

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT FCC PART 15.407

 Report Reference No.
 CTA23112901605

 FCC ID.
 :
 2A9LJ-ME10

Compiled by

(position+printed name+signature) . :

File administrators Zoey Cao

Supervised by

(position+printed name+signature).: Project Engineer Amy Wen

Approved by

(position+printed name+signature).: RF Manager Eric Wang

Date of issue Jan. 03, 2023

Testing Laboratory Name: Shenzhen CTA Testing Technology Co., Ltd.

Address Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name Meferi Technologies Co.,Ltd.

tech Zone, Chengdu, China

Test specification....::

Standard FCC Part 15.407: UNLICENSED NATIONAL INFORMATION

INFRASTRUCTURE DEVICES

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: Wearable Computer

Trade Mark..... MEFERI

Manufacturer...... Meferi Technologies Co.,Ltd.

Model/Type reference: ME10

Modulation Type: DSSS, OFDM

Operation Frequency: From 5180MHz to 5240MHz, 5260MHz to 5320MHz, 5500MHz to

5700MHz, 5745MHz to 5825MHz

Rating....... DC 3.7V From battery and DC 5.0V From external circuit

Result.....: PASS

Report No.: CTA23112901605 Page 2 of 37

TEST REPORT

Equipment under Test : Wearable Computer

Model /Type : ME10

Series Model No. ME10S, ME10P, ME10L, ME12, ME15, ME18

Applicant : Meferi Technologies Co.,Ltd.

Address : 4501, 45th Floor, Building A, No. 530, Middle Tianfu Avenue, High-

tech Zone, Chengdu, China

Manufacturer : Meferi Technologies Co.,Ltd.

Address : 4501, 45th Floor, Building A, No. 530, Middle Tianfu Avenue, High-

tech Zone, Chengdu, China

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

		Co.	ntents	
	1	TEST STANDARDS		4
	C	TEST STANDARDS		<u>4</u>
	CI	TATES		\G\
	<u>2.</u>	SUMMARY		<u>5</u>
	2.1.	General Remarks	CTA TES	5
	2.2.	Product Description		5
	2.3.	Equipment Under Test		6
	2.4.	Short description of the Equipment unde	r Test (EUT)	6
	2.5.	EUT operation mode		6
	2.6.	Block Diagram of Test Setup		7
	2.7.	Related Submittal(s) / Grant (s)		7
, C .,	2.8.	Modifications		7
1				
	<u>3.</u>	TEST ENVIRONMENT		8
				-
	3.1.	Address of the test laboratory	CTATE	TONG
	3.1. 3.2.	Address of the test laboratory Test Facility		TES
	3.2. 3.3.	Environmental conditions		8 8 8 8 9
	3.4.	Test Description		8
	3.5.	Statement of the measurement uncertain	fv	9
	3.6.	Equipments Used during the Test	-,	10
	0.0.	G		
	4	TEST CONDITIONS AND DESI	1.70	4.0
	<u>4.</u>	TEST CONDITIONS AND RESU	LIS	<u> 12</u>
	4.1.	AC Power Conducted Emission	CTATESTII	12
	4.2.	Radiated Emission		15
	4.3.	For Conducted Band edge Measurement		22
	4.4.	Duty Cycle	CTA	23
	4.5.	Maximum Average Output Power		24
	4.6.	Power Spectral Density		27
	4.7. 4.8.	6dB Bandwidth 26dB Bandwidth		30 31
	4.8. 4.9.	Frequency Stability		32
	4.10.	Antenna Requirement		34
TATE	4.10.	Antenna Requirement		34
		STING		
	<u>5.</u>	TEST SETUP PHOTOS OF THE	EUT	36
	<u>6.</u>	EXTERNAL AND INTERNAL PH	IOTOS OF THE EUT	37
		R. Comment	CIP	CTATESTING
				TES
				CTA
G				

Report No.: CTA23112901605 Page 4 of 37

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.407: UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE DEVICES. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB 789033 D02: GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORAMTION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E

Page 5 of 37 Report No.: CTA23112901605

2. SUMMARY

2.1. General Remarks

2.1. General Remarks		
Date of receipt of test sample	:	Nov. 29, 2023
3 413	of the last	CAL
Testing commenced on		Nov. 29, 2023
	The second	
Testing concluded on	:	Jan. 03, 2023

