

FCC Test Report

Test report

On Behalf of

SHENZHEN MARVO TECHNOLOGY CO., LTD

For

keyboard

Model No.: KG991W, KG992W, KG993W, KG994W, KG995W

FCC ID: 2A9SC-KG991W

Prepared For: SHENZHEN MARVO TECHNOLOGY CO., LTD

601-604, 6th Floor, Building A, DongFangYaYuan ChenTian community, Xixiang,

BaoMin 2nd Road Bao'an District, Shenzhen, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai

Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Oct. 24, 2023 ~ Dec. 08, 2023

Date of Report: Dec. 08, 2023

Report Number: HK2310244958-1E

Page 2 of 44

Test Result Certification

Applicant's name:	SHENZHEN MARVO	TECHNOLOGY	COLITO
Applicant's name	SHEINZHEIN IVIANVO	TECHNOLOGY	CO., LID

601-604, 6th Floor, Building A, DongFangYaYuan ChenTian

Report No.: HK2310244958-11

Address.....: community, Xixiang, BaoMin 2nd Road Bao'an District, Shenzhen,

China

Manufacturer's Name...... SHENZHEN MARVO TECHNOLOGY CO., LTD

601-604, 6th Floor, Building A, DongFangYaYuan ChenTian

Address community, Xixiang, BaoMin 2nd Road Bao'an District, Shenzhen,

China

Product description

Trade Mark: N/A

Product name..... keyboard

Model and/or type reference ...: KG991W, KG992W, KG993W, KG994W, KG995W

Standards 47 CFR FCC Part 15 Subpart C 15.247

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test:

Date of Issue Dec. 08, 2023

Test Result Pass

Testing Engineer : / ///

(Len Liao)

Technical Manager :

(Sliver Wan)

Authorized Signatory: Jason M

(Jason Zhou)

Contents

Report No.: HK2310244958-1E

1	Test Summary			(
1.1	Test Description			
1.2				
1.3	Information of the Test Laboratory	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	KTES.	6
2	General Information	<u></u>	(W)	
2.1	-TII 101			
2.2	the House the Ho			
2.3				
2.4				1
3	Equipments List for All Test Items	WESTING ()	A LESTING LOST TESTIN	12
4	Test Result		When When	14
4.1	Antenna Requirement			14
4.2	2 Conduction Emissions Measurement	- Paring	- Supple	18
4.3	Radiated Emissions Measurement	MAKTES MARKET	K. TEO	19
4.4	Maximum Output Power Measurement	<u> </u>		28
4.5				
4.6				
4.7				
4.8				
4.9	The state of the s			
E	Test Setup Photo			
5 HUAK	rest setup Photo	<u></u>	Water Comment	44
6	Photos of the EUT			4

** Modified History **

Report No.: HK2310244958-1E

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Dec. 08, 2023	Jason Zhou
16		.0	G
K TESTINE	E THE ESTING	K ESTING WESTIN	N. TESTING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

1 Test Summary

1.1 Test Description

y Tee	470	476
Test Item	Test Requirement	Result
Antenna Requirement	§15.203/§15.247(b)(4)	PASS
Conducted Emission	FCC Part 15.207	PASS
Radiated Emissions	FCC Part 15.205/15.209	PASS
Maximum Peak Output Power	FCC Part 15.247(b)	PASS
Power Spectral Density	FCC Part 15.247(e)	PASS
6dB Bandwidth & 99% Bandwidth	FCC Part 15.247(a)(2)	PASS
Spurious RF Conducted Emission	FCC Part 15.247(d)	PASS
Band Edge	FCC Part 15.247(d)	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Report No.: HK2310244958-1E

1.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties. The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. The maximum value of the uncertainty as below:

No. Item		Uncertainty
A HI TES	Conducted Emission Test	±2.71dB
2	All emissions, radiated(<1G)	±3.90dB
3	All emissions, radiated(>1G)	±4.28dB

