

RF TEST REPORT

For

ShenZhen RiShengHua Technology Co., Ltd.

Product Name: Smart Water Leak Detector Test Model(s).: RSH-WL08

Report Reference No. : POCE240313002RL001

FCC ID : 2A9K2-RSH-WL08

Applicant's Name : ShenZhen RiShengHua Technology Co., Ltd.

Address Floor 2, building E1, qiangrong East Industrial Zone, No. 723, Zhoushi

Road, Jiuwei community, Hangcheng street, Bao'an District, Shenzhen

Testing Laboratory: Shenzhen POCE Technology Co., Ltd.

Address : 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology

Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

Test Specification Standard : 47 CFR Part 15.247

Date of Receipt : March 13, 2024

Date of Test : March 13, 2024 to March 21, 2024

Data of Issue : March 21, 2024

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen POCE Technology Co., Ltd. This document may be altered or revised by Shenzhen POCE Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE240313002RL001	March 21, 2024
			E
	200	200	
	Po		

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:	Supervised by:	Approved by:	
Bon Tang	Tom chen	Machoel Mrs	
Ben Tang /Test Engineer	Tom Chen / Project Engineer	Machael Mo / Manager	

CONTENTS

1 TEST SUMMARY	5
1.1 TEST STANDARDS	
1.2 SUMMARY OF TEST RESULT	
2 GENERAL INFORMATION	6
2.1 CLIENT INFORMATION	6
2.2 DESCRIPTION OF DEVICE (EUT)	6
2.3 DESCRIPTION OF TEST MODES	
2.4 DESCRIPTION OF SUPPORT UNITS	
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2.7 IDENTIFICATION OF TESTING LABORATORY	
2.8 ANNOUNCEMENT	10
3 EVALUATION RESULTS (EVALUATION)	11
3.1 ANTENNA REQUIREMENT	
3.1.1 Conclusion:	11
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	12
4.1 Occupied Bandwidth	
4.1.1 E.U.T. Operation:	
4.1.2 Test Setup Diagram:	
4.1.3 Test Data:	
4.2 MAXIMUM CONDUCTED OUTPUT POWER	
4.2.1 E.U.T. Operation:	
4.2.2 Test Setup Diagram:	
4.2.3 Test Data:	
4.3 Power Spectral Density	15
4.3.1 E.U.T. Operation:	15
4.3.2 Test Setup Diagram:	15
4.3.3 Test Data:	15
4.4 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	16
4.4.1 E.U.T. Operation:	16
4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	16
4.5 BAND EDGE EMISSIONS (RADIATED)	17
4.5.1 E.U.T. Operation:	
4.5.2 Test Setup Diagram:	17
4.5.3 Test Data:	
4.6 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)	
4.6.1 E.U.T. Operation:	
4.6.2 Test Data:	
4.7 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	
4.7.1 E.U.T. Operation:	
4.7.2 Test Data:	
5 TEST SETUP PHOTOS	
6 PHOTOS OF THE EUT	
APPENDIX	34

16DB BANDWIDTH	35
2. DUTY CYCLE	
3. PEAK OUTPUT POWER	
4. POWER SPECTRAL DENSITY	
5. BANDEDGE	43
6. Spurious Emission	

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : ShenZhen RiShengHua Technology Co., Ltd.

Address : Floor 2, building E1, qiangrong East Industrial Zone, No. 723, Zhoushi Road,

Jiuwei community, Hangcheng street, Bao'an District, Shenzhen

Report No.: POCE240313002RL001

Manufacturer : ShenZhen RiShengHua Technology Co., Ltd.

Address : Floor 2, building E1, qiangrong East Industrial Zone, No. 723, Zhoushi Road,

Jiuwei community, Hangcheng street, Bao'an District, Shenzhen

2.2 Description of Device (EUT)

Product Name:	Smart Water Leak Detector	
Model/Type reference:	RSH-WL08	
Series Model:	N/A	
Trade Mark:	RSH	
Power Supply:	DC:3.0V	PO
Operation Frequency:	2405MHz to 2480MHz	
Number of Channels:	16	
Modulation Type:	O-QPSK	-CE
Antenna Type:	PCB	200
Antenna Gain:	1.08dBi	
Hardware Version:	V1.0	
Software Version:	V1.0	

(Remark:The Antenna Gain is supplied by the customer.POCE is not responsible for This data and the related calculations associated with it)

