

FCC Test Report

Application No.: DNT2407250248R0473-00600

Applicant: Shenzhen lanxingxin Technology Co., Ltd.

Address of 301, No. 8, East Zone, Shengjingyuan Industrial Park, Fuqian Road, Fumin

Applicant: Community, Fucheng Street, Longhua District, Shenzhen

EUT Description: Bluetooth Headset

Model No.: YW02, R08, R25, R27

FCC ID: 2A9NQ-YW02

Power Supply DC 3.7V From Battery

Charging Voltage: DC 5V

Trade Mark: CIRCE

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2020

Date of Receipt: 2024/7/25

Date of Test: 2024/7/27 to 2024/8/7

Date of Issue: 2024/8/15

Test Result: PASS

Prepared By: Wayne Jin (Testing Engineer)

Reviewed By: ______ (Project Engineer)

Approved By: Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Dongguan DN Testing Co., Ltd.

Date: August 15, 2024

Page: 2/47

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V2.0		Aug.15, 2024	Valid	Original Report

Date: August 15, 2024

Page: 3 / 47

1 Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)	9'- 9'	Clause 3.1	PASS
Duty Cycle		O - O	Clause 3.2	PASS
DTS (6 dB) Bandwidth	15.247 (a)(2)	ANSI C63.10: 2020	Clause 3.3	PASS
Conducted Output Power	15.247 (b)(3)	ANSI C63.10: 2020	Clause 3.4	PASS
Power Spectral Density	15.247 (e)	ANSI C63.10: 2020	Clause 3.5	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.6	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.7	PASS
Radiated Spurious Emissions	15.247(d);15.205/15.209	ANSI C63.10: 2020	Clause 3.8	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d);15.205/15.209	ANSI C63.10: 2020	Clause 3.9	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2020	Clause 3.10	N/a

Note:

^{1. &}quot;N/A" denotes test is not applicable in this test report.

Date: August 15, 2024

Page: 4 / 47

Contents

1 Test Summary	3
2 General Information	 5
2.1 Test Location	 5
2.2 General Description of EUT	5
2.3 Channel List	 ε
2.4 Test Environment and Mode	 ε
2.5 Power Setting of Test Software	ε
2.6 Description of Support Units	 ε
2.7 Test Facility	 7
2.8 Measurement Uncertainty (95% confidence levels, k=2)	7
2.9 Equipment List	 ε
2.10 Assistant equipment used for test	 c
3 Test results and Measurement Data	10
3.1 Antenna Requirement	 10
3.2 Duty Cycle	 11
3.3 DTS (6 dB) Bandwidth	12
3.4 Conducted Output Power	 13
3.5 Power Spectral Density	 14
3.6 Band-edge for RF Conducted Emissions	15
3.7 RF Conducted Spurious Emissions	 16
3.8 Radiated Spurious Emissions	 17
3.9 Restricted bands around fundamental frequency	25
3.10 AC Power Line Conducted Emissions	 30
4 Appendix	 34
Appendix A: Duty Cycle	34
Appendix B: DTS Bandwidth	 36
Appendix C: Maximum conducted output power	 38
Appendix D: Maximum power spectral density	
Appendix E: Band edge measurements	
Appendix F: Conducted Spurious Emission	

Date: August 15, 2024 Page: 5 / 47

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

2.2 General Description of EUT

Manufacturer:	Shenzhen lanxingxin Technology Co., Ltd.						
Address of Manufacturer:	301, No. 8, East Zone, Shengjingyuan Industrial Park, Fuqian Road, Fumin Community, Fucheng Street, Longhua District, Shenzhen						
EUT Description:	Bluetooth Headset						
Test Model No.:	YW02						
Additional Model(s):	R08,R25,R27						
Chip Type:	AD6973D4						
Serial Number:	PR2407250248R0473						
Power Supply:	DC 3.7V From Battery						
Charging Voltage:	DC 5V						
Trade Mark:	CIRCE						
Hardware Version:	V1.0						
Software Version:	V1.0						
Operation Frequency:	2402 MHz to 2480 MHz						
Type of Modulation:	GFSK						
Sample Type:							
Antenna Type:	☐ External, ⊠ Integrated						
Antenna Ports							
Antonno Coint.	⊠ Provided by applicant						
Antenna Gain*:	3dBi						
	⊠ Provided by applicant						
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);						

Remark:

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information, DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Date: August 15, 2024

Page: 6 / 47

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12 🗸	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

2.4 Test Environment and Mode

Operating Environment:	
Temperature:	20~25.0 °C
Humidity:	45~56 % RH
Atmospheric Pressure:	101.0~101.30 KPa
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

2.5 Power Setting of Test Software

Software Name	FCC_assist.exe			
Frequency(MHz)	2402	2440	2480	
BLE 1M Setting	10	10	10	

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

· FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

• Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty			
1	DTS Bandwidth	±0.0196%			
2	Maximum Conducted Output Power ±0.686 dB				
3	Maximum Power Spectral Density Level	±0.743 dB			
4	Band-edge Compliance	±1.328 dB			
5	Unwanted Emissions In Non-restricted Freq Bands	9KHz-1GHz:±0.746dB 1GHz-26GHz: ±1.328dB			

No.	Item Measurement Uncertainty				
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)			
		± 4.8dB (Below 1GHz)			
	9, 4, 4, 4,	± 4.8dB (1GHz to 6GHz)			
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)			
		± 5.02dB (Above 18GHz)			

Date: August 15, 2024

Page: 8 / 47

2.9 Equipment List

For Connect EUT Antenna Terminal Test						
Description	Manufacturer	Model	Serial Number	Cal date	Due date	
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24	
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24	
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24	
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24	
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24	
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA	
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA	
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24	
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24	
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24	

	Test Equipment for Conducted Emission						
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date		
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23		
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23		
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23		

Test Ed	quipment for F	Radiated Emis	sion(30MHz-	-1000MHz	<u>z</u>)	
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date	
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23	
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA	
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23	
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23	
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23	