1.3 Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

Report No.: HK2310244958-1

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2 General Information

2.1 General Description of EUT

EUT Name:	keyboard	,,,	WAK TEST	- WAKT
Model No:	KG991W	0)	(1)
Series Model:	KG992W, KG993W, KG994	W, KG995W	TESTING	
Model Difference:	All model's the function, sof same, only with a product c sample model: KG991W.			
Trade Mark:	N/A	NG HUAR	.,0	
Operation Frequency:	2402 MHz to 2480 MHz		"IAK TESTII"	HUAKTE
Channel Separation:	2MHz		0,	9
Number of Channel:	40			
Modulation Technology:	GFSK	TING	TING	
Hardware Version:	V01	0	HUAKTE	HUAK"
Software Version:	V01	0	9	
Antenna Type:	PCB Antenna	332	K TESTING	.0.
Antenna Gain:	3.85dBi	(HOW		LAKTESTING
Power Supply:	DC 5V From Type-C or DC	3.7V From Ba	attery	9
Note:	AKTESTINA	MAKTESTI		

^{1.} For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

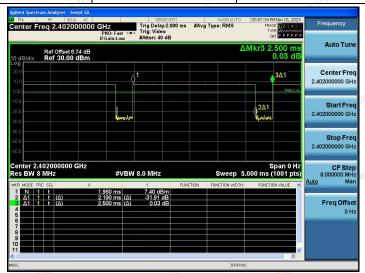
STING	TESTING IN THE	STING	COLUTES ING	-517	NG TESTING
MAKTES	WAK	Description o	f Channel:	MAKTES	HUAK
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	14	2430	28	2458
JAK TESS 1	2404	15	2432	29	2460
2	2406	16	2434	30	2462
STITULE 3	2408	17	2436	31	2464
4	2410	18	2438	32	2466
5	2412	19	2440	33	2468
6	2414	20	2442	34	2470
TAK TE 7 THE	2416	21	2444	35	2472
8	2418	22	2446	36	2474
9	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456	WANTES IN	-00

The EUT has been operated in modulations: GFSK independently.

NO.	Test Mode Description
HUAK'T 1 MINAN	Low channel TX
2	Middle channel TX
3	High channel TX

Note:

- 1. All the test modes can be supply by Built-in Li-ion battery, only the result of the worst case was recorded in the report if no any records.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.


2.2 Description of Test Conditions

(1) E.U.T. test conditions:

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

- (2) Frequency range of radiated measurements:
 The test range will be up to the tenth harmonic of the highest fundamental frequency.
- (3) Pre-test the EUT in all transmitting mode at the lowest (2402 MHz), middle (2440 MHz) and highest (2480 MHz) channel with different data packet and conducted to determine the worst-case mode, only the worst-case results are recorded in this report.
- (4) Mode Test Duty Cycle

Mode	Duty Cycle	Duty Cycle Factor (dB)
BT-LE(1Mbps)	0.88	-0.56

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.3 Description of Test Setup

Operation of EUT during conducted testing:

Operation of EUT during radiation testing:

EUT

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Trade Mark	Model/Type No.	Specification	Remark
1	keyboard	N/A	KG991W	N/A	EUT
2	USB Cable	N/A	N/A	Length:1.67m	Accessory
3	Laptop	N/A	TP00096A	Input: DC 20V, 2.25A/3.25A	Peripheral
M HUAK T	(in) Hilliam	(a)	UAK PETER HUMINA	O HIARTE C	HURY

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Report No.: HK2310244958-1

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3 Equipments List for All Test Items

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interva
TESTING 1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Feb. 17, 2023	1 Year
2.	L.I.S.N.	R&S	ENV216	HKE-059	Feb. 17, 2023	1 Year
3.	Receiver	R&S	ESR-7	HKE-010	Feb. 17, 2023	1 Year
4.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	1 Year
5.5	Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 17, 2023	1 Year
6.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	1 Year
7.	High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 17, 2023	1 Year
8.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 17, 2023	1 Year
9.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Feb. 17, 2023	1 Year
10.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 17, 2023	₃ 1 Year
11.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Feb. 17, 2023	1 Year
12.	Pre-amplifier	EMCI	EMC051845SE	HKE-015	Feb. 17, 2023	1 Year
13.	Pre-amplifier	Agilent	83051A	HKE-016	Feb. 17, 2023	1 Year
14.	High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 17, 2023	1 Year
15.	Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A
16.	Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
17.	RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A
18.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	1 Year
19.	RF test software	Tonscend	JS1120-4	HKE-113	N/A	N/A
20.	RF test software	Tonscend	JS1120-3	HKE-114	N/A	N/A
21.	RF test software	Tonscend	JS1120-1	HKE-115	N/A	N/A
22.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	1 Year
23.	Signal generator	Agilent	N5182A	HKE-029	Feb. 17, 2023	1 Year
24.	Signal Generator	Agilent	83630A	HKE-028	Feb. 17, 2023	1 Year
25.	Power meter	Agilent	E4419B	HKE-085	Feb. 17, 2023	1 Year

