

TEST REPORT

Product Name: FCC ID Trademark: Model Number: Prepared For: Address: Manufacturer: Address: Prepared By: Address: Sample Received Date: Sample tested Date: Issue Date: Report No .: Test Standards Test Results Remark:

Compiled by:

ChenZheng

Chen Zheng

TV

2A9L7TV55-US3B

GAZER

TV55-US3B, TV55-US3S, TV55-US3W, TV55-US3G, TV50-US3B, TV50-US3S, TV50-US3W, TV50-US3G, TV43-US3B, TV43-US3S, TV43-US3W, TV43-US3G

Gazer Limited

17 HANOVER SQUARE, LONDON, UNITED KINGDOM, W1S 1BN Gazer Limited

17 HANOVER SQUARE, LONDON, UNITED KINGDOM, W1S 1BN Shenzhen CTB Testing Technology Co., Ltd.

1&2/F., Building A, No.26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China Oct. 29, 2022 Oct. 29, 2022 to Nov.14, 2022 Nov.14, 2022 CTB221114047RFX 47 CFR Part 15 Subpart E

PASS

This is Client without radar detection function radio test report.

Reviewed by:

Arron Liu

Arron 220

Bin Mei / Director

Note: If there is any objection to the inspection results in this report, please submit a written report to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client. "*" indicates the testing items were fulfilled by subcontracted lab. "#" indicates the items are not in CNAS accreditation scope.

TABLE OF CONTENT

[est Re	eport Declaration	Page	
	1.	VERSION	3	
	2.	TEST SUMMARY	4	
	3.	MEASUREMENT UNCERTAINTY	5	
	4.	PRODUCT INFORMATION AND TEST SETUP	6	
	4.1 F	Product Information		
	4.2	Test Setup Configuration	7	
	4.3	Support Equipment	7	
	4.4	Channel List	7	
	4.5	Test Mode		
	4.6	Test Environment	8	
	5.	TEST FACILITY AND TEST INSTRUMENT USED		
		Test Facility		
	5.2	Test Instrument Used		
	6.	TECHNICAL REQUIREMENTS FOR DFS		
	6.1	Applicability of DFS Requirements	11	
	6.2	DFS Detection Thresholds and Response Requirement		
	6.3	Radar Test Waveforms		
	7. 🤇	DFS DETECTION THRESHOLD LEVELS		
	8.	CONDUCTED TEST PROCEDURE	19	

(Note: N/A means not applicable)

1. VERSION

Report No.		Issue Date	Description	Approved
	CTB221114047RFX	Nov.14, 2022	Original	Valid

2. TEST SUMMARY

The Product has been tested according to the following specifications:

Test Item	Test Requirement	Test method	Result
DFS Detection Threshold	47 CFR Part 15 Subpart E Section 15.407 (h)(2)	KDB 905462 D02	N/A
Channel Availability Check Time	47 CFR Part 15 Subpart E Section 15.407 (h)(2)(ii)	KDB 905462 D02	N/A
U-NII Detection Bandwidth	47 CFR Part 15 Subpart E Section 15.407 (h)(2)	KDB 905462 D02	N/A
Channel Closing Transmission Time	47 CFR Part 15 Subpart E Section 15.407 (h)(2)(iii)	KDB 905462 D02	PASS
Channel Move Time	47 CFR Part 15 Subpart E Section 15.407 (h)(2)(iii)	KDB 905462 D02	PASS
Non-Occupancy Period	47 CFR Part 15 Subpart E Section 15.407 (h)(2)(iv)	KDB 905462 D02	PASS

Remark:

The tested sample and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application.