2.2. Product Description

IEEE 802.11ac/ax40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax80:5210MHz,5290MHz,5530MHz,5775MHz Channel number 4 Channels for 20MHz bandwidth(5180-5240MHz) 4 Channels for 20MHz bandwidth(5260-5320MHz) 11 Channels for 20MHz bandwidth(5500-5700MHz) 5 channels for 20MHz bandwidth(5745-5825MHz) 2 channels for 40MHz bandwidth(5190~5230MHz) 2 channels for 40MHz bandwidth(5270~5310MHz) 5 Channels for 40MHz bandwidth(5510-5670MHz) 2 channels for 40MHz bandwidth(5510-5670MHz) 1 channels for 80MHz bandwidth(5210MHz) 1 channels for 80MHz bandwidth(5290MHz) 1 channels for 80MHz bandwidth(5530Hz) 1 channels for 80MHz bandwidth(55775MHz)	2.2. Product Description Product Name: Wearable Computer Model/Typereference: ME10 Power supply: DC 3.7V From battery and DC 5.0V From external circuit Model: TPA-147A050200UU01 Input: AC 100-240V 50/60Hz 0.3A Output: DC 5.0V 2.0A CTA231129016-1# (Engineer sample), CTA231129016-2# (Normal sample) CTA231129016-2# (Normal sample) Hardware version: VC Software version: V1.0 WLAN Supported 802.11 a/n/ac/ax Modulation Type IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11a:5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825M IEEE 802.11n HT20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT40: 5190-5230MHz,5270-5310MHz,5500-5700MHz,5755-5795MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz	
Product Name: Wearable Computer	Product Name: Wearable Computer	
Model/Typereference: ME10	Model/Typereference: ME10 Power supply: DC 3.7V From battery and DC 5.0V From external circuit Adapter information: Model: TPA-147A050200UU01 Input: AC 100-240V 50/60Hz 0.3A Output: DC 5.0V 2.0A testing sample ID: CTA231129016-1# (Engineer sample), CTA231129016-2# (Normal sample) Hardware version: VC Software version: V1.0 WIFI WLAN Modulation Type IEEE 802.11a : OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) Operation frequency IEEE 802.11a:5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5795MHz IEEE 802.11n HT40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz	
Model/Typereference: ME10	Model/Typereference: ME10 Power supply: DC 3.7V From battery and DC 5.0V From external circuit Adapter information: Model: TPA-147A050200UU01 Input: AC 100-240V 50/60Hz 0.3A Output: DC 5.0V 2.0A testing sample ID: CTA231129016-1# (Engineer sample), CTA231129016-2# (Normal sample) Hardware version: VC Software version: V1.0 WIFI WLAN Modulation Type IEEE 802.11a : OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) Operation frequency IEEE 802.11a:5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825M IEEE 802.11n HT20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5795MHz IEEE 802.11n HT40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11n HT40: 5190-5230MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz	Z) walnu
Power supply:	DC 3.7V From battery and DC 5.0V From external circuit	
Model: TPA-147A050200UU01 Input: AC 100-240V 50/60Hz 0.3A Output: DC 5.0V 2.0A	Adapter information: Model: TPA-147A050200UU01	
testing sample ID: CTA231129016-1# (Engineer sample), CTA231129016-2# (Normal sample) Hardware version: VC Software version: V1.0 WIFI WLAN Supported 802.11 a/n/ac/ax Modulation Type IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11a: S180-5240MHz, 5200-5320MHz, 5500-5700MHz, 5745-5825MHz IEEE 802.11n HT20: 5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz IEEE 802.11n HT20: 5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz IEEE 802.11a: Ava (20: 5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz IEEE 802.11ac/ax20: 5180-5240MHz, 5270-5310MHz, 5510-5670MHz, 5745-5825MHz IEEE 802.11ac/ax20: 5180-5240MHz, 5270-5310MHz, 5510-5670MHz, 5775MHz Channel number 4 Channels for 20MHz bandwidth(5180-5240MHz) 4 Channels for 20MHz bandwidth(5180-5240MHz) 5 channels for 20MHz bandwidth(5745-5825MHz) 2 channels for 40MHz bandwidth(5745-5825MHz) 2 channels for 40MHz bandwidth(5700-5310MHz) 5 Channels for 40MHz bandwidth(5700-5310MHz) 1 channels for 40MHz bandwidth(5705-5795MHz) 1 channels for 80MHz bandwidth(5705-5795MHz) 1 channels for 80MHz bandwidth(5700-570MHz) 1 channels for 80MHz bandwidth(5200-5700MHz) 1 channels for 80MHz bandwidth(5300-12) 1 channels for 80MHz bandwidth(5300-12) 1 channels for 80MHz bandwidth(5775MHz)	testing sample ID: CTA231129016-1# (Engineer sample), CTA231129016-2# (Normal sample) Hardware version: VC Software version: V1.0 WIFI WLAN Supported 802.11 a/n/ac/ax Modulation Type IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11ac/ax20/40/80: OFDM(64QAM, 16QAM, QPSK,BPSK) Operation frequency IEEE 802.11a:5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825M IEEE 802.11n HT20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz	-711
Software version: V1.0 WIFI	Software version: V1.0	E2.
WIFI	WIFI WLAN Supported 802.11 a/n/ac/ax Modulation Type IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac/ax20/40/80: OFDM(64QAM, 16QAM, QPSK, BPSK) Operation frequency IEEE 802.11a:5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825M IEEE 802.11n HT20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz	
WLAN Supported 802.11 a/n/ac/ax Modulation Type IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac/ax20/40/80: OFDM(64QAM, 16QAM, QPSK, BPSK) Operation frequency IEEE 802.11a:5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11ac/ax40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax80:5210MHz,5290MHz,5530MHz,5775MHz Channel number 4 Channels for 20MHz bandwidth(5180-5240MHz) 4 Channels for 20MHz bandwidth(5200-5320MHz) 11 Channels for 20MHz bandwidth(5500-5700MHz) 2 channels for 40MHz bandwidth(5270-5310MHz) 2 channels for 40MHz bandwidth(5270-5310MHz) 3 Channels for 40MHz bandwidth(5270-5310MHz) 4 Channels for 80MHz bandwidth(5200MHz) 1 channels for 80MHz bandwidth(5290MHz) 1 channels for 80MHz bandwidth(530Hz) 1 channels for 80MHz bandwidth(5530Hz) 1 channels for 80MHz bandwidth(WLAN Supported 802.11 a/n/ac/ax Modulation Type IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac/ax20/40/80: OFDM(64QAM, 16QAM, QPSK, BPSK) Operation frequency IEEE 802.11a:5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825M IEEE 802.11n HT20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz	
WLAN Supported 802.11 a/n/ac/ax Modulation Type IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac/ax20/40/80: OFDM(64QAM, 16QAM, QPSK, BPSK) Operation frequency IEEE 802.11a:5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11ac/ax40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax80:5210MHz,5290MHz,5530MHz,5775MHz Channel number 4 Channels for 20MHz bandwidth(5180-5240MHz) 4 Channels for 20MHz bandwidth(5200-5320MHz) 11 Channels for 20MHz bandwidth(5500-5700MHz) 2 channels for 40MHz bandwidth(5270-5310MHz) 2 channels for 40MHz bandwidth(5270-5310MHz) 3 Channels for 40MHz bandwidth(5270-5310MHz) 4 Channels for 80MHz bandwidth(5200MHz) 1 channels for 80MHz bandwidth(5290MHz) 1 channels for 80MHz bandwidth(530Hz) 1 channels for 80MHz bandwidth(5530Hz) 1 channels for 80MHz bandwidth(WLAN Supported 802.11 a/n/ac/ax Modulation Type IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac/ax20/40/80: OFDM(64QAM, 16QAM, QPSK, BPSK) Operation frequency IEEE 802.11a:5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825M IEEE 802.11n HT20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz	
Modulation Type IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac/ax20/40/80: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11a:5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11ac/ax20: 5180-5230MHz,5270-5310MHz,5510-5670MHz,5745-5825MHz IEEE 802.11ac/ax40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax80:5210MHz,5290MHz,5530MHz,5775MHz IEEE 802.11ac/ax80:5210MHz,5290MHz,5530MHz,5775MHz IChannels for 20MHz bandwidth(5180-5240MHz) 4 Channels for 20MHz bandwidth(5500-5700MHz) 5 channels for 20MHz bandwidth(5500-5700MHz) 5 channels for 20MHz bandwidth(5745-5825MHz) 2 channels for 40MHz bandwidth(5180-5230MHz) 2 channels for 40MHz bandwidth(5570-5670MHz) 5 Channels for 40MHz bandwidth(5570-5670MHz) 1 channels for 80MHz bandwidth(5575-5795MHz) 1 channels for 80MHz bandwidth(5290MHz) 1 channels for 80MHz bandwidth(5290MHz) 1 channels for 80MHz bandwidth(5530Hz) 1 channels for 80MHz bandwidth(5530Hz) 1 channels for 80MHz bandwidth(5575MHz) 1 channels for 80MHz bandwid	Modulation Type IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11ac/ax20/40/80: OFDM(64QAM, 16QAM, QPSK, BPSK) Operation frequency IEEE 802.11a:5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825M IEEE 802.11n HT20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz	
Operation frequency IEEE 802.11a:5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11ac/ax40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax80:5210MHz,5290MHz,5530MHz,5775MHz Channel number 4 Channels for 20MHz bandwidth(5180-5240MHz) 4 Channels for 20MHz bandwidth(5260-5320MHz) 5 channels for 20MHz bandwidth(5500-5700MHz) 5 channels for 40MHz bandwidth(5745-5825MHz) 2 channels for 40MHz bandwidth(5190-5230MHz) 2 channels for 40MHz bandwidth(5270-5310MHz) 5 Channels for 40MHz bandwidth(5510-5670MHz) 2 channels for 80MHz bandwidth(5210MHz) 1 channels for 80MHz bandwidth(5290MHz) 1 Channels for 80MHz bandwidth(5530Hz) 1 channels for 80MHz bandwidth(5775MHz)	Operation frequency IEEE 802.11a:5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825M IEEE 802.11n HT20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz IEEE 802.11n HT40: 5190-5230MHz,5270-5310MHz,5510-5670MHz,5755-5795MHz IEEE 802.11ac/ax20: 5180-5240MHz,5260-5320MHz,5500-5700MHz,5745-5825MHz	
2 channels for 40MHz bandwidth(5190~5230MHz) 2 channels for 40MHz bandwidth(5270~5310MHz) 5 Channels for 40MHz bandwidth(5510-5670MHz) 2 channels for 40MHz bandwidth(5755~5795MHz) 1 channels for 80MHz bandwidth(5210MHz) 1 channels for 80MHz bandwidth(5290MHz) 1 Channels for 80MHz bandwidth(5530Hz) 1 channels for 80MHz bandwidth(5775MHz)	5795MHz	5-
	2 channels for 40MHz bandwidth(5190~5230MHz) 2 channels for 40MHz bandwidth(5270~5310MHz) 5 Channels for 40MHz bandwidth(5510-5670MHz) 2 channels for 40MHz bandwidth(5755~5795MHz) 1 channels for 80MHz bandwidth(5210MHz) 1 channels for 80MHz bandwidth(5290MHz) 1 Channels for 80MHz bandwidth(5530Hz)	EST"
Antenna type. PIFA antenna	Antenna type: PIFA antenna	

Page 6 of 37 Report No.: CTA23112901605

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz		
CVA		0	12 V DC	0	24 V DC		
		•	Other (specified in blank below)				

DC 3.7V From Battery and DC 5.0V From external circuit

2.4. Short description of the Equipment under Test (EUT)

This is a Wearable Computer.

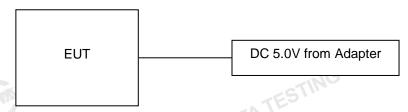
For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

The application provider specific test software to control sample in continuous TX and RX.

IEEE 802.11a/ac20/ax20/ac40/ax40/ac80/ax80/n20/n40:										
U-	·NI-1	U-	NI-1	U-NI-1						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)					
36	5180	38	5190	42	5210					
40	5200	46	5230							
44	5220									
48	5240									

U-N	I-2A	U-N	I-2A	U-NI-2A		
Channel	Frequency (MHz)			Channel	Frequency (MHz)	
52	5260	54	5270	58	5290	
56	5280	62	5310	CTA		
60	5300		Carl Carl	0.		
64	5320					


	U-N	NI-2C	U-N	I-2C	U-NI-2C		
CTATE	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
C.T.P.	100	5500	102	5510	106	5530	
	104	5520	110	5550			
,	108	5540	118	5590	G		
	112	5560	126	5630			
	116	5580	134	5670		16	
	120	5600	Sales III	K C V		GTIME	
	124	5620				TES	
	128	5640	Promer		Alamu	57 P	
C.	132	5660			-CVA		
,G	136	5680			No. of the last of		
	140	5700					
	CTATES		CTATEST				

Report No.: CTA23112901605 Page 7 of 37

U-	NI-3	1-U	VI-3	U-N	VI-3
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795		
157	5785	CTA		LIN.	3
161	5805			ESTI	
165	5825			TATE	
			(En	, G	
.6. Block D	iagram of Test S	Setup			

2.6. Block Diagram of Test Setup

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2A9LJ-ME10** filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

2.8. Modifications

No modifications were implemented to meet testing criteria.