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

AFICATION

Report No.: HK2310244958-1E

26.	Power Sensor	Agilent	E9300A	HKE-086	Feb. 17, 2023	1 Year
27.	RF Cable(below1GHz)	Times	9kHz-1GHz	HKE-117	Feb. 17, 2023	1 Year
28.	RF Cable(above 1GHz)	Times	1-40G	HKE-034	Feb. 17, 2023	1 Year
29.	RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	Feb. 17, 2023	1 Year
30.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 09, 2021	3 Year
31.	High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 17, 2023	1 Year
32.	10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	Feb. 17, 2023	1 Year

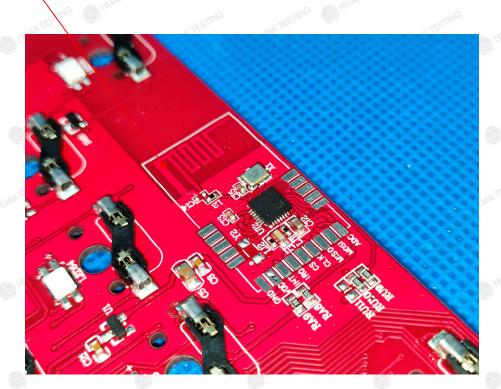
4 Test Result

4.1 Antenna Requirement

4.1.1 Standard Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 3.85dBi.

4.1.2 EUT Antenna

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

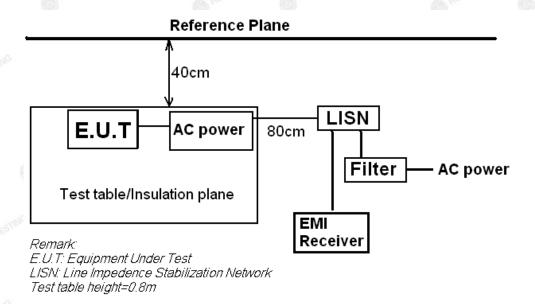
4.2 Conduction Emissions Measurement

4.2.1 Applied Procedures / Limit

According to FCC CFR Title 47 Part 15 Subpart C Section 15.207, AC Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus as below:

HUAK TESTIN	- HUANTESTIN	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average			
ESTINE	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			

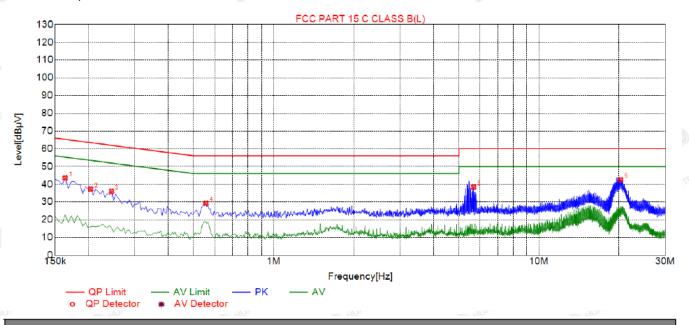
^{*} Decreases with the logarithm of the frequency.


4.2.2 Test Procedure

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

4.2.3 Test Setup



PASS

Only the worst result of GFSK Low channel TX was reported as below:

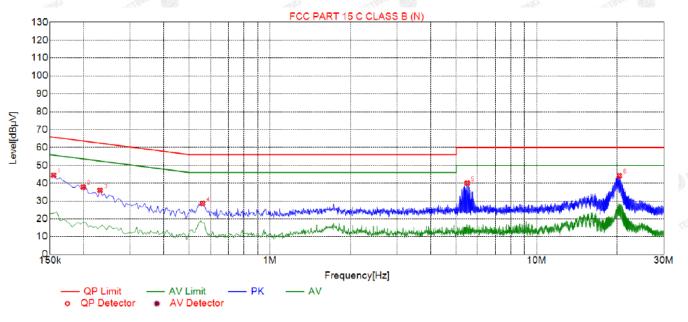
Test Specification: Line

Sus	spected	List

ć									
	NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре
	1	0.1635	43.57	19.98	65.28	21.71	23.59	PK	L
	2	0.2040	37.26	20.04	63.45	26.19	17.22	PK	L
950	3	0.2445	36.00	20.03	61.94	25.94	15.97	PK	L
	4	0.5550	29.29	20.06	56.00	26.71	9.23	PK	L
ž	5	5.6760	38.34	20.24	60.00	21.66	18.10	PK	L
	6	20.3640	42.53	20.12	60.00	17.47	22.41	PK	L