Date: August 15, 2024

Page: 9 / 47

Test E	quipment for I	Radiated Emis	ssion(Above	1000MHz)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.	
1	Adapter	GaoFanDe	GFDQ3- 0502000U	NA	
2	Computer	acer	N22C8	EMC notebook01	

Date: August 15, 2024 Page: 10 / 47

3 Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

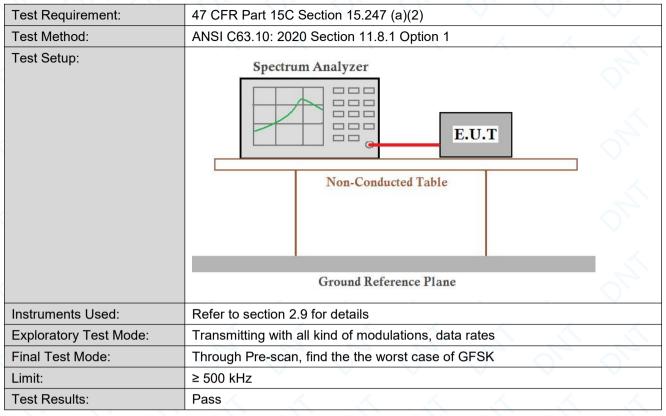
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3dBi.

Report No.:DNT2407250248R0473-00600 Date: August 15, 2024 Page: 11 / 47

3.2 Duty Cycle

Refer to section : Appendix A

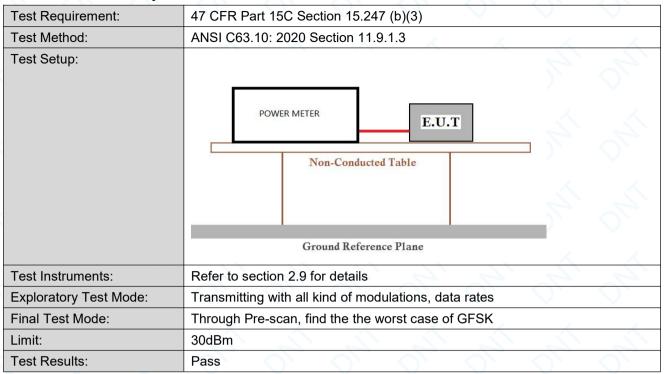
Note:


- 1.lf duty cycle <98 %, the conducted average output power and average power spectral density should be add duty factor.
- 2.If duty cycle ≥ 98 %,the EUT is consider to be transmitting continuously,the conducted average output power and average power spectral density no need to add duty factor(consider to be zero).
- 3. The conducted peak output power and peak power spectral density no need to consider duty factor.
- 4. The on-time time is transmission duration(T).

Date: August 15, 2024

Page: 12 / 47

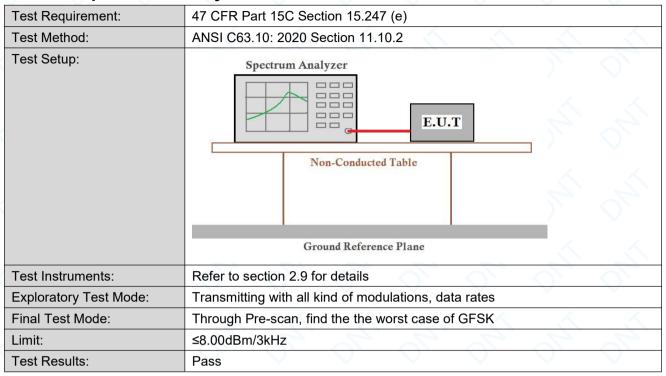
3.3 DTS (6 dB) Bandwidth


The detailed test data see: Appendix B

Date: August 15, 2024

Page: 13 / 47

3.4 Conducted Output Power


The detailed test data see: Appendix C

Date: August 15, 2024

Page: 14 / 47

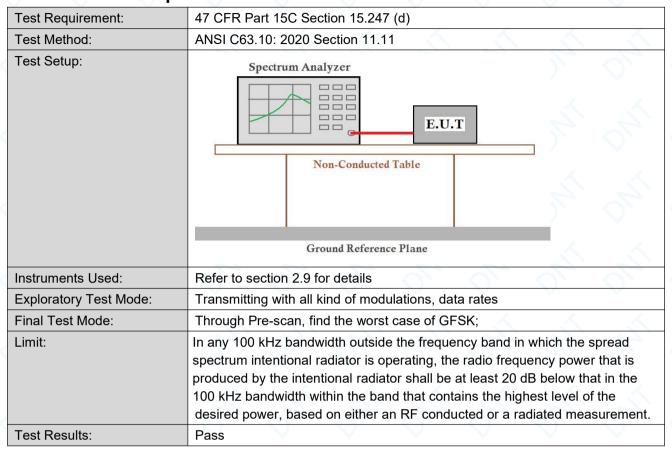
3.5 Power Spectral Density

The detailed test data see: Appendix D

Date: August 15, 2024 Page: 15 / 47

3.6 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2020 Section 11.13
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the the worst case of GFSK
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass


The detailed test data see: Appendix E

Date: August 15, 2024

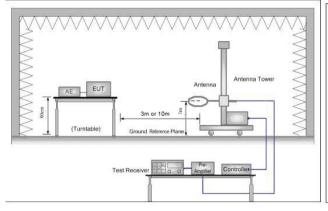
Page: 16 / 47

3.7 RF Conducted Spurious Emissions

The detailed test data see: Appendix F

Date: August 15, 2024

Page: 17 / 47


3.8 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section	n 15.209 and 15.20	05		
Test Method:	ANSI C63.10: 2020 Sect	tion 11.12			
Test Site:	Measurement Distance:	3m or 10m (Semi-	Anechoic Ch	amber)	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98) ≥1/T	Average
	9, 9, 6	7, 9,		(DC<0.98)	7, 9,
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	<u> </u>	300
	0.490MHz-1.705MHz	24000/F(kHz)	<u> </u>	L - L	30
	1.705MHz-30MHz	30	V -	- V	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated by	e the maximum per ent under test. This	mitted avera	ge emission lin	nit

Date: August 15, 2024

Page: 18 / 47

Test Setup:

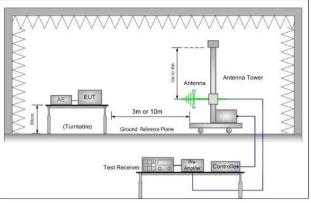


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

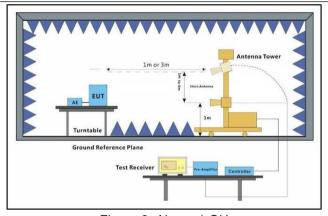


Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Dongguan DN Testing Co., Ltd.