Page 8 of 37 Report No.: CTA23112901605

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3. Environmental conditions

Band edge 802.11a/ac20/

During the measurement the environmental conditions were within the listed ranges:

Temperature:		15-35 ° C
NI S		TES
Humidity:	Sico. Ud	30-60 %
Atmospheric pressure:	725 usq 111115	950-1050mbar

3.4. Test Description

Aun	Japrienc pres	Suic.	930-10	Johnsai	C /					
3.4.	Test Desc	ription								
Test Specification clause	Test case	Test Mode	Test Channel	Record In Rep		Pass	Fail	NA	NP	Remark
§15.203	Antenna gain	802.11ac		802.11ac	 Lowest Middle Highest	\boxtimes				complies
§15.407(a)	Power spectral density	802.11a/ac20/ ax20/ac40/ax4 0/ac80/ax80 802.11n HT20/40	∠ Lowest∠ Middle∠ Highest	802.11a/ac20/a x20/ac40/ax40/ ac80/ax80 802.11n HT20/40	✓ Lowest✓ Middle✓ Highest					complies
§15.407(a)	Spectrum bandwidth – 26 dB bandwidth	802.11a/ac20/ ax20/ac40/ax4 0/ac80/ax80 802.11n HT20/40	∠ Lowest∠ Middle∠ Highest	802.11a/ac20/a x20/ac40/ax40/ ac80/ax80 802.11n HT20/40	✓ Lowest✓ Middle✓ Highest	\boxtimes				complies
§15.407(e)	Spectrum bandwidth – 6 dB bandwidth	802.11a/ac20/ ax20/ac40/ax4 0/ac80/ax80 802.11n HT20/40	✓ Lowest✓ Middle✓ Highest	802.11a/ac20/a x20/ac40/ax40/ ac80/ax80 802.11n HT20/40	∠ Lowest∠ Middle∠ Highest					complies
§15.407(a)	Maximum output power	802.11a/ac20/ ax20/ac40/ax4 0/ac80/ax80 802.11n HT20/40	✓ Lowest✓ Middle✓ Highest	802.11a/ac20/a x20/ac40/ax40/ ac80/ax80 802.11n HT20/40						complies

□ Lowest 802.11a/ac20/a □ Lowest

complies

Report No.: CTA23112901605 Page 9 of 37

1							Carroll Control of the Control of th		
	compliance conducted	ax20/ac40/ax4 0/ac80/ax80 802.11n HT20/40	⊠ Highest	x20/ac40/ax40/ ac80/ax80 802.11n HT20/40	Highest				
§15.407(b)	Band edge compliance radiated	802.11a/ac20/ ax20/ac40/ax4 0/ac80/ax80 802.11n HT20/40		802.11a/ac20/a x20/ac40/ax40/ ac80/ax80 802.11n HT20/40	Lowest		UNG		complies
§15.407(a)	TX spurious emissions conducted	-/-	-/-	-/-	CTI			\boxtimes	complies
§15.407(a)	TX spurious emissions radiated	802.11a/ac20/ ax20/ac40/ax4 0/ac80/ax80 802.11n HT20/40	∠ Lowest∠ Middle∠ Highest	802.11a/ac20/a x20/ac40/ax40/ ac80/ax80 802.11n HT20/40	☑ Lowest☑ Middle☑ Highest				complies
§15.407(g)	Frequency Stability	-/- TES	-/-	-/-	-/-	\boxtimes			complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/- CTATE	STING			\boxtimes	complies
§15.209(a)	TX spurious Emissions radiated < 30 MHz	802.11a/ac20/ ax20/ac40/ax4 0/ac80/ax80 802.11n HT20/40	-/-	802.11ac	-/-		Ü	40	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	802.11a/ac20/ ax20/ac40/ax4 0/ac80/ax80 802.11n HT20/40	-/-	802.11ac	-/-				complies

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Thereafter the best measurement capability for Sherizhert CTA Testing Technology								
Test	Range	Measurement Uncertainty	Notes					
Radiated Emission	9KHz~30MHz	3.02 dB	(1)					
Radiated Emission	30~1000MHz	4.06 dB	(1)					
Radiated Emission	1~18GHz	5.14 dB	(1)					
Radiated Emission	18-40GHz	5.38 dB	(1)					
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)					
Output Peak power	30MHz~18GHz	0.55 dB	(1)					
Power spectral density	1	0.57 dB	(1)					
Spectrum bandwidth	1	1.1%	(1)					
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)					

Page 10 of 37 Report No.: CTA23112901605

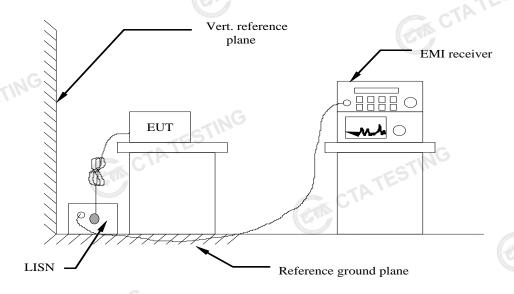
		4/11	1150
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. CTATESTING

3.6. Equipments Used during the Test

Test Equipment Manufactur		Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01

Report No.: CTA23112901605 Page 11 of 37


Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	EMI Test Software Tonscend		5.0.0.1	N/A	N/A
RF Test Software	RF Test Software Tonscend		3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A

GW.C CTATESTING

4. TEST CONDITIONS AND RESULTS

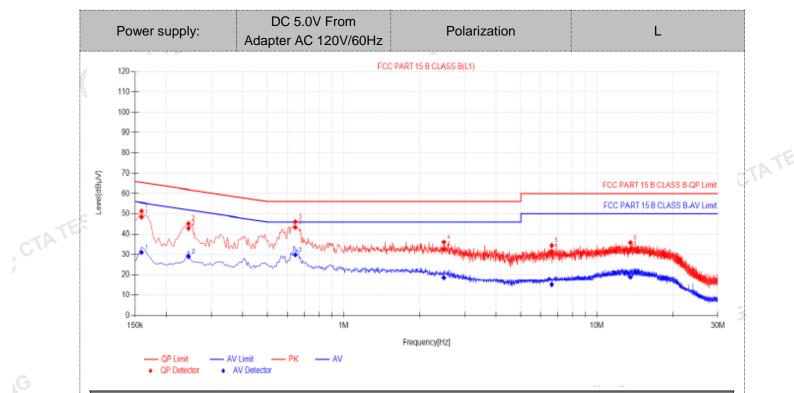
4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

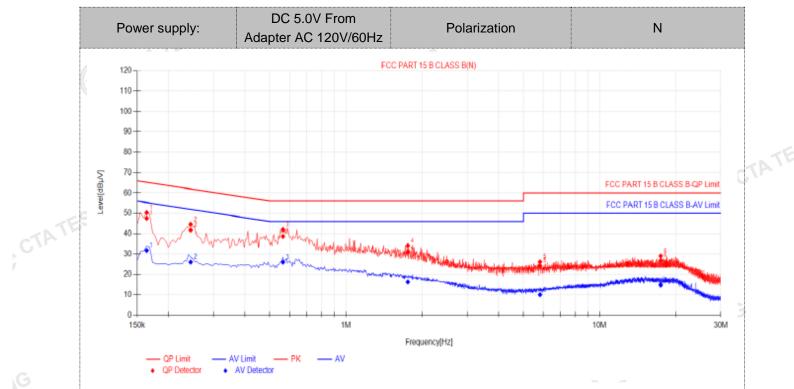

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguency range (MHz)	Limit (d	lBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the freque	ency.	

TEST RESULTS

Remark: We measured Conducted Emission at all mode in AC 120V/60Hz, the worst case was recorded.

