

FCC - TEST REPORT

Report Number :	60.790.20.086.01R01	Date of Issue	: February 5, 2021
Model :	FREEDOM FOCUS		
Product Type :	Merchandise Theft Det	errent System	
Applicant :	Mobile Technologies Inc.		
Address :	1050 NE 67th Ave, Hillst	ooro, OR 97124, Un	ited States of America
Production Facility :	E-BI International, Inc.		
Address :	Floor 13, Tower C, Chua Road, High-Tech Park, N	0	
Test Result :	■Positive	□Negative	
Total pages including : Appendices	44		

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1 Table of Contents2
2 Description of Equipment Under Test3
3 Summary of Test Standards4
4 Details about the Test Laboratory5
4.1 Test Equipment Site List6
4.2 Measurement System Uncertainty7
5 Summary of Test Results8
6 General Remarks9
7 Test Setups
7.1 Radiated test setups Below 1GHz10
7.2 Radiated test setups Above 1GHz10
7.3 AC Power Line Conducted Emission test setups11
7.4 Conducted RF test setups11
8 Emission Test Results12
8.1 Spurious Radiated Emission12
8.2 Conducted Emission at AC Power line16
8.3 6dB & 99% Bandwidth18
8.4 Peak Output Power21
8.5 Spurious Emissions at Antenna Terminals24
8.6 100kHz Bandwidth of band edges30
8.7 Power Spectral Density
8.8 Antenna Requirement
9 Test setup procedure
10 Appendix A - General Product Information44

2 Description of Equipment Under Test

Description of the Equipment Under Test

Product:	Merchandise Theft Deterrent System
Model no.:	FREEDOM FOCUS
FCC ID:	2AA2X-15000256
Rating:	Adapter Model:W&T-AD36W059350F Input: AC100-240V. 1.0A Output: DC 5.9V, 3.5A Main unit input: DC 5.9V, 3.5A Main unit outout(USB type-C):DC5.2V, 3.0A Internal rechargeable battery: DC3.7V, type LIR2302H x 2 DC3.7V, type802245 x 2
Frequency:	2405MHz-2480MHz (Tx and Rx)
Antenna gain:	0 dBi
Number of operated channel:	16
Modulation:	O-QPSK

Auxiliary Equipment and Software Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
/	1	/	/

Auxiliary Software Used during Test:

DESCRIPTION	SOFTWARE NAME	VERSION	REMARK
	/	/	/

3 Summary of Test Standards

Test Standards

FCC Part 15 Subpart C 10-1-20 Edition Federal Communications Commission, PART 15 — Radio Frequency Devices, Subpart C —Intentional Radiators

All the test methods were according to KDB558074 D01 v05r02 DTS Measurement Guidance and ANSI C63.10 (2013).

4 Details about the Test Laboratory

Site 1

Company name:

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13 Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Shenzhen 518052, P.R.China FCC Registration Number: 514049 ISED test site number: 10320A

Emission Tests		
Test Item	Test Site	
FCC Part 15 Subpart C		
FCC Title 47 Part 15.205, 15.209 & 15.247(d) Spurious Radiated Emission	Site 1	
FCC Title 47 Part 15.207 Conduct Emission	Site 1	
FCC Title 47 Part 15.247(a)(1) 6dB & 99% Bandwidth	Site 1	
FCC Title 47 Part 15.247(b) Peak Output Power	Site 1	
FCC Title 47 Part 2.1051 & 15.247(d) Spurious Emissions at Antenna Terminals	Site 1	
FCC Title 47 Part 15.247(d) 100kHz Bandwidth of band edges	Site 1	
FCC Title 47 Part 15.247(e) Power Spectral Density	Site 1	
FCC Title 47 Part 15.203 & 15.247(b) Antenna Requirement	Site 1	

4.1 Test Equipment Site List

Radiated emission Test - Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2021-6-29
Signal Analyzer	Rohde & Schwarz	FSV40	101031	2021-6-22
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100398	2021-7-7
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2021-8-4
Horn Antenna	Rohde & Schwarz	HF907	102294	2021-7-5
Wideband Horn Antenna	Q-PAR	QWH-SL-18- 40-K-SG	12827	2021-6-21
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2021-6-21
Pre-amplifier	Rohde & Schwarz	SCU 40A	100432	2021-7-30
Attenuator	Agilent	8491A	MY39264334	2021-6-21
3m Semi-anechoic chamber	TDK	9X6X6		2022-10-28
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

Conducted Emission Test – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2021-6-29
LISN	Rohde & Schwarz	ENV4200	100249	2021-6-12
LISN	Rohde & Schwarz	ENV432	101318	2021-6-12
LISN	Rohde & Schwarz	ENV216	100326	2021-6-12
LISN	Rohde & Schwarz	ENV216	102472	2021-6-12
ISN	Rohde & Schwarz	ENY81	100177	2021-6-12
ISN	Rohde & Schwarz	ENY81-CA6	101664	2021-6-12
High Voltage Probe	Schwarzbeck	TK9420(VT9420)	9420-584	2021-6-23
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2021-6-28
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2021-6-21
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A
Shielding Room	TDK	CSR #1		2020-11-07

