

RF TEST REPORT

Product Name: Feature phone

Model Name: INOI 105, INOI 100, INOI 101

FCC ID: 2A9SN-INOI105

Issued For : INOI Limited

Office 302, Dominion Centre 43-59, Queens Road, East Wanchai, Hong Kong, China

Issued By : Shenzhen LGT Test Service Co., Ltd. Room 205, Building 13, Zone B, Chen Hsong Industrial Park, No.177 Renmin West Road, Jinsha Community, Kengzi Street, Pingshan New District, Shenzhen, China

Report Number:	LGT23A020RF02
Sample Received Date:	Jan. 10, 2023
Date of Test:	Jan. 10, 2023 ~ Feb. 08, 2023
Date of Issue:	Feb. 08, 2023

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

TEST REPORT CERTIFICATION

Applicant	INOI Limited
Address	Office 302, Dominion Centre 43-59, Queens Road, East Wanchai, Hong Kong, China
Manufacturer	INOI Limited
Address	Office 302, Dominion Centre 43-59, Queens Road, East Wanchai, Hong Kong, China
Product Name	Feature phone
Trademark	INOI
Model Name	INOI 105, INOI 100, INOI 101
Sample Status:	Normal

APPLICABLE STANDARDS					
STANDARD TEST RESULTS					
FCC Part 22H and 24E, KDB 971168 D01 v03r01, ANSI C63.26(2015)	PASS				

Prepared by:

Zane Shan

Zane Shan Engineer

ESTSE Approved by: reali (Vita Li 缅 冠 检

Technical Director

Table of Contents	Page
1 SUMMARY OF TEST RESULTS	5
2 INTRODUCTION	6
2.1 TEST FACTORY	6
2.2 MEASUREMENT UNCERTAINTY	6
3. PRODUCT INFORMATION	7
4 TEST CONFIGURATION OF EQUIPMENT UNDER TEST	8
5 MEASUREMENT INSTRUMENTS	9
6 TEST ITEMS	10
6.1 CONDUCTED OUTPUT POWER	10
6.2 PEAK TO AVERAGE RATIO	11
6.3 TRANSMITTER RADIATED POWER (EIRP/ERP)	12
6.4 OCCUPIED BANDWIDTH	13
6.5 FREQUENCY STABILITY	14
6.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	15
6.7 BAND EDGE	16
6.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	17
APPENDIX I. TESTRESULT	19
CONDUCTED OUTPUT POWER	19
FREQUENCY STABILITY	20
PEAK-TO-AVERAGE RATIO	21
OCCUPIED BANDWIDTH	25
BAND EDGE	30
OUT-OF-BAND EMISSIONS	34
RADIATED SPURIOUS EMISSION	39
APPENDIX II- PHOTOS OF TEST SETUP	52

Revision History

Rev.	Issue Date	Contents
00	Feb. 08, 2023	Initial Issue

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

The radiated emission testing was performed according to the procedures of KDB 971168 D01 v03r01 and ANSI C63.26-2015

FCC Rules	Test Description	Test Limit	Test Result	Reference
2.1046	Conducted Output Power	Reporting Only	PASS	
22.913d 24.232d	Peak-to-Average Ratio	< 13 dB	PASS	
2.1046	Effective Radiated	< 7 Watts max. ERP(Part 22)		
22.913	Power/Equivalent Isotropic	< 2 Watts max. EIRP(Part 24)	PASS	
24.232	Radiated Power	<1 Watts max. EIRP(Part 27)		
2.1049				
22.917	Occupied Bandwidth	Reporting Only	PASS	
24.238				
		< 2.5 ppm (Part 22)		
2.1055		Emission must remain in band		
22.355	Frequency Stability	(Part 24)	PASS	
24.235		Emission must remain in band		
		(Part 27)		
2.1051				
22.917	Spurious Emission at	< 43+10log10(P[Watts])	PASS	
24.238	Antenna Terminals			
2.1053				
22.917	Field Strength of Spurious	< 43+10log10(P[Watts])	PASS	
24.238	Radiation			
2.1051				
22.917	Band Edge	< 43+10log10(P[Watts])	PASS	
24.238				

2 INTRODUCTION

2.1 TEST FACTORY

Company Name:	Shenzhen LGT Test Service Co., Ltd.			
Address:	Room 205, Building 13, Zone B, Chen Hsong Industrial Park, No.177 Renmin West Road, Jinsha Community, Kengzi Street, Pingshan New District, Shenzhen, China			
	FCC Registration No.: 746540			
Accreditation Certificate	A2LA Certificate No.: 6727.01			
	IC Registration No.: CN0136			

2.2 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 9K-30MHz	±2.84dB
4	All emissions, radiated 30M-1GHz	±4.39dB
5	All emissions, radiated 1G-6GHz	±5.10dB
6	All emissions, radiated>6G	±5.48dB
7	Conducted Emission (9KHz-150KHz)	±2.79dB
8	Conducted Emission (150KHz-30MHz)	±2.80dB

3. PRODUCT INFORMATION

Product Name	Feature	e phor	ne						
Trademark	INOI	INOI							
Model Name	INOI 10)5							
Series Model	INOI 10	00, IN	OI 101						
	N	lodel	Motor	Key Screen printing	Adapter	Camera	Hardware Version	Rear cover	
Model Difference		NOI 100	ON	different	NO	NO	identical	identical	
		DI 105 DI 101	YES YES	identical identical	YES YES	YES NO	identical identical	different identical	
	GSM/G								
Tx Frequency:	850: 82	24 MH	z ~ 849	MHz					
	1900: 1	850 N	/IHz ~ 1	910MHz					
	GSM/G	PRS:							
Rx Frequency:	850: 86	69 MH	z ~ 894	MHz					
	1900: 1	930 N	/Hz ~ 1	990MHz					
Modulation Characteristics:	GMSK	for GS	SM/GPI	RS					
SIM Card:		SIM 1 and SIM 2 is a chipset unit and tested as single chipset, SIM 1 is used to tested.							
Antenna:	PIFA	PIFA							
Antenna gain:	2G 850: -0.06dBi								
	2G 190								
Battery parameter:		Capacity: 600mAh Rated Voltage: 3.7V							
Adapter:	Model: ICH-01/19 Input: 100-240~50/60Hz 0.15A Output: DC5.0V 1.0A, 5W								
GPRS Class:	Multi-C	lass12	2						
Extreme Vol. Limits:	4.2V to	3.3V	(Nomin	al 3.7V)					
Extreme Temp. Tolerance:	-0°C to +40°C								
Hardware version:	E38_MB_V1.0								
Software version:	E19_XMF_BM17M_INOI_105_RU+CIS_V01_20210929_1740								
** Note: The High Voltage 4.2 be operate normally with highe			-			-			

4 TEST CONFIGURATION OF EQUIPMENT UNDER TEST

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 and ANSI C63.26 2015 Power Meas. License Digital Systems with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

1. 30 MHz to 10th harmonic for GSM850.

2. 30 MHz to 10th harmonic for GSM1900.