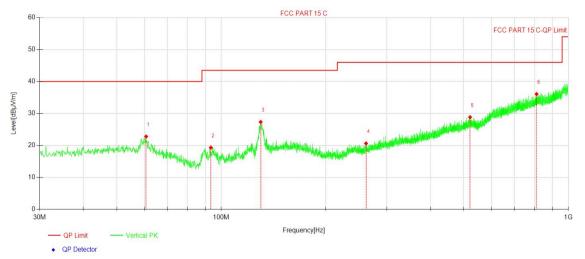
Report No :D	NT2407250248R0473-00600
Test Configuration:	Measurements Below 1000MHz
. cor cogarano	• RBW = 120 kHz
	• VBW = 300 kHz
	Detector = Peak
	Trace mode = max hold
	Peak Measurements Above 1000 MHz
	• RBW = 1 MHz
	VBW ≥ 3 MHz
	Detector = Peak
	Sweep time = auto
	Trace mode = max hold
	Average Measurements Above 1000MHz
	• RBW = 1 MHz
	VBW = 10 Hz, when duty cycle is no less than 98 percent.
	• VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum
	transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Charge + Transmitting mode.
Final Test Mode:	Pretest the EUT at Charging+Transmitting mode.
	Through Pre-scan, find the worst case of GFSK,Only the worst case is recorded in the report.

Refer to section 2.9 for details

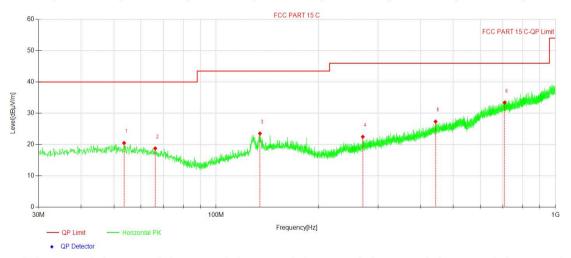
Pass

Instruments Used:

Test Results:



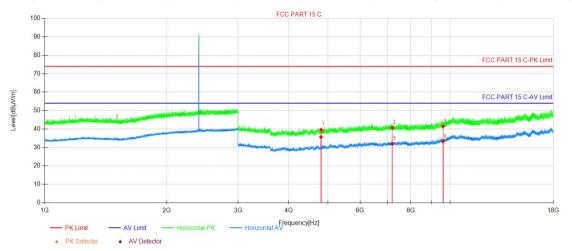
Date: August 15, 2024

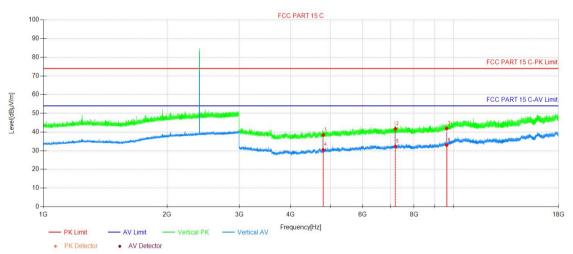

Page: 20 / 47

Test data

For 30-1000MHz

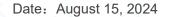
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	60.75	31.62	-8.84	22.78	40.00	17.22	100	301	PK	Vertical
2	93.34	32.88	-13.57	19.31	43.50	24.19	200	220	PK	Vertical
3	129.92	36.77	-9.44	27.33	43.50	16.17	100	24	PK	Vertical
4	261.36	29.17	-8.55	20.62	46.00	25.38	200	50	PK	Vertical
5	521.16	30.00	-1.18	28.82	46.00	17.18	200	359	PK	Vertical
6	810.24	31.55	4.53	36.08	46.00	9.92	200	263	PK	Vertical


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	53.57	28.68	-8.18	20.50	40.00	19.50	200	360	PK	Horizontal
2	66.18	28.24	-9.48	18.76	40.00	21.24	100	94	PK	Horizontal
3	134.67	32.52	-8.99	23.53	43.50	19.97	200	20	PK	Horizontal
4	270.58	30.49	-8.01	22.48	46.00	23.52	100	307	PK	Horizontal
5	443.26	30.32	-2.98	27.34	46.00	18.66	200	130	PK	Horizontal
6	708.00	30.97	2.46	33.43	46.00	12.57	100	57	PK	Horizontal