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	Occupancy bandwidth	U=±54.3Hz
2	Adjacent channel power	U=±1.3dB
3	Conducted Adjacent channel power	U=±1.38dB
4	Conducted output power Above 1G	U=±1.0dB
5	Conducted output power below 1G	U=±0.9dB
6	Power Spectral Density, Conduction	U=±1.0dB
7	Conduction spurious emissions	U=±2.8dB
8	Out of band emission	U=±54Hz
9	3m camber Radiated spurious emission(30MHz-1GHz)	U=±4.3dB
10	3m chamber Radiated spurious emission(1GHz-18GHz)	U=±4.5dB
11	humidity uncertainty	U=±5.3%
12	Temperature uncertainty	U=±0.59°C
13	Supply volyages	U=±3%
14		✓ U=±5%

PRODUCT INFORMATION AND TEST SETUP 4.

4.1 Product Information

Model(s): Model Description:	TV55-US3B, TV55-US3S, TV55-US3W, TV55-US3G, TV50-US3B, TV50-US3S, TV50-US3W, TV50-US3G, TV43-US3B, TV43-US3S, TV43-US3W, TV43-US3G All the model are the same circuit and RF module, only for model name. Test sa mple model: TV55-US3B
Wi-Fi Specification:	IEEE 802.11a/b/g/n/ac
Hardware Version:	V1.0
Software Version:	V1.0 0 0 0 0 0 0 0 0 0
Operation Frequency:	IEEE 802.11a/n/ac(20M): 5150MHz ~5250MHz/ 4 channel IEEE 802.11n/ac(40M): 5150MHz ~5250MHz/ 2 channel IEEE 802.11ac(80M): 5150MHz ~5250MHz/ 1 channel
	IEEE 802.11a/n/ac(20M): 5250MHz ~5350 MHz/ 4 channel IEEE802.11n/ac(40M): 5250MHz ~5350 MHz/ 2 channel IEEE802.11ac(80M): 5250MHz ~5350 MHz/ 1 channel
	IEEE 802.11a/n/ac(20M): 5470MHz ~5725 MHz/ 11 channel IEEE802.11n/ac(40M): 5470MHz ~5725 MHz/ 5 channel IEEE802.11ac(80M): 5470MHz ~5725 MHz/ 3 channel
	IEEE 802.11a/n/ac(20M): 5725MHz ~5850MHz/ 5 channel IEEE 802.11n/ac(40M): 5725MHz ~5850MHz/ 2 channel IEEE 802.11ac(80M): 5725MHz ~5850MHz/ 1 channel
Type of Modulation:	WiFi (5G): DSSS, OFDM, CCK
Antenna installation:	WiFi (5G): PIFA antenna
Antenna Gain:	WiFi (5G):
	5.2G:2.88dBi 5.3G:3.13dBi 5.6G:3.36dBi
	5.8G:3.14dBi
Ratings:	AC 120V~240V 50/60Hz

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support E	quipment
---------------	----------

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Laptop	DELL	Inspiron 5507	N/A	AE
2.	AX1800 Mesh Wi-Fi 6 Router	D-Link	FCC ID: KA2IRX1960B1	N/A	AE

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

For 80	02.11a/n/ac(20M) Operation	in the 5250MHz ~5350	MHz band
Channel	Frequency	Channel	Frequency
52	5260MHz	60	5300MHz
56	5280MHz	64	5320MHz
For 80	02.11a/n/ac(20M) Operation	in the 5470MHz ~5725	MHz band
Channel	Frequency	Channel	Frequency
100	5500MHz	124	5620 MHz
104	5520MHz	128	5640 MHz
C108 C	5540MHz	132	5660 MHz
112	5560MHz	136	5680MHz
116	5580MHz	140	5700MHz
120	5600 MHz		

For 802.11n/ac(40	M) Operation in the	e 5250MHz ~5350 MH	Hz band
Channel	Frequency	Channel	Frequency
54	5270MHz	62	5310MHz
For 802.11n/ac(40	M) Operation in the	e 5470MHz ~5725 MH	Hz band
Channel	Frequency	Channel	Frequency
102	5510MHz	126	5630MHz
110	5550MHz	134	5670MHz
118	5590MHz		

