Analyzer	Rohde & Schwarz	FSV40	101031	2023-5-27
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100398	2023-8-17
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2023-7-12
Horn Antenna	Rohde & Schwarz	HF907	102294	2023-6-19
Wideband Horn Antenna	Q-PAR	QWH-SL-18- 40-K-SG	12827	2023-7-12
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2023-5-28
Pre-amplifier	Rohde & Schwarz	SCU 40A	100432	2023-7-27
Attenuator	Mini-circuits	UNAT-6+	15542	2023-5-27
3m Semi-anechoic chamber	TDK	9X6X6		2023-5-28
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

Conducted Emission Test – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2023-5-27
LISN	Rohde & Schwarz	ENV4200	100249	2023-5-27
LISN	Rohde & Schwarz	ENV432	101318	2023-5-27
LISN	Rohde & Schwarz	ENV216	100326	2023-5-27
LISN	Rohde & Schwarz	ENV216	102472	2023-5-27
ISN	Rohde & Schwarz	ENY81	100177	2023-5-27
ISN	Rohde & Schwarz	ENY81-CA6	101664	2023-5-27
High Voltage Probe	Schwarzbeck	TK9420(VT9420)	9420-584	2023-5-31
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2023-5-27
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2023-5-27
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A
Shielding Room	TDK	CSR #1		2023-5-27

20dB & 99% Bandwidth, Peak Output Power, Spurious Emissions at Antenna Terminals, 100kHz Bandwidth of band edges, Power Spectral Density – Site 1

ſ	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
	Signal Analyzer	Rohde & Schwarz	FSV40	101030	2023-5-27
	RF Switch Module	Rohde & Schwarz	OSP120/OSP- B157	101226/100851	2023-5-27

4.2 Measurement System Uncertainty

Measurement System Uncertainty Emissions

System Measurement Uncertainty			
Items	Extended Uncertainty		
Uncertainty for Radiated Emission in 3m chamber 9kHz-30MHz	4.76dB		
Uncertainty for Radiated Emission in 3m chamber	Horizontal: 5.12dB;		
30MHz-1000MHz	Vertical: 5.10dB;		
Uncertainty for Radiated Emission in 3m chamber	Horizontal: 5.01dB;		
1000MHz-25000MHz	Vertical: 5.00dB;		
Uncertainty for Conducted Emission at AC Power Line 150kHz-30MHz	3.21dB		
Uncertainty for conducted power test	1.16dB		
Uncertainty for frequency test	0.6×10 ⁻⁷		

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.

5 Summary of Test Results

Emission Tests				
FCC Part 15 Subpart C				
Test Condition	Pages	Te	st Res	ult
		Pas	Fail	N/A
		S		
FCC Title 47 Part 15.205, 15.209 Spurious Radiated Emission	12-14	\square		
FCC Title 47 Part 15.207 Conduct Emission (1)				\boxtimes
FCC Title 47 Part 15.215 20dB & 99% Bandwidth	15	\square		

Remark:

(1) Test not applicable for the Battery Operate Device

6 General Remarks

Remarks

All tests were performed on model: CamLock.

Client informs that the model **PlungerLock** have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction, with SmartLock, CamLock. The difference lies only in outlook / color of the different models.

This submittal(s) (test report) is intended for FCC ID: 2AA2X-15000333, complies with Section 15.205, 15.209, 15.215 of the FCC Part 15, Subpart C rules for the DCD grant.

The TX and RX frequency range is 125kHz.

SUMMARY:

- All tests according to the regulations cited on page 8 were

- n Performed
- O Not Performed
- The Equipment Under Test
 - n Fulfills the general approval requirements.
 - **Does not** fulfill the general approval requirements.

Sample Received Date: 18 March, 2023 **Testing Start Date:** 21 March, 2023

Testing End Date: 2 April, 2023

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

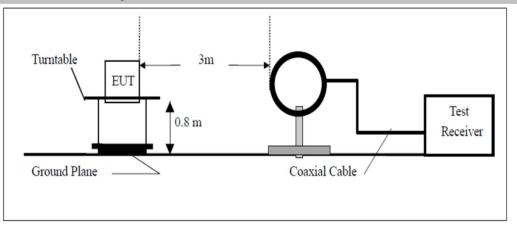
Prepared by:

Tested by:

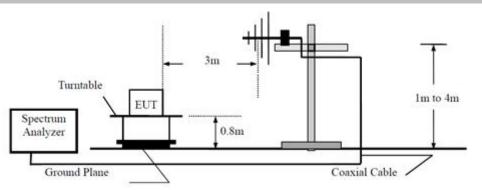
Fric I I Section Manager

Hosea CHAN EMC Project Engineer

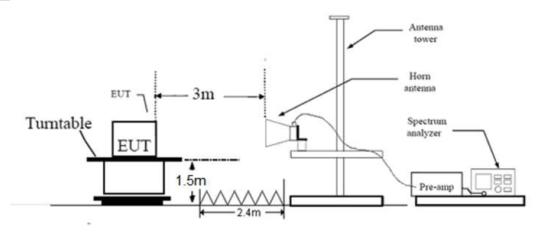
Louise Liu


inse Lin

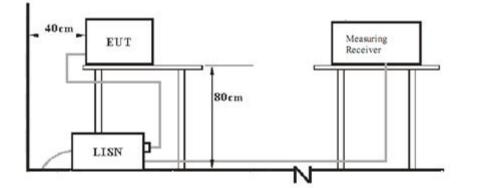
EMC Test Engineer



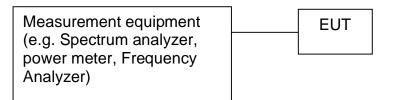
7 Test Setups


7.1 Radiated test setups 9kHz-30MHz

7.2 Radiated test setups 30MHz-1GHz



7.3 Radiated test setups Above 1GHz



7.4 AC Power Line Conducted Emission test setups

7.5 Conducted RF test setups

8 Emission Test Results

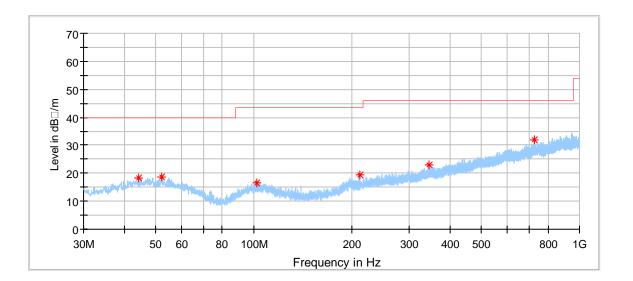
8.1 Spurious Radiated Emission

EUT:	CamLock
Op Condition:	Operated, TX Mode
Test Specification:	FCC15.205, 15.209
Comment:	3.0 VDC
Remark:	9kHz to 30MHz

Test Result
🛛 Passed
Not Passed

Frequency	Result	Limit	Margin	Detector	RSE. or Fund.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	
0.125000	49.93	105.60	55.70	Peak	Fundamental
0.027706	48.35	118.90	70.60	Peak	Spurious emission
0.040020	49.35	115.50	66.20	Peak	Spurious emission
0.056000	48.91	112.50	63.60	Peak	Spurious emission
0.088007	44.89	108.60	63.70	Peak	Spurious emission
2.428550	38.58	69.50	30.90	Peak	Spurious emission
2.572825	32.36	69.50	37.10	Peak	Spurious emission
4.259350	30.00	69.50	39.50	Peak	Spurious emission

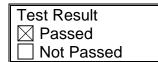
Remark:

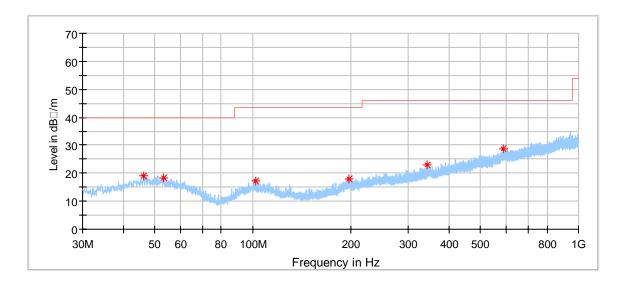

- 1. According to C63.10, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform a quasi-peak measurement, so quasi-peak emission value did not show in data table if the peak value complies with quasi-peak limit.
- Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)
- 3. The testing was performed at 3m distance, the limit has been transferred form 300m/30m to 3m.

Not Passed

Spurious Radiated Emission

EUT:	CamLock	Test Result
Op Condition:	Operated, TX Mode	🛛 Passed
Test Specification:	FCC15.205, 15.209	Not Pass
Comment:	3.0 VDC	
Remark:	30MHz to 1GHz, Antenna: Horizontal	




Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)
44.280556	18.31	40.00	21.69
52.148333	18.64	40.00	21.36
102.426667	16.63	43.50	26.87
211.551667	19.21	43.50	24.29
346.273889	23.12	46.00	22.88
727.537778	31.91	46.00	14.09

Spurious Radiated Emission

EUT:	CamLock
Op Condition:	Operated, TX Mode
Test Specification:	FCC15.205, 15.209
Comment:	3.0 VDC
Remark:	30MHz to 1GHz, Antenna: Vertical

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)
46.166667	18.95	40.00	21.05
53.387778	18.41	40.00	21.59
101.833889	17.25	43.50	26.25
197.486667	18.01	43.50	25.49
343.525556	23.00	46.00	23.00
586.025556	28.88	46.00	17.12

Test Result

🛛 Passed

Not Passed

8.2 20dB & 99% Bandwidth

EUT: Op Condition: Test Specification: Comment:

CamLock Operated, TX Mode FCC15.215, 20dB Bandwidth 3.0 VDC

Spect	um										
Ref Le	vel -	9.00 d	Bm Offset 1.	00 dB 👄 R	BW 1 kHz						
Att		10				Mode Auto	FFT				
●1Pk Ma	эх										
-20 dBm							1[1]			_	0.59 dB 5.790 kHz 52.85 dBm
							-[-]				22.250 kHz
-30 dBm					M	2					
-40 dBm	-				A			_			
-50 dBm		1 -52.	830 dBm		M	41		_			
-60 dBm	-					hy	2	6	~		
-70 dBm	+		har	\sim	V			VΨ	m	~~	
-80 dBm			$\sim N$						~		$\lambda \sim \omega$
-90 dBm		\sim									
-100 dB	m										
CF 125	CF 125.0 kHz 691 pts Span 100.0 kHz										
Marker	Marker										
Туре	Ref		X-value		Y-value	Func	tion		Func	tion Result	
M1		1		25 kHz	-52.85 dBr						
D1 M2	M1	1		79 kHz 86 kHz	0.59 d -32.85 dBr						

Bandwidth	Measured Value		
20dB bandwidth	5.79 kHz		

9 Test setup procedure

9.1 Field strength of emissions and Restricted bands

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3-meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥3RBW, Sweep = auto, Detector function = peak and average, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 120KHz, VBW≥3RBW, Sweep = auto, Detector function = QP, Trace = max hold.

Field strength of emissions and Restricted bands

Limits

According to §15.209 (a), the field strength of emissions from intentional radiators shall not exceed the field strength levels specified in the following table:

Fundamental frequency (MHz)	Field strength (microvolts/meter)	Field strength of harmonics (microvolts/meter)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

9.2 Conducted Emission at AC Power line

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency MHz	QP Limit dBµV	AV Limit dBμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

*Decreasing linearly with logarithm of the frequency.

9.3 20dB & 99% Bandwidth

Test Method

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to spectrum analyser. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.

Limits:

According to 15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

10 Appendix A – General Models Information

Model Declaration Letter

To: TÜV SÜD Hong Kong Limited

Attention: Eric Li From: Fax No: Project No.:

Date: May 3, 2023 Total Page (Cover Included): 1

Subject: Declaration letter

We: Company name: Mobile Technologies Inc.

Address: 1050 NE 67th Ave, Hillsboro OR 97124,

Country: United States of America

Officially notify TÜV SÜV Hong Kong Limited that the <<<u>Model A>></u> have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction, with <<<u>PRODUCT>></u>, <<u>Kodel B>></u>. The difference lies only in <u>the mechanism of opening and close</u> of the different models.

<<Model A>>: CamLock

<<Model B>>: PlungerLock

<<Product>>: SmartLock

Applicant:

(Apr 18,2023)

(Applicant's authorized signature and company Chop)

11 Appendix B – General Product Information

Radiofrequency radiation exposure evaluation

This exposure evaluation is intended for FCC ID: 2AA2X-15000333

According to KDB 447498 D01v06 section 4.3.1, For frequencies below 100 MHz and test separation distances \leq 50 mm, the Numeric threshold is determined as:

Step a)

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR

Step b)

{[Power allowed at numeric threshold for 50mm in step a)] + [(test separation distance – 50mm) \cdot (f(MHz)/150)]} mW

Step c) 1)

For test separation distances > 50mm and < 200mm, the power threshold at the corresponding test separation distance at 100MHz in step b) is multiplied by $[1 + \log(100/f(MHz))]$

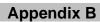
Step c) 2)

For test separation distances \leq 50mm, the power threshold determined by the equation in c) 1) for 50mm and 100MHz is multiplied by $\frac{1}{2}$.

>> The fundamental frequency of the EUT is 125kHz, the test separation distance is ≤ 50mm. (Manufacturer specified the separation distance is: 20mm)

Step a)

>> Numeric threshold, mW / 50mm * $\sqrt{0.1GHz} \le 3.0$ Numeric threshold ≤ 474.3 mW


Step b)

>> Numeric threshold ≤ 474.3mW + (50mm-50mm) * 100MHz/150) Numeric threshold ≤ 474.3mW

Step c) 1) & c) 2)

>> Numeric threshold ≤ 474.3mW * [1 + log 100/100MHz] * ½ Numeric threshold ≤ 237.15mW

>> The power (calculated power + tune up tolerance) of EUT at 125kHz is: 0.00003mW Which is smaller than the Numeric threshold. Therefore, the device is exempt from stand-alone SAR test requirements.

China

Power calculation (According to C63.10 chapter 9.5)

	Value	Unit
Field Strength Measured (E)	49.93	dBµV/m
Measurement Distance (D)	3	m
Equivalent Isotropically Radiated Power (E.I.R.P in dBm)	-45.23	dBm
Equivalent Isotropically Radiated Power (E.I.R.P in mW)	0.00003	mW

Remark: EIRP = E + $20\log(D) - 104.7$

(EIRP is in dBm, E is in dBµV/m, D is in meters)

Reviewed by:

Eric LI Section Manager

Prepared by:

Hosea CHAN EMC Project Engineer