20dB & 99% Bandwidth, Peak Output Power, Spurious Emissions at Antenna Terminals, 100kHz Bandwidth of band edges, Power Spectral Density – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2021-6-21
RF Switch Module	Rohde & Schwarz	OSP120/OSP- B157	101226/100851	2021-6-21

4.2 Measurement System Uncertainty

Measurement System Uncertainty Emissions

System Measurement Uncertainty		
Items	Extended Uncertainty	
Uncertainty for Radiated Emission in 3m chamber 9kHz-30MHz	4.76dB	
Uncertainty for Radiated Emission in 3m chamber 30MHz-1000MHz	Horizontal: 5.12dB; Vertical: 5.10dB;	
Uncertainty for Radiated Emission in 3m chamber 1000MHz-25000MHz	Horizontal: 5.01dB; Vertical: 5.00dB;	
Uncertainty for Conducted Emission at AC Power Line 150kHz-30MHz	3.21dB	
Uncertainty for conducted power test	1.16dB	
Uncertainty for frequency test	0.6×10 ⁻⁷	

5 Summary of Test Results

Emission Tests				
FCC Part 15 Subpart C				
Test Condition	Pages	Те	st Resi	ult
		Pass	Fail	N/A
		N		
FCC Title 47 Part 15.205, 15.209 & 15.247(d) Spurious Radiated Emission	12-15			
FCC Title 47 Part 15.207 Conduct Emission	16-17	\square		
FCC Title 47 Part 15.247(a)(2) 6dB & 99% Bandwidth	18-20	\square		
FCC Title 47 Part 15.247(b) Peak Output Power	21-23			
FCC Title 47 Part 2.1051 & 15.247(d) Spurious Emissions at Antenna Terminals	24-29	\square		
FCC Title 47 Part 15.247(d) 100kHz Bandwidth of band edges	30-31			
FCC Title 47 Part 15.247(e) Power Spectral Density	32-34			
FCC Title 47 Part 15.203 & 15.247(b) Antenna Requirement	35			

6 General Remarks

Remarks

This submittal(s) (test report) is intended for **FCC ID: 2AA2X-15000256**, complies with Section 15.203, 15.205, 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules for the DTS grant.

The TX and RX range is 2405MHz-2480MHz.

The 3.7V battery is a backup in case the product is removed from its AC/DC adapter. Normally the product is fixed and connected to the adapter, therefore, all RF test results on this report are based on this case with the adapter. However, we have checked the result at 3.7V, no obvious difference.

SUMMARY:

- All tests according to the regulations cited on page 8 were

- Performed
- □ **Not** Performed
- The Equipment Under Test
 - - Fulfills the general approval requirements.

Does not fulfill the general approval requirements.

Sample Received Date: December 21, 2020

Testing Start Date:

December 23, 2020

Testing End Date:

January 20, 2021

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

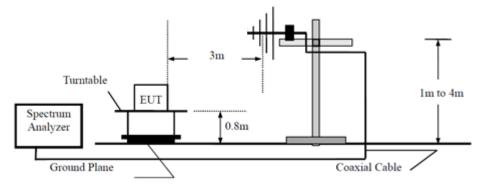
Prepared by:

Tested by:

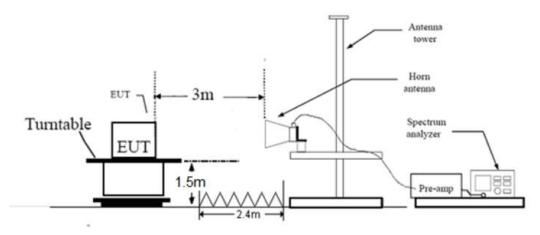
Eric LI EMC Project Manager

2112

Hosea CHAN EMC Project Engineer

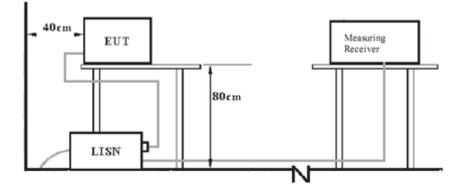

ince Lin

Louise Liu EMC Test Engineer

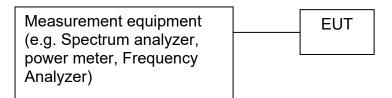


7 Test Setups

7.1 Radiated test setups Below 1GHz



7.2 Radiated test setups Above 1GHz



7.3 AC Power Line Conducted Emission test setups

7.4 Conducted RF test setups

8 Emission Test Results

8.1 Spurious Radiated Emission

EU	T:
Ор	Condition:

Comment:

Remark:

FREEDOM FOCUS Operated, TX Mode (Lowest channel is the worst case) **Test Specification:** FCC15.205, 15.209 & 15.247(d) 120V AC, 60Hz **Below 1GHz**

Test Result ⊠ Passed

Not Passed

Frequency	Result	Limit	Over Limit	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
82.258750	30.01	40.00	-9.99	Peak	Н	11.68
140.276875	35.40	43.50	-8.10	Peak	Н	12.91
158.403750	35.98	43.50	-7.52	Peak	Н	13.11
209.935000	30.24	43.50	-13.26	Peak	Н	16.60
284.746250	33.72	46.00	-12.28	Peak	Н	18.31
922.824375	35.89	46.00	-10.11	Peak	Н	29.65
56.250625	30.89	40.00	-9.11	Peak	V	17.41
74.377500	30.58	40.00	-9.42	Peak	V	12.38
130.516250	33.69	43.50	-9.81	Peak	V	13.17
159.434375	36.96	43.50	-6.54	Peak	V	13.14
212.117500	31.51	43.50	-11.99	Peak	V	16.61
274.743125	31.65	46.00	-14.35	Peak	V	18.01