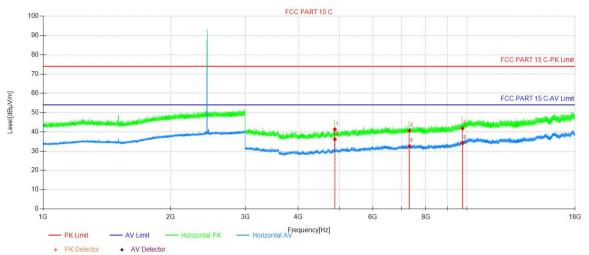

Date: August 15, 2024

Page: 21 / 47

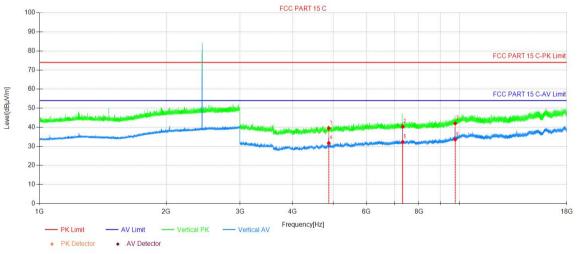
BLE 1M 2402MHz



NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4804.59	44.23	-4.61	39.62	74.00	34.38	150	76	Peak	Н
2	7206.21	42.46	-1.76	40.70	74.00	33.30	150	273	Peak	Н
3	9608.58	40.51	0.88	41.39	74.00	32.61	150	30	Peak	Н
4	4804.59	40.26	-4.61	35.65	54.00	18.35	150	86	AV	Н
5	7206.21	33.81	-1.76	32.05	54.00	21.95	150	293	AV	Н
6	9608.58	32.47	0.88	33.35	54.00	20.65	150	164	AV	Н

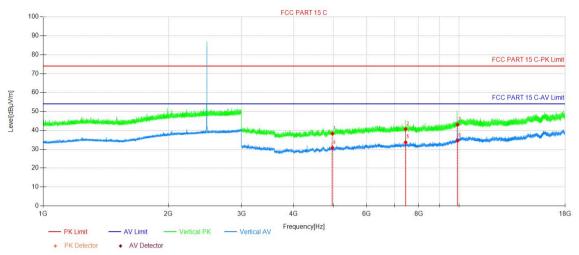


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dΒμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4804.59	43.06	-4.61	38.45	74.00	35.55	150	231	Peak	Н
2	7206.21	43.51	-1.76	41.75	74.00	32.25	150	76	Peak	Н
3	9608.58	41.01	0.88	41.89	74.00	32.11	150	187	Peak	Н
4	4804.59	35.09	-4.61	30.48	54.00	23.52	150	133	AV	Н
5	7206.21	34.08	-1.76	32.32	54.00	21.68	150	220	AV	Н
6	9608.58	32.09	0.88	32.97	54.00	21.03	150	88	AV	Н

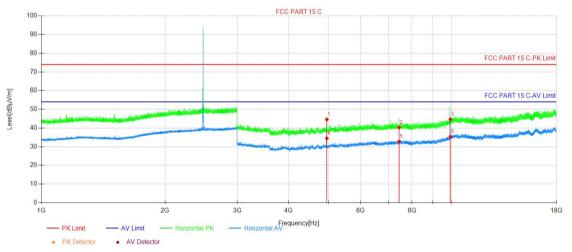

Report No.:DNT2407250248R0473-00600 **BLE 1M 2440MHz**

Page: 22 / 47

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
	1	4880.34	46.03	-4.71	41.32	74.00	32.68	150	18	Peak	Н
	2	7320.21	42.19	-1.49	40.70	74.00	33.30	150	1	Peak	Н
	3	9760.08	40.14	1.62	41.76	74.00	32.24	150	273	Peak	Н
	4	4880.34	40.90	-4.71	36.19	54.00	17.81	150	139	AV	Н
,	5	7320.21	34.06	-1.49	32.57	54.00	21.43	150	139	AV	Н
	6	9760.08	32.73	1.62	34.35	54.00	19.65	150	41	AV	Н



NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4880.34	44.23	-4.71	39.52	74.00	34.48	150	292	Peak	V
2	7320.21	41.79	-1.49	40.30	74.00	33.70	150	347	Peak	V
3	9760.08	40.40	1.62	42.02	74.00	31.98	150	152	Peak	V
4	4880.34	36.47	-4.71	31.76	54.00	22.24	150	303	AV	V
5	7320.21	33.81	-1.49	32.32	54.00	21.68	150	324	AV	V
6	9760.08	31.99	1.62	33.61	54.00	20.39	150	132	AV	V


Report No.:DNT2407250248R0473-00600 **BLE 1M 2480MHz**

Date: August 15, 2024

Page: 23 / 47

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4960.59	43.12	-4.86	38.26	74.00	35.74	150	144	Peak	V
2	7440.22	42.00	-1.34	40.66	74.00	33.34	150	326	Peak	V
3	9920.59	40.71	2.27	42.98	74.00	31.02	150	36	Peak	V
4	4960.59	35.65	-4.86	30.79	54.00	23.21	150	316	AV	V
5	7440.22	35.00	-1.34	33.66	54.00	20.34	150	176	AV	V
6	9920.59	32.28	2.27	34.55	54.00	19.45	150	0	AV	V

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4960.59	49.43	-4.86	44.57	74.00	29.43	150	316	Peak	Н
2	7440.22	41.57	-1.34	40.23	74.00	33.77	150	316	Peak	Н
3	9920.59	42.39	2.27	44.66	74.00	29.34	150	40	Peak	Н
4	4960.59	39.31	-4.86	34.45	54.00	19.55	150	115	AV	Н
5	7440.22	34.06	-1.34	32.72	54.00	21.28	150	146	AV	Н
6	9920.59	33.13	2.27	35.40	54.00	18.60	150	135	AV	Н

Date: August 15, 2024

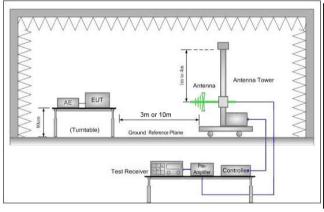
Page: 24 / 47

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, only the worst case was reported.