For 802.11ac(80M) Operation in the 5250MHz ~5350 MHz band				
CI	nannel	Frequency	Channel	Frequency
0 0	58	5290MHz	NA V	NA
	For 802.11ac(80M) Operation in the	5470MHz ~5725 MH	z band
CI	nannel	Frequency	Channel	Frequency

106	5530MHz	138	5690MHz
122	5610 MHz	KY KY	κ ^ν κ ^ν κ ^ν κ ^ν

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

802.11a/n/ac(20M)		Channel 52	Channel 56	Channel 64
	5250MHz ~5350 MHz	5260MHz	5280MHz	5320MHz
902 44 p/pp/4014)		Channel54	N/A	Channel62
802.11n/ac(40M)	5250MHz ~5350 MHz	5270MHz	N/A	5310MHz
802.11ac(80M)	5250MHz ~5350 MHz	N/A C	Channel 58	N/A
		N/A	5290MHz	N/A
802.11a/n/ac(20M)	5470MHz ~5725 MHz	Channel 100	Channel116	Channel140
		5500MHz	5580MHz	5700MHz
802.11n/ac(40M)	5470MHz ~5725 MHz	Channel 102	Channel118	Channel 134
		5510MHz	5590MHz	5670MHz
000 (11 (00 M)		Channel 106	N/A	Channel 138
802.11ac(80M)	5470MHz ~5725 MHz	5530MHz	N/A	5690MHz

4.6 Test Environment

Humidity(%):	54 0 0 0 0 0 0
Atmospheric Pressure(kPa):	
Normal Voltage(AC):NV	120V C C C C C
Normal Temperature(°C):NT	23
Low Temperature(°C):LT	
High Temperature(°C):HT	40 0 0 0 0 0

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Floor 1&2, Building A, No. 26 of Xinhe Road, Xinqiao Street, Baoan District, Shenzhen China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

Item	Equipment	Manufacturer	Type No.	Serial No.	Calibrated unti
21	Spectrum Analyzer	Agilent	N9020A	MY52090073	2023.07.19
2	Power Sensor	Agilent	U2021XA	MY56120032	2023.07.19
3	Power Sensor	Agilent	U2021XA	MY56120034	2023.07.19
4	Communication test set	R&S	CMW500	108058	2023.07.19
5	Spectrum Analyzer	KEYSIGHT	N9020A	MY51289897	2023.07.19
6	Signal Generator	Agilent	N5181A	MY50140365	2023.07.19
7	Vector signal generator	Agilent	N5182A	MY47420195	2023.07.19
8	Communication test set	Agilent	E5515C	MY50102567	2023.07.19
9	2.4 GHz Filter	Shenxiang	MSF2400-2483. 5MS-1154	20181015001	2023.07.19
10	5 GHz Filter	Shenxiang	MSF5150-5850 MS-1155	20181015001	2023.07.19
11	Filter	Xingbo	XBLBQ-DZA12 0	190821-1-1	2023.07.19
12	BT&WI-FI Automatic test software	Micowave	MTS8000	Ver. 2.0.0.0	ch ch c
13	Rohde & Schwarz SFU Broadcast Test System	R&S	SFU	101017	2023.07.19
14	Temperature humidity chamber	Hongjing	TH-80CH	DG-15174	2023.07.19
15	234G Automatic test software	Micowave	MTS8200	Ver. 2.0.0.0	ch ch c
16	966 chamber	C.R.T.	966	P LP L	2024.08.11
17	Receiver	R&S	ESPI	100362	2023.07.19
18	Amplifier	HP	8447E	2945A02747	2023.07.19
19	Amplifier	Agilent	8449B	3008A01838	2023.07.19
20	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	2023.07.22

5.2 Test Instrument Used

Shenzhen CTB Testing Technology Co., Ltd. Report No.: CTB221114047RFX

21	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA9120D	01911	2023.07.22
22	EMI test software	Fala	EZ-EMC	FA-03A2 RE	
23	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-224	2023.07.23
24	loop antenna	ZHINAN	ZN30900A	GTS534	
25	40G Horn antenna	A/H/System	SAS-574	588	2024.10.30
26	Amplifier	AEROFLEX	Aeroflex	097	2024.10.30