Remark:

1. As the measured peak value not exceeded the Quasi-peak limit, Quasi-peak value no need to be measured.

2. Result Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

Spurious Radiated Emission

EUT: Op Condition:	FREEDOM FOCUS Operated, TX Mode (2405MHz)
Test Specification:	FCC15.205, 15.209 & 15.247(d)
Comment:	120V AC, 60Hz
Remark:	1GHz to 25GHz

Test Result	
🛛 Passed	
Not Passed	

Frequency	Result	Limit	Over Limit	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
1845.500000	42.05	74.00	-31.95	Peak	Н	-6.10
3483.000000	45.74	74.00	-28.26	Peak	Н	-1.47
4810.000000	51.32	74.00	-22.68	Peak	Н	1.44
8234.000000	43.82	74.00	-30.18	Peak	Н	6.19
10192.000000	44.93	74.00	-29.07	Peak	Н	9.03
13775.500000	45.76	74.00	-28.24	Peak	Н	9.70
1886.500000	44.72	74.00	-29.28	Peak	V	-5.73
3509.500000	47.27	74.00	-26.73	Peak	V	-1.34
4810.000000	54.09	74.00	-19.91	Peak	V	1.44
4810.000000	44.09	54.00	-5.91	Average	V	1.44
8307.500000	43.09	74.00	-30.91	Peak	V	6.40
10069.500000	44.61	74.00	-29.39	Peak	V	9.28
13143.500000	45.95	74.00	-28.05	Peak	V	9.21

Remark:

- 1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

Spurious Radiated Emission

EUT:	FREEDOM FOCUS
Op Condition:	Operated, TX Mode (2445MHz)
Test Specification:	FCC15.205, 15.209 & 15.247(d)
Comment:	120V AC, 60Hz
Remark:	1GHz to 25GHz

Test Result	
🛛 Passed	
Not Passed	

Δnt

Frequency	Result	Limit	Over Limit	Detector	Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
1992.500000	42.30	74.00	-31.70	Peak	Н	-5.05
3262.000000	45.54	74.00	-28.46	Peak	Н	-1.90
4655.000000	49.03	74.00	-24.97	Peak	Н	1.24
7665.000000	43.07	74.00	-30.93	Peak	Н	5.58
9782.000000	48.04	74.00	-25.96	Peak	Н	7.84
12249.000000	45.38	74.00	-28.62	Peak	Н	9.01
1900.000000	42.69	74.00	-31.31	Peak	V	-5.58
4889.500000	51.45	74.00	-22.55	Peak	V	-3.84
5522.500000	51.25	74.00	-22.75	Peak	V	3.33
7412.500000	41.45	74.00	-32.55	Peak	V	5.53
9778.500000	45.40	74.00	-28.60	Peak	V	7.84
12511.500000	46.10	74.00	-27.90	Peak	V	9.20

Remark:

- 1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

Spurious Radiated Emission

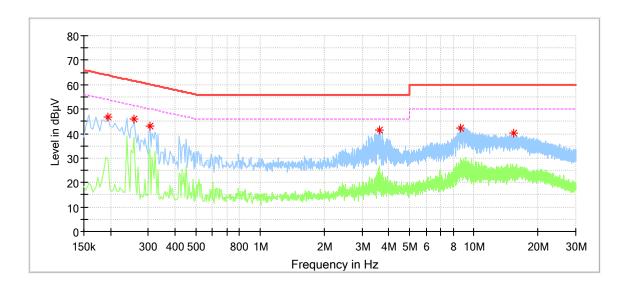
EUT:	FREEDOM FOCUS
Op Condition:	Operated, TX Mode (2480MHz)
Test Specification:	FCC15.205, 15.209 & 15.247(d)
Comment:	120V AC, 60Hz
Remark:	1GHz to 25GHz

Test Result	
🛛 Passed	
Not Passed	

Frequency	Result	Limit	Over Limit	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
1889.500000	42.79	74.00	-31.21	Peak	Н	-5.70
2956.000000	44.49	74.00	-29.51	Peak	Н	-2.50
4788.500000	49.35	74.00	-24.65	Peak	Н	1.39
7455.500000	41.23	74.00	-32.77	Peak	Н	5.46
9918.500000	47.34	74.00	-26.66	Peak	Н	8.07
13035.500000	45.28	74.00	-28.72	Peak	Н	9.53
1992.500000	42.23	74.00	-31.77	Peak	V	-5.05
2863.500000	43.60	74.00	-30.41	Peak	V	-2.73
4961.000000	49.26	74.00	-24.74	Peak	V	1.43
8869.500000	43.64	74.00	-30.36	Peak	V	6.46
9922.000000	46.62	74.00	-27.38	Peak	V	8.08
13454.500000	45.81	74.00	-28.19	Peak	V	9.73

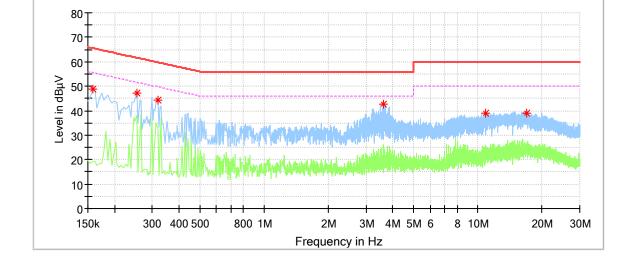
Remark:

1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.


 Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

8.2 Conducted Emission at AC Power line

EUT: Op Condition: Test Specification: Comment: FREEDOM FOCUS 2.4G Link and USB full load AC Mains, L Line 120V AC, 60Hz Test Result ⊠ Passed ☐ Not Passed



Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Over Limit (dB)	Corr. (dB)
0.194000	46.87		63.86	-16.99	9.64
0.258000	45.95		61.50	-15.55	9.64
0.306000	43.17		60.08	-16.90	9.64
3.630000	41.31		56.00	-14.69	9.73
8.650000	42.08		60.00	-17.92	9.86
15.366000	40.12		60.00	-19.88	9.90

Report Number: 60.790.20.086.01R01

Conducted Emission Test

EUT: Op Condition: Test Specification: Comment: FREEDOM FOCUS 2.4G Link and USB full load AC Mains, N Line 120V AC, 60Hz

Frequency	MaxPeak	Average	Limit	Over Limit	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)
0.158000	48.72		65.57	-16.85	9.62
0.254000	47.08		61.63	-14.54	9.63
0.318000	44.24		59.76	-15.52	9.63
3.614000	42.50		56.00	-13.50	9.72
10.846000	39.03		60.00	-20.97	9.88
16.922000	39.11		60.00	-20.89	9.94

8.3 6dB & 99% Bandwidth

EUT: Op Condition: Test Specification: Comment:

FREEDOM FOCUS Operated, TX Mode (2405MHz) FCC15.247(a)(2), 6dB Bandwidth & 99% Bandwidth 120V AC, 60Hz

₩ Spectrum
 Ref Level 30.00 dBm

 Att
 40 dB

 Count 100/100
 Offset 1.00 dB ● RBW 100 kHz SWT 37.9 µs ● VBW 300 kHz Mode Auto FFT o1Pk View -15. 2.40425000 G -8.01 df 290<u>00 (</u> M1[1] 14.24 dB GI 20 dBrr M2[1] 10 dBr 0 dBn X -10 dBm 1 -14.01 -20 dBm -30 dBm -40 dBr -50 dBn -60 dBm CF 2.405 GHz 1001 pts Span 10.0 MHz X-value 2.40425 GHz 2.40528 GHz 1.56 MHz Function Type Ref Trc M1 1 1 Y-value -14.24 dBm Function Result M1 M2 D3 -8.01 dBm -0.18 dB M1

Date: 20.JAN.2021 17:00:29

Spectrum Ref Level 30.00 dBm Att 40 dB Count 100/100 PIPk View
 Offset
 1.00 dB
 RBW
 100 kHz

 SWT
 37.9 μs
 VBW
 500 kHz
 40 dB Mode Auto FFT -7.99 dBr 2.40528000 GH 2.327672328 MH M1[1] 20 dBrr : Bw 10 dBm 0 dBr м1 Х -10 dBm -20 dBm -30 dBr -40 dBm -50 dBm -60 dBm 1001 pts Span 10.0 MHz CF 2.405 GH

Date: 20.JAN.2021 17:00:41

Bandwidth	Measured Value	Limit
6dB bandwidth	1.560 MHz	> 0.5MHz
99% OCB	2.328 MHz	NA

Test Result	
🛛 Passed	
Not Passed	

6dB & 99% Bandwidth

EUT: Op Condition: Test Specification: Comment: FREEDOM FOCUS Operated, TX Mode (2445MHz) FCC15.247(a)(2), 6dB Bandwidth & 99% Bandwidth 120V AC, 60Hz

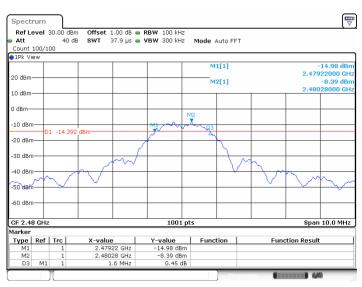
Test Result	
🛛 Passed	
Not Passed	

Spectrum RefLevel 30.00 dBm Att 40 dB Mode Auto FFT Count 100/100 ●1Pk Viev M1[1] 15.10 dB -15.10 GB 2.44422000 GF -8.71 dB 2.44477000 GF 20 dBrr M2[1] 10 dBrr 0 dBn M2 -10 dBm Q D1 -14.711 dBn -20 dBm -30 dBm -40 dBm -50 dBr -60 dBm CF 2.445 GHz 1001 pts Span 10.0 MHz larkei Marker Type Ref Trc M1 1 M2 1 D3 M1 1 X-value 2.44422 GHz 2.44477 GHz 1.56 MHz Y-value -15.10 dBm -8.71 dBm 0.35 dB Function Function Result

