

RADIO TEST REPORT FCC ID: 2A9ZK-TSERIES

Certificate #4298 0

Product: Tablet Smartphone Trade Mark: TRIPLTEK Model No.: T9 Family Model: T mini , T10, T11, T12 Report No.: STR230109002002E Issue Date: Mar 02, 2023

Prepared for

TRIPLTEK LLC

12555 Biscayne Blvd. Miami , FL 33181 , United States

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
3	FACILITIES AND ACCREDITATIONS	6
	.1 FACILITIES	
	.2 LABORATORY ACCREDITATIONS AND LISTINGS	6
3	.3 MEASUREMENT UNCERTAINTY	6
4	GENERAL DESCRIPTION OF EUT	7
5	DESCRIPTION OF TEST MODES	9
6	SETUP OF EQUIPMENT UNDER TEST	10
6	.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	10
-	.2 SUPPORT EQUIPMENT	11
6	.3 EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TEST REQUIREMENTS	14
7	.1 CONDUCTED EMISSIONS TEST	14
	7.1.1 Applicable Standard	14
	7.1.2 Conformance Limit	14
	7.1.3 Measuring Instruments	
	7.1.4 Test Configuration	
	7.1.5 Test Procedure	
_	7.1.6 Test Results	
1	.2 RADIATED SPURIOUS EMISSION	
	7.2.1 Applicable Standard7.2.2 Conformance Limit	
	7.2.2 Conformatice Limit	
	7.2.4 Test Configuration	
	7.2.5 Test Procedure	
	7.2.6 Test Results	
7	.3 6DB BANDWIDTH	
	7.3.1 Applicable Standard	26
	7.3.2 Conformance Limit	
	7.3.3 Measuring Instruments	
	7.3.4 Test Setup	
	7.3.5 Test Procedure	
_	7.3.6 Test Results	
1	.4 DUTY CYCLE 7.4.1 Applicable Standard	
	 7.4.1 Applicable Standard 7.4.2 Conformance Limit 	
	7.4.2 Conformatice Limit	
	7.4.4 Test Setup	
	7.4.5 Test Procedure	
	7.4.6 Test Results	
7	.5 PEAK OUTPUT POWER	
	7.5.1 Applicable Standard	
	7.5.2 Conformance Limit	
	7.5.3 Measuring Instruments	
	7.5.4 Test Setup	
	7.5.5 Test Procedure	
	7.5.6 Test Results	29

_			20
	′.6 P 7.6.1	OWER SPECTRAL DENSITY Applicable Standard	
		Conformance Limit	
	7.6.3	Measuring Instruments	
	7.6.4	Test Setup	
	7.6.5	Test Procedure	
		Test Results	
7		ONDUCTED BAND EDGE MEASUREMENT	
'	7.7.1	Applicable Standard	
		Conformance Limit	
	7.7.3	Measuring Instruments	
	7.7.4	Test Setup	
	7.7.5	Test Procedure	
	-	Test Results	
7		PURIOUS RF CONDUCTED EMISSIONS	
	7.8.1	Conformance Limit	
	7.8.2	Measuring Instruments	
	7.8.3	Test Setup	
	7.8.4	Test Procedure	. 33
	7.8.5	Test Results	. 33
7	'.9 A	NTENNA APPLICATION	. 34
	7.9.1	Antenna Requirement	. 34
	7.9.2	Result	. 34
8	TEST	RESULTS	35
-			
1	M:		
	8.1.1	Maximum Conducted Output Power	. 35
	8.1.2	-6dB Bandwidth	
	8.1.3	Occupied Channel Bandwidth	.41
	8.1.4	Maximum Power Spectral Density Level	.44
	8.1.5	Band Edge	.47
		Conducted RF Spurious Emission	
2			
	8.1.7	Maximum Conducted Output Power	
	8.1.8	-6dB Bandwidth	
		Occupied Channel Bandwidth	
	8.1.10		
	8.1.11	Band Edge	
	8.1.12	Conducted RF Spurious Emission	.69

1 TEST RESULT CERTIFICATION

Applicant's name:	TRIPLTEK LLC
Address	12555 Biscayne Blvd. Miami , FL 33181 , United States
Manufacturer's Name:	TRIPLTEK LLC
Address	12555 Biscayne Blvd. Miami , FL 33181 , United States
Product description	
Product name:	Tablet Smartphone
Model and/or type reference:	Т9
Family Model	T mini , T10, T11, T12
Sample number	T230109002R002

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	Complied
ANSI C63.10-2013	Complied
KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Jan 12, 2023 ~ Mar 01, 2023
Testing Engineer	:	Johan Lin
		(Allen Liu)
Authorized Signatory	:	Aller
		(Alex Li)

2 SUMMARY OF TEST RESULTS

R

ilac.M

	FCC Part15 (15.247), Subpart	С				
Standard Section Test Item Verdict Remark						
15.207	Conducted Emission	PASS				
15.247 (a)(2) 6dB Bandwidth PASS						
15.247 (b) Peak Output Power PASS						
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247 (e) Power Spectral Density PASS						
15.247 (d) Band Edge Emission PASS						
15.247 (d)	Spurious RF Conducted Emission	PASS				
15.203	Antenna Requirement	PASS				

ACCREDITED

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab. :	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Tablet Smartphone			
Trade Mark	TRIPLTEK			
FCC ID	2A9ZK-TSERIES			
Model No.	Т9			
Family Model	T mini , T10, T11, T12			
Model Difference	All models are the same circuit and RF module, except the model name.			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels 40 Channels				
Antenna Type	PIFA Antenna			
Antenna Gain	-0.15dBi			
Adapter	Model: HF-PD33W0001 Input: 100-240V~50/60Hz 0.8A Max Output: Type-C:5V3.0A / 9V3.0A / 11V3.0A / 12V2.5A/ 20V1.5A			
Battery	DC 3.85V, 11600mAh			
Power supply DC 3.85V from battery or DC 5V from Adapter.				
Hardware version: V1.1				
Firmware version:	V1.0			
Software version: TRIPLTEK_T93_20230115				

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Report No.: STR230109002002E

Revision History

ACCREDITED

Certificate #4298.01

Revision metory					
Report No.	Version	Description	Issued Date		
STR230109002002E	Rev.01	Initial issue of report	Mar 02, 2023		

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Certificate #4298.01

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps/2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases		
Test Item	Data Rate/ Modulation	
AC Conducted Emission	Mode 1: normal link mode	
	Mode 1: normal link mode	
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Conducted Test	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT built-in battery-powered, the battery is fully-charged.

Report No.: STR230109002002E

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM
For AC Conducted Emission Mode
C-1 AE-1 Adapter Adapter
For Radiated Test Cases
EUT For Conducted Test Cases
Measurement EUT
Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	HF-PD33W0001	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

	Sild Conducted	oot oquipiniont					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.08	2023.11.07	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.08	2023.11.07	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.11.08	2023.11.07	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2022.11.08	2023.11.07	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

ACCRED

Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEK 北测[®]

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

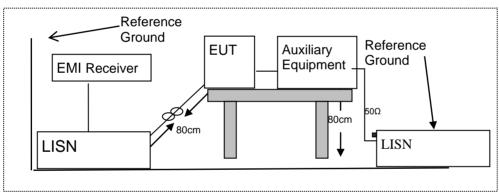
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

Frequency(MHz)	Conducted Emission Limit		
Frequency(IVII IZ)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

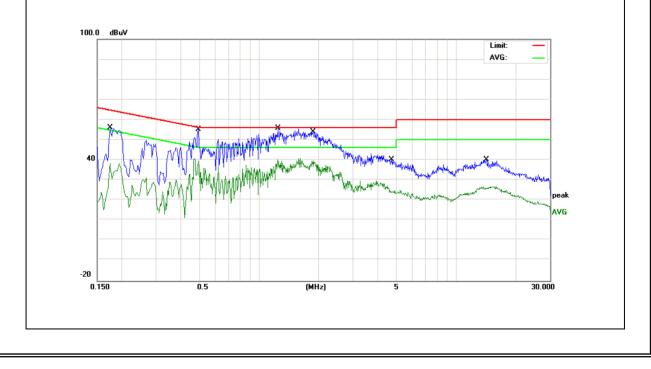
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

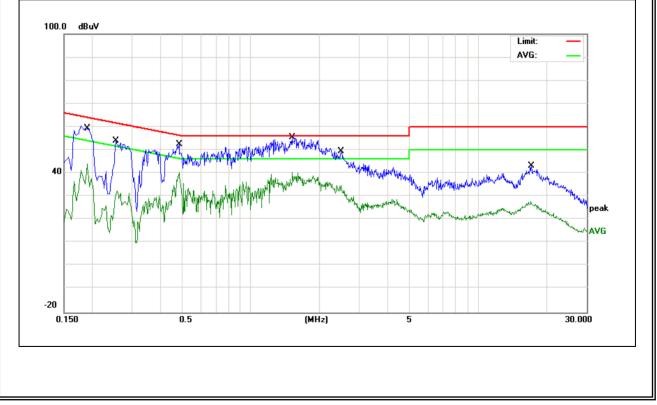

EUT:	Tablet Smartphone	Model Name :	Т9
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1740	46.43	9.61	56.04	64.76	-8.72	QP
0.1740	26.87	9.61	36.48	54.76	-18.28	AVG
0.4900	39.14	9.66	48.80	56.17	-7.37	QP
0.4900	29.85	9.66	39.51	46.17	-6.66	AVG
1.2460	37.92	9.68	47.60	56.00	-8.40	QP
1.2460	26.77	9.68	36.45	46.00	-9.55	AVG
1.8780	37.82	9.68	47.50	56.00	-8.50	QP
1.8780	27.21	9.68	36.89	46.00	-9.11	AVG
4.7180	30.49	9.76	40.25	56.00	-15.75	QP
4.7180	14.25	9.76	24.01	46.00	-21.99	AVG
14.2340	30.05	10.06	40.11	60.00	-19.89	QP
14.2340	15.81	10.06	25.87	50.00	-24.13	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Tablet Smartphone	Model Name :	Т9
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Dermente
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1900	49.57	9.63	59.20	64.03	-4.83	QP
0.1900	33.32	9.63	42.95	54.03	-11.08	AVG
0.2540	44.40	9.62	54.02	61.62	-7.60	QP
0.2540	21.54	9.62	31.16	51.62	-20.46	AVG
0.4820	42.75	9.66	52.41	56.30	-3.89	QP
0.4820	27.72	9.66	37.38	46.30	-8.92	AVG
1.5140	37.43	9.67	47.10	56.00	-8.90	QP
1.5140	30.73	9.67	40.40	46.00	-5.60	AVG
2.4980	39.84	9.68	49.52	56.00	-6.48	QP
2.4980	24.99	9.68	34.67	46.00	-11.33	AVG
17.1259	33.04	10.09	43.13	60.00	-16.87	QP
17.1259	16.87	10.09	26.96	50.00	-23.04	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