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst-case configuration below:

	TEST MODES				
BAND	RADIATED TCS	CONDUCTED TCS			
GSM 850	GSM LINK GPRSE CLASS 12 LINK	GSM LINK GPRS CLASS 12 LINK			
GSM 1900	GSM LINK GPRS CLASS 12 LINK	GSM LINK GPRS CLASS 12 LINK			

5 MEASUREMENT INSTRUMENTS

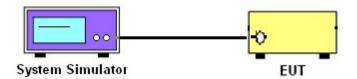
Radiated Test equipment							
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until		
EMI Test Receiver	R&S	ESU8	100372	2022.04.12	2023.04.11		
Active loop Antenna	R&S	HFH2-Z2	POS871398181	2022.06.02	2024.06.01		
Spectrum Analyzer	Keysight	N9010B	MY60242508	2022.04.29	2023.04.28		
Wireless Communications Test Set	R&S	CMW 500	137737	2022.04.29	2023.04.28		
Bilog Antenna	SCHWARZBECK	VULB 9168	01447	2022.12.12	2024.12.11		
Horn Antenna	SCHWARZBECK	3115	10SL0060	2022.06.02	2024.06.01		
Pre-amplifier(0.1M- 3GHz)	HP	8447D	2727A05655	2022.04.11	2023.04.10		
Pre-amplifier(1- 26.5G)	Agilent	8449B	3008A4722	2022.04.13	2023.04.12		
RE Cable (9K-1G)	N.A	R01	N.A	2022.05.05	2023.05.04		
RE Cable (1-26G)	N.A	R02	N.A	2022.05.05	2023.05.04		
Wireless Communications Test Set	R&S	CMW 500	137737	2022.04.29	2023.04.28		
Temperature & Humidity	KTJ	TA218B	N.A	2022.05.05	2023.05.04		
Testing Software	EMC-I_V1.4.0.3_SKET						

Conducted Test equipment								
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until			
Signal Analyzer	Keysight	N9010B	MY60242508	2022.04.29	2023.04.28			
Wireless Communications Test Set	R&S	CMW 500	137737	2022.04.29	2023.04.28			
MXG Vector Signal Generator	Keysight	N5182B	MY59100717	2022.06.02	2023.06.01			
RF Automatic Test system	MW	MW100- RFCB	MW220324LG-33	2022.04.29	2023.04.28			
Temperature & Humidity	KTJ	TA218B	N.A	2022.05.05	2023.05.04			
Temperature& Humidity test chamber	AISRY	LX-1000L	171200018	2022.05.10	2023.05.09			
Attenuator	eastsheep	90db	N.A	2022.04.29	2023.04.28			
Testing Software	MTS8200_V2.0.0.0							

Equipment with a calibration date of "NCR" shown in this list was not used to make direct calibrated measurements.

6 TEST ITEMS

6.1 CONDUCTED OUTPUT POWER


TEST OVERVIEW

A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

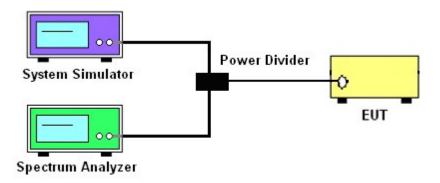
TEST PROCEDURES

- 1. The transmitter output port was connected to the system simulator.
- 2. Set eut at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

TEST SETUP

TEST RESULT

6.2 PEAK TO AVERAGE RATIO


TEST OVERVIEW

According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 db.

TEST PROCEDURES

- 1. The testing follows FCC KDB 971168 v03r01 section.
- 2. The eut was connected to the peak and av system simulator& spectrum analyzer.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Set the test probe and measure average power of the spectrum analysis,

TEST SETUP

TEST RESULT

6.3 TRANSMITTER RADIATED POWER (EIRP/ERP)

TEST OVERVIEW

Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI C63.26 2015 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

TEST PROCEDURE

1. The testing follows FCC KDB 971168 Section 5.8 and ANSI C63.26-2015 Section 5.2.

2. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

3. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

4. The frequency range up to tenth harmonic of the fundamental frequency was investigated.

5. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a nonradiating cable. The absolute levels of the spurious emissions were measured by the substitution.

6. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to ANSI C63.26-2015. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna.

EIRP=S.G Level+ Gain-Cable loss; ERP=S.G Level+ Gain-Cable loss-2.15.

TEST RESULT

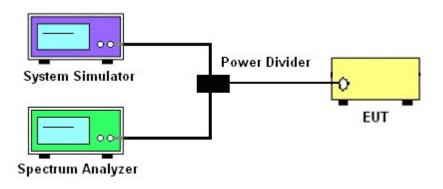
6.4 OCCUPIED BANDWIDTH

TEST OVERVIEW

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

All modes of operation were investigated and the worst-case configuration results are reported in this section.


TEST PROCEDURE

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.

2. RBW = 1 - 5% of the expected OBW

- 3. VBW \ge 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
- 1-5% of the 99% occupied bandwidth observed in Step 7

TEST SETUP

TEST RESULT

6.5 FREQUENCY STABILITY

TEST OVERVIEW

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26 2015. The frequency stability of the transmitter is measured by:

a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.

b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency. For Part 24 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

TEST PROCEDURE

Temperature Variation

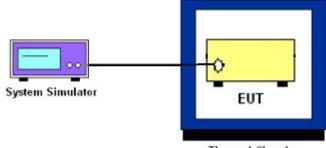
1. The testing follows FCC KDB 971168 D01 section 9.0

2. The EUT was set up in the thermal chamber and connected with the system simulator.

3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.

4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

Voltage Variation


1. The testing follows FCC KDB 971168 D01 Section 9.0.

2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator.

3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.

4. The variation in frequency was measured for the worst case.

TEST SETUP

Thermal Chamber

<u>TEST RESULT</u> Note: Test data See APPENDIX I.

6.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS TEST OVERVIEW

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

TEST PROCEDURE

1. The testing FCC KDB 971168 D01 v03r01 Section 6.0. and ANSI C63.26-2015-Section 5.7.

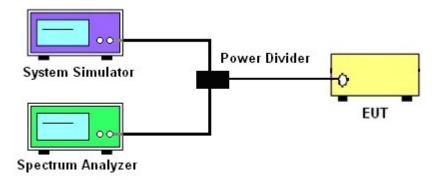
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.

3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.

4. The middle channel for the highest RF power within the transmitting frequency was measured.

5. The conducted spurious emission for the whole frequency range was taken.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

= P(W) - [43 + 10log(P)] (dB)

 $= [30 + 10\log(P)] (dBm) - [43 + 10\log(P)] (dB)$

= -13dBm.

TEST SETUP

TEST RESULT

6.7 BAND EDGE

TEST OVERVIEW

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.

TEST PROCEDURE

1. The testing FCC KDB 971168 D01 v03r01 Section 6.0 and ANSI C63.26-2015-Section 5.7

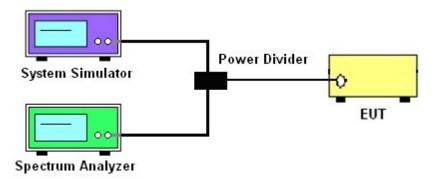
2. Start and stop frequency were set such that the band edge would be placed in the center of the Plot.

3. The EUT was connected to the spectrum analyzer and system simulator via a power divider.

4. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator.

The path loss was compensated to the results for each measurement.

5. The band edges of low and high channels for the highest RF powers were measured.


6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

- = P(W) [43 + 10log(P)] (dB)
- $= [30 + 10\log(P)] (dBm) [43 + 10\log(P)] (dB)$

= -13dBm.

TEST SETUP

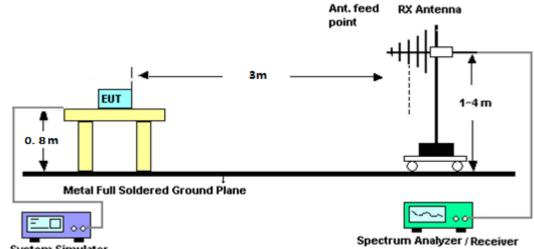
TEST RESULT

6.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT TEST OVERVIEW

Radiated spurious emissions measurements are performed using the substitution method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements on signalsoperating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarizedhorn antennas. All measurements are performed as peak measurements while the EUT isoperating at maximum power and at the appropriate frequencies.