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Report No.: HK2310244958-1E

Sus	Suspected List								
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBμV]	Detector	Туре	
1	0.1545	44.49	20.03	65.75	21.26	24.46	PK	N	
2	0.1995	37.86	20.03	63.63	25.77	17.83	PK	N	
3	0.2310	36.04	20.03	62.41	26.37	16.01	PK	N	
4	0.5595	28.68	20.06	56.00	27.32	8.62	PK	N	
5	5.4915	40.06	20.26	60.00	19.94	19.80	PK	N	
6	20.4405	44.18	20.12	60.00	15.82	24.06	PK	N	

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

AFICATION.

Report No.: HK2310244958-1E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

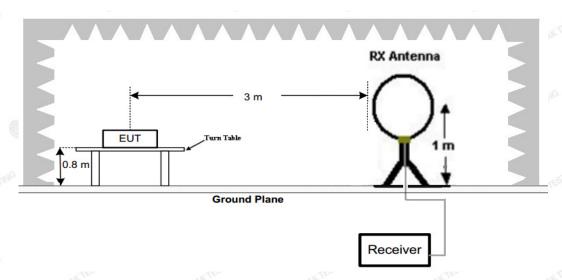
4.3 Radiated Emissions Measurement

4.3.1 Applied Procedures / Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

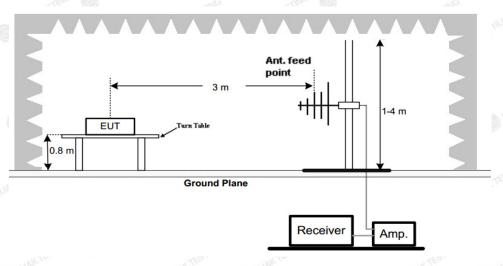
In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Except when the requirements applicable to a given device state otherwise, emissions from license-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

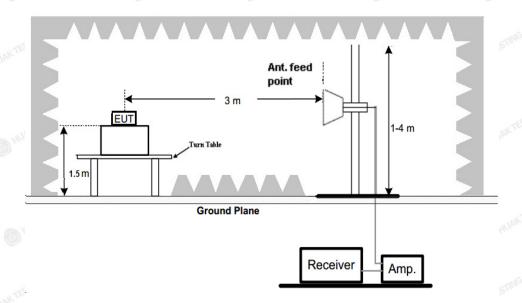

Radiated emission limits

arthur 1	ACTION .		ACCOUNT OF THE PROPERTY OF THE	ASSESS.
8	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
LI)	1.705-30	3	20log(30)+ 40log(30/3)	30
	30-88	3	40.0	100
45	«° 88-216	3 STING	43.5	150
	216-960	3	46.0	200
	Above 960	3	54.0	500

4.3.2 Test Setup


Test Configuration:

1) 9 kHz to 30 MHz emissions:

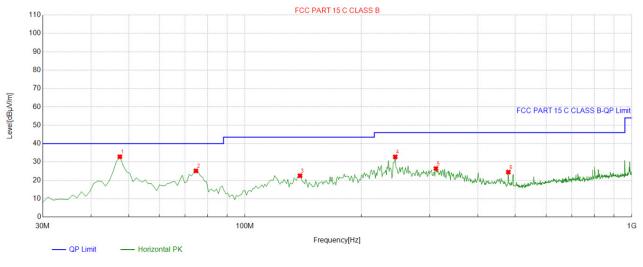


2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 25 GHz emissions:

Test Procedure

- 1. The EUT was placed on turn table which is 0.8m above ground plane for below 1GHz test, and on a low permittivity and low loss tangent turn table which is 1.5m above ground plane for above 1GHz test.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

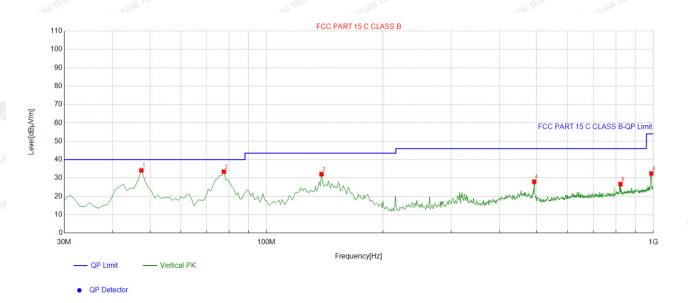

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.3.3 Test Result

Below 1GHz Test Results:

All modes have been tested, only the worst mode of GFSK Low channel TX is reflected.