Certificate #4298.01

According to 1 00 1 dit10.200, Restiliced bands							
MHz	MHz	GHz					
16.42-16.423	399.9-410	4.5-5.15					
16.69475-16.69525	608-614	5.35-5.46					
16.80425-16.80475	960-1240	7.25-7.75					
25.5-25.67	1300-1427	8.025-8.5					
37.5-38.25	1435-1626.5	9.0-9.2					
73-74.6	1645.5-1646.5	9.3-9.5					
74.8-75.2	1660-1710	10.6-12.7					
123-138	2200-2300	14.47-14.5					
149.9-150.05	2310-2390	15.35-16.2					
156.52475-156.52525	2483.5-2500	17.7-21.4					
156.7-156.9	2690-2900	22.01-23.12					
162.0125-167.17	3260-3267	23.6-24.0					
167.72-173.2	3332-3339	31.2-31.8					
240-285	3345.8-3358	36.43-36.5					
322-335.4	3600-4400	(2)					
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358					

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

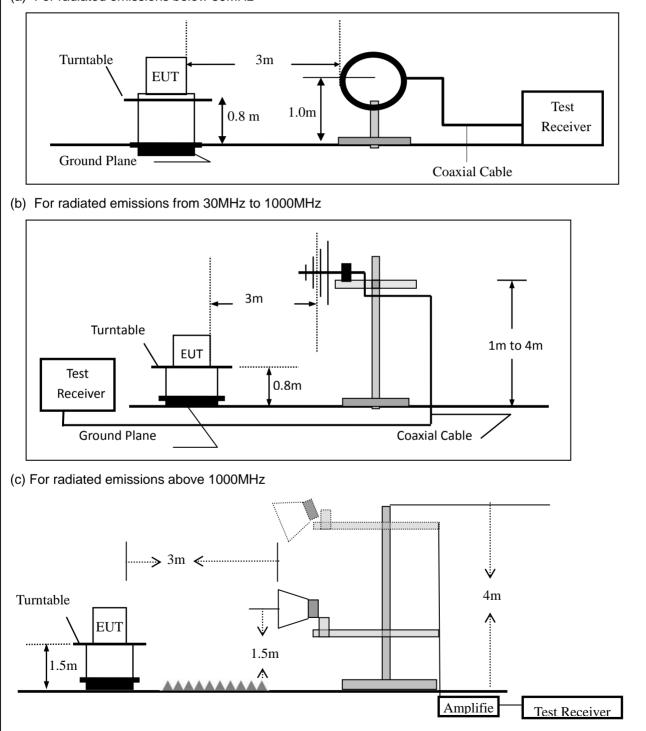
Frequency(MHz)	Class B (dBuV/m) (at 3M)				
Frequency(wiriz)	PEAK	AVERAGE			
Above 1000	74	54			

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Certificate #4298.01

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

	Spurious	Emission	below	30MHz	(9KHz to 30MHz)	
--	----------	----------	-------	-------	-----------------	--

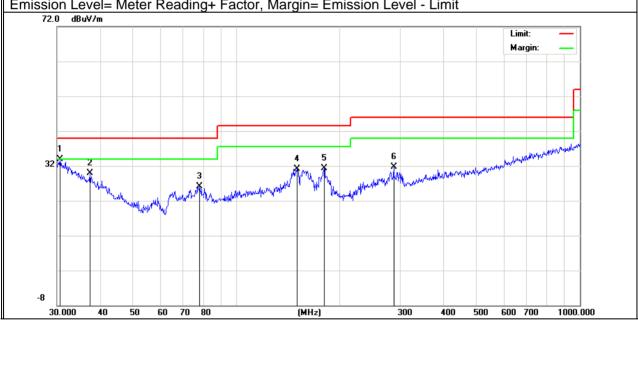
EUT:	Tablet Smartphone	Model No.:	Т9
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3/ Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Tablet Smartphone	Model Name :	Т9
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 4 2Mbps
Test Voltage :	DC 3.85V		


ACCREDITED

Certificate #4298.01

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.6373	8.04	25.86	33.90	40.00	-6.10	QP
V	37.4164	7.84	22.13	29.97	40.00	-10.03	QP
V	78.1389	10.83	15.30	26.13	40.00	-13.87	QP
V	150.0107	12.36	18.80	31.16	43.50	-12.34	QP
V	180.0165	14.57	16.79	31.36	43.50	-12.14	QP
V	286.9823	11.49	20.13	31.62	46.00	-14.38	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Report No.: STR230109002002E

(H/V)(MHz)(dBuV)(dB)(dBuV/m)(dBuV/m)(dB)H30.74545.3725.8631.2340.00-8.77QFH36.76616.8022.4429.2440.00-10.76QFH146.887415.5818.3233.9043.50-9.60QFH178.758110.1817.0027.1843.50-16.32QFH294.11369.3219.9529.2746.00-16.73QFH517.24807.1325.2132.3446.00-13.66QFRemark:	(MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dBuV/m) (dB) H 30.7454 5.37 25.86 31.23 40.00 -8.77 H 36.7661 6.80 22.44 29.24 40.00 -10.76 H 146.8874 15.58 18.32 33.90 43.50 -9.60 H 178.7581 10.18 17.00 27.18 43.50 -16.32 H 294.1136 9.32 19.95 29.27 46.00 -13.66 H 517.2480 7.13 25.21 32.34 46.00 -13.66 Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 13.66 13.66 13.66	Remark QP QP QP QP QP QP
H 36.7661 6.80 22.44 29.24 40.00 -10.76 QF H 146.8874 15.58 18.32 33.90 43.50 -9.60 QF H 178.7581 10.18 17.00 27.18 43.50 -16.32 QF H 294.1136 9.32 19.95 29.27 46.00 -16.73 QF H 517.2480 7.13 25.21 32.34 46.00 -13.66 QF Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m dBuV/m dagger dagger <t< th=""><th>H 36.7661 6.80 22.44 29.24 40.00 -10.76 H 146.8874 15.58 18.32 33.90 43.50 -9.60 H 178.7581 10.18 17.00 27.18 43.50 -16.32 H 294.1136 9.32 19.95 29.27 46.00 -16.73 H 517.2480 7.13 25.21 32.34 46.00 -13.66 Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuW/m Limit: -</th><th>QP QP QP QP</th></t<>	H 36.7661 6.80 22.44 29.24 40.00 -10.76 H 146.8874 15.58 18.32 33.90 43.50 -9.60 H 178.7581 10.18 17.00 27.18 43.50 -16.32 H 294.1136 9.32 19.95 29.27 46.00 -16.73 H 517.2480 7.13 25.21 32.34 46.00 -13.66 Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuW/m Limit: -	QP QP QP QP
H 36.7661 6.80 22.44 29.24 40.00 -10.76 QF H 146.8874 15.58 18.32 33.90 43.50 -9.60 QF H 178.7581 10.18 17.00 27.18 43.50 -16.32 QF H 294.1136 9.32 19.95 29.27 46.00 -16.73 QF H 517.2480 7.13 25.21 32.34 46.00 -13.66 QF Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m Margin: Margin: Margin: Margin: 6	H 36.7661 6.80 22.44 29.24 40.00 -10.76 H 146.8874 15.58 18.32 33.90 43.50 -9.60 H 178.7581 10.18 17.00 27.18 43.50 -16.32 H 294.1136 9.32 19.95 29.27 46.00 -16.73 H 517.2480 7.13 25.21 32.34 46.00 -13.66 Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 d8uV/m d8uV/m	QP QP QP QP
H 146.8874 15.58 18.32 33.90 43.50 -9.60 QF H 178.7581 10.18 17.00 27.18 43.50 -16.32 QF H 294.1136 9.32 19.95 29.27 46.00 -16.73 QF H 517.2480 7.13 25.21 32.34 46.00 -13.66 QF Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m	H 146.8874 15.58 18.32 33.90 43.50 -9.60 H 178.7581 10.18 17.00 27.18 43.50 -16.32 H 294.1136 9.32 19.95 29.27 46.00 -16.73 H 517.2480 7.13 25.21 32.34 46.00 -13.66 Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m Limit:	QP QP QP
H 178.7581 10.18 17.00 27.18 43.50 -16.32 QF H 294.1136 9.32 19.95 29.27 46.00 -16.73 QF H 517.2480 7.13 25.21 32.34 46.00 -13.66 QF Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m dBuV/m 72.0 $dBuV/m$ 32 32 34 5 6 40 32 2 3 5 6 40 40 40	H 178.7581 10.18 17.00 27.18 43.50 -16.32 H 294.1136 9.32 19.95 29.27 46.00 -16.73 H 517.2480 7.13 25.21 32.34 46.00 -13.66 Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m Limit:	QP QP
H 294.1136 9.32 19.95 29.27 46.00 -16.73 QF H 517.2480 7.13 25.21 32.34 46.00 -13.66 QF Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m Junit: Margin: 32 32 2 3 5 6 A dot	H 294.1136 9.32 19.95 29.27 46.00 -16.73 H 517.2480 7.13 25.21 32.34 46.00 -13.66 Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit Zimit: -	QP
H 517.2480 7.13 25.21 32.34 46.00 -13.66 QF Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m Limit: Margin: 32 32 32 32 3 5 6 3	H 517.2480 7.13 25.21 32.34 46.00 -13.66 Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit -13.66 -13.	
Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m	Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m	<u> </u>
	Margin: —	-
		±j –
	1 6	with
	man and the second with the second man and the second seco	
	The second secon	_
	Manual water	
-8		
30.000 40 50 60 70 80 (MHz) 300 400 500 600 700 1000.000	30.000 40 50 60 70 80 (MHz) 300 400 500 600 700 10	00.000

ACCREDITED

Certificate #4298.01

NTEK 北测[®]