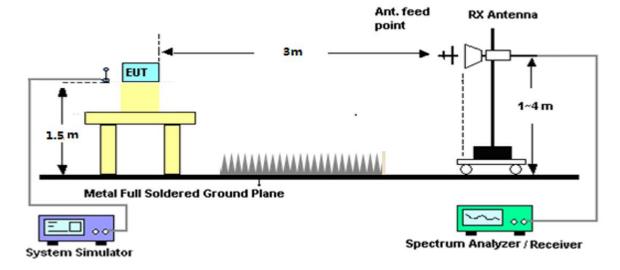
It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

TEST PROCEDURE


- 1. The testing FCC KDB 971168 D01 Section 5.8 and ANSI C63.26-2015-Section 5.5.
- 2. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5.No. of sweep points > $2 \times \text{span/RBW}$
- 6. Detector = Peak
- 7. Trace mode = max hold
- 8. The trace was allowed to stabilize

Effective Isotropic Spurious Radiation was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna.

PMea=S.G Level+ Ant-Cable loss; Margin=PMea-Limit.


TEST SETUP

For radiated test from 30MHz to 1GHz

System Simulator

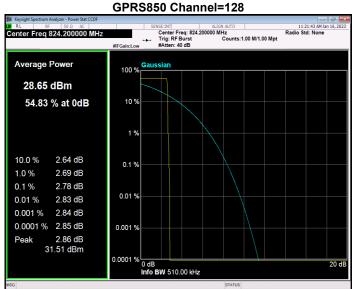
For radiated test from above 1GHz

TEST RESULT

APPENDIX I. TESTRESULT

Conducted output power

Band	Channel	Frequency (MHz)	Power (dBm)	Gain (dB)	ERP (dBm)	ERP Limit (dBm)	Verdict
GSM850	128	824.2	30.99	0.7	29.54	38.45	PASS
GSM850	190	836.6	30.72	0.7	29.27	38.45	PASS
GSM850	251	848.8	31.42	0.7	29.97	38.45	PASS
GPRS850 1 Slot	128	824.2	30.88	0.7	29.43	38.45	PASS
GPRS850 1 Slot	190	836.6	30.64	0.7	29.19	38.45	PASS
GPRS850 1 Slot	251	848.8	31.32	0.7	29.87	38.45	PASS
GPRS850 2 Slot	128	824.2	28.82	0.7	27.37	38.45	PASS
GPRS850 2 Slot	190	836.6	28.62	0.7	27.17	38.45	PASS
GPRS850 2 Slot	251	848.8	29.06	0.7	27.61	38.45	PASS
GPRS850 3 Slot	128	824.2	26.87	0.7	25.42	38.45	PASS
GPRS850 3 Slot	190	836.6	26.76	0.7	25.31	38.45	PASS
GPRS850 3 Slot	251	848.8	27.24	0.7	25.79	38.45	PASS
GPRS850 4 Slot	128	824.2	24.96	0.7	23.51	38.45	PASS
GPRS850 4 Slot	190	836.6	24.9	0.7	23.45	38.45	PASS
GPRS850 4 Slot	251	848.8	25.51	0.7	24.06	38.45	PASS

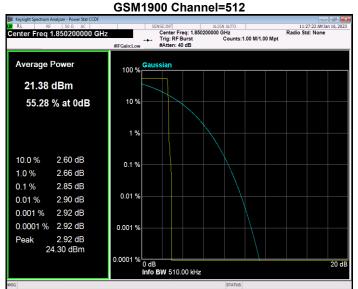

Band	Channel	Frequency (MHz)	Power (dBm)	Gain (dB)	EIRP (dBm)	EIRP Limit (dBm)	Verdict
GSM1900	512	1850.2	25.3	0.7	26	33	PASS
GSM1900	661	1880	26.12	0.7	26.82	33	PASS
GSM1900	810	1909.8	26.44	0.7	27.14	33	PASS
GPRS1900 1 Slot	512	1850.2	25.55	0.7	26.25	33	PASS
GPRS1900 1 Slot	661	1880	26.36	0.7	27.06	33	PASS
GPRS1900 1 Slot	810	1909.8	26.67	0.7	27.37	33	PASS
GPRS1900 2 Slot	512	1850.2	23.74	0.7	24.44	33	PASS
GPRS1900 2 Slot	661	1880	24.02	0.7	24.72	33	PASS
GPRS1900 2 Slot	810	1909.8	24.35	0.7	25.05	33	PASS
GPRS1900 3 Slot	512	1850.2	22.12	0.7	22.82	33	PASS
GPRS1900 3 Slot	661	1880	22.46	0.7	23.16	33	PASS
GPRS1900 3 Slot	810	1909.8	22.86	0.7	23.56	33	PASS
GPRS1900 4 Slot	512	1850.2	20.25	0.7	20.95	33	PASS
GPRS1900 4 Slot	661	1880	20.66	0.7	21.36	33	PASS
GPRS1900 4 Slot	810	1909.8	21.16	0.7	21.86	33	PASS

Frequency stability


Band	Channel	Frequency	Result(Hz)	Result	Low Limit	high Limit	Verdict
		(MHz)		(ppm)	(ppm)	(ppm)	
GSM850	128	824.2	13.72	0.017	-2.5	2.5	PASS
GSM850	190	836.6	15.50	0.019	-2.5	2.5	PASS
GSM850	251	848.8	5.10	0.006	-2.5	2.5	PASS
GPRS850	128	824.2	10.97719	0.01	-2.5	2.5	PASS
GPRS850	190	836.6	13.20491	0.02	-2.5	2.5	PASS
GPRS850	251	848.8	15.27121	0.02	-2.5	2.5	PASS
GSM1900	512	1850.2	24.18	0.013	-2.5	2.5	PASS
GSM1900	661	1880	17.50	0.009	-2.5	2.5	PASS
GSM1900	810	1909.8	10.30	0.005	-2.5	2.5	PASS
GPRS1900	512	1850.2	26.02239	0.01	-2.5	2.5	PASS
GPRS1900	661	1880	47.07277	0.03	-2.5	2.5	PASS
GPRS1900	810	1909.8	35.86958	0.02	-2.5	2.5	PASS

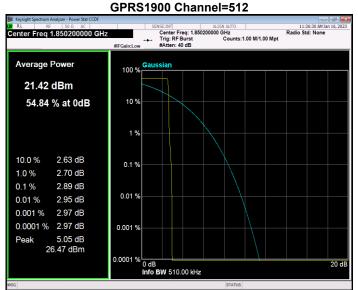
Peak-to-Average Ratio

Band	Channel	Frequency (MHz)	Result (dB)	high Limit (dB)	Verdict
GSM850	128	824.2	2.75	13	PASS
GSM850	190	836.6	2.77	13	PASS
GSM850	251	848.8	2.77	13	PASS
GPRS850	128	824.2	2.78	13	PASS
GPRS850	190	836.6	2.80	13	PASS
GPRS850	251	848.8	2.81	13	PASS
GSM1900	512	1850.2	2.85	13	PASS
GSM1900	661	1880	2.87	13	PASS
GSM1900	810	1909.8	2.90	13	PASS
GPRS1900	512	1850.2	2.89	13	PASS
GPRS1900	661	1880	2.89	13	PASS
GPRS1900	810	1909.8	2.92	13	PASS