Page 13 of 37 Report No.: CTA23112901605



l Data Lis	t											
Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict		
0.159	9.91	38.58	48.49	65.52	17.03	21.10	31.01	55.52	24.51	PASS		
0.2445	9.95	32.89	42.84	61.94	19.10	19.07	29.02	51.94	22.92	PASS		
0.645	9.98	33.29	43.27	56.00	12.73	19.80	29.78	46.00	16.22	PASS		
2.4855	10.10	22.74	32.84	56.00	23.16	8.46	18.56	46.00	27.44	PASS		
6.639	10.24	21.05	31.29	60.00	28.71	5.00	15.24	50.00	34.76	PASS		
13.5465	10.29	22.56	32.85	60.00	27.15	8.61	18.90	50.00	31.10	PASS		
Note:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V)												
	Freq. [MHz] 0.159 0.2445 0.645 2.4855 6.639 13.5465).QP Value tor (dB)=ir	Freq. [dB] 0.159 9.91 0.2445 9.95 0.645 9.98 2.4855 10.10 6.639 10.24 13.5465 10.29).QP Value (dBµV) tor (dB)=insertion I	Freq. [MHz] Factor [dB] Reading[dB] pV] 0.159 9.91 38.58 0.2445 9.95 32.89 0.645 9.98 33.29 2.4855 10.10 22.74 6.639 10.24 21.05 13.5465 10.29 22.56 0.QP Value (dBµV)= QP Rector (dB)=insertion loss of LIS	Freq. [dB]	Freq. [MHz] Factor [dB] Reading[dB μV] Value [dBμV] [dBμV] 0.159 9.91 38.58 48.49 65.52 0.2445 9.95 32.89 42.84 61.94 0.645 9.98 33.29 43.27 56.00 2.4855 10.10 22.74 32.84 56.00 6.639 10.24 21.05 31.29 60.00 13.5465 10.29 22.56 32.85 60.00 OP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)=insertion loss of LISN (dB) + Cable	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Freq. [MHz]					

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV)

CTATES!

Page 14 of 37 Report No.: CTA23112901605

Final	l Data Lis	t										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	ΑV Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	0.1635	10.05	37.49	47.54	65.28	17.74	21.69	31.74	55.28	23.54	PASS	
2	0.2445	10.01	31.78	41.79	61.94	20.15	16.11	26.12	51.94	25.82	PASS	
3	0.564	10.10	28.59	38.69	56.00	17.31	15.97	26.07	46.00	19.93	PASS	
4	1.752	10.16	20.68	30.84	56.00	25.16	6.11	16.27	46.00	29.73	PASS	
5	5.82	10.22	14.12	24.34	60.00	35.66	-0.18	10.04	50.00	39.96	PASS	
6	17.403	10.49	18.45	26.94	60.00	33.06	4.37	14.86	50.00	35.14	PASS	
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)												TA.
i). QPI	Margin(dB)) = QP L	imit (dBµ	V) - QP '	Value (dl	BµV)						
\ A\/A	Marain/dD)	_ ^\/ 1 :	mit (dDu)	/\ ^\/\	اماییم (ط۵	(/)						

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV)

CTATES

Report No.: CTA23112901605 Page 15 of 37

4.2. Radiated Emission

<u>Limit</u>

The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

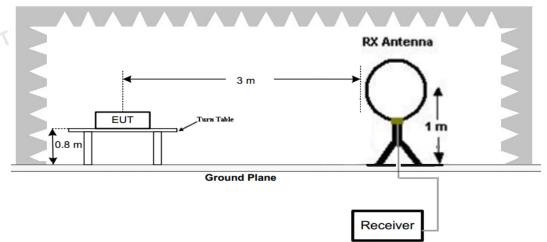
Undesirable emission limits

Requirement	Limit(EIRP)	Limit (Field strength at 3m) Note1
15.407(b)(1)		CIF
15.407(b)(2)	PK:-27(dBm/MHz)	DK:69 3(dPu)//m)
15.407(b)(3)	PK27 (UBITI/IVITZ)	PK:68.2(dBµV/m)
15.407(b)(4)		

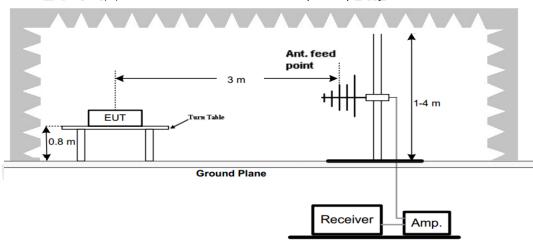
Note1: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \,\mu\text{V/m}$$
, where P is the eirp (Watts)

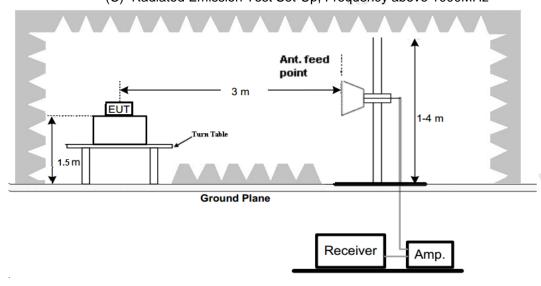
(5) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209 (6)In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)


Radiated emission limits

	Nac	lialed ethiosion littilo	
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500
		(e)	CTATES


Report No.: CTA23112901605 Page 16 of 37

TEST CONFIGURATION


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

CTATESTING CTATESTING

Page 17 of 37 Report No.: CTA23112901605

Test Procedure

Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.

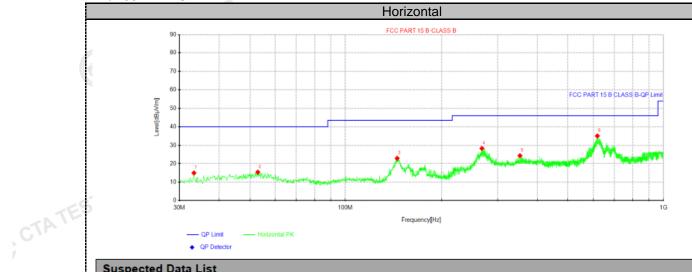
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 40GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

	100112-230112	Hom Antenna		
t	ting test receiver/spectru	m as following table states:		-1G
	Test Frequency range	Test Receiver/Spectrum Setting	Detector	GTING
	9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	53.
	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	7
	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP	
		Peak Value: RBW=1MHz/VBW=3MHz,	CONTRACTOR OF THE PARTY OF THE	
	1GHz-40GHz	Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz,	Peak	
	TES!	Sweep time=Auto		
2	<u>ESULTS</u>	ESTING		
(TATL		

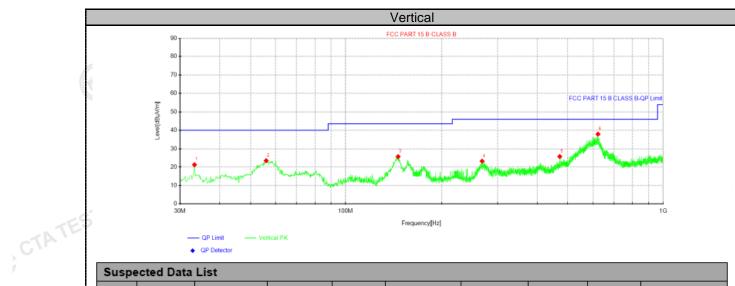
TEST RESULTS


Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- All 802.11a / 802.11n/ac/ax (HT20) /802.11n/ac/ax (HT40)/ 802.11ac/ax (HT80) modes have been tested for above 1GHz test, for below 1GHz test, only the worst case 802.11a low channel of U-NII 1 band was
- All 802.11a / 802.11n/ac/ax (HT20) /802.11n/ac/ax (HT40)/ 802.11ac/ax (HT80) modes have been tested for above 1GHz test, for above 1GHz test, only the worst case 802.11a was recorded.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. .viHz

Page 18 of 37 Report No.: CTA23112901605

For 30MHz-1GHz


Suspe	Suspected Data List													
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dalasita					
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity					
1	33.2738	29.06	14.87	-14.19	40.00	25.13	100	159	Horizontal					
2	52.9162	27.06	15.34	-11.72	40.00	24.66	100	306	Horizontal					
3	145.672	38.96	22.90	-16.06	43.50	20.60	100	192	Horizontal					
4	267.528	40.57	28.31	-12.26	46.00	17.69	100	204	Horizontal					
5	353.373	35.47	24.32	-11.15	46.00	21.68	100	4	Horizontal					
6	618.305	40.19	34.92	-5.27	46.00	11.08	100	351	Horizontal					

Note:1).Level (dBμV/m)= Reading (dBμV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) CTA TESTING

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

Report No.: CTA23112901605 Page 19 of 37

Susp	ected Data	List							
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	33.2738	35.46	21.27	-14.19	40.00	19.23	100	335	Vertical
2	56.0688	35.70	23.49	-12.21	40.00	17.01	100	21	Vertical
3	146.521	41.75	25.71	-16.04	43.50	18.29	100	360	Vertical
4	267.892	35.47	23.22	-12.25	46.00	23.28	100	335	Vertical
5	471.713	35.48	25.76	-9.72	46.00	20.74	100	3	Vertical
6	622.306	43.08	37.82	-5.26	46.00	9.18	100	360	Vertical

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

CTATESTING

CTATESTING

Page 20 of 37 Report No.: CTA23112901605

For 1GHz to 40GHz

Note: All 802.11a / 802.11n/ac/ax (HT20) /802.11n/ac/ax (HT40)/ 802.11ac/ax (HT80) modes have been tested for above 1GHz test, only the worst case ANT 0 802.11a was recorded.