Date: August 15, 2024

Page: 25 / 47

3.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205	
Test Method:	ANSI C63.10: 2020 Section	11.12	<i>X</i>
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic C	Chamber)
Limit:	Frequency	Limit (dBuV/m)	Remark
	30MHz-88MHz	40.0	Quasi-peak
	88MHz-216MHz	43.5	Quasi-peak
	216MHz-960MHz	46.0	Quasi-peak
	960MHz-1GHz	54.0	Quasi-peak
	Ab 4011=	54.0	Average Value
	Above 1GHz	74.0	Peak Value
Test Setup:			

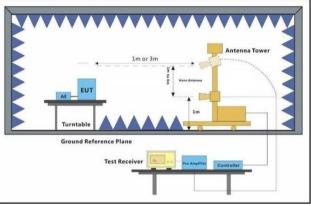


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Test Procedure:

- For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

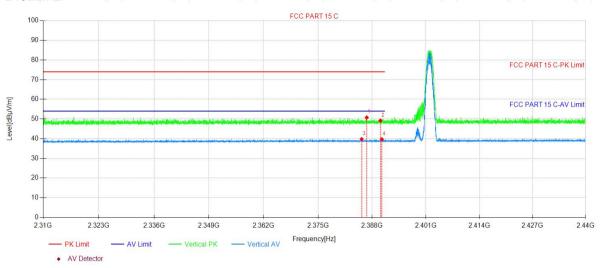
Test Configuration:

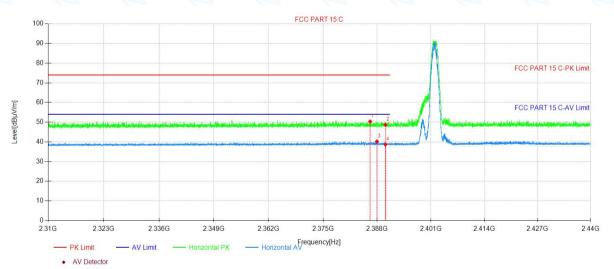
Measurements Below 1000MHz

Web: www.dn-testing.com

Tel:+86-769-88087383

35.00	Report No.:DNT2407250248R0473-00600 Date: August 15, 2024 Page:
	• RBW = 120 kHz
	• VBW = 300 kHz
	Detector = Peak
	Trace mode = max hold
	Peak Measurements Above 1000 MHz
	• RBW = 1 MHz
	• VBW ≥ 3 MHz
	Detector = Peak
	Sweep time = auto
	Trace mode = max hold
	Average Measurements Above 1000MHz
	• RBW = 1 MHz
	VBW = 10 Hz, when duty cycle is no less than 98 percent.
	• VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum
	transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test	Mode: Transmitting with all kind of modulations, data rates.
	Transmitting mode.
Final Test Mode	Pretest the EUT at Charge + Transmitting mode.
	Through Pre-scan, find the worst case of GFSK
	Only the worst case is recorded in the report.
Instruments Use	d: Refer to section 2.9 for details
Test Results:	Pass

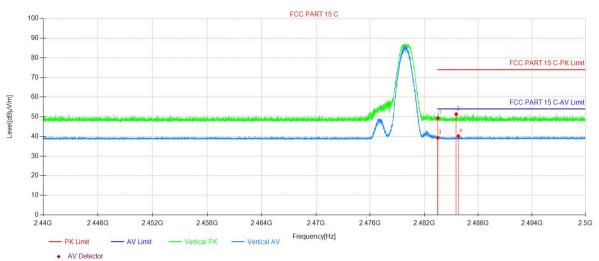

26 / 47


Date: August 15, 2024

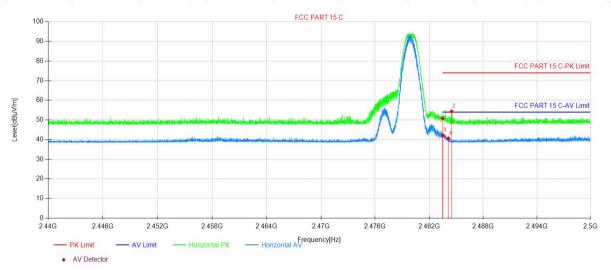
Page: 27 / 47

Test Date BLE 1M 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	2386.70	51.57	-0.81	50.76	74.00	23.24	150	349	Peak	V
2	2390.01	49.98	-0.80	49.18	74.00	24.82	150	252	Peak	V
3	2385.48	40.59	-0.81	39.78	54.00	14.22	150	151	AV	V
4	2390.36	40.48	-0.80	39.68	54.00	14.32	150	314	AV	V



NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	2386.33	51.12	-0.81	50.31	74.00	23.69	150	159	Peak	Н
2	2390.01	49.52	-0.80	48.72	74.00	25.28	150	116	Peak	Н
3	2387.95	40.98	-0.80	40.18	54.00	13.82	150	348	AV	Н
4	2390.01	39.47	-0.80	38.67	54.00	15.33	150	10	AV	Н



Date: August 15, 2024

Page: 28 / 47

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	2483.51	49.58	-0.29	49.29	74.00	24.71	150	109	Peak	V
2	2485.56	51.58	-0.27	51.31	74.00	22.69	150	194	Peak	V
3	2483.51	39.55	-0.29	39.26	54.00	14.74	150	349	AV	V
4	2485.80	40.39	-0.27	40.12	54.00	13.88	150	151	AV	V

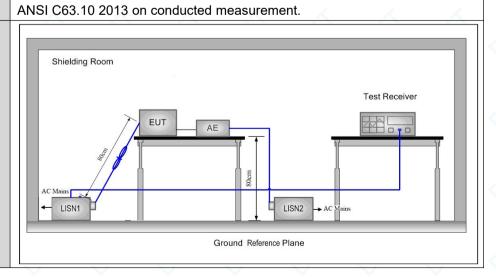
N	IO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
	1	2483.50	51.15	-0.29	50.86	74.00	23.14	150	114	Peak	Н
	2	2484.49	54.61	-0.28	54.33	74.00	19.67	150	114	Peak	Н
	3	2483.50	42.45	-0.29	42.16	54.00	11.84	150	308	AV	Н
	4	2484.14	40.89	-0.28	40.61	54.00	13.39	150	123	AV	Н

Date: August 15, 2024

Page: 29 / 47

Note:

- 1. The BLE 1M is the worse case.
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:
 Result Level= Reading Level + Correct Factor(including Ant.Factor ,Cable Factor etc.)