Date: 20.JAN.2021 17:02:21

Date: 20.JAN.2021 17:02:32

Bandwidth	Measured Value	Limit
6dB bandwidth	1.560 MHz	> 0.5 MHz
99% OCB	2.378 MHz	NA


Test Result

Not Passed

6dB & 99% Bandwidth

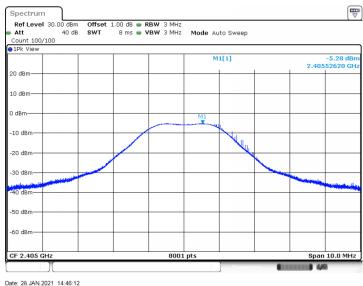
EUT:
Op Condition:
Test Specification:
Comment:

FREEDOM FOCUS Operated, TX Mode (2480MHz) FCC15.247(a)(2), 6dB Bandwidth & 99% Bandwidth 120V AC, 60Hz

Date: 20.JAN.2021 17:04:27

Date: 20.JAN.2021 17:04:38

Bandwidth	Measured Value	Limit
6dB bandwidth	1.600 MHz	> 0.5 MHz
99% OCB	2.448 MHz	NA



8.4 Peak Output Power

EUT: Op Condition: Test Specification: Comment:

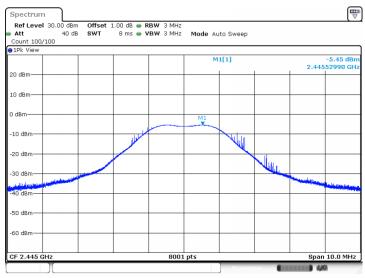
FREEDOM FOCUS Operated, TX Mode (2405MHz) FCC15.247(b) 120V AC, 60Hz

Test Result \boxtimes Passed Not Passed

Date:	28	JAN.2021	14:46:12	
ate.	20.	JAIN. 2021	14,40,12	

Conducted Output Power	Limit	
-5.28 dBm	< 30dBm	

Test Result


Passed

Not Passed

Peak Output Power

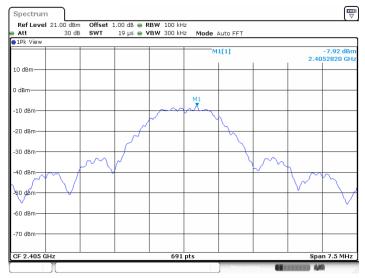
EUT:
Op Condition:
Test Specification:
Comment:

FREEDOM FOCUS Operated, TX Mode (2445MHz) FCC15.247(b) 120V AC, 60Hz

Date: 28.JAN.2021 14:47:43

Conducted Output Power	Limit
-5.45 dBm	< 30dBm

Peak Output Power


EUT: Op Condition: Test Specification:	Operated FCC15.2	()	0MHz)		Test Result Passed Not Passed
Comment:	120V AC,	60Hz			
	Spectrum				
	Ref Level 30.00 dBm Att 40 dB Count 100/100	Offset 1.00 dB	ode Auto Sweep		
	●1Pk View		M1[1]	-5.4	l6 dBm
	20 dBm			2.479561	
	10 dBm				
	0 dBm	M1			
	-10 dBm				
	-20 dBm				
	-30 dBm			and the state of t	and here a large of
	-40 dBm-				
	-50 dBm				
	-60 dBm				
	CF 2.48 GHz	8001 pt	;	Span 10.0) MHz
			Measurin		
	Date: 28.JAN.2021 14:49:00				_
	Condu	cted Output Po	wer	Limit	
		-5.46 dBm		< 30dBm	

8.5 Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: FREEDOM FOCUS Operated, TX Mode (2405MHz) FCC2.1051 & 15.247(d) 120V AC, 60Hz Test Result ⊠ Passed ☐ Not Passed

Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2405	2405	-7.92	-7.92		PASS
2405	30~1000	-7.92	-68.29	<=-27.92	PASS
2405	1000~26500	-7.92	-43.9	<=-27.92	PASS

Date: 20.JAN.2021 17:01:08

Page 24 of 44

Test Result

⊠ Passed

Not Passed

Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: FREEDOM FOCUS Operated, TX Mode (2405MHz) FCC2.1051 & 15.247(d) 120V AC, 60Hz

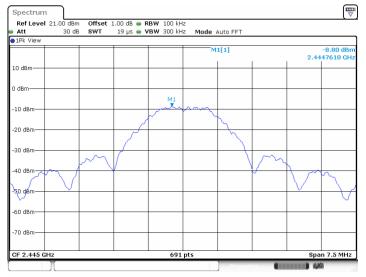
Ref Level 11.00 dBm Offset Att 20 dB SWT 3 Count 10/10 3 3	1.00 dB 👄 RBW 100 kH: 30.1 ms 👄 VBW 300 kH:		
1Pk Max			
		M1[1]	-68.29 dBn 658.4260 MH:
0 dBm			
-10 dBm			
-20 dBm			
-30 dBm D1 -27.920 dBm			
-40 dBm			
-50 dBm			
-60 dBm		M1	
70, dBm		printing production of particular on	and in the second s
-80 dBm	and the state of t	and a shift in the second s	All and a state of the state of
Start 30.0 MHz	30001	nts	Stop 1.0 GHz