5150-5250MHz:

	5150-525	OMHz:			TAT							
				U-N	II 1 & 802	.11a Mode	e (above	1GHz)	-61	Illi		
	Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
	Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
			(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
		5150.00	58.12	PK	Н	68.20	10.08	61.55	33.04	5.45	41.92	-3.43
	36.00	5150.00	49.78	AV	Н	54.00	4.22	53.21	33.04	5.45	41.92	-3.43
-0	5180MHz	10360.00	51.63	PK	Н	68.20	16.57	38.83	38.83	10.12	45.28	3.67
TE	,											
CTATE	44.00	10440.00	53.89	PK	Н	68.20	14.31	50.21	38.85	10.13	45.3	3.68
	5220MHz			(E)								
r	48.00	5350.50	58.14	PK	Н	68.20	10.06	61.41	32.84	5.97	42.08	-3.27
	5240MHz	5350.50	48.25	AV	Н	54.00	5.75	51.52	32.84	5.97	42.08	-3.27
		10480.00	54.31	PK	Н	68.20	13.89	50.57	38.89	10.19	45.34	3.74

Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	5150.00	54.87	PK	V	68.20	13.33	58.30	33.04	5.45	41.92	-3.43
36.00	5150.00	47.62	AV	V	54.00	6.38	51.05	33.04	5.45	41.92	-3.43
5180MHz	10360.00	54.04	PK	V	68.20	14.16	50.37	38.83	10.12	45.28	3.67
	LED.										
44.00	10440.00	53.51	PK	V	68.20	14.69	49.83	38.85	10.13	45.3	3.68
5220MHz					:5 L.						
48.00	5350.50	58.39	PK	V	68.20	9.81	61.66	32.84	5.97	42.08	-3.27
5240MHz	5350.50	49.20	AV	V	54.00	4.80	52.47	32.84	5.97	42.08	-3.27
	10480.00	54.95	PK	V	68.20	13.25	51.21	38.89	10.19	45.34	3.74

5260-5320MHz:

-6	Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correc
ATES	Channel	(MHz)	Level (dBuV/m)	Mode	Pol	(dBuV/m)	(dB)	Value (dBuV)	Factor (dB/m)	Factor (dB)	amplifier (dB)	Fact (dB/
, ,		5150.00	48.42	PK	Н	68.20	19.78	51.85	33.04	5.45	41.92	-3.4
	52.00	5150.00	40.08	AV	Н	54.00	13.92	43.51	33.04	5.45	41.92	-3.4
	5260MHz	10520.00	51.75	PK	Н	68.20	16.45	38.83	38.91	10.2	45.35	3.7
	60.00	10600.00	 52.13	 PK	 H	68.20	 16.07	 48.38	38.92	10.21	 45.38	3.7
	5300MHz							40.30			45.56	3.7
	64.00	5350.50	54.01	PK	Н	68.20	14.19	57.28	32.84	5.97	42.08	-3.2
	5320MHz	5350.50	39.67	AV	Н	54.00	14.33	42.94	32.84	5.97	42.08	-3.2
		10480.00	52.26	PK	Н	68.20	15.94	48.50	38.94	10.23	45.41	3.7

Page 21 of 37 Report No.: CTA23112901605

									manta.		
Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	5150.00	49.90	PK	Н	68.20	18.30	53.33	33.04	5.45	41.92	-3.43
52.00	5150.00	40.25	AV	Н	54.00	13.75	43.68	33.04	5.45	41.92	-3.43
5260MHz	10520.00	52.36	PK	H, K	68.20	15.84	38.83	38.91	10.2	45.35	3.76
2) mary market			CO. 116	CT-					ING		
60.00	10600.00	55.03	PK	Н	68.20	13.17	51.28	38.92	10.21	45.38	3.75
5300MHz											
64.00	5350.50	47.94	PK	Н	68.20	20.26	51.21	32.84	5.97	42.08	-3.27
5320MHz	5350.50	40.47	AV	Н	54.00	13.53	43.74	32.84	5.97	42.08	-3.27
	10480.00	54.12	PK	Н	68.20	14.08	50.36	38.94	10.23	45.41	3.76
ING			TIN	G						C	
500-570	OMHz:		TES!"								
	52.00 5260MHz 60.00 5300MHz 64.00 5320MHz	Channel (MHz) 52.00 5260MHz 60.00 10520.00 64.00 5350.50 5320MHz 5350.50	Channel (MHz) Level (dBuV/m) 5150.00 49.90 5260MHz 10520.00 52.36 60.00 10600.00 55.03 5300MHz 64.00 5320MHz 5350.50 47.94 5360.50 40.47 10480.00 54.12	Channel (MHz) Level (dBuV/m) Mode 5150.00 49.90 PK 52.00 5150.00 40.25 AV 5260MHz 10520.00 52.36 PK 60.00 10600.00 55.03 PK 5300MHz 64.00 5350.50 47.94 PK 5320MHz 5350.50 40.47 AV 10480.00 54.12 PK	Channel (MHz) Level (dBuV/m) Mode Pol 52.00 5150.00 49.90 PK H 5260MHz 10520.00 52.36 PK H 60.00 10600.00 55.03 PK H 5300MHz 64.00 5350.50 47.94 PK H 5320MHz 5350.50 40.47 AV H 10480.00 54.12 PK H	Channel (MHz) Level (dBuV/m) Mode Pol (dBuV/m) 52.00 5150.00 49.90 PK H 68.20 5260MHz 10520.00 52.36 PK H 68.20 60.00 10600.00 55.03 PK H 68.20 5300MHz 64.00 5350.50 47.94 PK H 68.20 5320MHz 5350.50 40.47 AV H 54.00 10480.00 54.12 PK H 68.20	Channel (MHz) Level (dBuV/m) Mode Pol (dBuV/m) (dB) 52.00 5150.00 49.90 PK H 68.20 18.30 5260MHz 5150.00 40.25 AV H 54.00 13.75 5260MHz 10520.00 52.36 PK H 68.20 15.84 60.00 10600.00 55.03 PK H 68.20 13.17 5300MHz 64.00 5350.50 47.94 PK H 68.20 20.26 5320MHz 5350.50 40.47 AV H 54.00 13.53 10480.00 54.12 PK H 68.20 14.08	Channel (MHz) Level (dBuV/m) Mode (dBuV/m) Pol (dBuV/m) (dB) Value (dBuV) 52.00 5150.00 49.90 PK H 68.20 18.30 53.33 52.00 5150.00 40.25 AV H 54.00 13.75 43.68 5260MHz 10520.00 52.36 PK H 68.20 15.84 38.83 60.00 10600.00 55.03 PK H 68.20 13.17 51.28 5300MHz 64.00 5350.50 47.94 PK H 68.20 20.26 51.21 5320MHz 5350.50 40.47 AV H 54.00 13.53 43.74 10480.00 54.12 PK H 68.20 14.08 50.36	Channel (MHz) Level (dBuV/m) Mode (dBuV/m) Pol (dBuV/m) (dBuV/m) Value (dBuV) Factor (dB/m) 52.00 5150.00 49.90 PK H 68.20 18.30 53.33 33.04 52.00 5150.00 40.25 AV H 54.00 13.75 43.68 33.04 5260MHz 10520.00 52.36 PK H 68.20 15.84 38.83 38.91	Channel (MHz) Level (dBuV/m) Mode (dBuV/m) (dBuV/m) (dB) Value (dBuV) Factor (dB/m) Factor (dB) 52.00 5150.00 49.90 PK H 68.20 18.30 53.33 33.04 5.45 52.00 5150.00 40.25 AV H 54.00 13.75 43.68 33.04 5.45 5260MHz 10520.00 52.36 PK H 68.20 15.84 38.83 38.91 10.2 60.00 10600.00 55.03 PK H 68.20 13.17 51.28 38.92 10.21 5300MHz	Channel (MHz) Level (dBuV/m) Mode (dBuV/m) (dBuV/m) (dB) Value (dBuV) (dB/m) Factor (dB) amplifier (dB) 52.00 5150.00 49.90 PK H 68.20 18.30 53.33 33.04 5.45 41.92 52.00 5150.00 40.25 AV H 54.00 13.75 43.68 33.04 5.45 41.92 5260MHz 10520.00 52.36 PK H 68.20 15.84 38.83 38.91 10.2 45.35 -

5500-5700MHz:

9 1 1.											
5500-570	OMHz:		TESTIN								
Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	5460.00	59.86	PK	V	68.20	8.34	62.68	33.39	6.01	42.22	-2.82
100.00	5460.00	48.47	AV	V	54.00	5.53	51.29	33.39	6.01	42.22	-2.82
5500MHz	11000.00	53.51	PK	V	68.20	14.69	49.08	39.12	10.85	45.54	4.43
									104,14		
120.00	11160.00	55.92	PK	V	68.20	12.28	51.46	39.07	10.87	45.48	4.46
5580MHz		No									
140.00	5855.00	56.05	PK	V	68.20	12.15	58.24	33.91	6.17	42.27	-2.19
5700MHz	5855.00	45.14	AV	V	54.00	8.86	47.33	33.91	6.17	42.27	-2.19
	11400.00	54.95	PK	V	68.20	13.25	50.47	39.05	10.9	45.47	4.48

	Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
	Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
			(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
		5460.00	57.36	PK	V	68.20	10.84	60.18	33.39	6.01	42.22	-2.82
	100.00	5460.00	46.52	AV	V	54.00	7.48	49.34	33.39	6.01	42.22	-2.82
	5500MHz	11000.00	53.14	PK	V	68.20	15.06	48.71	39.12	10.85	45.54	4.43
	Llla											
CTATES	120.00	11160.00	54.87	PK	V	68.20	13.33	50.41	39.07	10.87	45.48	4.46
CIL	5580MHz				-							
ì	140.00	5855.00	52.94	PK	V	68.20	15.26	55.13	33.91	6.17	42.27	-2.19
	5700MHz	5855.00	44.31	AV	V	54.00	9.69	46.50	33.91	6.17	42.27	-2.19
		11400.00	53.47	PK	V	68.20	14.73	48.99	39.05	10.9	45.47	4.48
						06.20				- CTP	45.47	NG
G												

Page 22 of 37 Report No.: CTA23112901605

5725-5850MHz:

	Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
	Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
			(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	25 magnifild	5720.00	56.93	PK	H)	68.20	11.27	59.71	33.42	6.04	42.24	-2.78
	149.00	5720.00	48.81	AV	Ĥ	54.00	5.19	51.59	33.42	6.04	42.24	-2.78
	5745MHz	11490.00	50.29	PK	Н	68.20	17.91	45.81	39.02	10.91	45.45	4.48
	157.00	11570.00	54.02	PK	Н	68.20	14.18	49.57	38.93	10.95	45.43	4.45
	5785MHz							K) water			Ita-Ita	CAP
	165.00	5855.00	57.31	PK	Н	68.20	10.89	59.50	33.91	6.17	42.27	-2.19
	5825MHz	5855.00	48.22	AV	Н	54.00	5.78	50.41	33.91	6.17	42.27	-2.19
TE) "	11650.00	54.08	PK	Н	68.20	14.12	49.50	38.83	11.16	45.41	4.58
CTA				711	10							
	Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
,	Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor

Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	5720.00	57.31	PK	V	68.20	10.89	60.09	33.42	6.04	42.24	-2.78
149.00	5720.00	49.62	AV	V	54.00	4.38	52.40	33.42	6.04	42.24	-2.78
5745MHz	11490.00	53.05	PK	V	68.20	15.15	48.57	39.02	10.91	45.45	4.48
					The same				E CAP		
157.00	11570.00	53.64	PK	V	68.20	14.56	49.19	38.93	10.95	45.43	4.45
5785MHz							-				
165.00	5855.00	58.83	PK	V	68.20	9.37	61.02	33.91	6.17	42.27	-2.19
5825MHz	5855.00	49.26	AV	V	54.00	4.74	51.45	33.91	6.17	42.27	-2.19
	11650.00	53.77	PK	V	68.20	14.43	49.19	38.83	11.16	45.41	4.58

REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) 1.
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the other emission levels were very low against the limit.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 6. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac/ax VHT20 ,IEEE 802.11ac/ax VHT40 and IEEE 802.11ac/ax VHT80;

CTATESTING CTATESTING 4.3. For Conducted Band edge Measurement

The test results have included the antenna gain

Please refer to Appendix E.

Report No.: CTA23112901605 Page 23 of 37

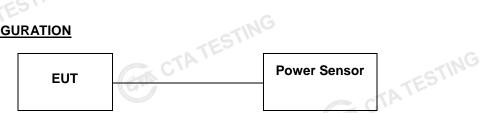
4.4. Duty Cycle

TEST CONFIGURATION

TEST PROCEDURE

According to KDB789033 D02 General UNII Test Procedures New Rules v01 B Duty Cycle (x), Transmission Duration (T):

- A diode detector and an oscilloscope that together have sufficiently short response time to permit
 accurate measurements of the on and off times of the transmitted signal
- b. The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ EBW if possible; otherwise, set RBW to the largest available value. Set VBW ≥ RBW. Set detector = peak or average. The zerospan measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T ≤ 16.7 microseconds.)


TEST RESULTS

For reporting purpose only. Please refer to Appendix B.

Page 24 of 37 Report No.: CTA23112901605

4.5. Maximum Average Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to KDB789033 D02 General UNII Test Procedures New Rules v01 Section E3 Measurement using a Power Meter (PM):

- Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied
 - The EUT is configured to transmit continuously or to transmit with a constant duty cycle
 - 2. At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
 - The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output h signal as described in section II.B
- Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

Adjust the measurement in dBm by adding 10 $\log(1/x)$ where x is the duty cycle (e.g., 10 $\log(1/0.25)$ if the duty cycle is 25 percent).

LIMIT

According to §15.407(a): The maximum output power should be not exceed follow:

Frequency Range (MHz)	Limit
5150-5250	Fixed:1 Watt (30dBm) Mobile and portable: 250mW (24dBm)
5250-5350	250mW (24dBm)
5470-5725	250mW (24dBm)
5725-5850	1 Watt (30dBm)

Note: The maximum e.i.r.p at anyelevation angle above 30 degrees as measured from the horizon must not exceed 125mW(21dBm)

Please refer to Appendix C.

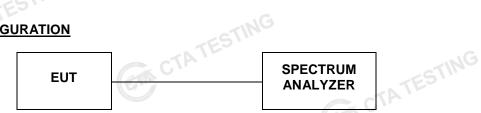
Report No.: CTA23112901605

MIMO:

Test Mode	Frequency[MHz]	Antenna0 [dBm]	Antenna1 [dBm]	MIMO [dBm]	Limit [dBm]	Verdict	
ED.	5180	13.95	14.06	17.02	≤23.98	PASS	
	5220	12.43	12.78	15.62	≤23.98	PASS	
	5240	12.24	12.86	15.57	≤23.98	PASS	
	5260	12.76	12.72	15.75	≤23.98	PASS	
	5300	12.10	12.25	15.19	≤23.98	PASS	
4411000100	5320	11.96	11.99	14.99	≤23.98	PASS	
11N20SISO	5500	12.83	13.13	15.99	≤23.98	PASS	
	5580	12.81	12.69	15.76	≤23.98	PASS	
	5700	12.59	11.78	15.21	≤23.98	PASS	
	5745	11.63	10.71	14.20	≤30.00	PASS	
	5785	12.75	11.80	15.31	≤30.00	PASS	
	5825	13.57	13.52	16.56	≤30.00	PASS	
	5190	13.33	13.42	16.39	≤23.98	PASS	
	5230	12.71	12.92	15.83	≤23.98	PASS	
				15.05		PASS	
	5270	12.00	12.47		≤23.98		
441400100	5310	12.19	12.32	15.27	≤23.98	PASS	
11N40SISO	5510	13.26	13.05	16.17	≤23.98	PASS	
	5550	13.12	13.08	16.11	≤23.98	PASS	
	5670	13.07	13.18	16.14	≤23.98	PASS	
	5755	11.07	10.89	13.99	≤30.00	PASS	
	5795	12.13	11.95	15.05	≤30.00	PASS	
	5180	13.89	13.98	16.95	≤23.98	PASS	
	5220	12.58	12.65	15.63	≤23.98	PASS	
	5240	12.55	12.80	15.69	≤23.98	PASS	
	5260	12.26	12.70	15.50	≤23.98	PASS	
	5300	12.16	12.41	15.30	≤23.98	PASS	
a.ss1G.	5320	11.96	11.91	14.95	≤23.98	PASS	
1AC20SISO	5500	13.01	12.92	15.98	≤23.98	PASS	
	5580	12.78	12.65	15.73	≤23.98	PASS	
	5700	11.80	11.70	14.76	≤23.98	PASS	
	5745	10.85	10.71	13.79	≤30.00	PASS	
	5785	11.93	11.82	14.89	≤30.00	PASS	
	5825	13.59	13.50	16.56	≤30.00	PASS	
	5190	13.35	13.55	16.46	≤23.98	PASS	
	VA. AV						
	5230	12.75	12.90	15.84	≤23.98	PASS	
	5270	12.34	12.58	15.47	≤23.98	PASS	
	5310	12.19	12.42	15.32	≤23.98	PASS	
I1AC40SISO	5510	13.16	13.08	16.13	≤23.98	PASS	
	5550	13.12	12.99	16.07	≤23.98	PASS	
	5670	13.13	13.15	16.15	≤23.98	PASS	
	5755	10.92	10.84	13.89	≤30.00	PASS	
	5795	12.03	12.01	15.03	≤30.00	PASS	
	5210	13.28	13.09	16.20	≤23.98	PASS	
1AC80SISO	5290	12.18	12.23	15.22	≤23.98	PASS	
140003130	5530	13.17	12.89	16.04	≤23.98	PASS	
	5775	11.74	11.50	14.63	≤30.00	PASS	
A STANFALLER	5180	13.92	14.05	17.00	≤23.98	PASS	TESTIN
	5220	12.81	12.85	15.84	≤23.98	PASS	
	5240	12.78	12.93	15.87	≤23.98	PASS	
	5260	12.70	12.53	15.63	≤23.98	PASS	
	5300	12.73	12.39	15.37	≤23.98	PASS	
	5320	11.85	12.13	15.00	≤23.98	PASS	
11AX20SISO		13.12			≤23.98	PASS	
	5500		13.18	16.16			
	5580	12.84	12.74	15.80	≤23.98	PASS	
	5700	11.80	11.83	14.83	≤23.98	PASS	
	5745	10.81	10.73	13.78	≤30.00	PASS	
	5785	11.90	11.89	14.91	≤30.00	PASS	
	5825	13.67	13.70	16.70	≤30.00	PASS	
	5190	13.42	13.55	16.50	≤23.98	PASS	
	5230	12.89	12.94	15.93	≤23.98	PASS	
	5270	12.57	12.51	15.55	≤23.98	PASS	
11AX40SISO	5310	12.33	12.34	15.35	≤23.98	PASS	
	5510	13.16	13.17	16.18	≤23.98	PASS	
	5550	13.12	13.18	16.16	≤23.98	PASS	