Date: August 15, 2024 Page: 30 / 47

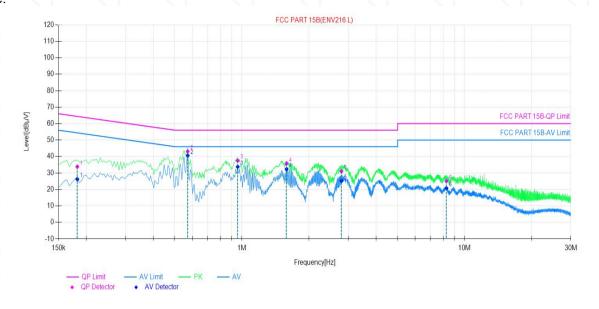
3.10AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 19	5.207								
Test Method:	ANSI C63.10: 2020									
Test Frequency Range:	150kHz to 30MHz									
Limit:	[[[]] [] [] [] [] [] [] [] [Limit (dBuV)								
	Frequency range (MHz)	Quasi-peak	Average							
	0.15-0.5	66 to 56*	56 to 46*							
	0.5-5	56	46							
	5-30 60 50									
	* Decreases with the logarit	nm of the frequency.								
Test Procedure:	1) The mains terminal disturoom. 2) The EUT was connected Impedance Stabilization Neimpedance. The power cable a second LISN 2, which was plane in the same way as the multiple socket outlet strip wisingle LISN provided the rate 3) The tabletop EUT was placed on the horizontal ground reference plane. And placed on the horizontal ground of the EUT shall be 0.4 m frowertical ground reference plane. The LISN aunit under test and bonded mounted on top of the ground between the closest points of the EUT and associated equal in order to find the maximum equipment and all of the interest.	to AC power source throwards) which provides a 5 es of all other units of the 5 bonded to the ground reference plane, with a vertical ground reference plane, with a vertical ground reference plane was bonded to the hold was placed 0.8 m from the total ground reference plane. This confidence is a ground reference plane is a ground reference plane. This confidence is a ground reference plane is a ground reference plane. This confidence is a ground reference plane is a ground reference plane is a ground reference plane. This confidence is a ground reference plane is a ground reference plane is a ground reference plane. This confidence is a ground reference plane is a	ough a LISN 1 (Line 50Ω/50μH + 5Ω linear e EUT were connected to eference ag measured. A ple power cables to a exceeded. It table 0.8m above the gement, the EUT was erence plane. The rear ference plane. The orizontal ground the boundary of the lane for LISNs distance was T. All other units of m from the LISN 2. ositions of							

Test Setup:

Date: August 15, 2024 Page: 31 / 47

Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
	Charge + Transmitting mode.
Final Test Mode:	Through Pre-scan, find the the worst case of GFSK
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass

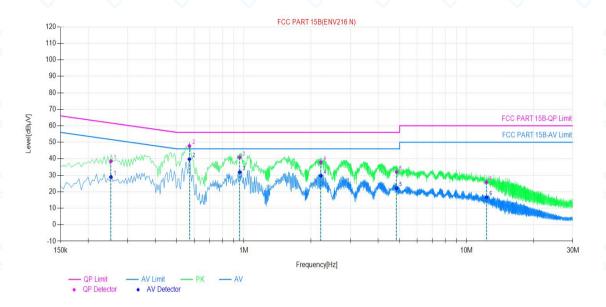

Date: August 15, 2024

Page: 32 / 47

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:


NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level	QP Result Level	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level	AV Result Level	AV Limit [dΒμV]	AV Margin [dB]
1	0.18	9.92	23.95	33.87	64.38	30.51	16.29	26.21	54.38	28.17
2	0.57	9.84	33.28	43.12	56.00	12.88	30.69	40.53	46.00	5.47
3	0.95	9.73	27.79	37.52	56.00	18.48	24.03	33.76	46.00	12.24
4	1.58	9.73	26.01	35.74	56.00	20.26	22.62	32.35	46.00	13.65
5	2.79	9.74	21.27	31.01	56.00	24.99	15.58	25.32	46.00	20.68
6	8.28	9.87	15.22	25.09	60.00	34.91	10.89	20.76	50.00	29.24

Date: August 15, 2024

Page: 33 / 47

Neutral Line:

NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level	QP Result Level	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level	AV Result Level	AV Limit [dBµV]	AV Margin [dB]
1	0.2526	9.87	28.67	38.54	61.67	23.13	19.03	28.90	51.67	22.77
2	0.5690	9.76	37.99	47.75	56.00	8.25	3 0	39.76	46.00	6.24
3	0.9566	9.71	31.07	40.78	56.00	15.22	22.11	31.82	46.00	14.18
4	2.2154	9.80	28.01	37.81	56.00	18.19	19.92	29.72	46.00	16.28
5	4.8468	9.97	21.99	31.96	56.00	24.04	12.21	22.18	46.00	23.82
6	12.2794	9.86	15.92	25.78	60.00	34.22	6.73	16.59	50.00	33.41

Remark:

- 1. The BLE 1M is the worse case.
- 2. The following Quasi-Peak and Average measurements were performed on the EUT:
- 3. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc.)

