

SAR TEST REPORT

Product Name: Feature phone

Model Name: INOI 106Z

FCC ID: 2A9SN-INOI106Z

Issued For : INOI Limited

Office 302, Dominion Centre 43-59, Queens Road, East

Wanchai, Hong Kong, China

Issued By : Shenzhen LGT Test Service Co., Ltd.

Room 205, Building 13, Zone B, Chen Hsong Industrial Park, No.177 Renmin West Road, Jinsha Community, Kengzi Street, Pingshan New District, Shenzhen, China

Report Number: LGT22L059HA01

Sample Received Date: Dec. 08, 2022

Date of Test: Jan. 03, 2023 ~ Jan. 04, 2023

Date of Issue: Jan. 05, 2023

Head: 0.697 W/kg

Max. SAR (10g):

Body: 1.135 W/kg

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply

Table of Contents

1. General Information	5
1.1 EUT Description	5
1.3 Test Factory	6
2. Test Standards and Limits	7
3. SAR Measurement System	8
3.1 Definition of Specific Absorption Rate (SAR)	8
3.2 SAR System	8
4. Tissue Simulating Liquids	11
4.1 Simulating Liquids Parameter Check	11
5. SAR System Validation	12
5.1 Validation System	12
5.2 Validation Result	12
6. SAR Evaluation Procedures	13
7. EUT Test Position	14
7.1 Cheek Position	14
7.2 Tilt Position	15
7.3 Body-worn Position Conditions	15
8. Uncertainty	16
8.1 Measurement Uncertainty	16
8.2 System validation uncertainty	17
9. Conducted Power Measurement	18
10. Test Photos and Results	20
10.1 EUT Photos	20
10.2 Setup Photos	23
11. SAR Result Summary	29
12. Equipment List	33
Appendix A. System Validation Plots	34
Appendix B. SAR Test Plots	40
Appendix C. Probe Calibration and Dipole Calibration Report	46

Report No.: LGT22L059HA01 Page 2 of 46

Revision History

Rev.	Issue Date Contents			
00	Jan. 05, 2023	Initial Issue		

Report No.: LGT22L059HA01 Page 3 of 46

TEST REPORT CERTIFICATION

Applicant INOI Limited

Office 302, Dominion Centre 43-59, Queens Road, East

Wanchai, Hong Kong, China

Manufacture INOI Limited

Office 302, Dominion Centre 43-59, Queens Road, East

Wanchai, Hong Kong, China

Product Name Feature phone

Trademark INOI

Address

Model Name INOI 106Z

Sample number: LGT22012102

APPLICABLE STANDARDS						
STANDARD	TEST RESULTS					
FCC KDB 447498 D04 v01; FCC KDB 865664 D01 v01r04; FCC KDB 865664 D02 v01r02; FCC KDB 941225 D01 v03r01; FCC KDB 941225 D05 v02r05; FCC KDB 941225 D06 v02r01; FCC KDB 648474 D04 v01r03; FCC KDB 248227 D01 Wi-Fi SAR v02r02	PASS					

Prepared by:

Zane Shan

Zane Shan

Engineer

Approved by:

Vita Li

Manager

- (1) The test report is effective only with both signature and specialized stamp.
- (2) This report shall not be reproduced except in full without the written approval of the Laboratory.
- (3) The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Report No.: LGT22L059HA01 Page 4 of 46

1. General Information

1.1 EUT Description

Product Name	Feature phone						
Trademark	INOI						
Model Name	INOI 106Z						
Series Model	N/A						
Model Difference	N/A	N/A					
Hardware Version	CG218B_MB_V1.1						
Software Version	CG218B_128X160_A18240CG_3(INOI_106Z)EnRuKaUzGeAz V08 20220923						
Frequency Range	GSM 850: 824 ~ 849 MHz PCS 1900: 1850 ~ 1910 MHz Bluetooth: 2402 ~ 2480 MHz						
	Mode	Head (W/ kg)	Body (W/ kg)				
	GSM 850	0.697	1.135				
Max. Reported SAR(1g)	PCS 1900	0.545	0.660				
	Bluetooth	0.030	0.037				
	Limit	1.6 \	W/kg				
Battery	Rated Voltage: 3.7V Charge Limit Voltage: 4.2V Capacity: 1650mAh	,					
Description test modes	SIM 1 and SIM 2 is a chips SIM 1 is used to tested.	et unit and tested	as single chipset,				
Modulation Mode	GMSK for GSM/GPRS Bluetooth: GFSK +π/4DQPSK+8DPSK						
Antenna Specification	GSM: PIFA Antenna Bluetooth: Monopole Antenna						
Operating Mode	Maximum continuous outp						

Report No.: LGT22L059HA01 Page 5 of 46

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

Company Name:	Shenzhen LGT Test Service Co., Ltd.
Address:	Room 205, Building 13, Zone B, Chen Hsong Industrial Park, No.177 Renmin West Road, Jinsha Community, Kengzi Street, Pingshan New District, Shenzhen, China
Audiess.	FCC test Firm Registration No.: 746540 IC Registration No.: CN0136 A2LA Certificate No.: 6727.01

Report No.: LGT22L059HA01 Page 6 of 46

2. Test Standards and Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D04 v01	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
7	FCC KDB 941225 D01 v03r01	SAR Measurement Procedures for 3G Devices
8	FCC KDB 941225 D05 v02r05	SAR for LTE Devices
9	FCC KDB 941225 D06 v02r01	Hotspot Mode SAR
10	FCC KDB 648474 D04 v01r03	SAR Evaluation Considerations for Wireless Handsets
11	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles
0.4 8.0 20.0

0.4 0.0 20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles

0.08 1.6 4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

Report No.: LGT22L059HA01 Page 7 of 46

3. SAR Measurement System

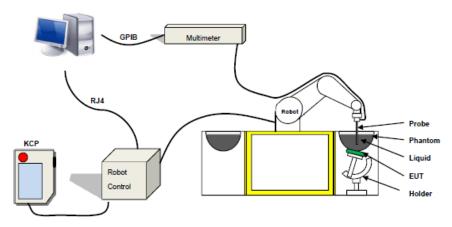
3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by