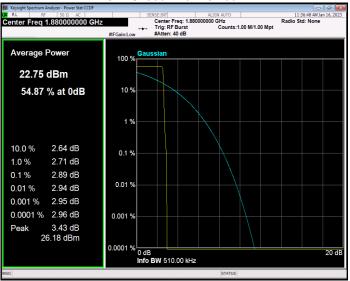


GPRS850 Channel=190

GPRS850 Channel=251



GSM1900 Channel=661



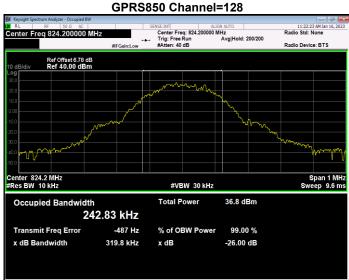
GSM1900 Channel=810

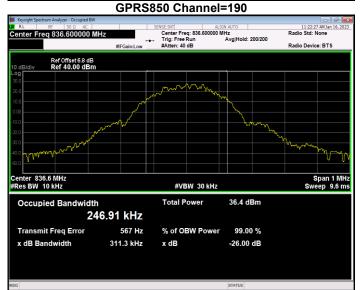
GPRS1900 Channel=661

GPRS1900 Channel=810

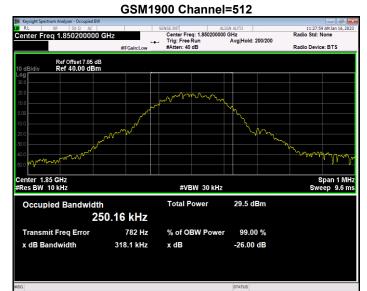
Occupied bandwidth

Band	Channel	Frequency (MHz)	99% OBW (kHz)	-26dB EBW (kHz)	Verdict
GSM850	128	824.2	257.715	318.382	PASS
GSM850	190	836.6	244.872	319.478	PASS
GSM850	251	848.8	242.781	313.286	PASS
GPRS850	128	824.2	242.831	319.825	PASS
GPRS850	190	836.6	246.911	311.326	PASS
GPRS850	251	848.8	248.374	319.004	PASS
GSM1900	512	1850.2	250.161	318.089	PASS
GSM1900	661	1880	252.025	324.289	PASS
GSM1900	810	1909.8	253.645	313.245	PASS
GPRS1900	512	1850.2	241.798	315.253	PASS
GPRS1900	661	1880	243.059	317.546	PASS
GPRS1900	810	1909.8	251.582	327.484	PASS

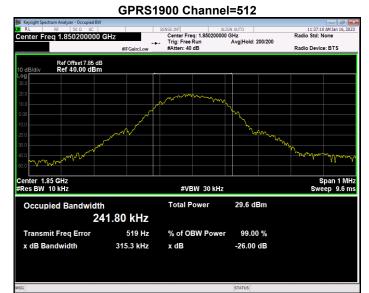

GSM850 Channel=128


GSM850 Channel=190

GSM850 Channel=251



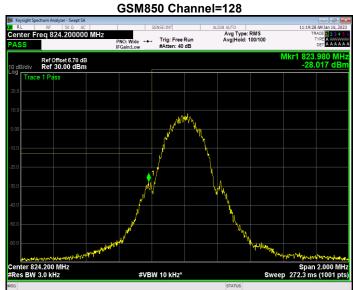
GPRS850 Channel=251



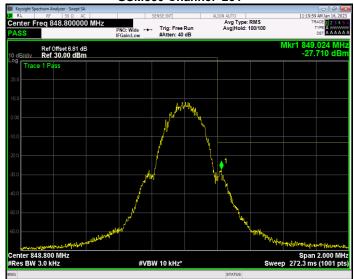
GSM1900 Channel=661

GSM1900 Channel=810

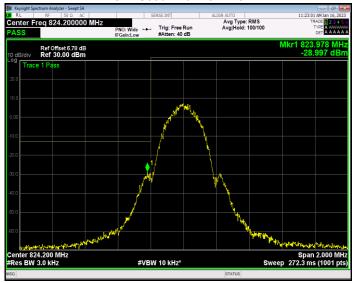
GPRS1900 Channel=661

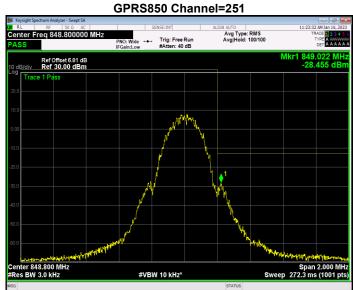


GPRS1900 Channel=810

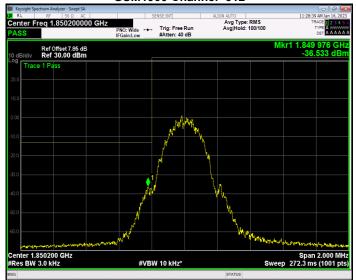


Band edge

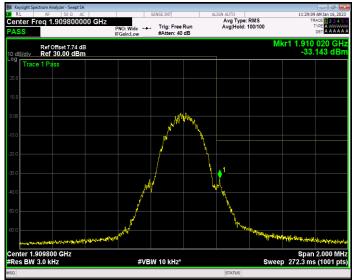

Band	Channel	Frequency (MHz)	Spur Freq (MHz)	Spur Level (dBm)	Limit (dBm)	Verdict
GSM850	128	824.2	823.98	-28.01	-13	PASS
GSM850	251	848.8	849.02	-27.70	-13	PASS
GPRS850	128	824.2	823.98	-28.99	-13	PASS
GPRS850	251	848.8	849.02	-28.45	-13	PASS
GSM1900	512	1850.2	1849.98	-36.53	-13	PASS
GSM1900	810	1909.8	1910.02	-33.14	-13	PASS
GPRS1900	512	1850.2	1850.00	-36.23	-13	PASS
GPRS1900	810	1909.8	1910.02	-34.73	-13	PASS

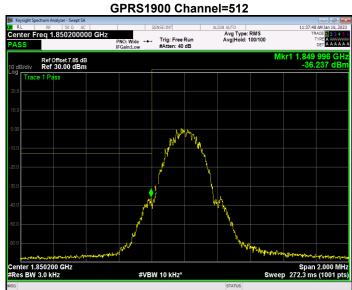


GSM850 Channel=251

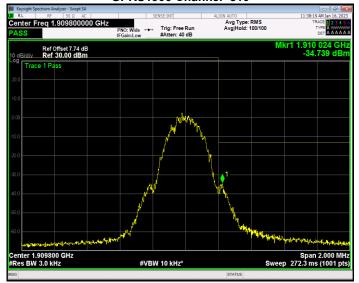


GPRS850 Channel=128

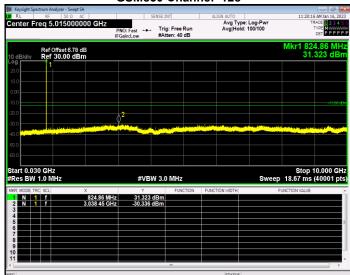




GSM1900 Channel=512



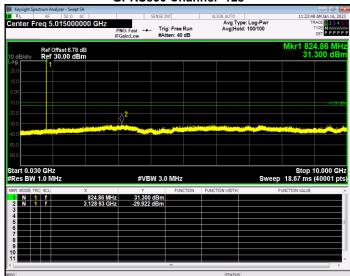
GSM1900 Channel=810



GPRS1900 Channel=810

Out-of-band emissions

Band	Channel	Frequency (MHz)	Spur Freq (MHz)	Spur Level (dBm)	Limit (dBm)	Verdict
GSM850	128	824.2	3038.45	-30.33	-13	PASS
GSM850	190	836.6	5128.66	-30.25	-13	PASS
GSM850	251	848.8	3165.07	-30.07	-13	PASS
GPRS850	128	824.2	3128.93	-29.92	-13	PASS
GPRS850	190	836.6	5467.89	-27.84	-13	PASS
GPRS850	251	848.8	5462.90	-28.09	-13	PASS
GSM1900	512	1850.2	16559.67	-22.53	-13	PASS
GSM1900	661	1880	19150.28	-22.95	-13	PASS
GSM1900	810	1909.8	1915.17	-18.53	-13	PASS
GPRS1900	512	1850.2	16995.51	-22.83	-13	PASS
GPRS1900	661	1880	19934.60	-22.79	-13	PASS
GPRS1900	810	1909.8	19501.75	-22.75	-13	PASS