Report No.:DNT2407250248R0473-00600 Date: August 15, 2024 Page: 34 / 47

4 Appendix

Appendix A: Duty Cycle

Test Result

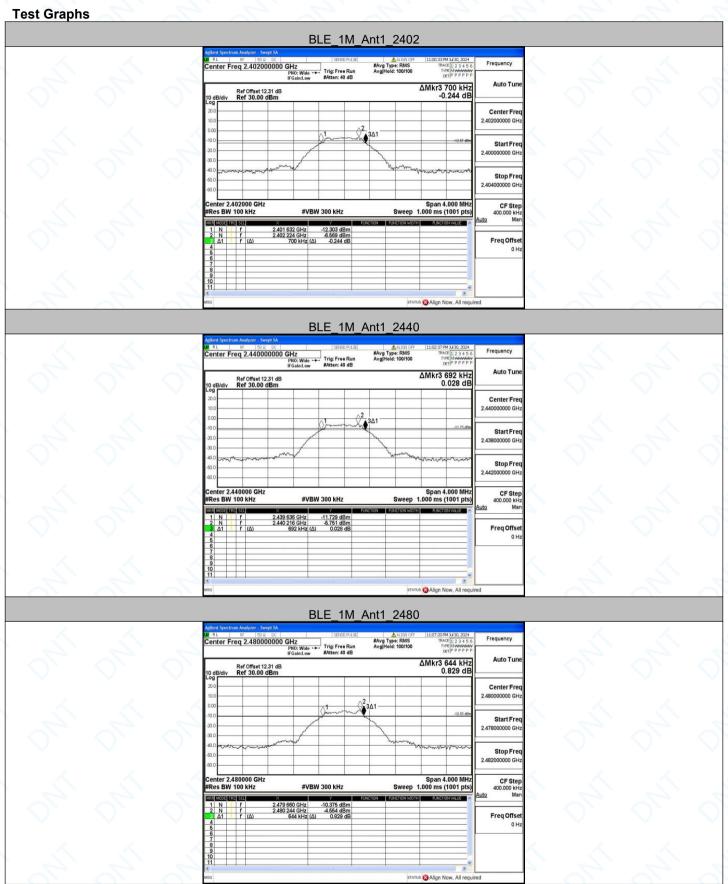
Test Mode	Antenna	Freq(MHz)	ON Time [ms]	Period [ms]	DC [%]
		2402	2.15	2.50	86.00
BLE 1M	Ant1	2440	2.14	2.50	85.60
		2480	2.14	2.50	85.60

Page: 35 / 47 Report No.:DNT2407250248R0473-00600 Date: August 15, 2024

Date: August 15, 2024

Page: 36 / 47

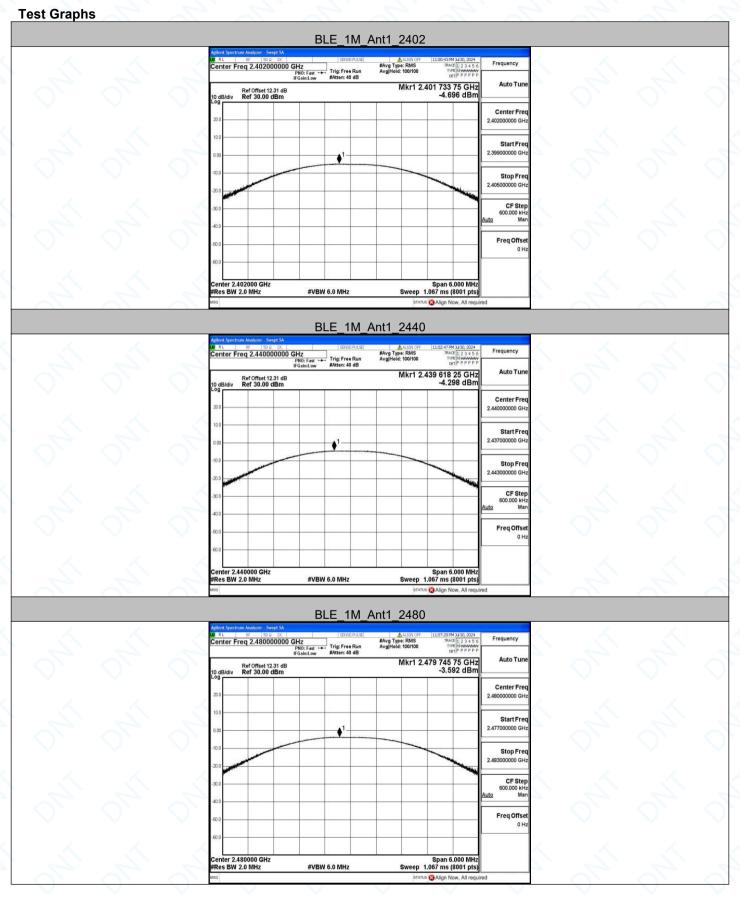
Appendix B: DTS Bandwidth


Test Result

Test Mode	Antenna	Freq(MHz)	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE_1M Ant1		2402	0.700	2401.632	2402.332	0.5	PASS
	2440	0.692	2439.636	2440.328	0.5	PASS	
		2480	0.644	2479.660	2480.304	0.5	PASS

Date: August 15, 2024

Page: 37 / 47


Appendix C: Maximum conducted output power

Test Result

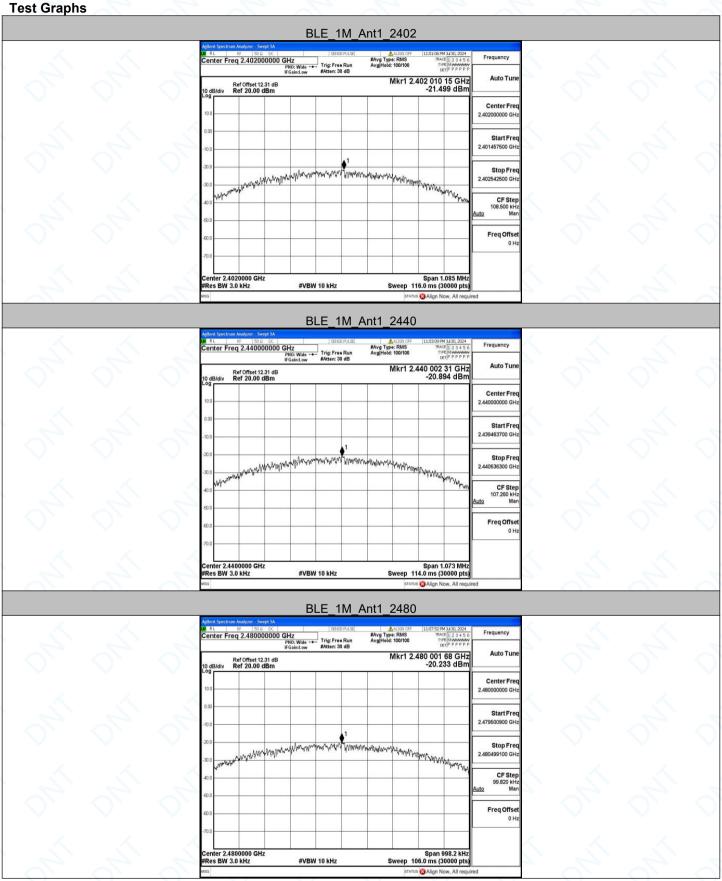
Test Mode	Antenna	Freq(MHz)	Power [dBm]	Limit [dBm]	Verdict
		2402	-4.70	≤30	PASS
BLE_1M	Ant1	2440	-4.30	≤30	PASS
_		2480	-3.59	≤30	PASS