Antenna polarity: H



QP Detector

Suspe	cted List								
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Folanty
1	47.477477	-14.95	47.78	32.83	40.00	7.17	100	182	Horizontal
2	74.664665	-16.60	41.73	25.13	40.00	14.87	100	169	Horizontal
3	138.74874	-17.81	40.29	22.48	43.50	21.02	100	249	Horizontal
4	244.58458	-13.27	46.05	32.78	46.00	13.22	100	169	Horizontal
5	311.58158	-11.80	38.20	26.40	46.00	19.60	100	207	Horizontal
6	479.55956	-7.79	32.27	24.48	46.00	21.52	100	75	Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Antenna polarity: V

Suspe	Suspected List									
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevity	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	47.477477	-14.95	49.04	34.09	40.00	5.91	100	77	Vertical	
2	77.577578	-17.16	50.57	33.41	40.00	6.59	100	294	Vertical	
3	138.74874	-17.81	49.90	32.09	43.50	11.41	100	266	Vertical	
4	492.18218	-7.44	35.46	28.02	46.00	17.98	100	140	Vertical	
5	822.31231	-1.40	28.07	26.67	46.00	19.33	100	146	Vertical	
6	989.31931	0.41	32.01	32.42	54.00	21.58	100	165	Vertical	

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)		
THE STIME OF HUM	THE CING MILE	me-		
TES. HUAKTE-	THAN TES.	- WAKTES! HUAKTE		
	<u> </u>			

Note: 1. Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

For 1GHz to 25GHz

CH Low (2402MHz)

Horizontal:

Meter Reading	Factor	Emission Level	Limits O	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
52.59	-3.65	48.94	74.00	-25.06	peak
43.84	-3.65	40.19	54.00	-13.81	AVG
51.89	-0.95	50.94	74.00	-23.06	peak
40.32	-0.95	39.37	54.00	-14.63	AVG
	Reading (dBµV) 52.59 43.84 51.89	Reading Factor (dBμV) (dB) 52.59 -3.65 43.84 -3.65 51.89 -0.95	Reading Factor Emission Level (dBμV) (dB) (dBμV/m) 52.59 -3.65 48.94 43.84 -3.65 40.19 51.89 -0.95 50.94	Reading Factor Emission Level Limits (dBμV) (dB) (dBμV/m) (dBμV/m) 52.59 -3.65 48.94 74.00 43.84 -3.65 40.19 54.00 51.89 -0.95 50.94 74.00	Reading Factor Emission Level Limits Margin (dBμV) (dB) (dBμV/m) (dBμV/m) (dB) 52.59 -3.65 48.94 74.00 -25.06 43.84 -3.65 40.19 54.00 -13.81 51.89 -0.95 50.94 74.00 -23.06

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804	53.05	-3.65	49.40	74.00	-24.60	peak
4804	42.52	-3.65	38.87	54.00	-15.13	AVG
7206	50.75	-0.95	49.80	74.00	-24.20	peak
7206	40.16	-0.95	39.21	54.00	-14.79	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

CH Middle (2440MHz)

Horizontal:

- C	5		-Ca			
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4880.00	53.06	-3.54	49.52	74.00	-24.48	peak
4880.00	44.26	-3.54	40.72	54.00	-13.28	AVG
7320.00	50.41	-0.81	49.60	74.00	-24.40	peak
7320.00	42.06	-0.81	41.25	54.00	-12.75	AVG
	467		-60°			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
52.54	-3.54	49.00	74.00	-25.00	peak
42.31	-3.54	38.77	54.00	-15.23	AVG
51.26	-0.81	50.45	74.00	-23.55	peak
40.35	-0.81	39.54	54.00	-14.46	AVG
	Reading (dBμV) 52.54 42.31 51.26	Reading Factor (dBμV) (dB) 52.54 -3.54 42.31 -3.54 51.26 -0.81	Reading Factor Emission Level (dBμV) (dB) (dBμV/m) 52.54 -3.54 49.00 42.31 -3.54 38.77 51.26 -0.81 50.45	Reading Factor Emission Level Limits (dBμV) (dB) (dBμV/m) (dBμV/m) 52.54 -3.54 49.00 74.00 42.31 -3.54 38.77 54.00 51.26 -0.81 50.45 74.00	Reading Factor Emission Level Limits Margin (dBμV) (dB) (dBμV/m) (dBμV/m) (dB) 52.54 -3.54 49.00 74.00 -25.00 42.31 -3.54 38.77 54.00 -15.23 51.26 -0.81 50.45 74.00 -23.55