GSM850 Channel=128

GSM850 Channel=190

Keysight Spe										- 0
RL	RF				SENSE:INT		ALIGN AUTO	pe: Log-Pwr		31 AM Jan 16, 2 TRACE 1 2 3 4
enter Fr	eq 5.0	J15000	000 GHz	PNO: Fast ++ IFGain:Low		ree Run : 40 dB		Id: 100/100		TYPE MUTURE DET PPPF
) dB/div		ffset 6.8 d 10.00 dE							Mkr1 83 30	37.07 M).384 dE
0.0	1									
0.0										
0.0										-13.00
0.0						2				
0.0			A STATE OF A			<u> </u>	al a tracking and the second	مدرية والمتحدث والتحديد		
0.0 <mark>dia dia </mark>						_	and the second second			
0.0										
0.0										
tart 0.03									Ston	10.000 G
Res BW		lz		#VE	BW 3.0 M	Hz		Swee	p 18.67 ms	
KR MODE TR			х	Y		FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
1 N 1 2 N 1			837.07 MH 5.128 66 GH		4 dBm 2 dBm					
3										
5										
7										
9										
0										
							STATUS			

GSM850 Channel=251

	ectrum Analyzer							- 0
RL Center F		50 Ω AC 5000000 GHz	SENS			: Log-Pwr	TF	AM Jan 16, 203
	requirent			rig: Free Run Atten: 40 dB	Avg Hold	: 100/100		DET PPPP
			Guinteow				Mkr1 84	28 MH
0 dB/div	Ref Offse Ref 30.0	t 6.81 dB 00 dBm						971 dBi
.og 20.0	1							
10.0								
1.00								
0.0								-13.00
0.0			A2					
0.0			Q ²			and a state of the		
0.0 11 11 1						- Contraction of the local division of the l		u de la compañía de l
0.0								
i0.0								
tart 0.03							Stop 1	0.000 GI
	1.0 MHz		#VBW 3	.0 MHz		Sweep	18.67 ms	(40001 p
KR MODE TR		х	Y	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
1 N 1 2 N 1	f f	849.28 MHz 3.165 07 GHz		n				
3								
5								
7								
0								
9								
9								
0					STATUS			

GPRS850 Channel=128

GPRS850 Channel=190

	ectrum Analyzer - S							- 0
RL Center F	RF 50 1	000000 GHz	SENS		ALIGN AUTO Avg Ty	pe: Log-Pwr	TF	AM Jan 16, 2
				rig: Free Run Atten: 40 dB	Avg Ho	id: 100/100		DET PPP
	Ref Offset 6						Mkr1 83	7.07 M 365 dE
0 dB/div og	Ref 30.00	dBm					30.	365 uE
20.0								
10.0								
1.00								
0.0	<u>کا ا</u>							-13.00
0.0					∧ <mark>2</mark>			
0.0	and the start			المراجبين والمراجب	Constant Property and	a state and the state of the st	distant of the	
0.0	and the second second	and the second design of the s		And a sublime of the local division of the l		and the second secon	Contraction of soil state	
0.0								
0.0								
tart 0.03	30 GH7						Stop 1	0.000 G
	1.0 MHz		#VBW 3	.0 MHz		Sweep	18.67 ms	40001
Res BW	1.0 111112	ų						
KR MODE TR	RC SCL	X	Y	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
KR MODE TR		× 837.07 MHz 5.467 89 GHz	Y 30.365 dBr -27.847 dBr	n	FUNCTION WIDTH	F	UNCTION VALUE	
KR MODE TF	RC SCL	837.07 MHz	30.365 dBr	n	FUNCTION WIDTH	F	UNCTION VALUE	
KR MODE TR 1 N 1 2 N 1 3 4 5 5	RC SCL	837.07 MHz	30.365 dBr	n	FUNCTION WIDTH	F	UNCTION VALUE	
KR MODE TF 1 N 1 2 N 1 3 4 5 6 7	RC SCL	837.07 MHz	30.365 dBr	n	FUNCTION WIDTH	F	UNCTION VALUE	
KR MODE TF 1 N 1 2 N 1 3 4 5 6 6 7 8 9	RC SCL	837.07 MHz	30.365 dBr	n	FUNCTION WIDTH	F	UNCTION VALUE	
KR MODE TH 2 N 1 3 4 5 5 6 6 7 7 8 8 9 0	RC SCL	837.07 MHz	30.365 dBr	n	FUNCTION WIDTH	F	UNCTION VALUE	
IKR MODE TF 1 N 1 2 N 1 3 4 5 5 6 7 8	RC SCL	837.07 MHz	30.365 dBr	n	FUNCTION WIDTH	F	UNCTION VALUE	

GPRS850 Channel=251

		alyzer - Swept SA								- 0
RL	RF	50 Q AC		S	ENSE:INT		ALIGN AUTO	e: Log-Pwr		8 AM Jan 16, 20 RACE 1 2 3 4
enterr	req J.	01300000	PI	NO: Fast ↔ Gain:Low	Trig: Free #Atten: 40			1: 100/100		DET PPPP
0 dB/div	Ref 0 Ref 3	ffset 6.81 dB 30.00 dBm							Mkr1 84 31.	9.53 MF 968 dB
0.0	1									
0.0										
0.0										-13.00 (
0.0						(²				
0.0		المراجع والمحادث			and the state of the			al an	a professional and a	a Jahr galanta an
0.0		and the second secon			and the second				and the second design of the	and the second difference of
0.0										
0.0										
tart 0.03 Res BW				#VBV	V 3.0 MHz			Sweep	Stop 18.67 ms	10.000 GI (40001 pi
KR MODE TP		x		Y		TION	FUNCTION WIDTH	F	UNCTION VALUE	
1 N 1	l f f		849.53 MHz 462 90 GHz	31.968						
3										
3 4 5										
3 4 5 6 7 8										
2 N 1 3 4 5 6 7 8 9 0										
3 4 5 6 7 8 9										

			G	2141130		nnei-	512			
Keysight Spi RL	ectrum An RF	alyzer - Swept SA 50 Ω AC			NSE:INT					
		0.015000	000 GHz	IO: Fast ↔	Trig: Free Run #Atten: 40 dB		Avg Type: Avg Hold:	Log-Pwr 100/100	т	TYPE M
0 dB/div		offset 7.85 d 30.00 dBn							Mkr1 1.8 23.	50 8 G 988 dE
20.0		1								
10.0										
0.00										
0.0										-130
0.0										
0.0			-14-1				been destilled		and the second	
0.0							and the second second			
0.0										
0.0										
tart 0.03 Res BW				#VBW	3.0 MHz			Sweep	Stop : 50.67 ms	20.000 G (40001 j
KR MODE TR	RC SCL		X	Y	FUNCTION	I FUNCTIO	N WIDTH	F	UNCTION VALUE	
1 N 1 2 N 1	f		1.850 8 GHz 16.559 7 GHz	23.988 dE						
3			10.0097 GHZ	-22.000 UI						
5										
6										
8										
0										
11										
ig i							STATUS			_

GSM1900 Channel=512

GSM1900 Channel=661

		nalyzer - Swept													- 0
RL Center F	_R , req 1			PNO: Fast ↔ FGain:Low		rr 1: Free R ten: 40 d		AL		Type:	Log-Pv 100/100		1	TR	AM Jan 16, 2 ACE 1 2 3 4 YPE M HHHH DET P P P F
0 dB/div		Offset 7.85 30.00 dE											Mkr1		30 7 GI 255 dB
.og 20.0		1													
10.0															
1.00															
0.0															-13.00 A ²
20.0													-		<u> </u>
0.0			فعانتهمه فيهاجه			-				**** **					and the second second
i0.0															
50.0															
tart 0.0: Res BW				#1/	BW 3.0	ML-						woon	S0 67	top 2	0.000 G 40001 p
KES BW		IIIZ	х	#V	Das 0.0	FUNCT	CION .	FUNC	TION WID	711	3		UNCTION		40001
	1 f		1.880 7 GHz 19.150 3 GHz	25.2	55 dBm 58 dBm	PUNC	IUN	POINC	TION WID			r	UNCTION	VALUE	
3 4															
5															
7 8															
7 8 9															
7															