Date: 20.JAN.2021 17:01:14

🕨 Att	20.00 dBn 30 dB			RBW 100 kH VBW 300 kH		Auto Sweep		
Count 9/10	1							
1Pk Max					м	1[1]		43.90 dB
10 dBm								
) dBm								
10 dBm								
-20 dEm								
30 dEm	D1 -27.920	dBm						
30 dEm	D1 -27.920	dBm						
30 dEm		dBm						
-30 dEm		dBm	201 20.00 (10.00 101)	attiga, da, tea at til				the difference
30 dEm		dBm	ing and fragments			Indianae Arento A		Ling) A chinatan Santari
-30 dE m		dBm	lei and fandeddi					

Date: 20.JAN.2021 17:01:22

Page 25 of 44



Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: FREEDOM FOCUS Operated, TX Mode (2445MHz) FCC2.1051 & 15.247(d) 120V AC, 60Hz

Test Result	
🛛 Passed	
Not Passed	

Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2445	2445	-8.80	-8.80		PASS
2445	30~1000	-8.80	-67.79	<=-28.8	PASS
2445	1000~26500	-8.80	-47.22	<=-28.8	PASS

Date: 20.JAN.2021 17:02:49

Test Result

⊠ Passed

Not Passed

Spurious Emissions at Antenna Terminals

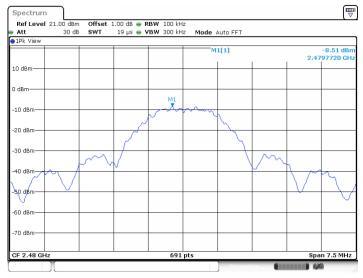
EUT: Op Condition: Test Specification: Comment: FREEDOM FOCUS Operated, TX Mode (2445MHz) FCC2.1051 & 15.247(d) 120V AC, 60Hz

Ref Level Att Count 10/10	20 dB		1.00 dB 👄 🛙 30.1 ms 👄 🎙			Auto Sweep			
1Pk Max	5								
					M	1[1]			67.79 dBm 1.0140 MHz
) dBm									
10 dBm									
20 dBm									
30 dBm —	01 -28.800	dBm							
40 dBm									
50 dBm									
50 dBm							M1		
70 dem me	(Weilfleyddirydd	भूत्र हो हे के का स		an the gal part of the parts		and the state	heller hele	A stable bin a bill	Concernation of the
30 dBm	na ny farita ang bang bang bang bang bang bang bang	uffik filment a filmet	n faldt fan Argjik	(hed) we can be dealed in	an a	and the sport	14, apopting a contractor		and a provide provide
Start 30.0 M	1Hz			3000	1 nts			Sto	p 1.0 GHz

Date: 20.JAN.2021 17:02:55

Att Count 8/10	30 dB	SWT	255 ms 👄	VBW 300 kH	z Mode	Auto Sweep			
1Pk Max									
					м	1[1]			-47.22 dBi 388750 GH
10 dBm							-		
) dBm									
-10 dBm									ļ
-20 dBm									
		I							1
-30 dBm-	01 -28.800	dBm							
-30 dBm — (01 -28.800	dBm <u>—</u>							
-30 UBIII		dBm							
-40 dBm	M1	dBm <u></u>							
-40 dBm		dBm			n berdaria antaria distante di		a line in success		and at the second
-40 dBm		dBm			a biglione and the biglion	and the second second	a literation provide product in provide	a statement of the stat	arch off. Days from
-40 dBm		dBm	a police by the statest	in the provided and the state of the state o		and the second second	calification at		
-40 dBm		dBm		a type of print of print		and the second second	an bhar than an a		srik di Das tana
-30 dBm 1 -40 dBm	MI	dBm	, J., J. , etc. 6 , 54, 54, 56, 56, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57	3000	en an	and the second second	culture to prove at		26.5 GHz

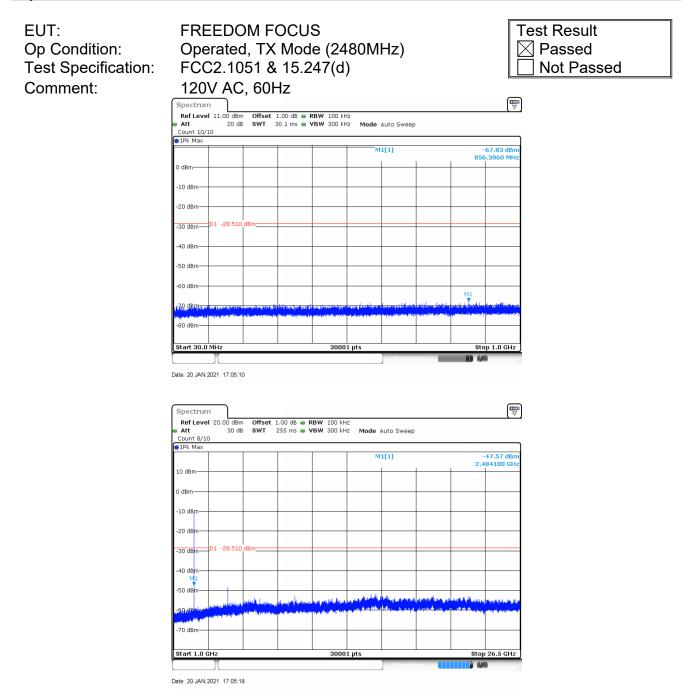
Date: 20.JAN.2021 17:03:03



Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: FREEDOM FOCUS Operated, TX Mode (2480MHz) FCC2.1051 & 15.247(d) 120V AC, 60Hz