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

CH High (2480MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	53.35	-3.43	49.92	74.00	-24.08	peak
4960	41.71	-3.44	38.27	54.00	-15.73	AVG
7440	50.29	-0.77	49.52	74.00	-24.48	peak
7440	40.19	-0.77	39.42	54.00	-14.58	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	55.25	-3.43	51.82	74.00	-22.18	peak
4960	41.86	-3.44	38.42	54.00	-15.58	AVG
7440	51.19	-0.77	50.42	74.00	-23.58	peak
7440	39.35	-0.77	38.58	54.00	-15.42	AVG
200					747	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental $73.16 \, \text{BuV/m}(PK \, \text{Value}) < 93.98 \, \text{(AV Limit)}$, at harmonic $53.20 \, \text{dBuV/m}(PK \, \text{Value}) < 54 \, \text{dBuV/m}(AV \, \text{Limit)}$, the Average Detected not need to completed.
- (7) All modes of operation were investigated and the worst-case emissions are reported.

Radiated Band Edge Test:

Operation Mode: TX CH Low (2402MHz)

Horizontal (Worst case):

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	55.42	-5.81	49.61	74	-24.39	peak
2310.00	1	-5.81	O HUM	54	1 🔘 HO	AVG
2390.00	53.16	-5.84	47.32	74	-26.68	peak
2390.00	JAK TESTIL	-5.84	ESTING HUAK TESTI	54	UAKTESTIME	AVG
2400.00	51.79	-5.84	45.95	74	-28.05	peak
2400.00	1	-5.84	1	54	1	AVG
200	200		1.9		27.5	277.9

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	56.32	-5.81	50.51	74	-23.49	peak
2310.00	1	-5.81	1	54	1	AVG
2390.00	52.47	-5.84	46.63	^{NS} 74	-27.37	peak
2390.00	Mary 1	-5.84	1 HOW	54	1	AVG
2400.00	50.95	-5.84	45.11	74	-28.89	peak
2400.00	TESTING	-5.84	WAXTESTING.	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

Operation Mode: TX CH High (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	53.22	-5.81	47.41	74	-26.59	peak
2483.50	TESTING /	-5.81	WAK TESTING	54	1	AVG
2500.00	50.46	-6.06	44.4	74	-29.6	peak
2500.00	THIS OF	-6.06	1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	55.78	-5.81	49.97	74	-24.03	peak
2483.50	THE TOP	-5.81	1	54	1	AVG
2500.00	53.16	-6.06	47.1	74	-26.9	peak
2500.00	1	-6.06	1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Remark:

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

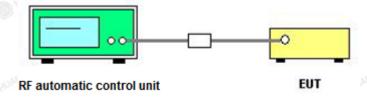
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

4.4 Maximum Output Power Measurement

4.4.1 Limit

The Maximum Peak Output Power Measurement is 30dBm.

4.4.2 Test Procedure


The maximum peak conducted output power may be measured using a broadband peak RF automatic control unit. The RF automatic control unit shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The maximum Average conducted output power may be measured using a wideband RF automatic control unit with a thermocouple detector or equivalent. The RF automatic control unit shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

4.4.3 Deviation From Standard

No deviation.

4.4.4 Test Setup

4.4.5 Test Results

Channel	Channel frequency (MHz)	Maximum Output power (dBm)	Limit (dBm)	Result
Low	2402	2.01		Pass
Middle	2440	2.04	30.00	Pass
High	2480	2.34	O HO	Pass

Note: 1. The test results including the cable lose.

4.5 Power Spectral Density

4.5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.5.2 Test Procedure

Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

Set the RBW =10 kHz.

Set the VBW =30 KHz.

Set the span to 1.5 times the DTS channel bandwidth.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum power level.

If measured value exceeds limit, reduce RBW(no less than 3 kHz)and repeat.

The resulting peak PSD level must be 8 dBm.

4.5.3 Deviation From Standard

No deviation.