Operation Fred	quency each of channel		
Channel	Frequency	Channel	Frequency
1	2405 MHz	9	2445 MHz
2	2410 MHz	10	2450 MHz
3	2415 MHz	11	2455 MHz
4	2420 MHz	12	2460 MHz
5	2425 MHz	13	2465 MHz
6	2430 MHz	14	2470 MHz
7	2435 MHz	15	2475 MHz
8	2440 MHz	16	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No.: POCE240313002RL001

Test channel	Frequency (MHz)
Lowest channel	2405MHz
Middle channel	2440MHz
Highest channel	2480MHz

2.3 Description of Test Modes

No	Title	Description			
TM1	Lowest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.			
TM2	Middle channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.			
TM3	Highest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.			
Remark	Remark:Only the data of the worst mode would be recorded in this report.				

2.4 Description of Support Units

The EUT was tested as an independent device.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 7 of 47

POCE

Report No.: POCE240313002RL001

2.5 Equipments Used During The Test

Power Spectral Density

Emissions in non-restricted frequency bands

Occupied Bandwidth

Maximum Conducted Output Power

Taxaniani Contactor Carpat Conto					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	TACHOY	RTS-01	V2.0.0.0	2023-05-11	2026-05-10
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	2023-05-11	2026-05-10
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
DC power	HP	66311B	38444359	2023-05-11	2026-05-10
Power Meter	Keysight	E4416A	MY5303506	2023-12-10	2024-12-09
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	2023-05-11	2026-05-10
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08
Signal generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11

Band edge emissions (Radiated)
Emissions in frequency bands (below 1GHz)
Emissions in frequency bands (above 1GHz)

Emissions in reducitor bands (above 16112)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	2023-05-11	2026-05-10
Positioning Controller	CE	MF-7802	/CE	2023-05-11	2026-05-10
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	2023-05-11	2026-05-10
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04
Cable(LF)#2	Schwarzbeck	1	1	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	1	1	2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-02-19	2025-02-18
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	1	2024-02-19	2025-02-18
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty	
Occupied Bandwidth	±3.63%	PC
RF conducted power	±0.733dB	
RF power density	±0.234%	
Conducted Spurious emissions	±1.98dB	
Radiated Emission (Above 1GHz)	±5.46dB	
Radiated Emission (Below 1GHz)	±5.79dB	

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

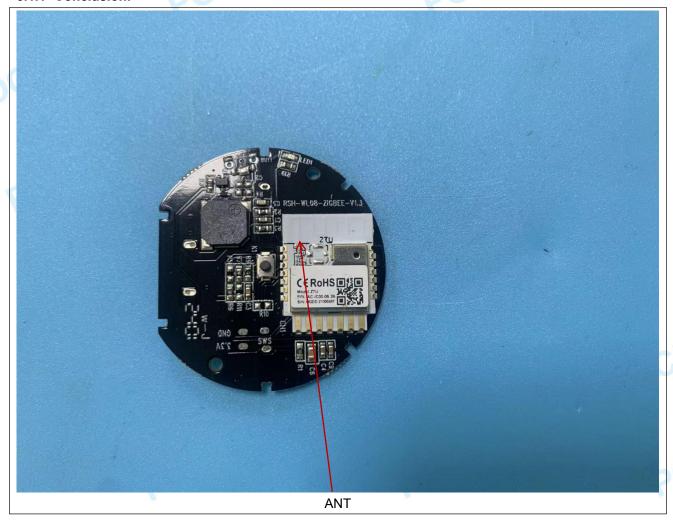
Identification of the Responsible Testing Location

<u>'</u>	8
Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

- (1) The test report reference to the report template version v1.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 10 of 47


3 Evaluation Results (Evaluation)

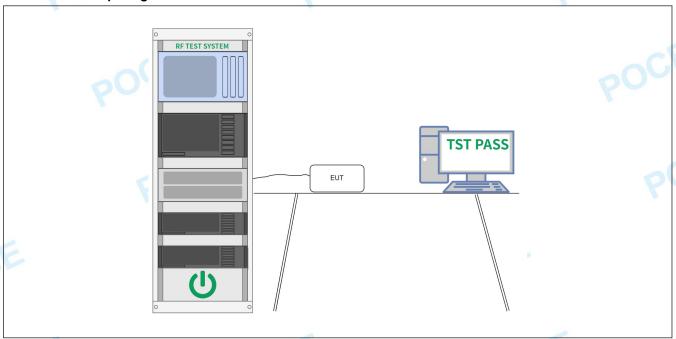
3.1 Antenna requirement

Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

4 Radio Spectrum Matter Test Results (RF)


4.1 Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.1.1 E.U.T. Operation:

Operating Environment:							
Temperature:	23 °C		Humidity:	52.3 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1			6		
Final test mode:		TM1				OCH	

4.1.2 Test Setup Diagram:

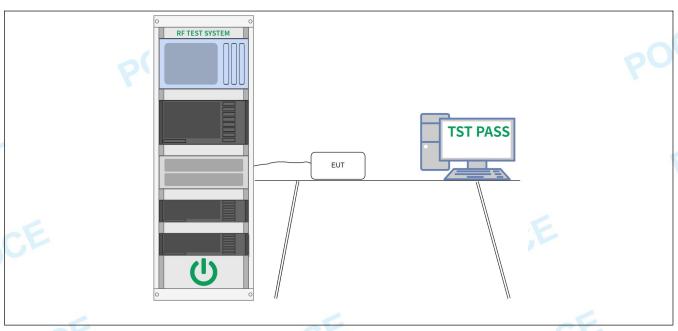
4.1.3 Test Data:

Please Refer to Appendix for Details.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 12 of 47

4.2 Maximum Conducted Output Power

4.2 Maximum Condi	
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)


4.2.1 E.U.T. Operation:

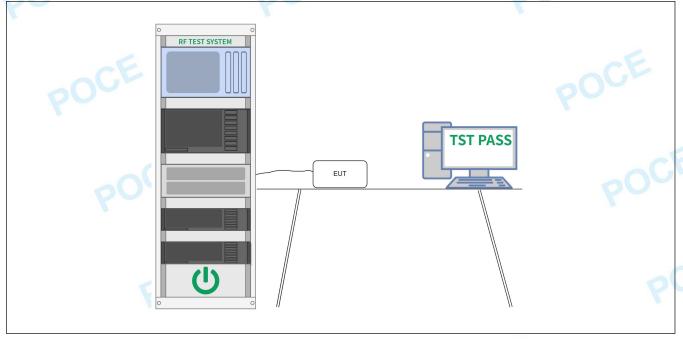
Operating Environment:							
Temperature:	23 °C		Humidity:	52.3 %	Atmospheric Pressure:	102 kPa	
Pretest mode:	0	TM1		•	000		
Final test mode:		TM1					

4.2.2 Test Setup Diagram:

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 13 of 47

4.2.3 Test Data:

Please Refer to Appendix for Details.


4.3 Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

4.3.1 E.U.T. Operation:

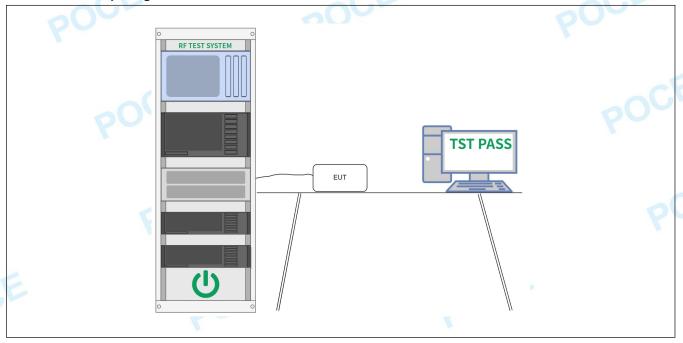
Operating Envir	onment:		PO			
Temperature:	23 °C		Humidity:	52.3 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1				
Final test mode	:	TM1		CE		CE

4.3.2 Test Setup Diagram:

4.3.3 Test Data:

Please Refer to Appendix for Details.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 15 of 47


4.4 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.4.1 E.U.T. Operation:

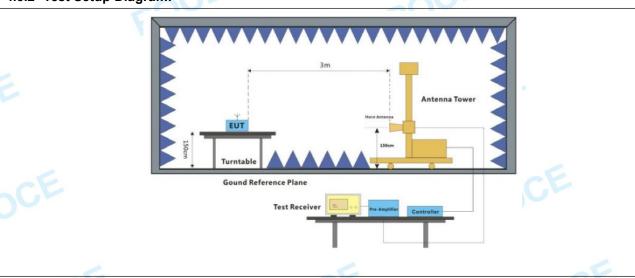
Operating Envir	onment:			OCF		OC-
Temperature:	23 °C		Humidity:	52.3 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1				
Final test mode	:	TM1				