TESTING

Page 26 of 37 Report No.: CTA23112901605


	5755	11.00	11.12	14.07	≤30.00	PASS
, C	5795	12.01	12.26	15.15	≤30.00	PASS
TINO	5210	13.21	13.55	16.39	≤23.98	PASS
11AX80SISO	5290	12.29	12.32	15.32	≤23.98	PASS
TIANOUSISU	5530	13.13	12.58	15.87	≤23.98	PASS
	5775	11.67	12.42	15.07	≤30.00	PASS

CTA CTATE ASS CTATESTING

Page 27 of 37 Report No.: CTA23112901605

4.6. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

According to KDB 789033 D02 General UNII Test Procedures New Rules v01 F: The rules requires "maximum power spectral density" measurements where the intent is to measure the maximum value of the time average of the power spectral density measured during a period of continuous transmission

- Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)
- b. Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- Make the following adjustments to the peak value of the spectrum, if applicable:
 - 1. If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.
 -) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- The result is the Maximum PSD over 1 MHz reference bandwidth.
- For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:
 - Set RBW $\geq 1/T$, where T is defined in section II.B.I.a).
 - Set VBW ≥ 3 RBW.
 - 3. If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
 - 4. If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
 - 5. Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHz is available on nearly all spectrum analyzers.

Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10 log(1/0.25) if the duty cycle is 25 percent).

According to §15.407(a): The maximum output power should be not exceed follow:

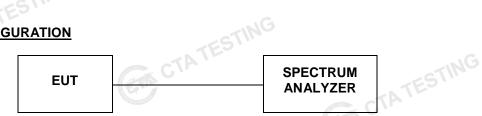
Frequency Range (MHz)	Limit			
5150-5250	Other then Mobile and portable:17dBm/MHz Mobile and portable:11dBm/MHz			
5250-5350	11dBm/MHz			
5470-5725	11dBm/MHz			
5725-5850	30dBm/500kHz			
TEST RESULTS Please refer to Appendix D.	CTA T			

TEST RESULTS

MIMO:

TestMode	Frequency[MHz]	Antenna 0 [dBm/MHz]	Antenna 1 [dBm/MHz]	MIMO [dBm/MHz]	Limit[dBm/MHz]	Verdict
. 7	5180	3.26	3.37	6.33	≤11.00	PASS
	5220	1.42	2.15	4.81	≤11.00	PASS
	5240	1.23	2.1	4.70	≤11.00	PASS
	5260	2.16	1.9	5.04	≤11.00	PASS
	5300	1.60	1.56	4.59	≤11.00	PASS
11N20SISO	5320	1.37	1.52	4.46	≤11.00	PASS
1111203130	5500	2.21	2.57	5.40	≤11.00	PASS
	5580	2.25	2.11	5.19	≤11.00	PASS
	5700	1.99	1.26	4.65	≤11.00	PASS
	5745	-1.81	-2.76	0.75	≤30.00	PASS
	5785	-0.70	-1.57	1.90	≤30.00	PASS
LING	5825	0.07	0.1	3.10	≤30.00	PASS
TINO	5190	-0.24	-0.15	2.82	≤11.00	PASS
	5230	-0.91	-0.71	2.20	≤11.00	PASS
	5270	-1.93	-1.22	1.45	≤11.00	PASS
	5310	-1.12	-1.37	1.77	≤11.00	PASS
11N40SISO	5510	-0.35	-0.52	2.58	≤11.00	PASS
	5550	-0.35	-0.47	2.60	≤11.00	PASS
	5670	-0.46	-0.3	2.63	≤11.00	PASS
	5755	-5.24	-5.47	-2.34	≤30.00	PASS
	5795	-4.24	-4.53	-1.37	≤30.00	PASS
	5180	3.20	3.35	6.29	≤11.00	PASS
	5220	1.76	2.06	4.92	≤11.00	PASS
	5240	1.53	2.08	4.82	≤11.00	PASS
	5260	1.33	1.91	4.64	≤11.00	PASS
	5300	1.74	1.44	4.60	≤11.00	PASS
11AC20SISO	5320	1.37	1.26	4.33	≤11.00	PASS
11/10/200100	5500	2.44	2.31	5.39	≤11.00	PASS
	5580	2.23	2.11	5.18	≤11.00	PASS
C	5700	1.24	1.04	4.15	≤11.00	PASS
	5745	-2.53	-2.68	0.41	≤30.00	PASS
	5785	-1.53	-1.61	1.44	≤30.00	PASS
	5825	0.15	0.01	3.09	≤30.00	PASS
	5190	-0.31	-0.1	2.81	≤11.00	PASS
	5230	-0.75	-0.71	2.28	≤11.00	PASS
	5270	-1.48	-1.11	1.72	≤11.00	PASS
	5310	-1.37	-1.19	1.73	≤11.00	PASS
11AC40SISO	5510	-0.42	-0.48	2.56	≤11.00	PASS
	5550	-0.42	-0.55	2.53	≤11.00	PASS
TTAC403130	5670	-0.32	-0.35	2.68	≤11.00	PASS
	5755	-5.46	-5.6	-2.52	≤30.00	PASS
	5795	-4.18	-4.29	-1.22	≤30.00	PASS
	5210	-2.57	-3.38	0.05	≤11.00	PASS
11AC80SISO	5290	-3.80	-3.92	-0.85	≤11.00	PASS
. 17.0000100	5530	-2.61	-2.87	0.27	≤11.00	PASS
	5775	-6.40	-5.38	-2.85	≤30.00	PASS
	5180	3.19	3.39	6.30	≤11.00	PASS
	5220	2.11	2.19	5.16	≤11.00	PASS
	5240	2.04	2.21	5.14	≤11.00	PASS
	5260	1.89	2.01	4.96	≤11.00	PASS
	5300	1.51	1.63	4.58	≤11.00	PASS
11AX20SISO	5320	1.30	1.66	4.49	≤11.00	PASS
1147203130	5500	2.61	2.56	5.60	≤11.00	PASS
	5580	2.31	2.16	5.25	≤11.00	PASS
	5700	1.10	1.23	4.18	≤11.00	PASS
	5745	-2.62	-2.72	0.34	≤30.00	PASS
CIA	5785	-1.45	-1.53	9 1.52	≤30.00	PASS
	5825	0.36	0.22	3.30	≤30.00	PASS
	5190	-0.21	0.08	2.95	≤11.00	PASS
	5230	-0.69	-0.71	2.31	≤11.00	PASS
	5270	-1.14	-1.33	1.78	≤11.00	PASS
11AX40SISO	5310	-1.42	-1.04	1.78	≤11.00	PASS
-	5510	-0.36	-0.42	2.62	≤11.00	PASS
	5550	-0.39	-0.25	2.69	≤11.00	PASS
			-0.21	2.73	≤11.00	PASS