4.5.4 Test Setup

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.5.5 Test Results

Channel	Channel frequency (MHz)	Test Result (dBm/ 10kHz)	10log (3/10)	Test Result (dBm/ 3kHz)	Limit (dBm/ 3KHz)	Result
Low	2402	-6.60	-5.23	-11.83		Pass
Middle	2440	-7.64	-5.23	-12.87	8.00	Pass
High	2480	-7.38	-5.23	-12.61		Pass

Note: PSD test result (dBm/3kHz)= PSD test result (dBm/10kHz)- 10log(3/10)

CH 00

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Report No.: HK2310244958-1E

CH 19

CH 39

4.6 6db Bandwidth

4.6.1 Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

4.6.2 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300 KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

- 1. Set RBW = 100 kHz.
- Set the video bandwidth (VBW) ≥ 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.6.3 Deviation From Standard

No deviation.

4.6.4 Test Setup

4.6.5 Test Result

Channel	Channel frequency (MHz)	6dB Bandwidth (MHz)	Limit (KHz)	Result
Low	2402	0.660	MAKTEST	Pass
Middle	2440	0.664	≥500	Pass
High	2480	0.660	O HUA	Pass

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

CH 00

CH 19

CH 39

4.7 Occupied Bandwidth

4.7.1 Test Procedure

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

RBW=1% to 5% of the OBW

VBW=approximately 3 X RBW

Detector=Peak

Trace Mode: Max Hold

Use the 99% power bandwidth function of the instrument to measure the Occupied Bandwidth and recorded.

4.7.2 Deviation From Standard

No deviation.

4.7.3 Test Setup

4.7.4 Test Result

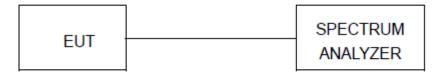
N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.8 Band Edge

4.8.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under FCC rules in section 5.8.1, the attenuation required shall be 30 dB instead of 20 dB.


4.8.2 Test Procedure

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation, RBW ≥ 1% of the span, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.

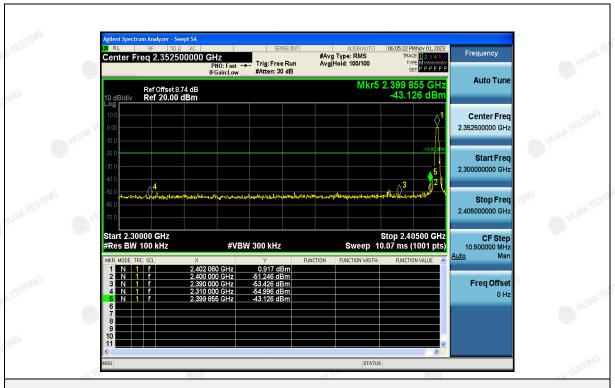
4.8.3 Deviation From Standard

No deviation.

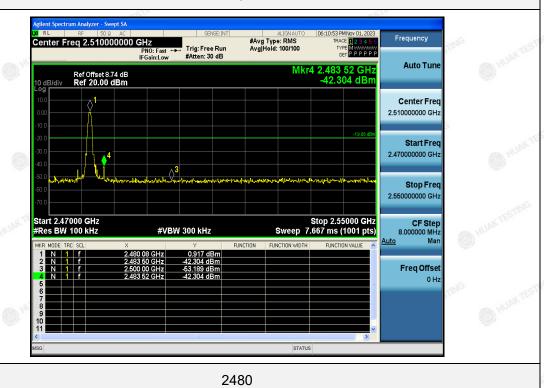
4.8.4 Test Setup

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

AFICATION


Report No.: HK2310244958-18

this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com



4.8.5 Test Results

PASS

4.9 Conducted Spurious Emissions

emission level-20-10log(100/1)= the highest emission level-40.

4.9.1 Applied Procedures / Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section (b)(3) of RSS 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. For below 30MHz,For 9KHz-150kHz,150K-10MHz,We use the RBW 1KHz,10KHz, So the limit need to calculated by "10lg(BW1/BW2)". for example For9KHz-150kHz,RBW 1KHz, The Limit= the highest