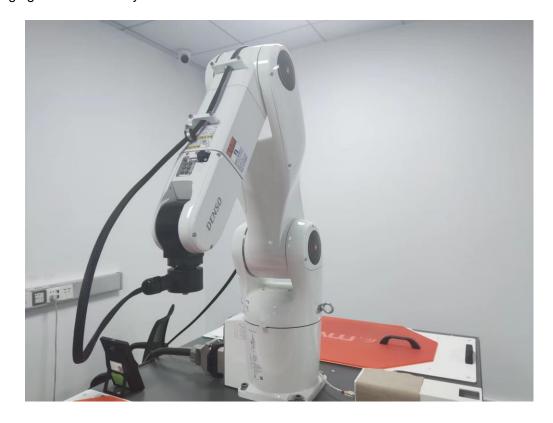

$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue;

 $\boldsymbol{\rho}$ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:


COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

Report No.: LGT22L059HA01 Page 8 of 46

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 1g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 04/22 EPGO364 with following specifications is used

- Probe Length: 330 mm
- Length of Individual Dipoles: 2mm
- Maximum external diameter: 8 mm
- Probe Tip External Diameter: 2.5 mm
- Distance between dipole/probe extremity: 1 mm
- Dynamic range: 0.01-100 W/kg
- Probe linearity: 3%
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: < 0.10 dB
- Calibration range: 150 MHz to 6 GHz for head & body simulating liquid.
- -Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Probe

Report No.: LGT22L059HA01 Page 9 of 46

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Figure-SN 06/22 SAM 148

3.2.3 Device Holder

Figure-SN 06/22 ELLI 51

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

Report No.: LGT22L059HA01 Page 10 of 46

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values

The uncertainty due to the liquid conductivity and permittivity arises from two different sources. The first source of error is the deviation of the liquid conductivity from its target value (max _ 5 %) and the second source of error arises from the measurement procedures used to assess conductivity. The uncertainty shall be assessed using a rectangular probability For 1 g averaging, the maximum weighting coefficient for SAR is 0,5.

IEEE SCC-34/SC-2 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

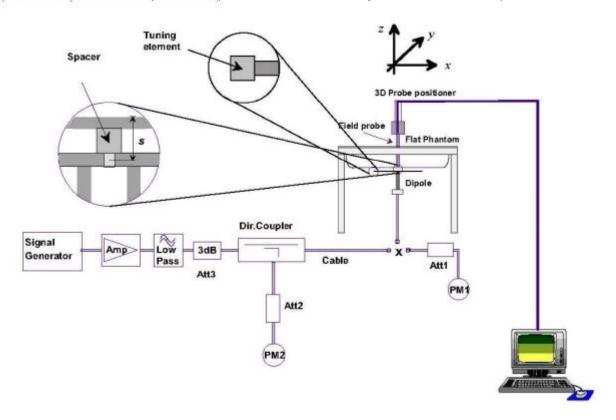
The head and body tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table.

Frequency	3	r	σ1g S/m		
	Head	Body	Head	Body	
300	45.3	45.3	0.87	0.87	
450	43.5	43.5	0.87	0.87	
900	41.5	41.5	0.97	0.97	
1450	40.5	40.5	1.20	1.20	
1800	40.0	40.0	1.40	1.40	
2450	39.2	39.2	1.80	1.80	
3000	38.5	38.5	2.40	2.40	
5200	36.0	36.0	4.70	4.70	

LIQUID MEASUREMENT RESULTS

Date	Aml	pient	Simulating Liquid		Doromotoro	Torget	Measured	Deviation	Limited
Date	Temp. [°C]	Humidity %	Frequency (MHz)	Temp. [°C]	Parameters	Target	Measured	%	%
2023-01-03	22.4	50	835	23.1	Permittivity	41.50	40.63	-2.10	±5
2023-01-03	23.4	58		000	23.1	Conductivity	0.90	0.93	3.33
2023-01-03	23.4	58	1900	23.1	Permittivity	40.00	40.75	1.88	±5
2023-01-03	23.4	56	1900	23.1	Conductivity	1.40	1.38	-1.43	±5
2023-01-04	23.5	45	2450	23.2	Permittivity	39.20	39.75	1.40	±5
2023-01-04	23.5	4 0	2450	23.2	Conductivity	1.80	1.84	2.22	±5

Report No.: LGT22L059HA01 Page 11 of 46



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of ± 10 %.

Date	Freq.	Power	Tested Value	Normalized SAR	Target SAR	Tolerance	Limit
	(MHz)	(mW)	(W/Kg)	(W/kg)	1g(W/kg)	(%)	(%)
2023-01-03	835	100	0.973	9.73	9.63	1.04	10
2023-01-03	1900	100	3.993	39.93	39.84	0.23	10
2023-01-04	2450	100	5.434	54.34	54.70	-0.66	10

Report No.: LGT22L059HA01 Page 12 of 46

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

The following steps are used for each test position

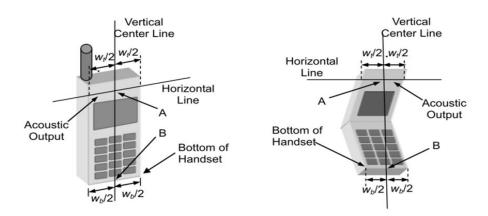
- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

Report No.: LGT22L059HA01 Page 13 of 46



7. EUT Test Position

This EUT was tested in Right Cheek, Right Titled, Left Cheek, Left Titled, Front Face and Rear Face.

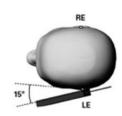
Define Two Imaginary Lines On The Handset:

- 1)The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- 2)The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- 3)The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

7.1 Cheek Position

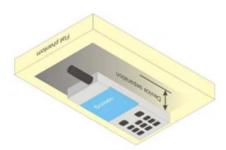
- 1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- 2) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost

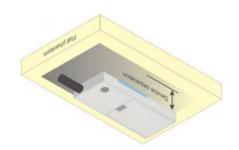
Report No.: LGT22L059HA01 Page 14 of 46



7.2 Tilt Position

- (1)To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.





7.3 Body-worn Position Conditions

- 1) To position the EUT parallel to the phantom surface.
- 2) To adjust the EUT parallel to the flat phantom.
- 3) To adjust the distance between the EUT surface and the flat phantom to 10mm.