TATESTING


Report No.: CTA23112901605 Page 29 of 37

	5755	-5.31	-5.18	-2.23	≤30.00	PASS
	5795	-4.26	-3.89	-1.06	≤30.00	PASS
11AX80SISO	5210	-1.99	-2.04	1.00	≤11.00	PASS
	5290	-3.20	-3.43	-0.30	≤11.00	PASS
	5530	-1.94	-1.94	1.07	≤11.00	PASS
	5775	-5.33	-4.91	-2.10	≤30.00	PASS

CTATE ASÉ CTA TESTING Report No.: CTA23112901605 Page 30 of 37

4.7. 6dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

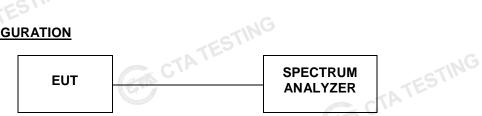
According to KDB789033 D02 General UNII Test Procedures New Rules v01 for one of the following procedures may be used for section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a. Set RBW = 100 kHz.
- b. Set the video bandwidth (VBW) ≥ 3 × RBW
- c. Detector = Peak.
- d. Trace mode = max hold.
- e. Sweep = auto couple.
- f. Allow the trace to stabilize
- g. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

LIMIT

For Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz


TEST RESULTS

Please refer to Appendix A3.

Page 31 of 37 Report No.: CTA23112901605

4.8. 26dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

According to KDB789033 D02 General UNII Test Procedures New Rules v01 for one of the following procedures may be used for Emission Bandwidth (EBW) measurement:

- Set RBW = 300 kHz (approximately 1% of the emission bandwidth).
- Set the video bandwidth (VBW) = 1000 KHz (VBW > RBW)
- C. Detector = Peak.
- Trace mode = \max hold.
- e. Sweep = auto couple.
- Allow the trace to stabilize
- g. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

LIMIT

No Limits for 26dBc Bandwith

TEST RESULTS

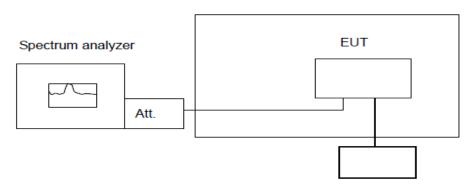
Please refer to Appendix A1.

Page 32 of 37 Report No.: CTA23112901605

4.9. Frequency Stability

Standard Applicable

According to FCC §15.407(g) "Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual."


According to FCC §2.1055(a) "The frequency stability shall be measured with variation of ambient temperature as follows:"

- (1) From -30° to +50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.
- (2) From −20° to + 50° centigrade for equipment to be licensed for use in the Maritime Services under part 80 of this chapter, except for Class A, B, and S Emergency Position Indicating Radiobeacons (EPIRBS), and equipment to be licensed for use above 952 MHz at operational fixed stations in all services, stations in the Local Television Transmission Service and Point-to-Point Microwave Radio Service under part 21 of this chapter, equipment licensed for use aboard aircraft in the Aviation Services under part 87 of this chapter, and equipment authorized for use in the Family Radio Service under part 95 of this chapter.
- (3) From 0° to +50° centigrade for equipment to be licensed for use in the Radio Broadcast Services TATESTING under part 73 of this chapter.

Test Configuration

Variable Power Supply

Test Procedure

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyer via feed through attenators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low engouh to obtain the desired frequency resoluation and measure EUT 20 degree operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30 degree. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure wuth 10 degree increased CTATES per stage until the highest temperature of +50 degree reached.

Test Results

PASS

Note: Measured all conditions and recorded worst case. LASE CTATESTIN

Page 33 of 37 Report No.: CTA23112901605

IEEE 802.11a Mode / 5180 – 5240 MHz / 5180 MHz

	Enviroment Temperature (Dregree)	Voltage (Vdc)	Measured Frequency (MHz)	Limit Range (MHz)	Test Results
SE SE	20	4.07	5179.977455	5150 - 5250	PASS
	20	3.33	5179.997470	5150 - 5250	PASS
Q	50	3.70	5179.971281	5150 – 5250	PASS
	40	3.70	5179.924300	5150 - 5250	PASS
	30	3.70	5179.942793	5150 - 5250	PASS
	20	3.70	5179.918913	5150 - 5250	PASS
	10	3.70	5179.918035	5150 - 5250	PASS
	0	3.70	5179.954052	5150 - 5250	PASS
	-10	3.70	5179.945738	5150 - 5250	PASS
-69	-20	3.70	5179.913840	5150 - 5250	PASS
CTATE	-30	3.70	5179.934578	5150 - 5250	PASS
	IEEE 802.11ac VHT20 Mod	d / 5260 – 5320 N	1Hz / 5260 MHz	NG	

IEEE 802.11ac VHT20 Mod / 5260 - 5320 MHz / 5260 MHz

IEEE 802.11ac VHT20 Mod / 5260 – 5320 MHz / 5260 MHz							
Enviroment Temperature (Dregree)	Voltage (V)	Measured Frequency (MHz)	Limit Range (MHz)	Test Results			
20	4.07	5260.010041	5250 - 5350	PASS			
20	3.33	5260.033748	5250 - 5350	PASS			
50	3.70	5260.093017	5250 - 5350	PASS			
40	3.70	5260.084839	5250 - 5350	PASS			
30	3.70	5260.012157	5250 - 5350	PASS			
20	3.70	5260.062352	5250 - 5350	PASS			
10	3.70	5260.022075	5250 - 5350	PASS			
0	3.70	5260.071762	5250 - 5350	PASS			
-10	3.70	5260.033449	5250 - 5350	PASS			
-20	3.70	5260.047938	5250 - 5350	PASS			
-30	3.70	5260.091849	5250 - 5350	PASS			

IEEE 802.11ac VHT20 Mode / 5500 – 5700 MHz / 5500 MHz

CTATE	Enviroment Temperature (Dregree)	Voltage (V)	Measured Frequency (MHz)	Limit Range (MHz)	Test Results
CIL	20	4.07	5500.046142	5470 – 5725	PASS
1	20	3.33	5500.070729	5470 – 5725	PASS
	50	3.70	5500.084528	5470 – 5725	PASS
	40	3.70	5500.014261	5470 – 5725	PASS
	30	3.70	5500.053143	5470 – 5725	PASS
	20	3.70	5500.019339	5470 – 5725	PASS
	10	3.70	5500.078025	5470 – 5725	PASS
	0	3.70	5500.076634	5470 – 5725	PASS
G	-10	3.70	5500.023924	5470 – 5725	PASS
	-20	3.70	5500.052299	5470 – 5725	PASS
	-30	3.70	5500.081262	5470 – 5725	PASS
(CTA TESTING	C CTF	TESTING	TING	

CTA TESTING

IEEE 802.11a Mode / 5745 - 5825 MHz / 5745 MHz

	Enviroment Temperature (Dregree)	Voltage (Vdc)	Measured Frequency (MHz)	Limit Range (MHz)	Test Results
	20	4.07	5744.971415	5725 – 5850	PASS
· ·	20	3.33	5744.992955	5725 – 5850	PASS
	50	3.70	5744.930284	5725 – 5850	PASS
	40	3.70	5744.909323	5725 – 5850	PASS
	30	3.70	5744.960110	5725 – 5850	PASS
	20	3.70	5744.929872	5725 – 5850	PASS
	10	3.70	5744.958192	5725 – 5850	PASS
	G 0	3.70	5744.926998	5725 – 5850	PASS
	-10	3.70	5744.920726	5725 – 5850	PASS
TATE	-20	3.70	5744.925546	5725 – 5850	PASS
CTATE	-30	3.70	5744.951372	5725 – 5850	PASS
ÿ	CTP CTP	TEU	CTATEST!	ING CAN C	TATESTING

4.10. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Information


The maximum gain of antenna were Antenna 0:2.40 dBi, Antenna 1:2.53 dBi, PIFA antenna, It meets the requirements of 15.203.

Page 35 of 37 Report No.: CTA23112901605

Report No.: CTA23112901605 Page 36 of 37

5. Test Setup Photos of the EUT

TESTING

Report No.: CTA23112901605 Page 37 of 37

6. External and Internal Photos of the EUT

Reference to the test report No. CTA23112901601
.....End of Report.....

CTATESTING CTATESTING

CTA TESTING TESTING

CTATESTING

CTATESTING CTATESTING

TESTING TESTING

CTATES (

CTATESTING CTATESTING