6. TECHNICAL REQUIREMENTS FOR DFS

6.1 Applicability of DFS Requirements

6.1.1 Applicability of DFS Requirements Prior to use of a Channel

	Operational Mode				
Requirement	Master	Client Without Radar Detection	Client With Radar Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

6.1.2 Applicability of DFS Requirements during Normal Operation

\$ \$ \$ \$ \$ \$ \$	Operational Mode			
Requirement	Master or Client With Radar Detection	Client Without Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for	Operational Mode			
devices with multiple bandwidth modes	Master or Client With Radar Detection	Client Without Radar Detection		
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required		
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link		
All other tests	Any single BW mode	Not required		

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

6.2 DFS Detection Thresholds and Response Requirement

Below table provides the DFS Detection Thresholds for Master Devices as well as Client Devices incorporating In-Service Monitoring.

DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection.

Maximum Transmit Power	Value (See Notes 1, 2 and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm / MHz	
EIRP < 200 milliwatt and that do not meet	-64 dBm
the power spectral density requirement	
Note 1: This is the level at the input of the receive	er assuming a 0 dBi receive antenna.
Note 2: Throughout these test procedures an add	ditional 1 dB has been added to the amplitude of the test
	in measurement equipment. This will ensure that the
test	

signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

DFS Response Requirement Values

Parameter C C C C	
Non-occupancy period	Minimum 30 minutes.
Channel Availability Check Time	60 seconds.
Channel Move Time	10 seconds. (See Note 1.)
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. (See Notes 1 and 2.)
U-NII Detection Bandwidth	Minimum 100% of the U- NII 99% transmission power bandwidth. (See Note 3.)

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar

Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

6.3 Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0		1428	18	See Note1	See Note1
		1420Test A: 15uniquePRI valuesrandomlyselected fromthelist of 23 PRIvalues in Table5aTest B: 15uniquePRI valuesrandomlyselected withinthe range of518-3066µsec, with a	$\operatorname{Roundup}\left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix} \cdot \\ \begin{pmatrix} \frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \end{pmatrix} \right\}$	60%	
1 CA CA	CAP CAP	minimum increment of 1	CAP CAP C	s ^v ch ^v ch	ch ^v ch ^v

6.3.1 Short Pulse Radar Test Waveforms

\$. 1 \$. 1 \$	c1 * c1 * c	µsec, excluding PRI values selected in Test A		5 th C 5 th C 5 th	crt crt
2	1-5	150-230	23-29	60%	30
3 0 0	6-10	200-500	16-18	60%	30
4	1-20	200-500	12-16	60%	30
Aggregate (Rada	ar Types 1-4)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		80%	120
Note 1: Short Pu channel closing t		hould be used for	the detection bandwi	dth test, channel m	iove time, and

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous in Tests A or B.

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)	
	1930.5	518	
	1858.7	C C 538 C C	
• • • •	1792.1	558	
4	1730.1	578	
5	1672.2	598	
6	1618.1	618	
	1567.4	638	
8	1519.8	658	
9	1474.9	678	
	1432.7	698	
s s11 s s	1392.8	718	
12	1355	738	
	1319.3	758	
14	1285.3	778	
15	1253.1	798	
16	1222.5	818	
17	1193.3	838	
	1165.6	6 858 6	
19	1139	878	
20	1113.6	898	
	1089.3	O O 918 O O	
22	1066.1	len 1938 len	
23	326.2	3066	

Pulse Repetition Intervals Values for Test A

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1 -3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Each waveform is defined as follows:

1) The transmission period for the Long Pulse Radar test signal is 12 seconds.

2) There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst Count.

3) Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.

4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.
5) Each pulse has a linear frequency modulated chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a transmission period will have the same chirp width. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.