UT:		Tat	olet Smai	rtphone		Model No.:		Т9		
emp	perature:	20	°C		I	Relative Hu	midity:	48%		
est	Mode:	Мо	de2/Mod	e3/Mode4	1	Test By:		Allen Liu		
F	Frequency	Read Level	Cable loss	Antenna Factor	Pream Facto		Limits	Margin	Remark	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m) (dB)		
				Low C	hannel	(2402 MHz)(G	SK)Above	e 1G		
	4804.338	61.61	5.21	35.59	44.30	58.11	74.00	-15.89	Pk	Vertical
	4804.338	42.59	5.21	35.59	44.30	39.09	54.00	-14.91	AV	Vertical
	7206.107	61.37	6.48	36.27	44.60	59.52	74.00	-14.48	Pk	Vertical
	7206.107	41.98	6.48	36.27	44.60	40.13	54.00	-13.87	AV	Vertical
	4804.169	62.89	5.21	35.55	44.30	59.35	74.00	-14.65	Pk	Horizontal
	4804.169	42.66	5.21	35.55	44.30	39.12	54.00	-14.88	AV	Horizontal
	7206.214	61.52	6.48	36.27	44.52	2 59.75	74.00	-14.25	Pk	Horizontal
	7206.214	42.43	6.48	36.27	44.52	40.66	54.00	-13.34	AV	Horizontal
				Mid C	hannel ((2440 MHz)(GI	SK)Above	e 1G		
	4880.473	63.00	5.21	35.66	44.20	59.67	74.00	-14.33	Pk	Vertical
	4880.473	44.35	5.21	35.66	44.20	41.02	54.00	-12.98	AV	Vertical
	7320.265	65.49	7.10	36.50	44.43	64.66	74.00	-9.34	Pk	Vertical
	7320.265	41.74	7.10	36.50	44.43	3 40.91	54.00	-13.09	AV	Vertical
	4880.366	63.72	5.21	35.66	44.20	60.39	74.00	-13.61	Pk	Horizontal
	4880.366	40.76	5.21	35.66	44.20	37.43	54.00	-16.57	AV	Horizontal
	7320.234	60.20	7.10	36.50	44.43	3 59.37	74.00	-14.63	Pk	Horizontal
	7320.234	45.23	7.10	36.50	44.43	3 44.40	54.00	-9.60	AV	Horizontal
				High C	hannel	(2480 MHz)(G	SK) Abov	e 1G		1
	4960.482	64.32	5.21	35.52	44.2´	1 60.84	74.00	-13.16	Pk	Vertical
	4960.482	42.56	5.21	35.52	44.2	1 39.08	54.00	-14.92	AV	Vertical
	7440.131	64.47	7.10	36.53	44.60	63.50	74.00	-10.50	Pk	Vertical
	7440.131	49.46	7.10	36.53	44.60	48.49	54.00	-5.51	AV	Vertical
	4960.326	64.26	5.21	35.52	44.2	1 60.78	74.00	-13.22	Pk	Horizontal
	4960.326	45.56	5.21	35.52	44.2	1 42.08	54.00	-11.92	AV	Horizontal
	7440.199	65.16	7.10	36.53	44.60	64.19	74.00	-9.81	Pk	Horizontal
	7440.199	44.16	7.10	36.53	44.60	43.19	54.00	-10.81	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

NTEK 北测[®]

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz						
	EUT:	Tablet Smartphone	Model No.:	Т9		
	Temperature:	20 ℃	Relative Humidity:	48%		
	Test Mode:	Mode2/ Mode4	Test By:	Allen Liu		

ACCREDITED

Certificate #4298.01

ilac-MR

Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
	1Mbps(GFSK)								
2310.00	63.16	2.97	27.80	43.80	50.13	74	-23.87	Pk	Horizontal
2310.00	43.81	2.97	27.80	43.80	30.78	54	-23.22	AV	Horizontal
2310.00	61.68	2.97	27.80	43.80	48.65	74	-25.35	Pk	Vertical
2310.00	42.86	2.97	27.80	43.80	29.83	54	-24.17	AV	Vertical
2390.00	63.86	3.14	27.21	43.80	50.41	74	-23.59	Pk	Vertical
2390.00	43.17	3.14	27.21	43.80	29.72	54	-24.28	AV	Vertical
2390.00	63.06	3.14	27.21	43.80	49.61	74	-24.39	Pk	Horizonta
2390.00	43.33	3.14	27.21	43.80	29.88	54	-24.12	AV	Horizonta
2483.50	63.12	3.58	27.70	44.00	50.40	74	-23.60	Pk	Vertical
2483.50	43.35	3.58	27.70	44.00	30.63	54	-23.37	AV	Vertical
2483.50	64.81	3.58	27.70	44.00	52.09	74	-21.91	Pk	Horizonta
2483.50	43.19	3.58	27.70	44.00	30.47	54	-23.53	AV	Horizonta

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

Spuriou	ıs Em	ission	in Restrict	ed Band 32	260MHz-1	8000MHz				
EUT: Tablet Smartphone		Model N	Model No.:		Т9					
Temperature: 20 °C		Relative	Relative Humidity:		48%					
Test Mode: Mode2/ Mode4		Test By	Test By:		Allen Liu					
				•				•		
Frequency		ding vel	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dE	βµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	63	.63	4.04	29.57	44.70	52.54	74	-21.46	Pk	Vertical
3260	57	.34	4.04	29.57	44.70	46.25	54	-7.75	AV	Vertical
3260	66	.19	4.04	29.57	44.70	55.10	74	-18.90	Pk	Horizontal
3260	58	.99	4.04	29.57	44.70	47.90	54	-6.10	AV	Horizontal
3332	64	.77	4.26	29.87	44.40	54.50	74	-19.50	Pk	Vertical
3332	56	.74	4.26	29.87	44.40	46.47	54	-7.53	AV	Vertical
3332	66	.02	4.26	29.87	44.40	55.75	74	-18.25	Pk	Horizontal
3332	53	.01	4.26	29.87	44.40	42.74	54	-11.26	AV	Horizontal
17797	45	.34	10.99	43.95	43.50	56.78	74	-17.22	Pk	Vertical
17797	36	.16	10.99	43.95	43.50	47.60	54	-6.40	AV	Vertical
17788	45	.81	11.81	43.69	44.60	56.71	74	-17.29	Pk	Horizontal
17788	35	.99	11.81	43.69	44.60	46.89	54	-7.11	AV	Horizontal

ilac-M

ACCRED

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit. (2)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

Certificate #4298.01

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Tablet Smartphone	Model No.:	Т9
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Certificate #4298.01

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\ge RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Tablet Smartphone	Model No.:	Т9
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

Certificate #4298.01

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Tablet Smartphone	Model No.:	Т9
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Tablet Smartphone	Model No.:	Т9
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

ACCREDITED

Certificate #4298.01

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Tablet Smartphone	Model No.:	Т9
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

Certificate #4298.01

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

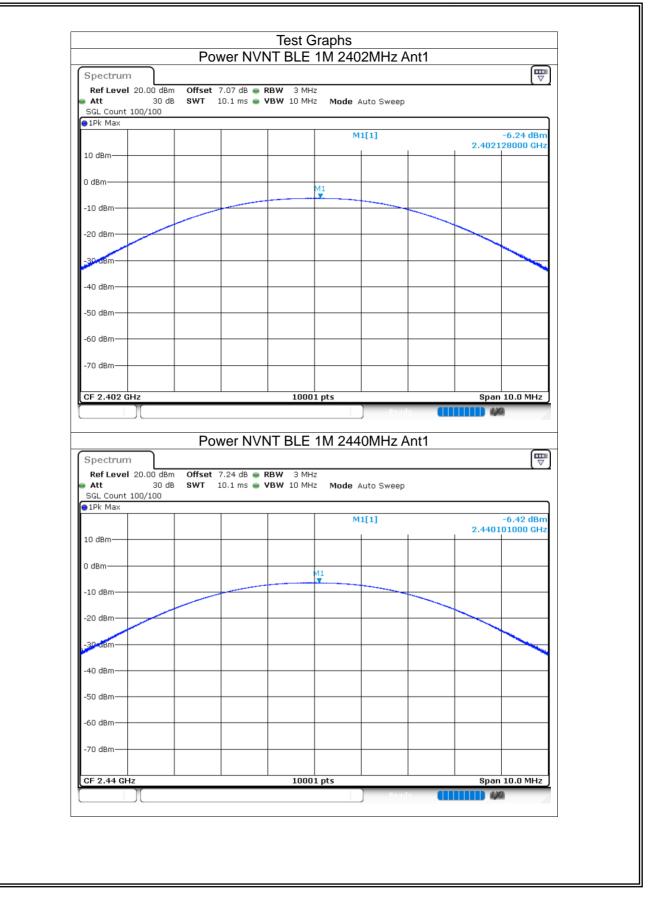
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: -0.15 dBi). It comply with the standard requirement.

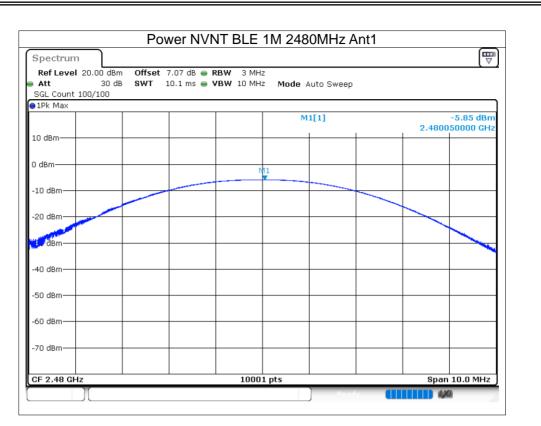
TEST RESULTS 8

1M:

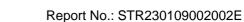

Maximum Conducted Output Power 8.1.1

Conditio	on Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-6.24	30	Pass
NVNT	BLE 1M	2440	Ant1	-6.42	30	Pass
NVNT	BLE 1M	2480	Ant1	-5.85	30	Pass

ACCRED


Report No.: STR230109002002E

ACCREDITED


Certificate #4298.01

ACCREDITED

8.1.2 -6dB Bandwidth

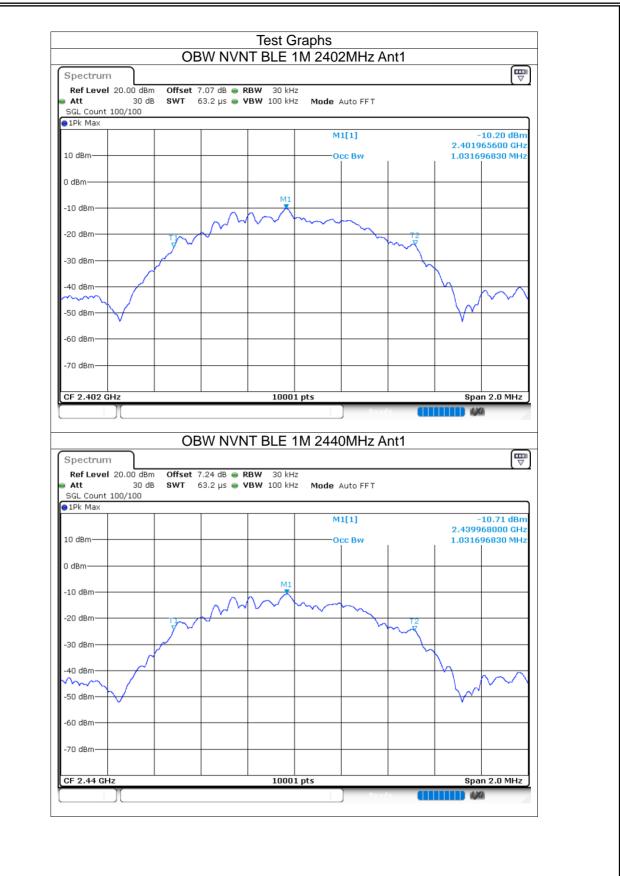
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.697	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.684	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.675	0.5	Pass