Test Result	
🛛 Passed	
Not Passed	


Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2480	2480	-8.51	-8.51		PASS
2480	30~1000	-8.51	-67.83	<=-28.51	PASS
2480	1000~26500	-8.51	-47.57	<=-28.51	PASS

Date: 20.JAN.2021 17:05:04

Spurious Emissions at Antenna Terminals

Page 29 of 44

8.6 100kHz Bandwidth of band edges

EUT: Op Condition: Test Specification: Comment: FREEDOM FOCUS Operated, TX Mode (2405MHz) FCC15.247(d), Conducted 120V AC, 60Hz Test Result Passed
Not Passed

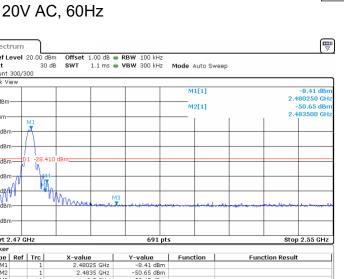
Ref L	evel	20.00 dBr 30 d		 RBW 100 kHz VBW 300 kHz 	Mode Auto F	FT	
Count				- 1211 000 MIL	Hous Autor		
∎1Pk Vi	ew						
					M1[1]		-8.77 dE 2.404770 G
10 dBm	-				M2[1]		-49.29 dE
					m2[1]		2.400000 G
0 dBm—						1	
-10 dBm							
10 001	'						
-20 dBm							
30 dBm	i - P	1 -28.770) dBm				
10.10							
-40 dBm							ма
-50 dBm	<u> </u>						
							M3 AN
60 dBr		ah Ana Allah an	All when a debut of	margunate	Manufacture a south	mannemme	
	• []		1				
-70 dBm	-						
Start 2		-		691 pt			Stop 2.405 GF
	.3 GH	Z		691 pt:	`		Stop 2.405 GF
1arker	n-6		X-value	Mariahan	Function		tion Result
Type M1	Ref	1	2.40477 GHz	Y-value -8.77 dBm	Function	Fund	tion Result
M1 M2		1	2.40477 GH2 2.4 GHz	-49.29 dBm			
M3		1	2.39 GHz	-60.86 dBm			
M4		1	2.399978 GHz	-49.38 dBm			

Date: 20.JAN.2021 17:01:02

Band edges	Limit
40.52 dB	> 20dB

Page 30 of 44

100kHz Bandwidth of band edges


EUT: Op Condition: Test Specification: Comment:

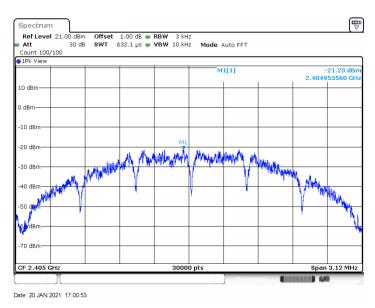
FREEDOM FOCUS Operated, TX Mode (2480MHz) FCC15.247(d), Conducted 120V AC, 60Hz

Spectrum Ref Level	20.00 dBn	n Offset 1.00 dB	RBW 100 kH	17		1
Att	30 di		VBW 300 kH		Sweep	
Count 300/3	300					
∋1Pk View						
				M1[1]		-8.41 dB
10 dBm						2.480250 G
				M2[1]		-50.65 dB
0 dBm				<u> </u>		2.483500 G
	M1					
-10 dBm	Λ					
-20 dBm	\square					
-20 ubm						
-30 dBm	1 -28.410) dBm				
ľ	N					
-40 dBm	101-					
All	MA.					
-50 dBm	- 11	Δh.	мз			
60 dBm-+		muran	- Jun - A Laboration		Jane - Andrew	سيبسد بربد استقطيت المستعمل
-70 dBm						
Start 2.47	Hz		691	pts		Stop 2.55 GH
4arker				-		
Type Ref	Trc	X-value	Y-value	Function	E Fi	unction Result
M1	1	2.48025 GHz	-8.41 dB	Im		
M2	1	2.4835 GHz				
M3	1	2.5 GHz				
M4	1	2.483913 GHz	-44.64 dB	lm		

Date: 20.JAN.2021 17:04:59

Band edges	Limit
42.24 dB	> 20dB

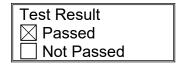
Test Result

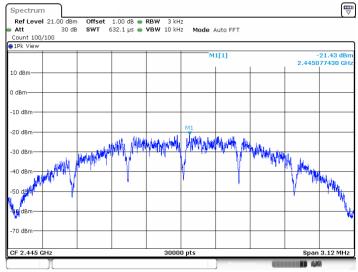

⊠ Passed

Not Passed

8.7 Power Spectral Density

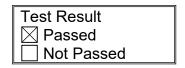
EUT: Op Condition: Test Specification: Comment: FREEDOM FOCUS Operated, TX Mode (2405MHz) FCC15.247(e) 120V AC, 60Hz Test Result Passed
Not Passed