Report No.: LGT22L059HA01 Page 15 of 46

8. Uncertainty

8.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at

approximately the 95% confidence level using a coverage factor of k=2.

pproximately the 95% confidence level using a coverage factor of k=2.										
Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi		
Measurement System										
Probe calibration	5.8	N	1	1	1	5.8	5.8	∞		
Axial Isotropy	3.5	R	$\sqrt{3}$	√0.5	√0.5	1.43	1.43	∞		
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	√0.5	√0.5	2.41	2.41	∞		
Boundary effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞		
Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞		
System detection limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞		
Modulation response	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞		
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞		
Response Time	0	R	$\sqrt{3}$	1	1	0.00	0.00	∞		
Integration Time	1.4	R	√3	1	1	1.81	1.81	∞		
RF ambient conditions-Noise	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞ ×		
RF ambient conditions- reflections	3	R	√3	1	1	1.73	1.73	∞		
Probe positioner mechanical tolerance	1.4	R	√3	1	1	0.81	0.81	∞		
Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	∞		
Extrapolation, Interpolation and Integration Algoritms for Max, SAR	2.3	R	√3	1	1	1.33	1.33	∞		
Test sample Related										
Test sample positioning	2.6	N	1	1	1	2.60	2.60	11		
Device holder uncertainty	3	N	1	1	1	3.00	3.00	7		
Output Power Variation - SAR Drift Measurement	5	R	√3	1	1	2.89	2.89	_∞		
SAR scaling	2	R	$\sqrt{3}$	1	1	1.15	1.15	∞		
Phantom and tissue paramet	ters									
Phantom uncertainty (shape and thickness uncertainty)	4	R	√3	1	1	2.31	2.31	∞		
Uncertainty in SAR correction for deviations in permittivity and conductivity	2	Ν	1	1	0.84	2.00	1.68	∞		
Liquid Conductivity - Measurement Uncertainty)	4	Ν	1	0.78	0.71	3.12	2.84	5		
Liquid Permittivity - Measurement Uncertainty	5	Ν	1	0.23	0.26	1.15	1.30	5		
Liquid Conductivity (Temperature Uncertainty)	2.5	R	√3	0.78	0.71	1.13	1.02	∞		
Liquid Permittivity (Temperature Uncertainty)	2.5	R	√3	0.23	0.26	0.33	0.38	∞		
Combined Standard Uncertainty		RSS				10.47	10.34			
Expanded Uncertainty (95% Confidence interval)		К				20.95	20.69			

Report No.: LGT22L059HA01 Page 16 of 46

8.2 System validation uncertainty

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System				!	· · · · · ·		. ,	
Probe calibration	5.8	N	1	1	1	5.8	5.8	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	8
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Boundary effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	0.71	0.71	∞
System detection limits	1	R	√3	1	1	0.58	0.58	∞
Modulation response	0	N	$\sqrt{3}$	0	0	0.00	0.00	∞
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
Response Time	0	R		0	0	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF ambient conditions-Noise	3	R		1				-
	3	K	√3	1	1	1.73	1.73	∞
RF ambient conditions- reflections	3	R	√3	1	1	1.73	1.73	∞
Probe positioner mechanical tolerance	1.4	R	√3	1	1	0.81	0.81	∞
Probe positioning with respect to phantom shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, Interpolation and Integration Algoritms for Max, SAR	2.3	R	√3	1	1	1.33	1.33	∞
Dipole								
Deviation of Experimental Source from Numerical Source	5	N	1	1	1	5.00	5.00	∞
Input Power and SAR Drift Measurement	0.5	R	√3	1	1	0.29	0.29	∞
Dipole Axis to Liquid Distance	2	R	√3	1	1	1.15	1.15	∞
Phantom and Tissue Parame	ters			1			1	1
Phantom uncertainty (shape and thickness uncertainty)	4	R	√3	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	2	N	1	1	0.84	2.00	1.68	∞
Liquid Conductivity - Measurement Uncertainty)	4	N	1	0.78	0.71	3.12	2.84	5
Liquid Permittivity - Measurement Uncertainty	5	N	1	0.23	0.26	1.15	1.30	5
Liquid Conductivity (Temperature Uncertainty)	2.5	R	√3	0.78	0.71	1.13	1.02	∞
Liquid Permittivity (Temperature Uncertainty)	2.5	R	√3	0.23	0.26	0.33	0.38	∞
Combined Standard Uncertainty		RSS				10.16	10.03	
Expanded Uncertainty (95% Confidence interval)		К				20.32	20.06	

Report No.: LGT22L059HA01 Page 17 of 46

9. Conducted Power Measurement

Test Result:

Burst Average Power (dBm)									
Band		GSM 850			PCS 1900				
Channel	128	190	251	512	661	810			
Frequency (MHz)	824.2	836.6	848.8	1850.2	1880.0	1909.8			
GSM (GMSK, 1-Slot)	33.12	32.71	32.84	29.90	30.02	29.84			
GPRS (GMSK, 1-Slot)	33.16	32.74	32.90	29.86	29.98	29.82			
GPRS (GMSK, 2-Slot)	31.61	31.14	31.30	28.35	28.54	28.44			
GPRS (GMSK, 3-Slot)	29.88	29.39	29.54	26.59	26.80	26.75			
GPRS (GMSK, 4-Slot)	28.36	27.83	27.97	24.76	25.06	25.02			

Remark: GPRS, CS4 coding scheme.

Multi-Slot Class 8, Support Max 4 downlink, 1 uplink, 5 working link Multi-Slot Class 10, Support Max 4 downlink, 2 uplink, 5 working link Multi-Slot Class 12, Support Max 4 downlink, 4 uplink, 5 working link

Frame- Average Power(dBm)									
Band		GSM 850			PCS 1900				
Channel	128	190	251	512	661	810			
Frequency (MHz)	824.2	836.6	848.8	1850.2	1880.0	1909.8			
GSM (GMSK, 1-Slot)	24.09	23.68	23.81	20.87	20.99	20.81			
GPRS (GMSK, 1-Slot)	24.13	23.71	23.87	20.83	20.95	20.79			
GPRS (GMSK, 2-Slot)	25.59	25.12	25.28	22.33	22.52	22.42			
GPRS (GMSK, 3-Slot)	25.62	25.13	25.28	22.33	22.54	22.49			
GPRS (GMSK, 4-Slot)	25.35	24.82	24.96	21.75	22.05	22.01			

Remark:

- 1. SAR testing was performed on the maximum frame-averaged power mode.
- 2. The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum

Burst - averaged power based on time slots. The calculated method is shown as below:

Frame-averaged power = Burst averaged power (1 TX Slot) – 9.03 dB

Frame-averaged power = Burst averaged power (2 TX Slots) - 6.02 dB

Frame-averaged power = Burst averaged power (3 TX Slots) - 4.26 dB

Frame-averaged power = Burst averaged power (4 TX Slots) - 3.01 dB

Report No.: LGT22L059HA01 Page 18 of 46

Bluetooth

	BT										
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)							
	0	2402	5.14	3.27							
GFSK(1Mbps)	39	2441	6.61	4.58							
	78	2480	8.05	6.38							
	0	2402	5.23	3.33							
π/4-QPSK(2Mbps)	39	2441	6.31	4.28							
	78	2480	7.4	5.50							
	0	2402	5.25	3.35							
8DPSK(3Mbps)	39	2441	6.29	4.26							
	78	2480	7.4	5.50							

Tune Up Power:

Mode	GSM850(AVG)	GSM1900(AVG)
GSM/DCS	32.5±1dBm	29.5±1dBm
GPRS (1 Slot)	32.5±1dBm	29±1dBm
GPRS (2 Slot)	31±1dBm	28±1dBm
GPRS (3 Slot)	29±1dBm	26±1dBm
GPRS (4 Slot)	27.5±1dBm	24.5±1dBm

Mode	BT(AVG)
GFSK	7.5±1dBm
π/4-DQPSK	6.5±1dBm
8DPSK	6.5±1dBm

Report No.: LGT22L059HA01 Page 19 of 46

10. Test Photos and Results

10.1 EUT Photos

Back side

Report No.: LGT22L059HA01 Page 20 of 46

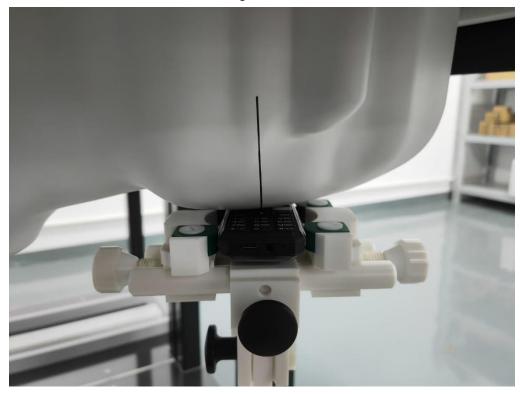
Right Edge

Left Edge

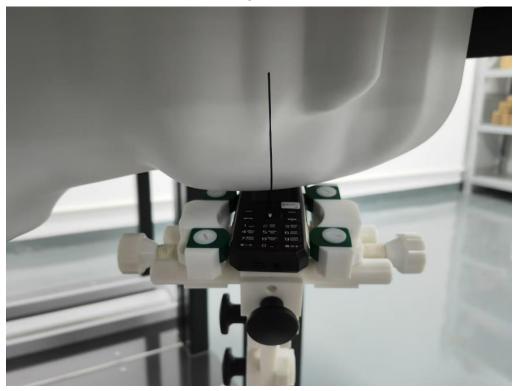
Report No.: LGT22L059HA01 Page 21 of 46

Top Edge

Bottom Edge

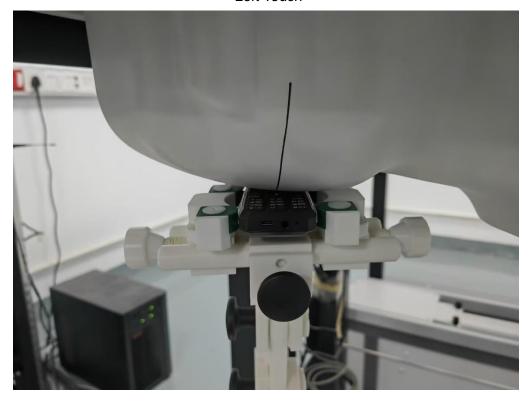


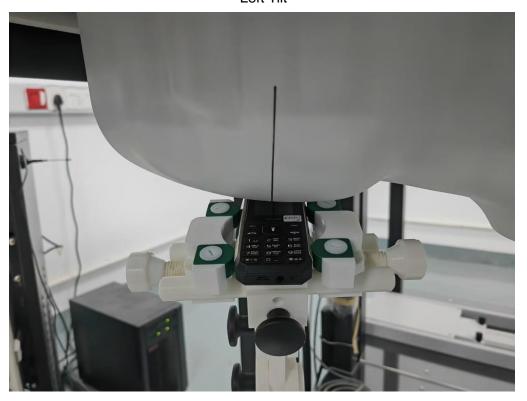
Report No.: LGT22L059HA01 Page 22 of 46



10.2 Setup Photos

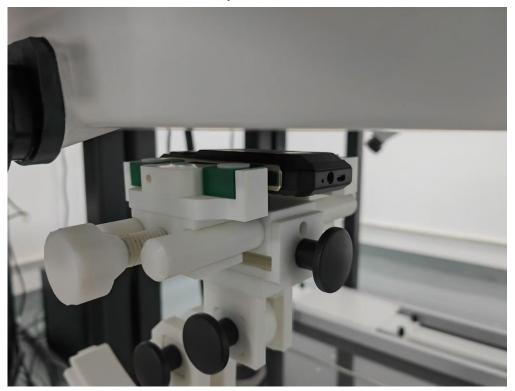
Right Touch


Right Tilt

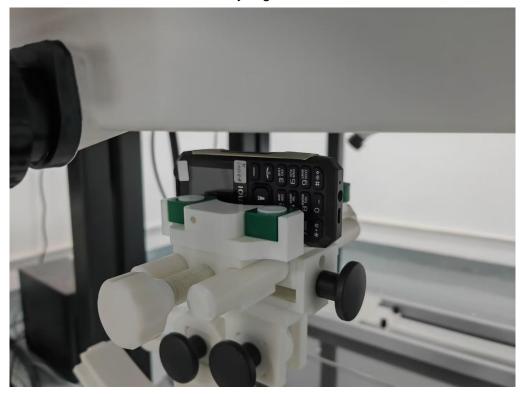

Report No.: LGT22L059HA01 Page 23 of 46

Left Touch


Left Tilt


Report No.: LGT22L059HA01 Page 24 of 46

Body Front side


Body Back side

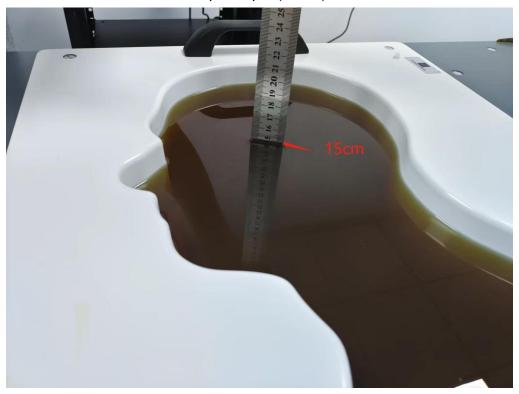
Report No.: LGT22L059HA01 Page 25 of 46

Body Right side

Body Left side

Report No.: LGT22L059HA01 Page 26 of 46

Top Edge


Bottom Edge

Report No.: LGT22L059HA01 Page 27 of 46

Liquid depth (15 cm)