ACCREDITED

ACCREDITED

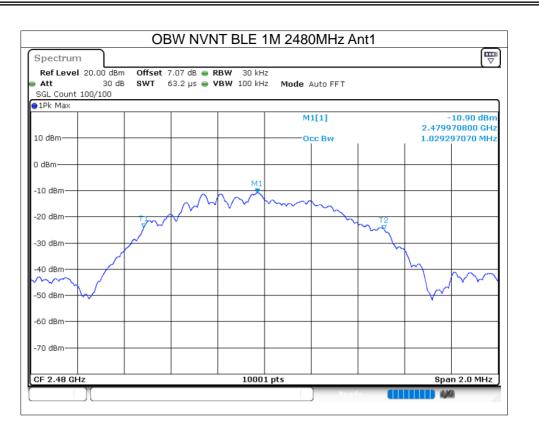
Spectrum								₿
Ref Level	20.00 dB	m Offset	7.07 dB 🥃	RBW 100 kHz				L.
Att	30 0	ib SWT	18.9 µs 🥃	VBW 300 kHz	Mode Auto FFT			
GL Count 1 1Pk Max	00/100							
TEK MIGY			1		M1[1]			-6.92 dBm
								86000 GHz
0 dBm					M2[1]		-	12.92 dBm
dBm							2.4796	47000 GHz
				M1				
LO dBm			M2		M3			
			T					
30 dBm —		1					<u> </u>	
O dBm								
50 dBm								
o abiii								
i0 dBm——								
70 dBm								
E 0 40 011				10001			0	- 0 0 MIL-
F 2.48 GHz arker	2			10001 pt	5		spai	n 2.0 MHz
	Trc	X-valu	e	Y-value	Function	Fund	tion Result	1
M1	1		986 GHz	-6.92 dBm	. unocion	T une		
M2	1		647 GHz	-12.92 dBm				
M3	1	2.4803	821 GHz	-12.89 dBm				

ACCREDITED



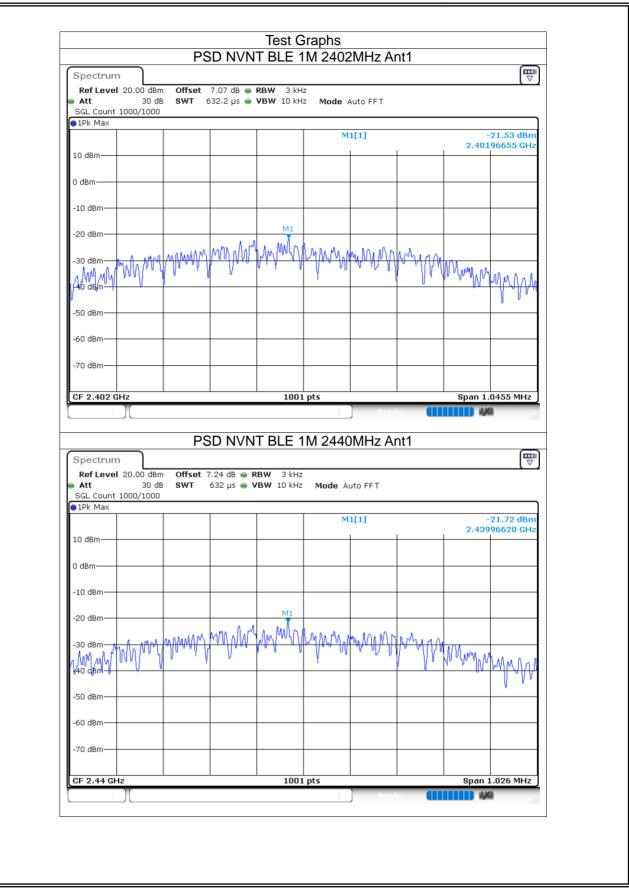
8.1.3 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.032
NVNT	BLE 1M	2440	Ant1	1.032
NVNT	BLE 1M	2480	Ant1	1.029


ACCREDITED

ACCREDITED

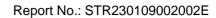
ACCREDITED



8.1.4 Maximum Power Spectral Density Level

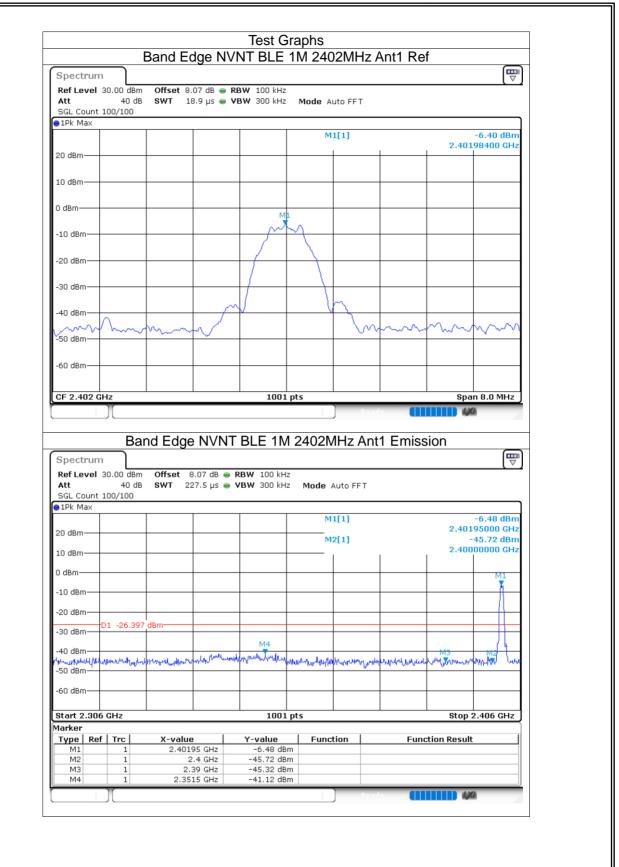
Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-21.53	8	Pass
NVNT	BLE 1M	2440	Ant1	-21.72	8	Pass
NVNT	BLE 1M	2480	Ant1	-21.32	8	Pass

ACCREL


ACCREDITED

	_	<u>гс</u>		T BLE 1	1111 2400				Ē
Spectrum									
Ref Level 🔅			7.07 dB 👄		-				
Att	30 dB	SWT 6	532.1 µs 😑	VBW 10 kH	z Mode A	uto FFT			
SGL Count 1 1Pk Max	000/1000								
					м	1[1]			21.32 dBm
10 dBm								2.479	96665 GHz
0 dBm									
-10 dBm									
-20 dBm				M1					
			Mr. A.A.	MMM	las. A.	10.0			
-30 dBm	A. AMAA /	MMMM	իս կա	$\mathbb{P}\mathbb{P}^{\mathbb{N}}$	V	℠ⅎⅅℷℾ	114/24/14	100	
AM what IN	WI'' 4	10° 0 1	V 1		Y *0	1 21 2	111	NV UMUN	MARIA A.
40 Bm	V I						v y	· ' /V	MINA
									1 1
-50 dBm									-
-60 dBm									
-70 dBm									
CF 2.48 GHz				1001	nts			Snan 1.	0125 MHz
5. 2110 dil2				1301	- p - 2			opun 1.	

ACCREDITED



8.1.5 Band Edge

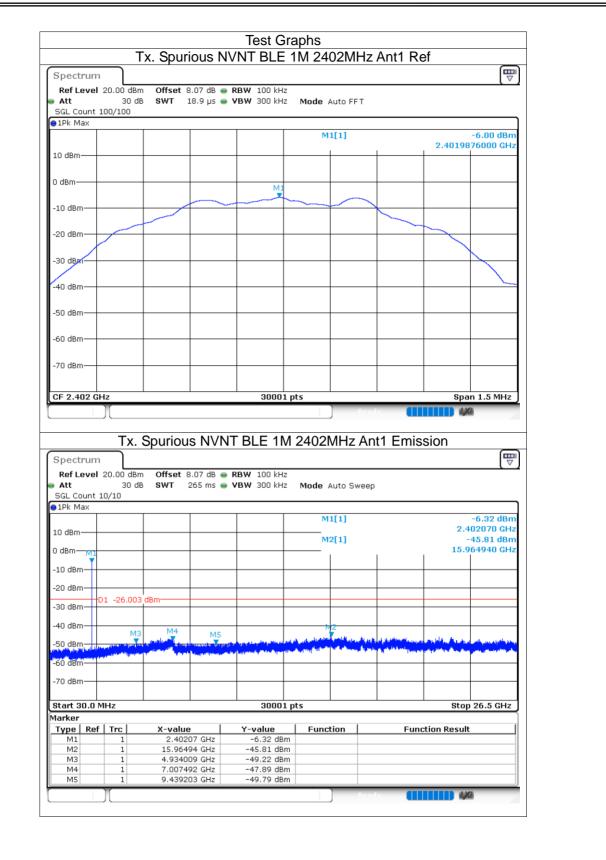
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-34.71	-20	Pass
NVNT	BLE 1M	2480	Ant1	-36.04	-20	Pass