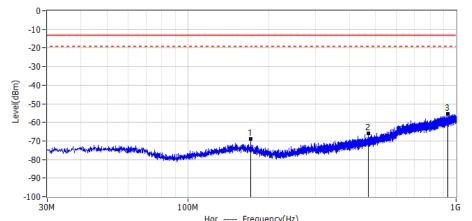
GSM1900 Channel=810

Keysight Spi	ectrum A RF	nalyzer - Swept S	SA AC	SENSE:		ALIGN AUTO		11-20-1	- @ 8 AM Jan 16, 2
			0000 GHz	PNO:East →→ Tri	g: Free Run tten: 40 dB		e: Log-Pwr : 100/100	т	TYPE PPP
dB/div		Offset 7.74 o 30.00 dB						Mkr1 1.9 25	10 2 G 282 dE
		1							
0.0									
		2							-13.00
	,in the		a sinda			and the second	Married W		
1.0									
art 0.03 Res BW				#VBW 3.0) MHz		Sweep	Stop : 50.67 ms	20.000 G (40001 p
R MODE TR	RC SCL		× 1.910 2 GHz	Y 25.282 dBm	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
	f		1.915 2 GHz						
3 4 5 6 7 8 9 9 1									

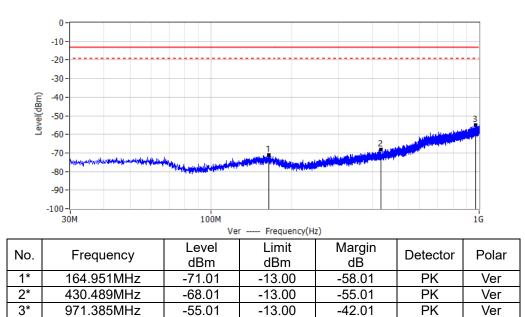
			G	PROT	900 C	nar	inei=51	2		
Keysight Spe	ctrum Anal RF	lyzer - Swept SA 50 Ω AC			SENSE:INT		ALIGN AUTO			- 🖓
			000 GHz	NO: Fast +++ Gain:Low	Trig: Free #Atten: 40			e: Log-Pwr : 100/100	TI	RACE 1 2 3 TYPE M
0 dBídiv		fset 7.85 d 0.00 dBn							Mkr1 1.8 24.	50 8 G 051 dE
og 20.0	 1									
10.0										
1.00										
0.0										
0.0										
0.0										al a state of the
	and the second	and the second second								
0.0										
0.0										
0.0										
tart 0.03								_	Stop 2	20.000
Res BW		Z		#VB	W 3.0 MHz				50.67 ms	40001
KR MODE TR			× 1.850 8 GHz	Y 24.051		CTION	FUNCTION WIDTH	F	UNCTION VALUE	
2 N 1	f		16.995 5 GHz	-22.833	dBm					
3	++									
5										
7										
8										
0	++									
G							STATUS			

GPRS1900 Channel=512

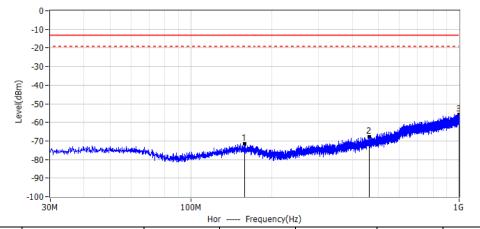
GPRS1900 Channel=661

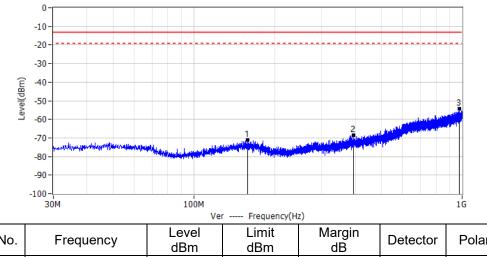

R L	ctrum Analyze	50.0 AC		SEI	ISE:INT		ALTGN.			1	😑 🖓 1:39:04 AM Jan 16.
		15000000	GHz PNO: F IFGain:	ast ↔→	Trig: Free #Atten: 40		1		Log-Pwr 100/100		TRACE 1 2 3 TYPE MWW DET P P P
0 dB/div	Ref Offse Ref 30.	et7.85 dB 00 dBm									1.880 2 G 25.339 di
og 20.0	1										
10.0											
0.0											-13.0
0.0											a she a she and
		tali piane and a second	(and the second		tutul (tel			ting t			
0.0											
0.0											
tart 0.03											top 20.000 G
	1.0 MHz				3.0 MHz				SWe		ms (40001
KR MODE TR			80 2 GHz	Y 25.339 dl	Bm	CTION	FUNCTION	WDTH		FUNCTION V	ALUE
2 N 1 3	f	19.9	34 6 GHz	-22.797 dE	3m						
4											
6											
8											
9											
9								STATUS			

GPRS1900 Channel=810

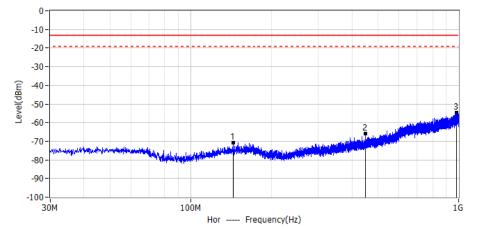

RL	ctrum Analyzer - Sv		L orwer t					- 0
	RF 50 3 req 10.015	000000 GHz		g: Free Run ten: 40 dB	ALIGN AUTO Avg Type Avg Hold	: Log-Pwr : 100/100	Т	7 AM Jan 16, 2 RACE 1 2 3 4 TYPE M DET P P P F
dB/div	Ref Offset 7 Ref 30.00						Mkr1 1.9 25.	10 2 G 420 dE
	1							
	_							
								43.00
.0				our handline of	-	Winner and Street	and the second	
.0								
.0								
art 0.030							Oton	20.000 G
	0 GH2 1.0 MHz		#VBW 3.0	MHz		Sweep	50.67 ms	(40001 p
	C SCL	× 1.910 2 GHz	Y 25.420 dBm	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
N 1 N 1	Ŧ	1.910 2 GHz 19.501 7 GHz	-22.753 dBm					

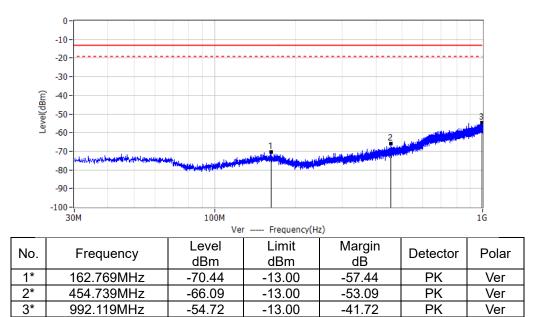
RADIATED SPURIOUS EMISSION


Project: LGT23A020	Test Engineer: Dylan.shi
EUT: Feature phone	Temperature: 15.6℃
M/N: INOI 105	Humidity: 47%RH
Test Voltage: Battery	Test Data: 2023-01-17
Test Mode: GSM 850 Lowest	
Note:	

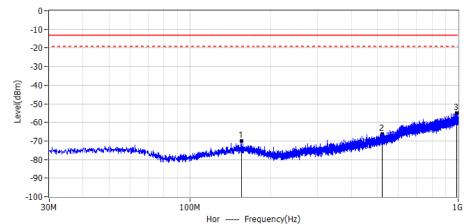

		110	i i i equency(ii	2)		
No.	Frequency	Level	Limit	Margin	Detector	Polar
INO.	Frequency	dBm	dBm	dB	Delector	FUIdi
1*	172.105MHz	-68.99	-13.00	-55.99	PK	Hor
2*	470.744MHz	-66.01	-13.00	-53.01	PK	Hor
3*	929.918MHz	-55.59	-13.00	-42.59	PK	Hor