Liquid depth (15 cm)

Report No.: LGT22L059HA01 Page 28 of 46

11. SAR Result Summary

HEAD SAR

Band	Model	Test Position	Freq.	SAR (1g) (W/kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas.No.
		Right Cheek	824.2	0.639	-3.43	33.50	33.12	0.697	1
		Right Cheek	836.6	0.542	-1.71	33.50	32.71	0.650	/
GSM850	CCM	Right Cheek	848.8	0.555	2.01	33.50	32.84	0.646	/
GSIVI850	GSM	Right Tilt	824.2	0.325	0.99	33.50	33.12	0.355	/
		Left Cheek	824.2	0.623	0.16	33.50	33.12	0.680	/
		Left Tilt	824.2	0.320	0.44	33.50	33.12	0.349	/
		Right Cheek	1880	0.488	-1.88	30.50	30.02	0.545	3
CCM4000	CCM	Right Tilt	1880	0.244	-1.09	30.50	30.02	0.273	/
GSM1900	GSM	Left Cheek	1880	0.404	-2.82	30.50	30.02	0.451	/
		Left Tilt	1880	0.202	0.35	30.50	30.02	0.226	/
		Left Tilt	2480	0.021	1.43	8.50	8.05	0.023	/
DT		Right Tilt	2480	0.014	2.83	8.50	8.05	0.016	/
BT	GFSK	Left Cheek	2480	0.027	-2.27	8.50	8.05	0.030	5
		Left Tilt	2480	0.019	1.24	8.50	8.05	0.021	/

Report No.: LGT22L059HA01 Page 29 of 46

BODY SAR

Band	Model	Test Position	Ch.	SAR (1g) (W/kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas.No.
		Front Side	824.2	0.646	-3.97	30.00	29.88	0.664	/
		Back Side	824.2	1.104	2.07	30.00	29.88	1.135	2
		Back Side	836.6	0.821	1.28	30.00	29.39	0.945	/
GSM850	GPRS Data-3	Back Side	848.8	0.842	3.62	30.00	29.54	0.936	/
GSIVIOSO	Slot	Left Edge	824.2	0.145	0.50	30.00	29.88	0.149	/
		Right Edge	824.2	0.186	-3.02	30.00	29.88	0.191	/
		Top Edge	824.2	0.069	-0.20	30.00	29.88	0.071	/
		Bottom Edge	824.2	0.081	-1.74	30.00	29.88	0.083	/
		Front Side	1880	0.135	-2.97	27.00	26.80	0.141	/
		Back Side	1880	0.630	-1.51	27.00	26.80	0.660	4
GSM1900	GPRS Data-3	Left Edge	1880	0.120	2.30	27.00	26.80	0.126	/
G3W1900	Slot	Right Edge	1880	0.136	-2.95	27.00	26.80	0.142	/
		Top Edge	1880	0.101	-0.28	27.00	26.80	0.106	/
		Bottom Edge	1880	0.302	-0.47	27.00	26.80	0.316	/
		Front Side	2480	0.033	-1.42	8.50	8.05	0.037	6
		Back Side	2480	0.022	-2.98	8.50	8.05	0.024	/
Bluetooth		Left Edge	2480	0.017	-3.27	8.50	8.05	0.019	/
Bluetooth	GFSK	Right Edge	2480	0.015	1.41	8.50	8.05	0.017	/
		Top Edge	2480	0.018	2.80	8.50	8.05	0.020	/
		Bottom Edge	2480	0.011	-0.23	8.50	8.05	0.012	/

Note:

- 1. Per KDB 447498 D04, the reported SAR is the measured SAR value adjusted for maximum tuneup tolerance.
- a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
- b. Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 2. Per KDB 865664 D01, Repeated measurement is not required when the original highest measured SAR is <0.80 W/kg
- 3. Two SIM card slot can't work at the same time.

Report No.: LGT22L059HA01 Page 30 of 46

Repeated SAR measurement

Band	Mode	Test Position	Freq.	Original Measured SAR 1g(W/kg)	1 st Repeated SAF 1g	Ratio
	GPRS Data-3 Slot	Back Side	824.2	1.104	1.050	1.051
GSM 850		Back Side	836.6	0.821	0.783	1.049
		Back Side	848.8	0.842	0.808	1.042

Repeated SAR

Band	Mode	Test Position	Freq.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR(W/Kg)
	0.000	Back Side	824.2	1.050	0.93	30	29.88	1.079
GSM 850	GPRS Data-3 Slot	Back Side	836.6	0.783	-0.34	30	29.39	0.901
	Data o oto	Back Side	848.8	0.808	0.11	30	29.54	0.898

Note:

- 1. Per KDB 447498 D04, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
- a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
- b. Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 2.Per KDB 865664 D01, Repeated measurement is not required when the original highest measured SAR is <0.80 W/kg

Report No.: LGT22L059HA01 Page 31 of 46

Simultaneous Multi-band Transmission Evaluation:

Application Simultaneous Transmission information:

Position	Simultaneous State				
Head	1. GSM + Bluetooth				
Body	1. GSM + Bluetooth				

NOTE:

- 1.Bluetooth can't simultaneous transmission at the same time.
- 2.For simultaneous transmission at head and body exposure position, 2 transmitters simultaneous transmission was the worst state.
 - 3.If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
 - 4.KDB 447498 Appendix E, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

SAR
$$_{test}$$
 =1.6 · Pant / Pth [W/kg].

Pant is maximum time-averaged power or effective radiated power (ERP), whichever is greater, and Pth is defined in Formula KDB 447498 (B.2).

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.

When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR-1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR-1g 1.6 W/kg), SAR test exclusion is determined by the SPLSR.