ACCREDITED

ACCREDITED

Spectrum										
Ref Level	30.00 dBm	Offset 8	.07 dB 👄 I	RBW 100 kHz						
Att	40 dB	SWT 1	.8.9 µs 👄 '	VBW 300 kHz	Mode Au	uto FFT				
SGL Count	100/100									
●1Pk Max									6.40.40	
					M	1[1]		2 400	-6.18 dBm 023180 GHz	
20 dBm								2.100	20100 012	
10 dBm				_						
0 dBm										
					M1					
-10 dBm-					\sim					
-20 dBm				+	\rightarrow					
-30 dBm				+						
					U V	~				
-40 dBm			+ f	~¥]	\rightarrow			<u> </u>	
\sim	mm	mn	mar -			$\sim \sim$	man	mm	mm	
-50 dBm	÷	*	+	+ +					<u> </u>	
-60 dBm			-	+ +					<u> </u>	
CF 2.48 GH	-			1001	nts			Sna	n 8.0 MHz	
	z									
)[- d C d -				Read			0	_
Spectrum	Bai	nd Edge	e NVN ⁻	T BLE 1M) Read 1Hz Ant	1 Emiss			-
Spectrum Ref Louel	Bai			T BLE 1M	2480N) IHz Ant	1 Emiss			-
Spectrum Ref Level : Att	Bai	Offset	8.07 dB 👄	T BLE 1M RBW 100 kHz	2480N		1 Emiss			-
Ref Level	Bai 30.00 dBm 40 dB	Offset	8.07 dB 👄	T BLE 1M	2480N		1 Emiss			-
Ref Level Att	Bai 30.00 dBm 40 dB	Offset	8.07 dB 👄	T BLE 1M RBW 100 kHz	2480N Mode A	auto FFT	1 Emiss			-
Ref Level Att SGL Count 1Pk Max	Bai 30.00 dBm 40 dB	Offset	8.07 dB 👄	T BLE 1M RBW 100 kHz	2480N Mode A		1 Emiss	sion	5.89 dBm	-
Ref Level Att SGL Count	Bai 30.00 dBm 40 dB	Offset	8.07 dB 👄	T BLE 1M RBW 100 kHz	2480N Mode A	uto FFT	1 Emiss	sion 2.475	-5.89 dBm 995000 GH2	-
Ref Level 3 Att SGL Count 1Pk Max 20 dBm	Bai 30.00 dBm 40 dB	Offset	8.07 dB 👄	T BLE 1M RBW 100 kHz	2480N Mode A	auto FFT	1 Emiss	sion 2.479	5.89 dBm	-
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm	Bai 30.00 dBm 40 dB	Offset	8.07 dB 👄	T BLE 1M RBW 100 kHz	2480N Mode A	outo FFT	1 Emiss	sion 2.479	-5.89 dBm 95000 GHz -44.37 dBm	-
Ref Level 3 Att SGL Count 1Pk Max 20 dBm	Bai 30.00 dBm 40 dB	Offset	8.07 dB 👄	T BLE 1M RBW 100 kHz	2480N Mode A	outo FFT	1 Emiss	sion 2.479	-5.89 dBm 95000 GHz -44.37 dBm	-
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm	Bai 30.00 dBm 40 dB	Offset	8.07 dB 👄	T BLE 1M RBW 100 kHz	2480N Mode A	outo FFT	1 Emiss	sion 2.479	-5.89 dBm 95000 GHz -44.37 dBm	-
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm	Bai 30.00 dBm 40 dB	Offset	8.07 dB 👄	T BLE 1M RBW 100 kHz	2480N Mode A	outo FFT	1 Emiss	sion 2.479	-5.89 dBm 95000 GHz -44.37 dBm	-
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Bai 30.00 dBm 40 dB 100/100	Offset SWT 2	8.07 dB 👄	T BLE 1M RBW 100 kHz	2480N Mode A	outo FFT	1 Emiss	sion 2.479	-5.89 dBm 95000 GHz -44.37 dBm	-
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 cBm	Bai 30.00 dBm 40 dB	Offset SWT 2	8.07 dB 👄	T BLE 1M	2480N Mode A	outo FFT	1 Emiss	sion 2.479	-5.89 dBm 95000 GHz -44.37 dBm	-
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Bai 30.00 dBm 40 dB 100/100	Offset SWT 2	8.07 dB 👄	T BLE 1M	2480N Mode A	outo FFT	1 Emiss	sion 2.479	-5.89 dBm 95000 GHz -44.37 dBm	-
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -0 dBm -20 dBm -30 dBm -40 dBm	Ba 30.00 dBm 40 dB 100/100	Offset SWT 2	8.07 dB 27.5 µs	T BLE 1M	2480N Mode A M3	Auto FFT [[1] 2[1]		2.475 2.483	-5.89 dBm 95000 GHz -44.37 dBm -44.350000 GHz	-
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Bai 30.00 dBm 40 dB 100/100	Offset SWT 2	8.07 dB 👄	T BLE 1M	2480N Mode A M3	Auto FFT	1 Emiss	2.475 2.483	-5.89 dBm 95000 GHz -44.37 dBm -44.350000 GHz	
Ref Level Att SGL Count 1Pk Max 1Pk Max 20 dBm 10 dBm 0 dBm 0 dBm -10 dBm -20 cBm -20 cBm -30 cBm -40 dBm/4 -50 dBm -50 dBm	Ba 30.00 dBm 40 dB 100/100	Offset SWT 2	8.07 dB 27.5 µs	T BLE 1M	2480N Mode A M3	Auto FFT		2.475 2.483	-5.89 dBm 95000 GHz -44.37 dBm -44.350000 GHz	
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 cBm -30 cBm -40 dBm4	Ba 30.00 dBm 40 dB 100/100	Offset SWT 2	8.07 dB 27.5 µs	T BLE 1M	2480N Mode A M3	Auto FFT		2.475 2.483	-5.89 dBm 95000 GHz -44.37 dBm -44.350000 GHz	
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Ba 30.00 dBm 40 dB 100/100	Offset SWT 2	8.07 dB 27.5 µs	RBW 100 kHz VBW 300 kHz	2480N Mode A M3	Auto FFT		2.479 2.483	-5.89 dBm 295000 GHz -44.37 dBm 350000 GHz	
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Ba 30.00 dBm 40 dB 100/100	Offset SWT 2	8.07 dB 27.5 µs	T BLE 1M	2480N Mode A M3	Auto FFT		2.479 2.483	-5.89 dBm 95000 GHz -44.37 dBm -44.350000 GHz	
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -60 dBm -60 dBm Start 2.476	Bai 30.00 dBm 40 dB 100/100	Offset SWT 2	8.07 dB • 27.5 µs •	T BLE 1M	2480N Mode A M3 M2	xuto FFT 1[1] 2[1] ส)เป็น ¹ น ¹ พ.พ.ส.ฟ.โมพ		2.479 2.479 2.483	-5.89 dBm 95000 GHz -44.37 dBm 950000 GHz -44.37 dBm 	
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm Start 2.476	Ba 30.00 dBm 40 dB 100/100	Offset SWT 2	8.07 dB • 27.5 µs •	RBW 100 kHz VBW 300 kHz	2480N Mode A M2 M2	xuto FFT 1[1] 2[1] ส)เป็น ¹ น ¹ พ.พ.ส.ฟ.โมพ		2.479 2.483	-5.89 dBm 95000 GHz -44.37 dBm 950000 GHz -44.37 dBm 	
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -50 dBm -60 dBm -60 dBm -70 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm	Ba 30.00 dBm 40 dB 100/100 D1 -26.182 phr. arh/aph/ GHz Trc 1 1	Offset SWT 2 مراجع مراح مراجع مراحه مراحع مراحه مراحع مراحه مراحع مراحع مراحع مراحع مراحع مراحع مراجع مراجع مراجع مراحم مراجع مراحع مراحع مراحع مراحع مراحع مراحع مراحع مراحع مراحع مراحم مراحع مراحم مراحع مراحع مراحع مراحع مراحع مراحع مراحع مراحع مراحع مراحم مرما مراحم مرما مم مراحم مما مم مم مما مم مما مم مما مم مما مما مم مم	8.07 dB ● 27.5 µs ●	T BLE 1M	2480N	xuto FFT 1[1] 2[1] ส)เป็น ¹ น ¹ พ.พ.ส.ฟ.โมพ		2.479 2.479 2.483	-5.89 dBm 95000 GHz -44.37 dBm 950000 GHz -44.37 dBm 	
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm Start 2.476 Marker Type M1 M2 M3	Bai 30.00 dBm 40 dB 100/100 01 -26.182 01 -26.182 01 -26.182 01 -26.182 01 -26.182 01 -26.182 01 -26.182 01 -26.182 01 -26.182	Offset SWT 2 dBm- dBm- ddP./rm. ddP./rm. z.475 2.445	8.07 dB 27.5 µs 27.	T BLE 1M	2480N Mode A M3 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	xuto FFT 1[1] 2[1] ส)ป ¹ ป ² การณ์ไปห		2.479 2.479 2.483	-5.89 dBm 95000 GHz -44.37 dBm 950000 GHz -44.37 dBm 	
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -50 dBm -60 dBm -60 dBm -70 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm	Ba 30.00 dBm 40 dB 100/100 D1 -26.182 phr. arh/aph/ GHz Trc 1 1	Offset SWT 2 dBm- dBm- ddP./rm. ddP./rm. z.475 2.445	8.07 dB ● 27.5 µs ●	T BLE 1M	2480N Mode A M3 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	xuto FFT 1[1] 2[1] ส)ป ¹ ป ² การณ์ไปห		2.479 2.479 2.483	-5.89 dBm 95000 GHz -44.37 dBm 950000 GHz -44.37 dBm 	

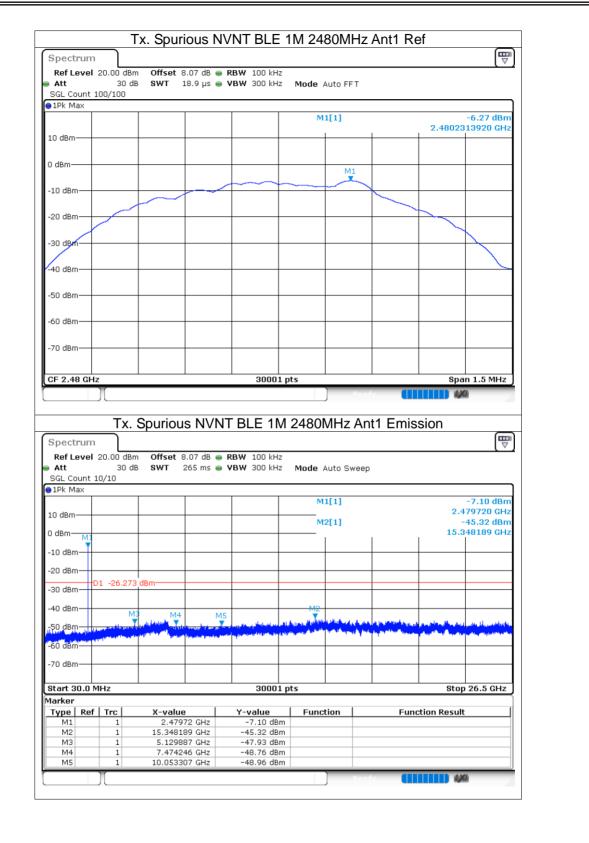
ACCREDITED



8.1.6 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-39.8	-20	Pass
NVNT	BLE 1M	2440	Ant1	-38.77	-20	Pass
NVNT	BLE 1M	2480	Ant1	-39.04	-20	Pass