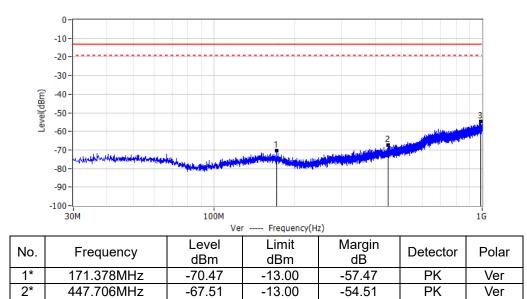
Project: LGT23A020	Test Engineer: Dylan.shi
EUT: Feature phone	Temperature: 15.6°C
M/N: INOI 105	Humidity: 47%RH
Test Voltage: Battery	Test Data: 2023-01-17
Test Mode: GSM 850 Middle	
Note:	


				-,		
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	158.768MHz	-71.50	-13.00	-58.50	PK	Hor
2*	461.529MHz	-67.87	-13.00	-54.87	PK	Hor
3*	998.303MHz	-55.82	-13.00	-42.82	PK	Hor


2* 394.720MHz -68.58 -13.00 -55.58 PK Ve	No.	Frequency	dBm	dBm	dB	Detector	Polar
2 394.72010HZ -08.38 -13.00 -35.38 PK Ve	1*	159.253MHz	-71.30	-13.00	-58.30	PK	Ver
3* 976 114MHz _ 54 44 _ 13 00 _ 41 44 _ PK _ Ve	2*	394.720MHz	-68.58	-13.00	-55.58	PK	Ver
3 970.114MHZ -34.44 -13.00 -41.44 11K Ve	3*	976.114MHz	-54.44	-13.00	-41.44	PK	Ver

Γ


Project: LGT23A020	Test Engineer: Dylan.shi
EUT: Feature phone	Temperature: 15.6°C
M/N: INOI 105	Humidity: 47%RH
Test Voltage: Battery	Test Data: 2023-01-17
Test Mode: GSM 850 Highest	
Note:	


No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	144.339MHz	-70.75	-13.00	-57.75	PK	Hor
2*	449.283MHz	-65.88	-13.00	-52.88	PK	Hor
3*	985.086MHz	-54.60	-13.00	-41.60	PK	Hor

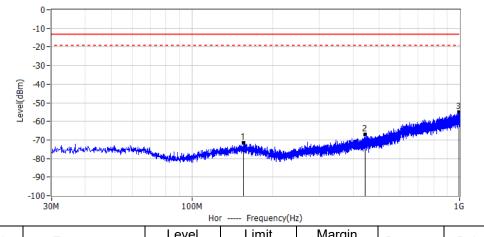
Project: LGT23A020	Test Engineer: Dylan.shi
EUT: Feature phone	Temperature: 15.6°C
M/N: INOI 105	Humidity: 47%RH
Test Voltage: Battery	Test Data: 2023-01-17
Test Mode: GSM 1900 Lowest	
Note:	

					-/		
	No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
Γ	1*	156.464MHz	-69.87	-13.00	-56.87	PK	Hor
	2*	520.214MHz	-66.37	-13.00	-53.37	PK	Hor
ſ	3*	990.421MHz	-55.19	-13.00	-42.19	PK	Hor

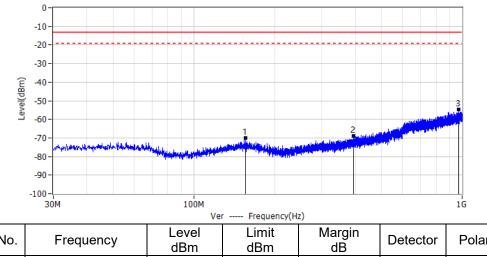
-13.00

-54.73

3*

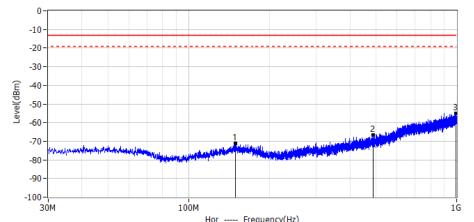

991.028MHz

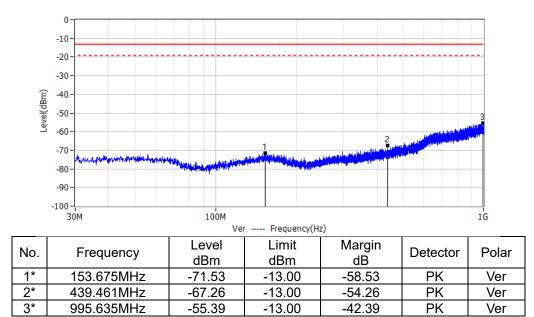
ΡK


Ver

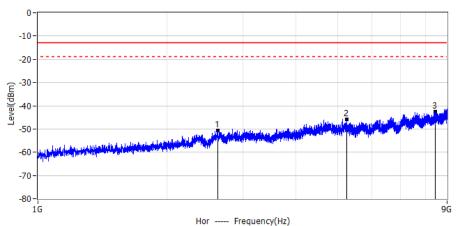
-41.73

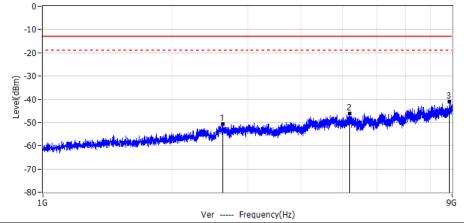
Project: LGT23A020	Test Engineer: Dylan.shi
EUT: Feature phone	Temperature: 15.6°C
M/N: INOI 105	Humidity: 47%RH
Test Voltage: Battery	Test Data: 2023-01-17
Test Mode: GSM 1900 Middle	
Note:	


No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	156.100MHz	-71.62	-13.00	-58.62	PK	Hor
2*	442.735MHz	-67.01	-13.00	-54.01	PK	Hor
3*	995.150MHz	-55.21	-13.00	-42.21	PK	Hor

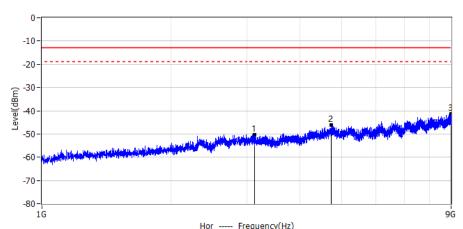

No.	Frequency	dBm	dBm	dB	Detector	Polar
1*	155.736MHz	-70.11	-13.00	-57.11	PK	Ver
2*	394.963MHz	-69.04	-13.00	-56.04	PK	Ver
3*	968.354MHz	-54.66	-13.00	-41.66	PK	Ver

Γ

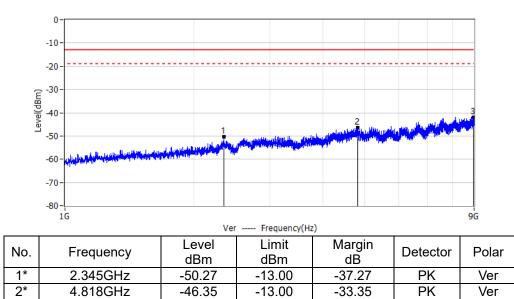

Project: LGT23A020	Test Engineer: Dylan.shi
EUT: Feature phone	Temperature: 15.6°C
M/N: INOI 105	Humidity: 47%RH
Test Voltage: Battery	Test Data: 2023-01-17
Test Mode: GSM 1900 Highest	
Test Mode: COM 1900 Highest	
Note:	


The frequency(in)						
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	150.038MHz	-71.29	-13.00	-58.29	PK	Hor
2*	489.174MHz	-66.53	-13.00	-53.53	PK	Hor
3*	996.484MHz	-55.05	-13.00	-42.05	PK	Hor

Project: LGT23A020	Test Engineer: Dylan.shi
EUT: Feature phone	Temperature: 27.4°C
M/N: INOI 105	Humidity: 65%RH
Test Voltage: Battery	Test Data: 2023-01-14
Test Mode: GSM 850 Lowest	
Note:	