6) If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the random time interval between the first and second pulses is chosen independently of the random time interval between the second and third pulses.

7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst Count. Each interval is of length (12,000,000 / Burst Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst Count) – (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen randomly.

A representative example of a Long Pulse Radar Type waveform:

1) The total test waveform length is 12 seconds.

- 2) Eight (8) Bursts are randomly generated for the Burst Count.
- 3) Burst 1 has 2 randomly generated pulses.
- 4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- 5) The PRI is randomly selected to be at 1213 microseconds.
- 6) Bursts 2 through 8 are generated using steps 3 5.

7) Each Burst is contained in even intervals of 1,500,000 microseconds. The starting location for Pulse 1, Burst 1 is randomly generated (1 to 1,500,000 minus the total Burst 1 length + 1 random PRI interval) at the 325,001 microsecond step. Bursts 2 through 8 randomly fall in successive 1,500,000 microsecond intervals (i.e. Burst 2 falls in the 1,500,001 – 3,000,000 microsecond range).

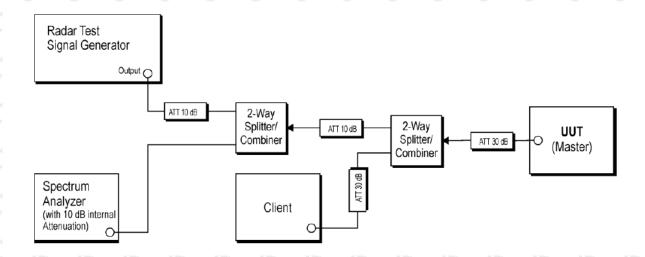
6.3.3 Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (μsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

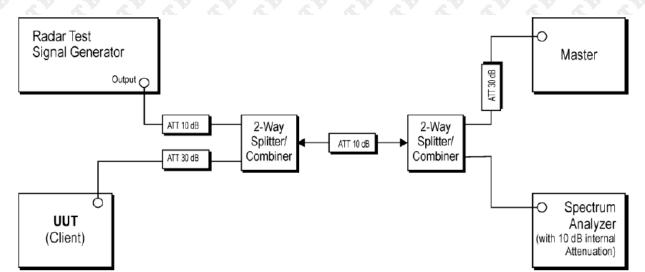
For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely

Radar Waveform Calibration

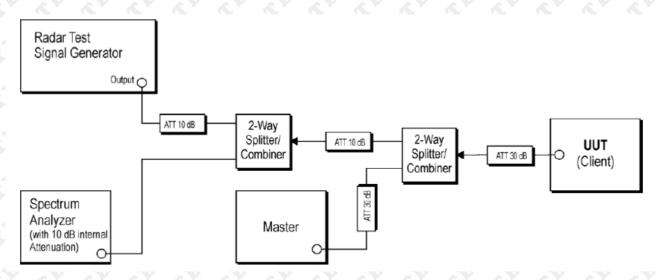

The following equipment setup was used to calibrate the conducted radar waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were replace 50ohm terminal from master and client device and no transmissions by either the master or client device. The spectrum analyzer was switched to the zero span (time domain) at the frequency of the radar waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3MHz and 3 MHz.

The signal generator amplitude was set so that the power level measured at the spectrum analyzer was -61dBm due to the interference threshold level is not required



6.3.4 DFS test setup

Setup for Master with injection at the Master



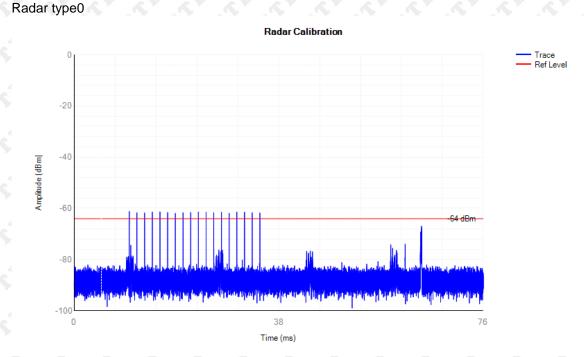
Setup for Client with injection at the Master

Setup for Client with injection at the Client

6.3.5 Channel Loading/Data Streaming

Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater.