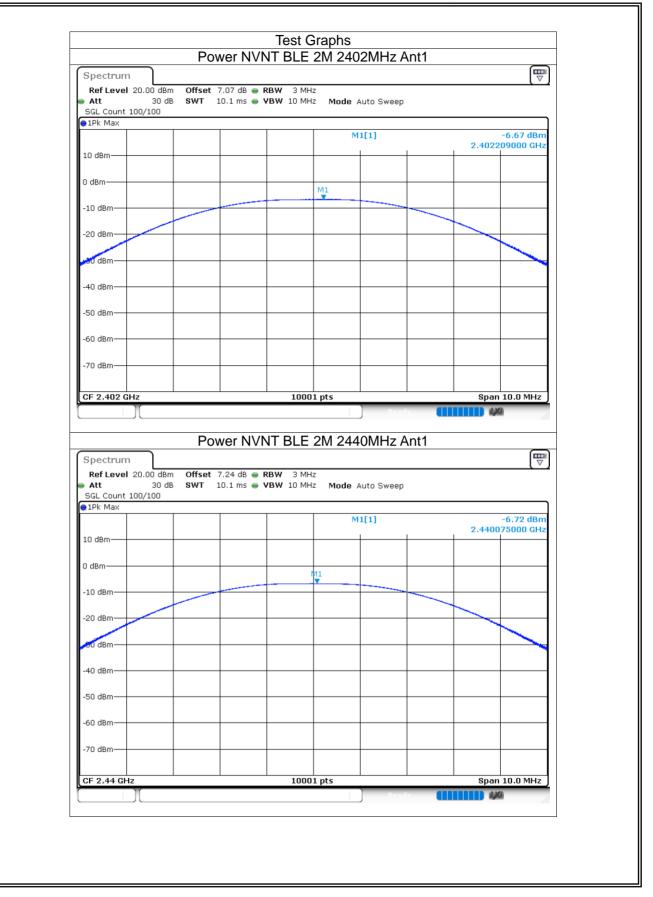
ACCREE


ACCREDITED

Spectro	um								
Ref Lev Att		30 dB			RBW 100 kHz VBW 300 kHz	Mode Auto FFT			
SGL Cou 1Pk Max		/100							
TEK MG	~					M1[1]			-6.16 dBm
								2.43998	74000 GHz
10 dBm—									
0 40									
0 dBm—					M1				
-10 dBm-	_					~~~			
		_							
-20 dBm-								~	
-30 dBm									
40 db~									
-40 dBm-									
-50 dBm-									
-60 dBm-									├────┃ │
-70 dBm-					+ +				
CF 2.44 Spectro	L)(2440MHz A	Ant1 Emis		n 1.5 MHz
Spectro Ref Lev Att	um vel 20	.00 dBm 30 dB	Offset 8	1.24 dB 👄	IT BLE 1M	R			
Spectro Ref Lev	um vel 20	.00 dBm 30 dB	Offset 8	1.24 dB 👄	IT BLE 1M	2440MHz A			
Spectro Ref Lev Att SGL Cou	um vel 20	.00 dBm 30 dB	Offset 8	1.24 dB 👄	IT BLE 1M	2440MHz A			
Spectro Ref Lev Att SGL Cou	um vel 20	.00 dBm 30 dB	Offset 8	1.24 dB 👄	IT BLE 1M	2440MHz A Mode Auto Swe		sion 2.4	-9.42 dBm 440010 GHz
Spectru Ref Lev Att SGL Cou 1Pk Max 10 dBm- 0 dBm-	um vel 20 int 10/: x	.00 dBm 30 dB	Offset 8	1.24 dB 👄	IT BLE 1M	2440MHz A Mode Auto Swe		sion 2.4	-9.42 dBm
Spectru Ref Lev Att SGL Cou 1Pk Mas 10 dBm- 0 dBm-	um vel 20 x	.00 dBm 30 dB	Offset 8	1.24 dB 👄	IT BLE 1M	2440MHz A Mode Auto Swe		sion 2.4	-9.42 dBm 40010 GHz 44.94 dBm
Spectru Ref Lee Att SGL Cou 10 dBm- 0 dBm- -10 dBm-	um vel 20 int 10/3	.00 dBm 30 dB	Offset 8	1.24 dB 👄	IT BLE 1M	2440MHz A Mode Auto Swe		sion 2.4	-9.42 dBm 40010 GHz 44.94 dBm
Spectru Ref Lev Att SGL Cou 1Pk Ma: 10 dBm- 0 dBm- -10 dBm- -20 dBm-	um vel 20 int 10/2 x	00 dBm 30 dB	Offset 8 SWT 2	1.24 dB 👄	IT BLE 1M	2440MHz A Mode Auto Swe		sion 2.4	-9.42 dBm 40010 GHz 44.94 dBm
Spectru Ref Lee Att SGL Cou 10 dBm- 0 dBm- -10 dBm-	um vel 20 int 10/2 x	.00 dBm 30 dB	Offset 8 SWT 2	1.24 dB 👄	IT BLE 1M	2440MHz A Mode Auto Swe		sion 2.4	-9.42 dBm 40010 GHz 44.94 dBm
Spectru Ref Lev Att SGL Cou 1Pk Ma: 10 dBm- 0 dBm- -10 dBm- -20 dBm-	um vel 20 int 10/2 x	-26.165	dBm	2.24 dB •	JT BLE 1M	Mode Auto Swe		sion 2.4	-9.42 dBm 40010 GHz 44.94 dBm
Spectru Ref Lev Att SGL Cou 10 dBm 0 dBm -10 dBm -20 dBm- -30 dBm- -40 dBm-	um vel 20 int 10/2 x	00 dBm 30 dB	dBm	1.24 dB 👄	JT BLE 1M	2440MHz A Mode Auto Swe		sion 2.4	-9.42 dBm 40010 GHz 44.94 dBm
Spectru Ref Lev Att SGL Cou 1Pk Ma; 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	um vel 20 int 10/2 x	-26.165	dBm	2.24 dB •	JT BLE 1M	Mode Auto Swe		sion 2.4	-9.42 dBm 40010 GHz 44.94 dBm
Spectru Ref Lev Att SGL Cou 10 dBm 0 dBm -10 dBm -20 dBm- -30 dBm- -40 dBm-	um vel 20 int 10/2 x	-26.165	dBm	2.24 dB •	JT BLE 1M	Mode Auto Swe		sion 2.4	-9.42 dBm 40010 GHz 44.94 dBm
Spectru Ref Lev Att SGL Cou 1Pk Ma; 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	um vel 20 int 10// x	-26.165	dBm	2.24 dB •	JT BLE 1M	Mode Auto Swe		sion 2.4	-9.42 dBm 40010 GHz 44.94 dBm
Spectru Ref Lev SGL Cou 10 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm- -50 dBm- -70 dBm-	um vel 20 int 10/ × D1	-26.165	dBm	2.24 dB •	S	2440MHz A Mode Auto Swe M1[1] M2[1] M2 M2		2.4 	-9.42 dBm 40010 GHz 44.94 dBm 97580 GHz
Spectru Ref Lev SGL Cou IDK May 10 dBm	um vel 20 int 10/ × D1	-26.165	dBm	2.24 dB •	JT BLE 1M	2440MHz A Mode Auto Swe M1[1] M2[1] M2 M2		2.4 	-9.42 dBm 40010 GHz 44.94 dBm
Spectru Ref Lev SGL Cou SGL Cou 10 dBm- 0 dBm- 10 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm- -50 dBm- -70 dBm- Start 30 Marker Type	UIM vel 20 int 10// X 01	-26.165	dBm M4 X-value	8.24 dB 265 ms	JT BLE 1M RBW 100 kHz yBW 300 kHz 	2440MHz A Mode Auto Swe M1[1] M2[1] M2 M2		2.4 	-9.42 dBm 440010 GHz 44.94 dBm 97580 GHz
Spectru Ref Lev SGL Cou 9 1Pk May 10 dBm	UIM vel 20 int 10// X 01	-26.165	dBm <u>M4</u> <u>X-value</u> 2.4400	8.24 dB 265 ms	JT BLE 1M	2440MHz A Mode Auto Swee M1[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M2 M2 M2		2.4 16.2	-9.42 dBm 440010 GHz 44.94 dBm 97580 GHz
Spectru Ref Lev Att SGL Cou 10 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm- -70 dBm- Start 30 Marker Type M1 M1 M2 M3	UIM vel 20 int 10// X 01	-26.165	dBm M4 X-value 2.4440 16.2975 4.6957	.24 dB 265 ms	JT BLE 1M RBW 100 kHz VBW 300 kHz VBW 300 kHz 300 kHz - - - - - - - - - - - - -	2440MHz A Mode Auto Swee M1[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M2 M2 M2		2.4 16.2	-9.42 dBm 440010 GHz 44.94 dBm 97580 GHz
Spectru Ref Lev SGL Cou SGL Cou 10 dBm	UIM vel 20 int 10// X 01	-26.165	Contraction of the second seco	.24 dB 265 ms	JT BLE 1M RBW 100 kHz yBW 300 kHz	2440MHz A Mode Auto Swee M1[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M2 M2 M2		2.4 16.2	-9.42 dBm 440010 GHz 44.94 dBm 97580 GHz
Spectru Ref Lev Att SGL Cou 10 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm- -70 dBm- Start 30 Marker Type M1 M1 M2 M3	UIM vel 20 int 10// X 01	-26.165	dBm M4 X-value 2.4440 16.2975 4.6957	.24 dB 265 ms	JT BLE 1M RBW 100 kHz VBW 300 kHz VBW 300 kHz 300 kHz - - - - - - - - - - - - -	2440MHz A Mode Auto Swee M1[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M2 M2 M2		2.4 16.2	-9.42 dBm 440010 GHz 44.94 dBm 97580 GHz

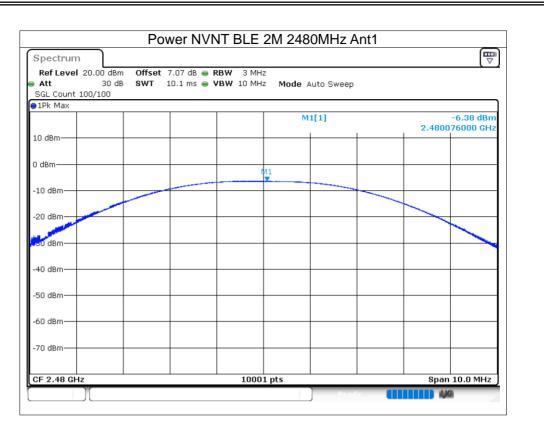
ACCREDITED

ACCREDITED



2M:

8.1.7 Maximum Conducted Output Power

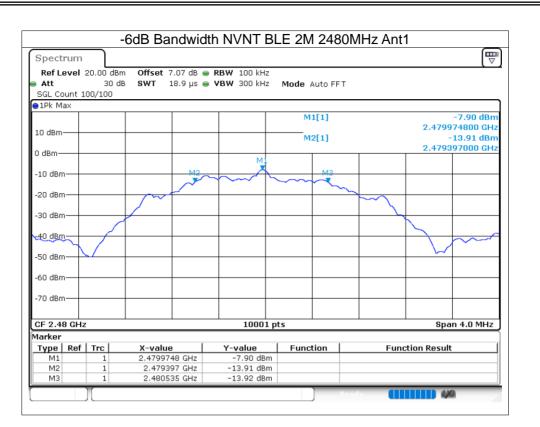

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-6.67	30	Pass
NVNT	BLE 2M	2440	Ant1	-6.72	30	Pass
NVNT	BLE 2M	2480	Ant1	-6.38	30	Pass

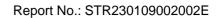
ACCREDITED

ACCREDITED

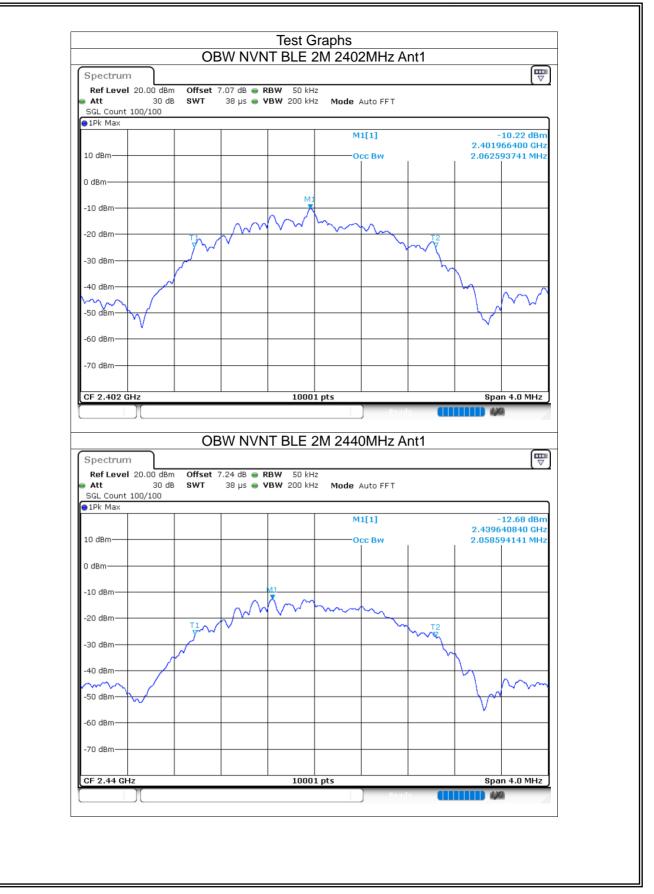
8.1.8 -6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	1.235	0.5	Pass
NVNT	BLE 2M	2440	Ant1	1.278	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.138	0.5	Pass


ACCREDITED

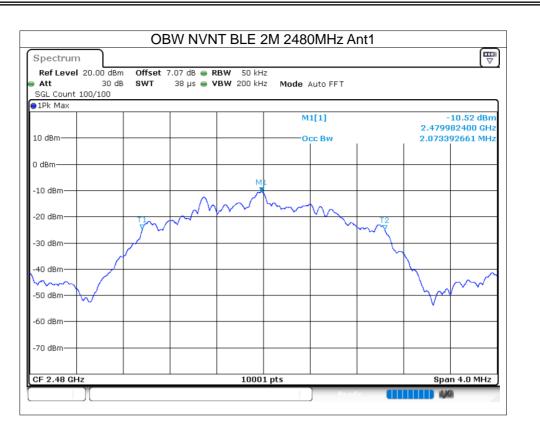

ACCREDITED

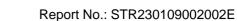
ACCREDITED



8.1.9 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 2M	2402	Ant1	2.063
NVNT	BLE 2M	2440	Ant1	2.059
NVNT	BLE 2M	2480	Ant1	2.073

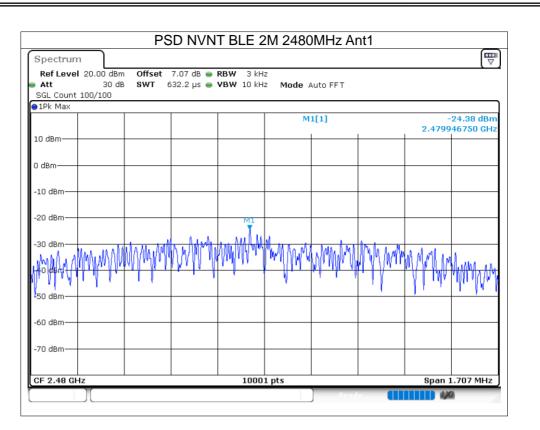

ACCREDITED


ACCREDITED

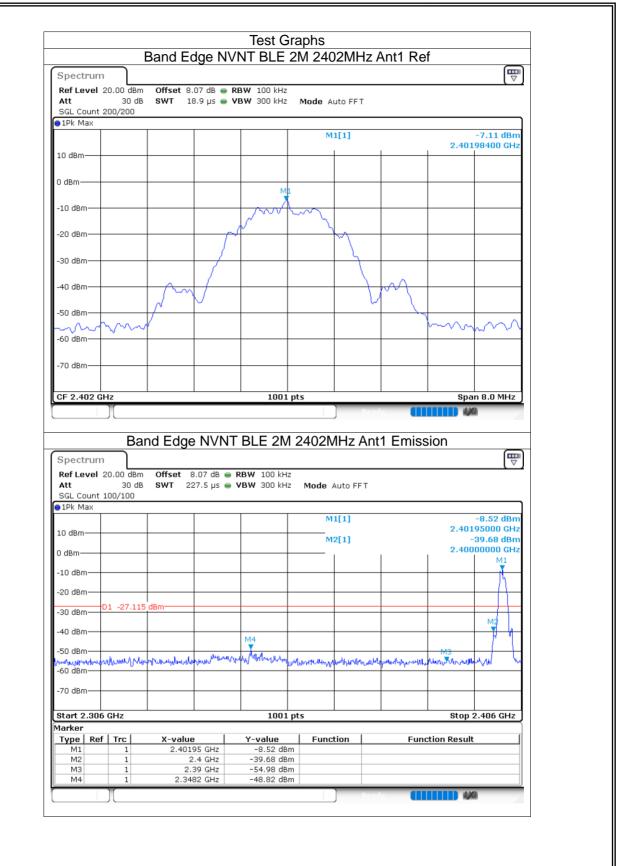
ACCREDITED

8.1.10 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-24.61	8	Pass
NVNT	BLE 2M	2440	Ant1	-24.73	8	Pass
NVNT	BLE 2M	2480	Ant1	-24.38	8	Pass


ACCREI

ACCREDITED


ACCREDITED

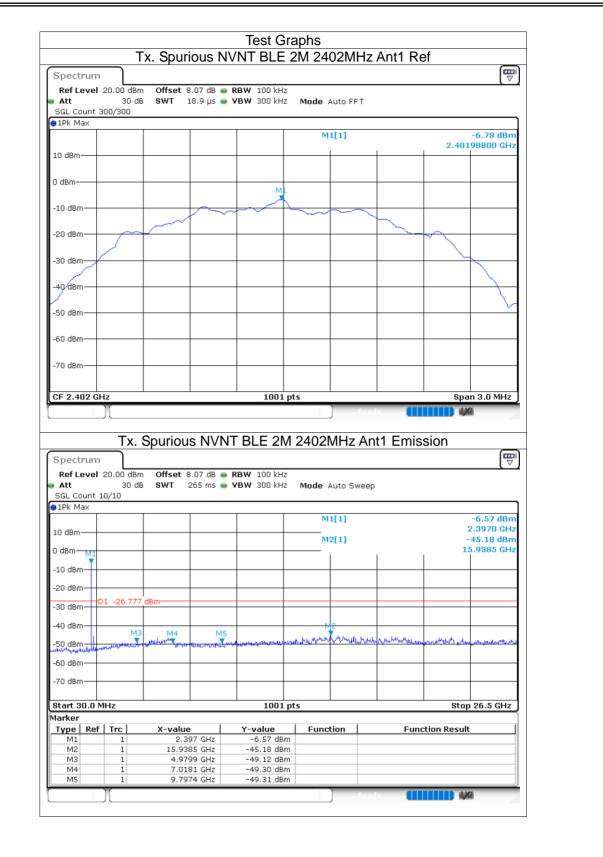
8.1.11 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-41.71	-20	Pass
NVNT	BLE 2M	2480	Ant1	-45.8	-20	Pass