Simultaneous Mode	Position	Mode	Max. 1-g SAR	1-g Sum SAR	
Mode			(W/kg)	(W/kg)	
	Head	GSM	0.697	0.727	
GSM + Bluetooth	neau	Bluetooth	0.030	0.727	
GSWI + DIUELOOUTI	Dody	GSM	1.135	1.172	
	Body	Bluetooth	0.037		

Report No.: LGT22L059HA01 Page 32 of 46

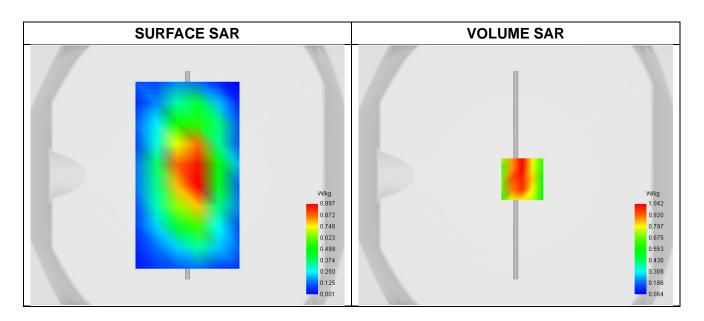
12. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
835MHz Dipole	MVG	DIP0G835	SN 06/22 DIP0G835-639	2022.02.11	2023.02.10
1900MHz Dipole	MVG	DIP1G900	SN 06/22 DIP1G900-641	2022.02.11	2023.02.10
2450MHz Dipole	MVG	DIP2G450	SN 06/22 DIP2G450-645	2022.02.11	2023.02.10
E-Field Probe	MVG	EPGO364	SN 04/22 EPGO364	2022.02.11	2023.02.10
Dielectric Probe Kit	MVG	OCPG 87	SN 06/22 OCPG87	2022.02.11	2023.02.10
Antenna	MVG	ANTA 73	SN 06/22 ANTA 73	N/A	N/A
Ellipsoid Phantom	MVG	ELLI 51	SN 06/22 ELLI 51	N/A	N/A
Phantom	MVG	SAM 148	SN 06/22 SAM148	N/A	N/A
Phone holder	MVG	MSH 117	SN 06/22 MSH 117	N/A	N/A
Laptop holder	MVG	LSH 36	SN 06/22 LSH 38	N/A	N/A
Directional coupler	SHW	SHWDCP	202203280013	N/A	N/A
Network Analyzer	Agilent	E5071C	MY46418070	2022.03.28	2023.03.27
Multi Meter	Keithley	DMM6500	DMM6500	2022.05.05	2023.05.04
Signal Generator	Keithley	N5182B	MY59100717	2022.04.29	2023.04.28
Wireless Communication Test Set	R&S	CMW500	137737	2022.04.29	2023.04.28
Power Sensor	R&S	Z11	116184	2022.03.28	2023.03.27
Temperature hygrometer	N/A	ST-W2318	N/A	2022.05.05	2023.05.04
Thermograph	N/A	TP101	N/A	2022.05.05	2023.05.04

Report No.: LGT22L059HA01 Page 33 of 46

Appendix A. System Validation Plots

System Performance Check Data (835MHz)

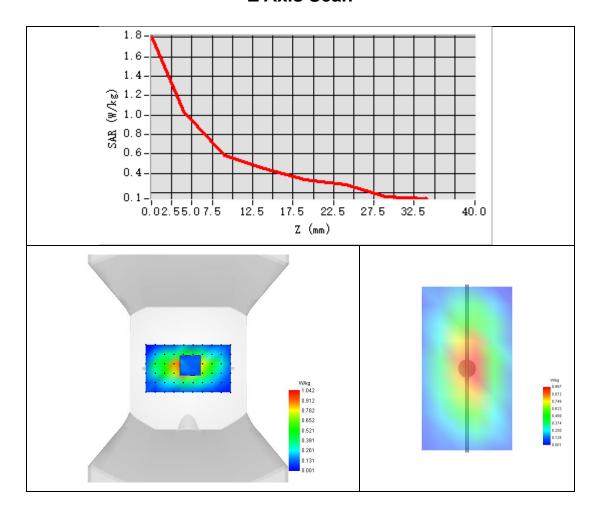

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2023-01-03

Experimental conditions.

Phantom	Validation plane
Device Position	Dipole
Band	CW835
Channels	Middle
Signal	CW
Frequency (MHz)	835.000
Relative permittivity	40.63
Conductivity (S/m)	0.93
Probe	SN 04/22 EPGO364
ConvF	1.72
Crest factor:	1:1

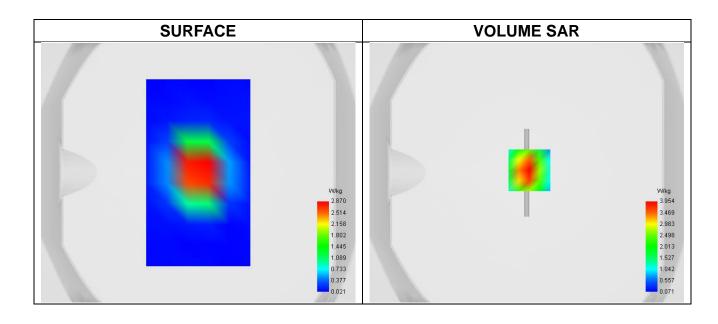

Maximum location: X=5.00, Y=-3.00; SAR Peak: 1.54 W/kg

SAR 10g (W/Kg)	0.604410
SAR 1g (W/Kg)	0.973381

Report No.: LGT22L059HA01 Page 34 of 46

Z Axis Scan

System Performance Check Data (1900MHz)

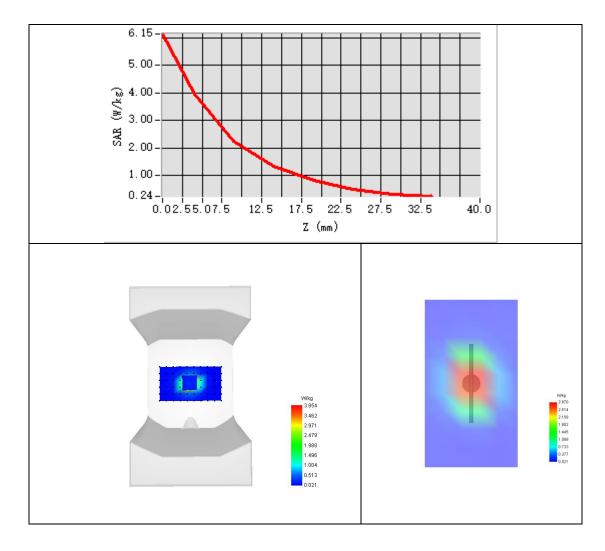

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm, dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2023-01-03

Experimental conditions.