Hor Frequency(Hz)						
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	2.625GHz	-50.61	-13.00	-37.61	PK	Hor
2*	5.253GHz	-45.73	-13.00	-32.73	PK	Hor
3*	8.455GHz	-42.66	-13.00	-29.66	PK	Hor



No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	2.625GHz	-50.62	-13.00	-37.62	PK	Ver
2*	5.198GHz	-46.24	-13.00	-33.24	PK	Ver
3*	8.870GHz	-40.98	-13.00	-27.98	PK	Ver

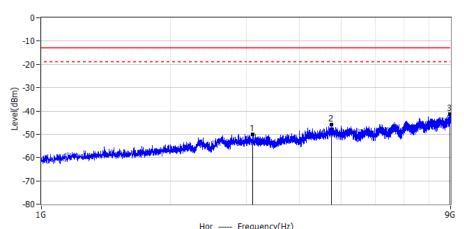
Project: LGT23A020	Test Engineer: Dylan.shi
EUT: Feature phone	Temperature: 27.4°C
M/N: INOI 105	Humidity: 65%RH
Test Voltage: Battery	Test Data: 2023-01-14
Test Mode: GSM 850 Middle	
Note:	

	Hor Frequency(Hz)							
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar		
1*	3.132GHz	-50.33	-13.00	-37.33	PK	Hor		
2*	4.722GHz	-46.17	-13.00	-33.17	PK	Hor		
3*	8.984GHz	-41.37	-13.00	-28.37	PK	Hor		

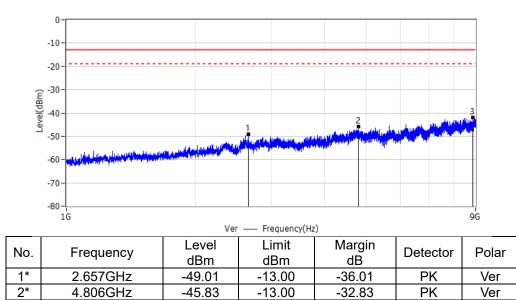
-13.00

-28.87

ΡK


Ver

-41.87


3*

8.977GHz

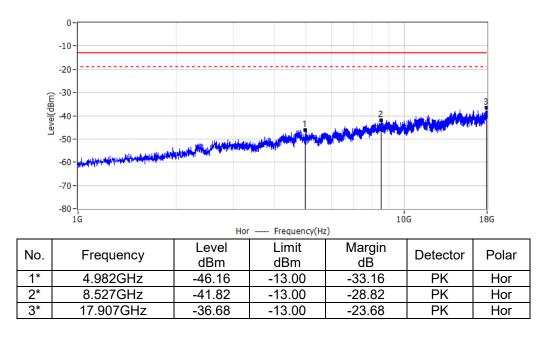
Project: LGT23A020	Test Engineer: Dylan.shi
EUT: Feature phone	Temperature: 27.4°C
M/N: INOI 105	Humidity: 65%RH
Test Voltage: Battery	Test Data: 2023-01-14
Test Mode: GSM 850 Highest	
Note:	

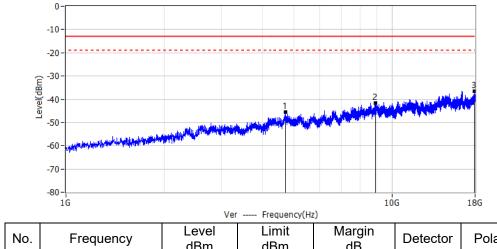
	Hor Frequency(Hz)							
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar		
1*	3.105GHz	-49.93	-13.00	-36.93	PK	Hor		
2*	4.753GHz	-45.94	-13.00	-32.94	PK	Hor		
3*	8.980GHz	-41.34	-13.00	-28.34	PK	Hor		

-13.00

-28.83

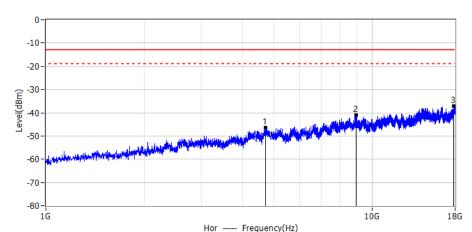
ΡK

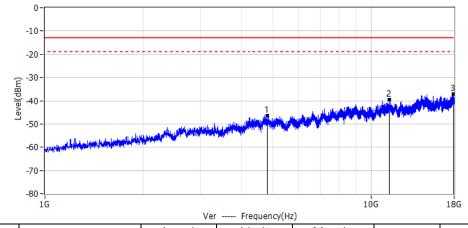

Ver


-41.83

3*

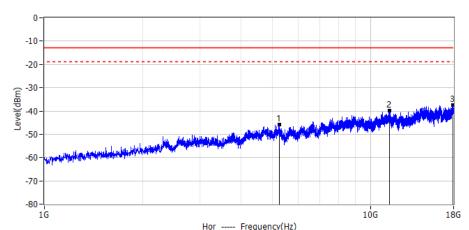
8.868GHz


Project: LGT23A020	Test Engineer: Dylan.shi
EUT: Feature phone	Temperature: 27.4°C
M/N: INOI 105	Humidity: 65%RH
Test Voltage: Battery	Test Data: 2023-01-14
Test Mode: GSM 1900 Lowest	
Note:	

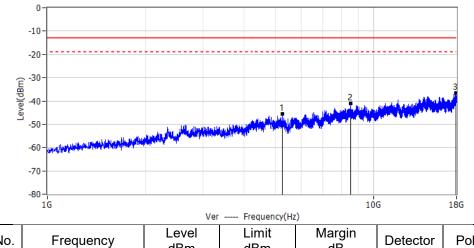


INO.	Frequency	dBm	dBm	dB	Detector	Polar
1*	4.712GHz	-45.62	-13.00	-32.62	PK	Ver
2*	8.880GHz	-41.60	-13.00	-28.60	PK	Ver
3*	17.941GHz	-36.43	-13.00	-23.43	PK	Ver

Project: LGT23A020	Test Engineer: Dylan.shi
EUT: Feature phone	Temperature: 27.4°C
M/N: INOI 105	Humidity: 65%RH
Test Voltage: Battery	Test Data: 2023-01-14
Test Mode: GSM 1900 Middle	
Note:	



Hor Frequency(Hz)							
No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar	
1*	4.723GHz	-46.45	-13.00	-33.45	PK	Hor	
2*	8.941GHz	-41.02	-13.00	-28.02	PK	Hor	
3*	17.809GHz	-37.19	-13.00	-24.19	PK	Hor	



No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar
1*	4.812GHz	-46.42	-13.00	-33.42	PK	Ver
2*	11.362GHz	-39.61	-13.00	-26.61	PK	Ver
3*	17.885GHz	-37.24	-13.00	-24.24	PK	Ver

Project: LGT23A020	Test Engineer: Dylan.shi
EUT: Feature phone	Temperature: 27.4°C
M/N: INOI 105	Humidity: 65%RH
Test Voltage: Battery	Test Data: 2023-01-14
Test Mode: GSM 1900 Highest	
Note:	

No.	Frequency	Level dBm	Limit dBm	Margin dB	Detector	Polar	
1*	5.261GHz	-45.98	-13.00	-32.98	PK	Hor	
2*	11.455GHz	-39.71	-13.00	-26.71	PK	Hor	
3*	17.881GHz	-37.55	-13.00	-24.55	PK	Hor	

No.	Frequency	dBm	dBm	dB	Detector	Polar
1*					PK	Vor
I	5.256GHz	-45.53	-13.00	-32.53		Ver
2*	8.535GHz	-41.15	-13.00	-28.15	PK	Ver
3*	17.943GHz	-36.63	-13.00	-23.63	PK	Ver

APPENDIX II- PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

******END OF THE REPORT*****