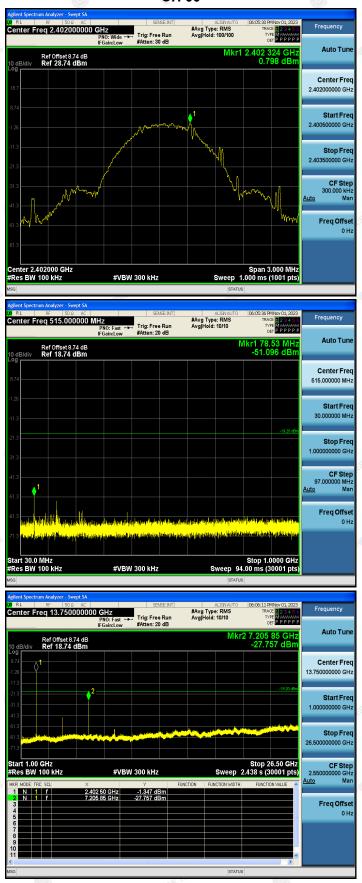
4.9.2 Test Procedure

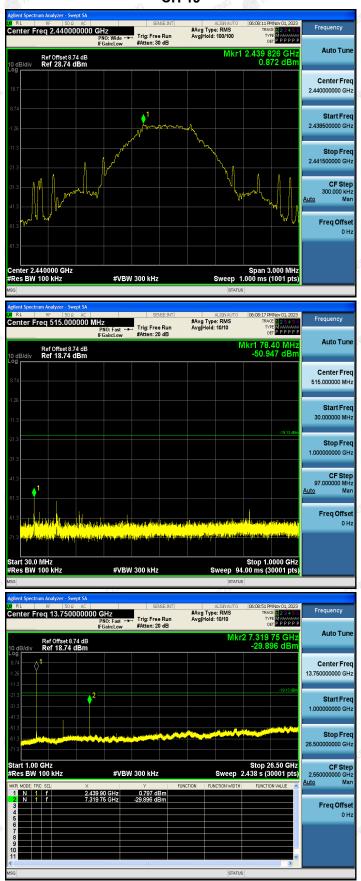
a.The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b.Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation, RBW \geq 1% of the span, VBW \geq RBW, Sweep = auto, Detector function = peak, Trace = max hold.

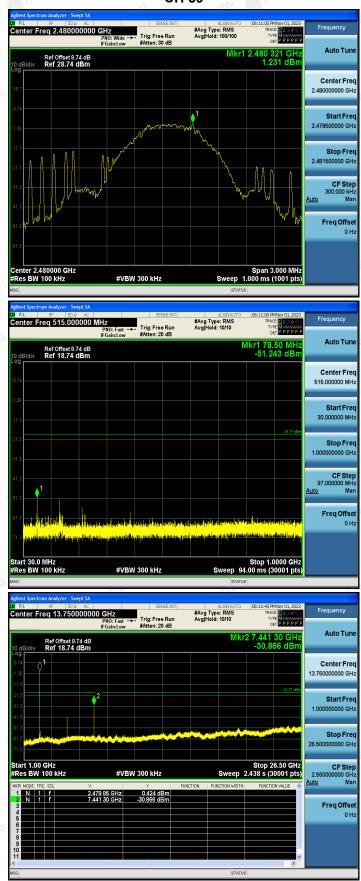
4.9.3 Deviation From Standard

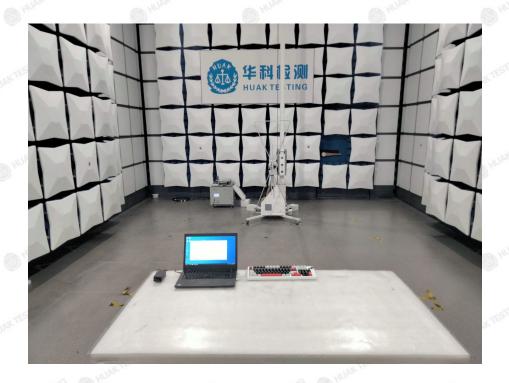
No deviation.

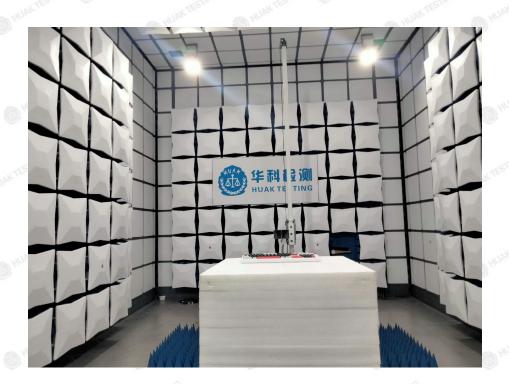

4.9.4 Test Setup

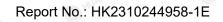

4.9.5 Test Results

CH 00








5 Test Setup Photo

Radiated Emissions

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission

6 Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.