Phantom	Validation plane
Device Position	Dipole
Band	CW1900
Channels	Middle
Signal	CW
Frequency (MHz)	1900.000
Relative permittivity	40.75
Conductivity (S/m)	1.38
Probe	SN 04/22 EPGO364
ConvF	2.25
Crest factor:	1:1

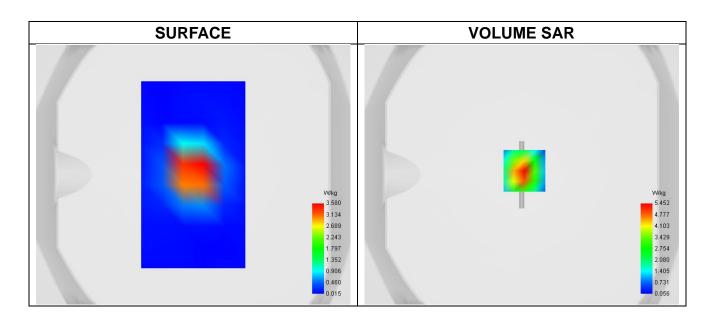

Maximum location: X=2.00, Y=2.00; SAR Peak: 6.20 W/kg

SAR 10g (W/Kg)	2.068806
SAR 1g (W/Kg)	3.993155

Report No.: LGT22L059HA01 Page 36 of 46

Z Axis Scan

System Performance Check Data (2450MHz)

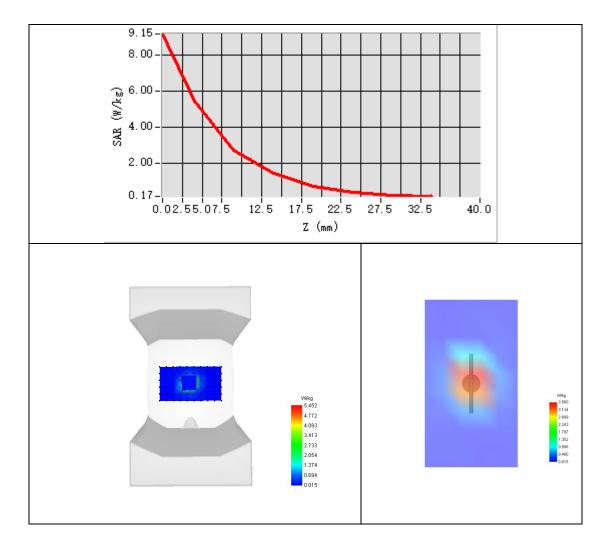

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm, dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2023-01-04

Experimental conditions.

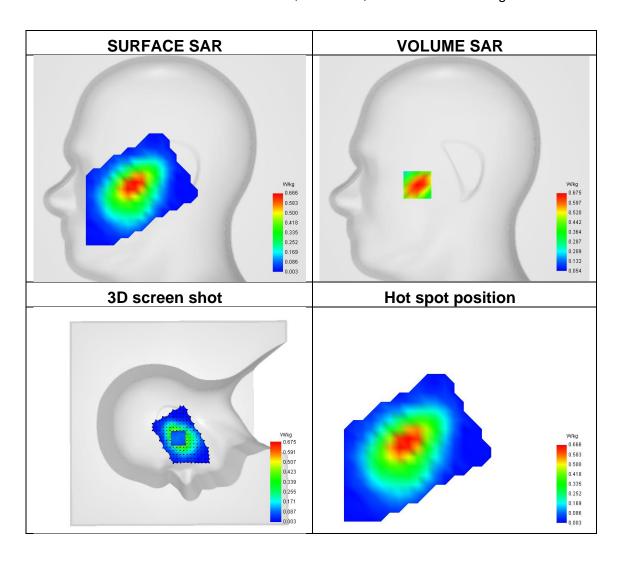
Phantom	Validation plane
Device Position	Dipole
Band	CW2450
Channels	Middle
Signal	CW
Frequency (MHz)	2450.000
Relative permittivity	39.75
Conductivity (S/m)	1.84
Probe	SN 04/22 EPGO364
ConvF	2.33
Crest factor:	1:1


Maximum location: X=2.00, Y=3.00; SAR Peak: 9.34 W/kg

SAR 10g (W/Kg)	2.407883
SAR 1g (W/Kg)	5.433569

Report No.: LGT22L059HA01 Page 38 of 46

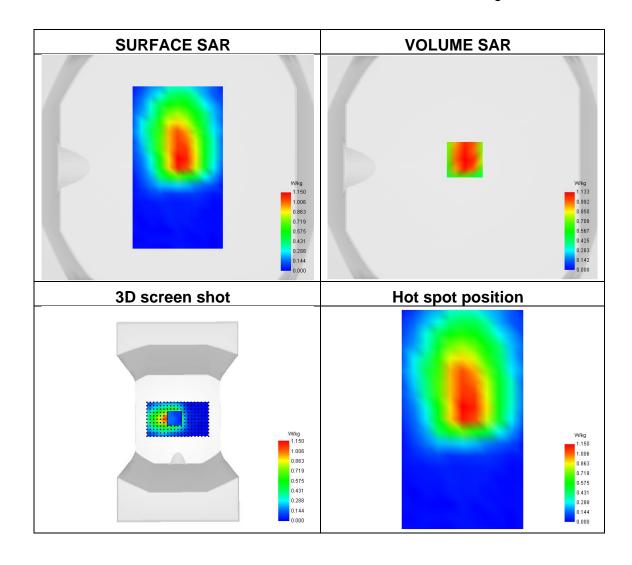
Z Axis Scan



Appendix B. SAR Test Plots Plot 1:

Test Date	2023-01-03
Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Right head
Device Position	Cheek
Band	GSM850
Signal	TDMA (GSM)
Frequency	824.2
SAR 10g (W/Kg)	0.408
SAR 1g (W/Kg)	0.639

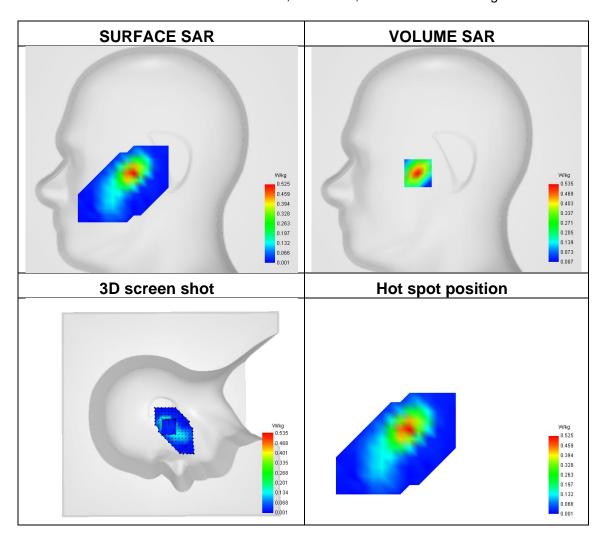
Maximum location: X=-43.00, Y=-19.00; SAR Peak: 0.90 W/kg