ACCREDITED

Spectrum										
Ref Level 3	20.00 dBm	Offset 8	3.07 dB 😑	RBW 100 kHz						
Att		SWT 1	18.9 µs 👄	VBW 300 kHz	Mode Au	to FFT				
SGL Count :	200/200									
∋1Pk Max						543			6 00 ID	
					MI	[1]		2 470	-6.28 dBm 998400 GHz	
10 dBm-								2.177	550100 0112	
0 dBm										
				M						
-10 dBm				-	L-~					
				$1 \wedge 1^{\vee}$	× 5					
-20 dBm			<u>۴</u>			A				
						$\langle \rangle$				
-30 dBm						<u> </u>				
		_	1/			<u> </u>	_			
-40 dBm		<u>⊢ /~~</u>	+/				tool -			
			\mathbb{N}			h	1			
-50 dBm		\downarrow —					+			
~ han	har	ſ						from	\sim	
-60 dBm			+	-				+		
-70 dBm				-				-		
CF 2.48 GH	7			1001	nts				an 8.0 MHz	
		nd Edg	e NVN	T BLE 2N	2480M	Rea Hz Ant	1 Emis	sion		
Spectrum						Bon Hz Ant	1 Emis			
Spectrum Ref Level 3 Att	20.00 dBm	Offset	8.07 dB 👄	T BLE 2N RBW 100 kH; VBW 300 kH;	2		1 Emis			!
Ref Level 3 Att SGL Count 3	20.00 dBm 30 dB	Offset	8.07 dB 👄	RBW 100 kH:	2		1 Emis			!
Ref Level 3 Att	20.00 dBm 30 dB	Offset	8.07 dB 👄	RBW 100 kH:	2 2 Mode A	uto FFT	1 Emis		- 	!
Ref Level 3 Att SGL Count 3 1Pk Max	20.00 dBm 30 dB	Offset	8.07 dB 👄	RBW 100 kH:	2 2 Mode A		1 Emis	sion	-6.32 dBm	!
Ref Level 3 Att SGL Count 3	20.00 dBm 30 dB	Offset	8.07 dB 👄	RBW 100 kH:	2 2 Mode A 	uto FFT	1 Emis	sion 2.47	- 	!
Ref Level 2 Att SGL Count 2 1Pk Max	20.00 dBm 30 dB	Offset	8.07 dB 👄	RBW 100 kH:	2 2 Mode A 	uto FFT	1 Emis	sion 2.47	-6.32 dBm 995000 GHz	
Ref Level 3 Att SGL Count 1Pk Max 10 dBm 0 dBm	20.00 dBm 30 dB	Offset	8.07 dB 👄	RBW 100 kH:	2 2 Mode A 	uto FFT	:1 Emis:	sion 2.47	-6.32 dBm 995000 GHz -54.17 dBm	
Ref Level 2 Att SGL Count 2 1Pk Max	20.00 dBm 30 dB	Offset	8.07 dB 👄	RBW 100 kH:	2 2 Mode A 	uto FFT	:1 Emis:	sion 2.47	-6.32 dBm 995000 GHz -54.17 dBm	
Ref Level 3 Att SGL Count 1Pk Max 10 dBm 0 dBm	20.00 dBm 30 dB	Offset	8.07 dB 👄	RBW 100 kH:	2 2 Mode A 	uto FFT	:1 Emis:	sion 2.47	-6.32 dBm 995000 GHz -54.17 dBm	
Ref Level Att SGL Count SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm	20.00 dBm 30 dB	Offset SWT 2	8.07 dB 👄	RBW 100 kH:	2 2 Mode A 	uto FFT	:1 Emis:	sion 2.47	-6.32 dBm 995000 GHz -54.17 dBm	
Ref Level 3 Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB 100/100	Offset SWT 2	8.07 dB 👄	RBW 100 kH:	2 2 Mode A 	uto FFT	:1 Emis:	sion 2.47	-6.32 dBm 995000 GHz -54.17 dBm	
Ref Level Att SGL Count SGL Count IPk Max IO dBm 0 dBm 0 dBm -20 dBm -30 dBm	20.00 dBm 30 dB 100/100	Offset SWT 2	8.07 dB 👄	RBW 100 kH:	2 2 Mode A 	uto FFT	:1 Emis:	sion 2.47	-6.32 dBm 995000 GHz -54.17 dBm	
Ref Level : Att SGL Count : 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB 100/100	Offset SWT 2	8.07 dB 👄	RBW 100 kH:	2 2 Mode A 	uto FFT	1 Emis	2.479 2.483	-6.32 dBm 995000 GHz -54.17 dBm 350000 GHz	
Ref Level Att SGL Count SGL Count IPk Max IO dBm 0 dBm 0 dBm -20 dBm -30 dBm	20.00 dBm 30 dB 100/100	Offset SWT 2	8.07 dB 227.5 µs	RBW 100 kH; VBW 300 kH;	2 Mode A M1 M2	uto FFT [1] [1]		2.479 2.483	-6.32 dBm 995000 GHz -54.17 dBm 350000 GHz	
Ref Level : Att SGL Count : 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB 100/100	Offset SWT 2	8.07 dB 227.5 µs	RBW 100 kH:	2 Mode A M1 M2	uto FFT [1] [1]		2.479 2.483	-6.32 dBm 995000 GHz -54.17 dBm	
Ref Level : Att SGL Count : IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20.00 dBm 30 dB 100/100	Offset SWT 2	8.07 dB 227.5 µs	RBW 100 kH; VBW 300 kH;	2 Mode A M1 M2	uto FFT [1] [1]		2.479 2.483	-6.32 dBm 995000 GHz -54.17 dBm 350000 GHz	
Ref Level Att SGL Count SGL Count IPk Max IO dBm 0 dBm 0 dBm -20 dBm -30 dBm -30 dBm -40 dBm	20.00 dBm 30 dB 100/100	Offset SWT 2	8.07 dB 227.5 µs	RBW 100 kH; VBW 300 kH;	2 Mode A M1 M2	uto FFT [1] [1]		2.479 2.483	-6.32 dBm 995000 GHz -54.17 dBm 350000 GHz	
Ref Level SGL Count SGL Count 10 dBm 10 dBm 0 dBm -10 dBm	20.00 dBm 30 dB 100/100 01 -26.284	Offset SWT 2	8.07 dB 227.5 µs	RBW 100 kH; VBW 300 kH;	2 Mode ۸ 	uto FFT [1] [1]		2.479 2.483	-6.32 dBm 995000 GHz -54.17 dBm 350000 GHz	
Ref Level : Att SGL Count : IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20.00 dBm 30 dB 100/100 01 -26.284	Offset SWT 2	8.07 dB 227.5 µs	RBW 100 kH; VBW 300 kH;	2 Mode ۸ 	uto FFT [1] [1]		2.479 2.483	-6.32 dBm 995000 GHz -54.17 dBm 350000 GHz	
Ref Level Att SGL Count SGL Count IPk Max IO dBm 0 dBm IO dBm -10 dBm IO dBm -20 dBm IO dBm -30 dBm IO dBm -40 dBm IO dBm -50 dBm IO dBm -60 dBm IO dBm -70 dBm IO dBm -70 dBm IO dBm -70 dBm IO dBm	20.00 dBm 30 dB 100/100 01 -26.284	Offset SWT 2	8.07 dB 227.5 µs	RBW 100 kH; VBW 300 kH;	2 Mode ۸ 	uto FFT [1] [1] [1] [1] [haderth for the star	2.479 2.483	-6.32 dBm 995000 GHz -54.17 dBm 350000 GHz	
Ref Level 3 Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm Start 2.476 Marker Type Ref	20.00 dBm 30 dB 100/100 01 -26.284 14 14 14 14 14 14 14 14 14 14 11	Offset SWT 2 dBm dBm M3 oymtMuAniuu X-valu 2.475	8.07 dB 227.5 µs	RBW 100 kH; VBW 300 kH;	2 2 Mode A M1 M2 	uto FFT [1] [1] [1] [1] [haderth for the star	2.47 2.48 2.48	-6.32 dBm 995000 GHz -54.17 dBm 350000 GHz	
Ref Level Att SGL Count SGL Count IPk Max IO dBm 0 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm -70 dBm -30 dBm	20.00 dBm 30 dB 100/100 01 -26.284 14 14 GHz Trc 1 1 1	Offset SWT 2 dBm- M3 oynthUutriou X-valu 2.47 2.48	8.07 dB ● 227.5 µs ●	RBW 100 kH; VBW 300 kH; 	2 Mode A M1 M2 ساله المرابي puts Functi n n	uto FFT [1] [1] [1] [1] [haderth for the star	2.47 2.48 2.48	-6.32 dBm 995000 GHz -54.17 dBm 350000 GHz	
Ref Level 3 Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm Start 2.476 Marker Type Ref	20.00 dBm 30 dB 100/100 01 -26.284 14 14 14 14 14 14 14 14 14 14 11	Offset SWT 2 dBm- M3 oyntulioAnton 2.475 2.46	8.07 dB 227.5 µs	RBW 100 kH; VBW 300 kH;	2 Mode A M1 M2 m puts Function n m	uto FFT [1] [1] [1] [1] [haderth for the star	2.47 2.48 2.48	-6.32 dBm 995000 GHz -54.17 dBm 350000 GHz	
Ref Level Att SGL Count SGL Count IPk Max Max 10 dBm 0 -10 dBm - -20 dBm - -30 dBm - -40 dBm - -50 dBm - -60 dBm - -70 dBm - Start 2.476 Marker Type Ref M1 M2 M3 -	20.00 dBm 30 dB 100/100 01 -26.284 14 14 GHz It I I I I I I I I I I I I I I I I I I	Offset SWT 2 dBm- M3 oyntulioAnton 2.475 2.46	8.07 dB ● 227.5 µs ●	RBW 100 kH; VBW 300 kH; Image: State of the s	2 Mode A M1 M2 m puts Function n m	uto FFT [1] [1] [1] [1] [Fun	2.47 2.48 2.48	-6.32 dBm 995000 GHz -54.17 dBm 350000 GHz -54.17 dBm 2.576 GHz 2.576 GHz	

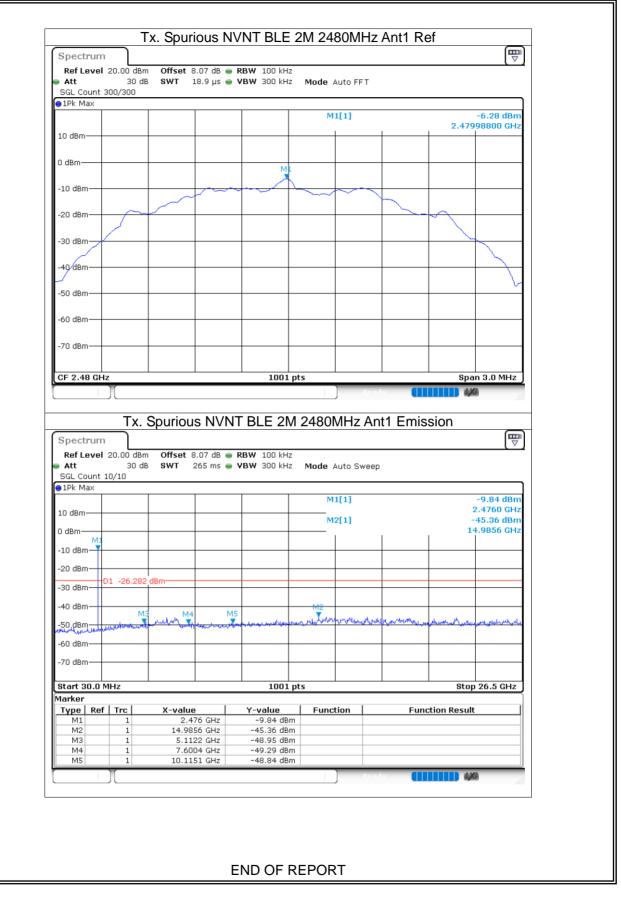
ACCREDITED



8.1.12 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-38.4	-20	Pass
NVNT	BLE 2M	2440	Ant1	-38.78	-20	Pass
NVNT	BLE 2M	2480	Ant1	-39.08	-20	Pass


ACCREL


ACCREDITED

ACCREDITED

ACCREDITED