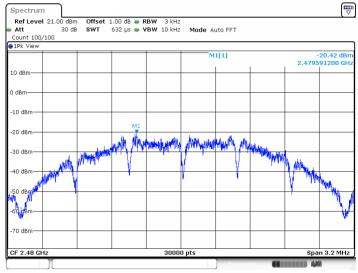



PSD	Limit
-21.23 dBm/3kHz	< 8 dBm/3kHz

Power Spectral Density

EUT: Op Condition: Test Specification: Comment:	FREEDOM FOCUS Operated, TX Mode (2445MHz) FCC15.247(e) 120V AC, 60Hz	
	Spectrum Ref Level 21.00 dBm Offset 1.00 dB • RBW 3 kHz	
	Att 30 dB SWT 632.1 µs ● VBW 10 kHz Mode Auto FFT Count 100/100	


Date: 20.JAN.2021 17:02:44


PSD	Limit
-21.43 dBm/3kHz	< 8 dBm/3kHz

Power Spectral Density

EUT: Op Condition: Test Specification: Comment:	FREEDOM FOCUS Operated, TX Mode (2480MHz) FCC15.247(e) 120V AC, 60Hz	
	Spectrum	
	Ref Level 21.00 dBm Offset 1.00 dB RBW 3 kHz	
	Att 30 dB SWT 632 µs VBW 10 kHz Mode Auto FFT Count 100/100	
	● 1Pk View	

Date: 20.JAN.2021 17:04:50

PSD	Limit
-20.42 dBm/3kHz	< 8 dBm/3kHz

8.8 Antenna Requirement

EUT: Op Condition: Test Specification: Comment: FREEDOM FOCUS Operated, TX Mode FCC15.203 & 15.247(b) 120V AC, 60Hz

Test Result	
🛛 Passed	
Not Passed	

Limit

For intentional device, according to FCC Title 47 Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC Title 47 Part 15.247(b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The antenna used in this product is an integrated chip antenna welded on PCB, and the maximum gain of this antenna is 0 dBi.

9 Test setup procedure

9.1 Spurious Radiated Emission

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz a) RBW = 1MHz.

b) VBW \ [3 × RBW].

c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.

d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the

emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows: 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels. 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels. 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section RSS-GEN 8.10, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

9.2 Conducted Emission at AC Power line

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

According to §15.207 & RSS-GEN 8.8, conducted emissions limit as below:

Frequency MHz	QP Limit dBµV	AV Limit dBμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Remark: "*" Decreasing linearly with logarithm of the frequency

9.3 6dB & 99% Bandwidth

Test Method

1. Use the following spectrum analyzer settings:

RBW=100K, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

Limit [kHz]

≥500

9.4 Peak Output Power

Test Method

- 1. Connect the spectrum analyzer to the EUT
 - a) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.
 - b) At all times the EUT is transmitting at its maximum power control level.
 - c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
 - 2. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - 3. Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement result.

Limits

According to §15.247 (b) (1) & RSS-247 5.4(d), conducted peak output power limit as below:

	Frequency Range MHz	Limit W	Limit dBm
	2400-2483.5	≤1	≤30
For e.i r.p:			
	Frequency Range MHz	Limit W	Limit dBm
	2400-2483.5	≤4	≤30

9.5 Spurious Emissions at Antenna Terminals

Test Method

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

9.6 100kHz Bandwidth of band edges

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

9.7 Power Spectral Density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Limit [dBm/3KHz]

≤8

10 Appendix A - General Product Information

Radiofrequency radiation exposure evaluation

This exposure evaluation is intended for FCC ID: 2AA2X-15000256

According to KDB 447498 D01v06 section 4.3.1, For frequencies between 100 MHz to 6GHz and test separation distances \leq 50 mm, the Numeric threshold is determined as:

Step a)

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR

>> The fundamental frequency of the EUT is 2405-2480MHz, the test separation distance is ≤ 50mm. (Manufacturer specified the separation distance is: 20mm)

Step b)

- >> Numeric threshold (2405MHz), mW / 20mm * $\sqrt{2.402GHz} \le 3.0$ Numeric threshold (2405MHz) ≤ 38.713 mW
- >> Numeric threshold (2445MHz), mW / 20mm * $\sqrt{2.440}$ GHz \leq 3.0 Numeric threshold (2445MHz) \leq 38.411mW
- >> Numeric threshold (2480MHz), mW / 20mm * $\sqrt{2.480}$ GHz \leq 3.0 Numeric threshold (2480MHz) \leq 38.100mW
- >> The power (measured + tune up tolerance) of EUT at 2405MHz is: -5.28dBm = 0.296mW The power (measured + tune up tolerance) of EUT at 2445MHz is: -5.45dBm = 0.285mW The power (measured + tune up tolerance) of EUT at 2480MHz is: -5.46dBm = 0.284mW

Which is smaller than the Numeric threshold. Therefore, the device is exempt from stand-alone SAR test requirements.

Reviewed by:

Eric LI EMC Project Manager

Prepared by:

Hosea CHAN EMC Project Engineer