Page 40 of 46 Report No.: LGT22L059HA01

Plot 2:

Test Date	2023-01-03
Area Scan	surf_sam_plan.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Back Side
Band	GPRS850
Signal	TDMA (GPRS)
Frequency	824.2
SAR 10g (W/Kg)	0.708
SAR 1g (W/Kg)	1.104

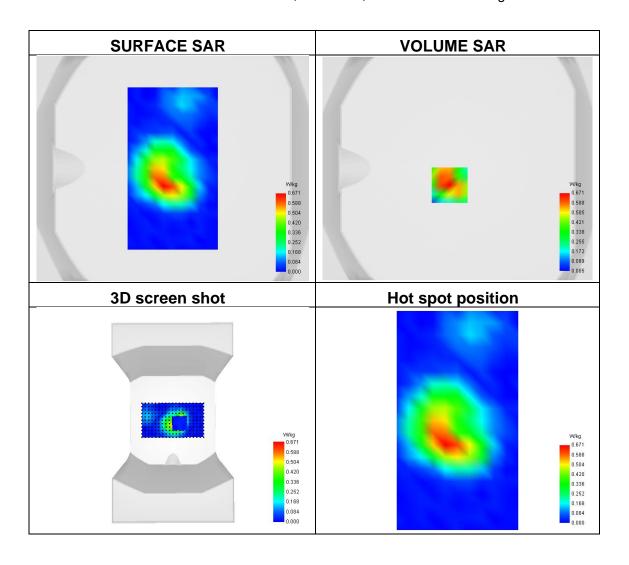
Maximum location: X=2.00, Y=7.00; SAR Peak: 1.60 W/kg


Report No.: LGT22L059HA01 Page 41 of 46

Plot 3:

Test Date	2023-01-03
Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Right Cheek
Device Position	Cheek
Band	GSM1900
Signal	TDMA (GSM)
Frequency	1880
SAR 10g (W/Kg)	0.259
SAR 1g (W/Kg)	0.488

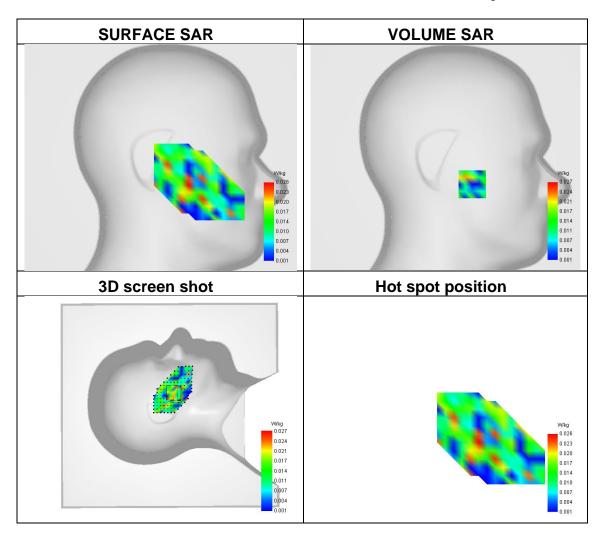
Maximum location: X=-33.00, Y=-16.00; SAR Peak: 0.73 W/kg


Report No.: LGT22L059HA01 Page 42 of 46

Plot 4:

Test Date	2023-01-03
Area Scan	surf_sam_plan.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Back Side
Band	GPRS1900
Signal	TDMA (GPRS)
Frequency	1880
SAR 10g (W/Kg)	0.328
SAR 1g (W/Kg)	0.630

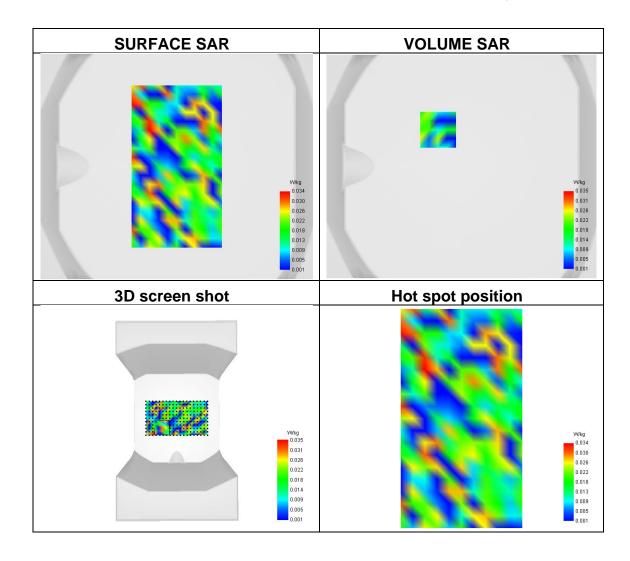
Maximum location: X=-7.00, Y=-15.00; SAR Peak: 1.07 W/kg


Report No.: LGT22L059HA01 Page 43 of 46

Plot 05:

Test Date	2023-01-04
Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Left Cheek
Device Position	Cheek
Band	Bluetooth
Signal	Bluetooth
Frequency	2480
SAR 10g (W/Kg)	0.013
SAR 1g (W/Kg)	0.027

Maximum location: X=-31.00, Y=-31.00; SAR Peak: 0.07 W/kg


Report No.: LGT22L059HA01 Page 44 of 46

Plot 06:

Test Date	2023-01-04
Area Scan	surf_sam_plan.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Front Side
Band	Bluetooth
Signal	Bluetooth
Frequency	2480
SAR 10g (W/Kg)	0.018
SAR 1g (W/Kg)	0.033

Maximum location: X=-21.00, Y=33.00; SAR Peak: 0.09 W/kg

Report No.: LGT22L059HA01 Page 45 of 46

Appendix C. Probe Calibration and Dipole Calibration Report

Refer the appendix Calibration Report.

*****END OF THE REPORT***

Report No.: LGT22L059HA01 Page 46 of 46