Date: August 15, 2024 Page: 39 / 47

Report No.:DNT2407250248R0473-00600 Date: August

Date: August 15, 2024 Page: 40 / 47

Appendix D: Maximum power spectral density


Test Result

Test Mode	Antenna	Freq(MHz)	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
BLE_1M	7 (-)	2402	-21.50	≤8.00	PASS
	Ant1	2440	-20.89	≤8.00	PASS
		2480	-20.23	≤8.00	PASS

Date: August 15, 2024

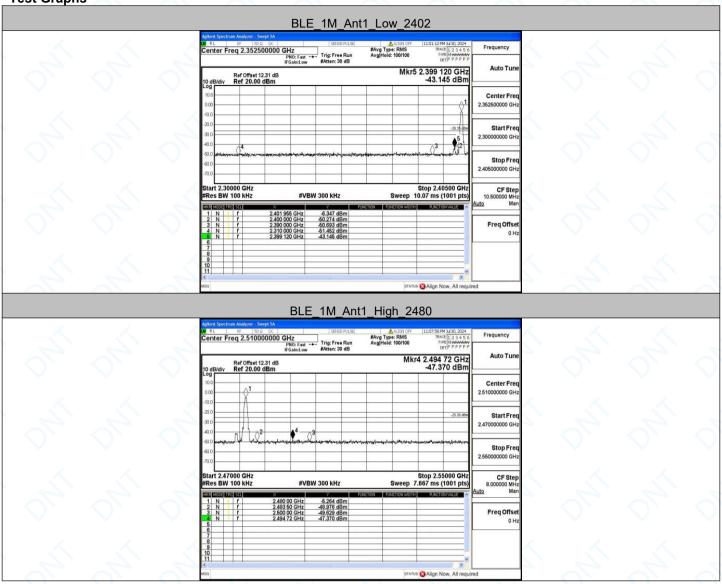
Page: 41 / 47

Date: August 15, 2024

Page: 42 / 47

Appendix E: Band edge measurements

Test Result


Test Mode	Antenna	Ch Name	Freq (MHz)	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE_1M Ant1	Low	2402	-6.35	-43.15	≤-26.35	PASS	
	High	2480	-5.26	-47.37	≤-25.26	PASS	

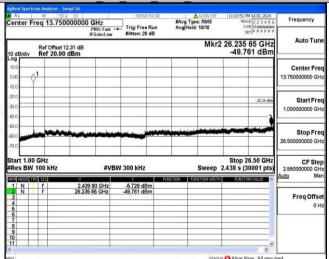
Date: August 15, 2024

Page: 43 / 47

Appendix F: Conducted Spurious Emission


Test Result

Test Mode	Antenna	Freq(MHz)	Freq Range [Mhz]	Ref Level [dBm]	Result [dBm]	Limit [dBm]	Verdict
			Reference	-7.04	-7.04		PASS
		2402	30~1000	-7.04	-54.09	≤-27.04	PASS
BLE_1M			1000~26500	-7.04	-49.48	≤-27.04	PASS
		Ant1 2440 2480	Reference	-6.34	-6.34		PASS
	Ant1		30~1000	-6.34	-54.16	≤-26.34	PASS
			1000~26500	-6.34	-49.76	≤-26.34	PASS
			Reference	-5.55	-5.55		PASS
			30~1000	-5.55	-55.27	≤-25.55	PASS
			1000~26500	-5.55	-49.08	≤-25.55	PASS


Date: August 15, 2024

Page: 45 / 47

Report No.:DNT2407250248R0473-00600 Date: August 15, 2024 Page: 46 / 47 BLE_1M_Ant1_2440_0~Reference Mkr1 2.440 249 GHz -6.344 dBm Ref Offset 12.31 dB Ref 30.00 dBm Center Fre Start Fre Freq Offs nter 2.440000 GHz es BW 100 kHz #VBW 300 kHz BLE 1M Ant1 2440 30~1000 #Avg Type: RMS Avg|Hold: 10/10 Mkr1 824.17 MHz -54.160 dBm Ref Offset 12.31 dB Ref 20.00 dBm Center Fre 515.000000 MH #VBW 300 kHz BLE_1M_Ant1_2440_1000~26500

Report No.:DNT2407250248R0473-00600 Date: August 15, 2024 Page: 47 / 47 BLE_1M_Ant1_2480_0~Reference Mkr1 2.479 976 GHz -5.551 dBm Ref Offset 12.31 dB Ref 30.00 dBm Center Fre Start Free Freq Offs MANY #VBW 300 kHz BLE 1M Ant1 2480 30~1000 #Avg Type: RMS Avg|Hold: 10/10 Mkr1 824.14 MHz -55.271 dBm Ref Offset 12.31 dB Ref 20.00 dBm Center Fre 515.000000 MH #VBW 300 kHz BLE_1M_Ant1_2480_1000~26500 Frequency Center Fre Stop Fre CF Ste 2.479 85 GHz 26.041 00 GHz Freq Offse

The End Report