Frequency	Bandwidth	Time On	Time On + Off Time	channel loading	Requirements	Results
5300	80M	4.769	17.21	27.71% 🔍	17 %	PASS


7. DFS DETECTION THRESHOLD LEVELS

Test result:

DFS Threshold level: -63 dBm

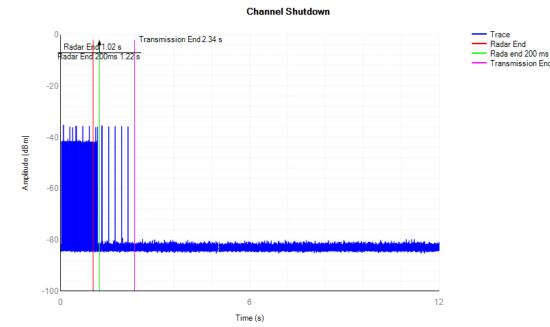
The Interference Radar Detection Threshold Level is (-64dBm) +(0)[dBi]+ 1 dB= -63 dBm. That ad been taken into account the master output power range and antenna gain.

Calibration plots for each of the required radar waveforms

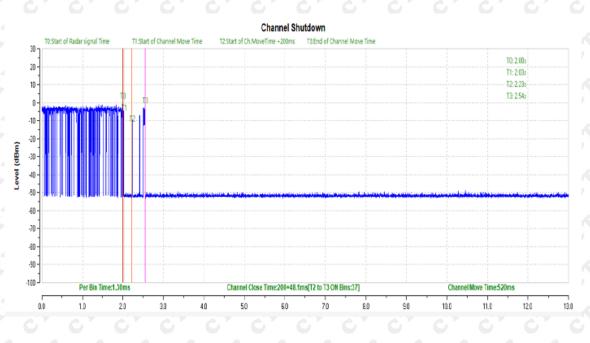
8. CONDUCTED TEST PROCEDURE

1) One frequency will be chosen from the Operating Channels of the UUT within the 5250-5350 MHz or 5470-5725MHz bands.

2) The Client Device (EUT) is set up the above diagram and communications between the Master device and the Client is established.

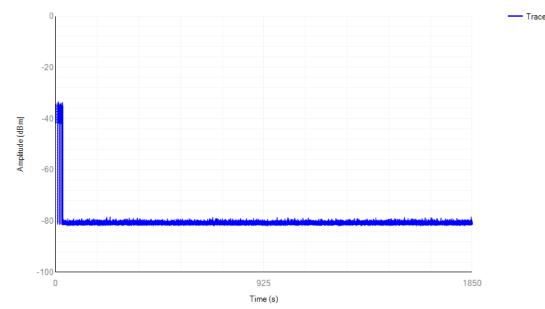

3) Stream the channel loading test file from the Master Device to the Client Device on the test Channel for the entire period of the test.

4) An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.


5) Observe the transmissions of the UUT at the end of the Burst on the Operating Channel for duration greater than 12 seconds for Radar Type 0 to ensure detection occurs.

6) After the initial radar burst the channel is monitored for 30 minutes to ensure no transmissions or beacons occur. A second monitoring setup is used to verify that the Master and Client have both moved to different channels.

Test Results: Radar Type 0 Channel Move Time



Radar Type 0 Channel Closing Transmissiom

Non-occupancy Period Period(without radar detection)

Non-Occupancy period

Test Item	Modulation Mode	Freq. (MHz)	Limit	Results
Channel Move Time	A20	5300	10s	Pass
Channel Closing Transmission Time	A20	5300	60ms	Pass
Non-Occupancy Period	A20	5300	30 minutes	Pass

***** END OF REPORT ****