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 16 of 47


4.5 Band edge emissions (Radiated)

Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`							
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30.0	30	30					
30-88	100 **	3					
88-216	150 **	3					
216-960	200 **	3					
Above 960	500	3					
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.2 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands							
ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02							
ANSI C63.10-2013 section 6	6.10.5.2						
	restricted bands, as defined emission limits specified in § Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in parradiators operating under this 54-72 MHz, 76-88 MHz, 174 these frequency bands is peand 15.241. In the emission table above, The emission limits shown in employing a CISPR quasi-peand 10-490 kHz and above 100 are based on measurements. ANSI C63.10-2013 section 6 KDB 558074 D01 15.247 Means and section 15.247 Means are section 6 KDB 558074 D01 15.247 Means are section 15.247 Means are sec	restricted bands, as defined in § 15.205(a), must also comply emission limits specified in § 15.209(a)(see § 15.205(c)).` Frequency (MHz) Field strength (microvolts/meter) 0.009-0.490 2400/F(kHz) 0.490-1.705 24000/F(kHz) 1.705-30.0 30 30-88 100 ** 88-216 150 ** 216-960 200 ** Above 960 *Except as provided in paragraph (g), fundamental emission radiators operating under this section shall not be located in the 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. Howe these frequency bands is permitted under other sections of thi and 15.241. In the emission table above, the tighter limit applies at the band The emission limits shown in the above table are based on me employing a CISPR quasi-peak detector except for the frequent 10-490 kHz and above 1000 MHz. Radiated emission limits are based on measurements employing an average detector. ANSI C63.10-2013 section 6.10					

4.5.1 E.U.T. Operation:

Operating Environment:						200	
Temperature: 23 °C		Humidity:	52.3 %		Atmospheric Pressure:	102 kPa	
Pretest mode:	TM1						
Final test mode:	TM1						

4.5.2 Test Setup Diagram:

4.5.3 Test Data:

	ZigbeeLow Channel:2405MHz								
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.		
(MHz)	(dBµV)	(dB)	$(dB\mu V/m)$	(dBµV/m)	(dB)		H/V		
2310	39.16	-0.93	38.23	74	-35.77	peak	Н		
2310	27.26	-0.93	26.33	54	-27.67	AVG	Н		
2390	38.10	-0.73	37.37	74	-36.63	peak	Н		
2390	27.00	-0.73	26.27	54	-27.73	AVG	Н		
2310	39.14	-2.23	36.91	74	-37.09	peak	V		
2310	27.41	-2.23	25.18	54	-28.82	AVG	V		
2390	39.02	-1.92	37.1	74	-36.9	peak	V		
2390	27.44	-1.92	25.52	54	-28.48	AVG	V		

Zigbee--High Channel:2480MHz

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V		
2483.5	58.00	-0.49	57.51	74	-16.49	peak	Н		
2483.5	52.82	-0.49	52.33	54	-1.67	AVG	Н		
2500	38.80	-0.45	38.35	74	-35.65	peak	Н		
2500	27.38	-0.45	26.93	54	-27.07	AVG	Н		
2483.5	53.61	-1.56	52.05	74	-21.95	peak	V		
2483.5	48.71	-1.56	47.15	54	-6.85	AVG	V		
2500	38.24	-1.50	36.74	74	-37.26	peak	V		
2500	27.52	-1.50	26.02	54	-27.98	AVG	V		

Remark:

- 1. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 2.Mesurement Level = Reading level + Correct Factor, Margin= Mesurement Level Limit Correction Factor= Antenna Factor + Cable loss Pre-amplifier

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 18 of 47

4.6 Emissions in frequency bands (below 1GHz)

Test Requirement:	restricted bands, as define), In addition, radiated emissions ed in § 15.205(a), must also com n § 15.209(a)(see § 15.205(c)).`	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	The emission limits showr employing a CISPR quasi 110–490 kHz and above 1	ve, the tighter limit applies at the in the above table are based or -peak detector except for the fre 000 MHz. Radiated emission lin nts employing an average detec	n measurements quency bands 9–90 kHz, nits in these three bands
Test Method:	ANSI C63.10-2013 section KDB 558074 D01 15.247	n 6.6.4	PU
	360 degrees to determine b. For above 1GHz, the E above the ground at a 3 m degrees to determine the c. The EUT was set 3 or 1 which was mounted on the d. The antenna height is videtermine the maximum vipolarizations of the antenne. For each suspected emittee antenna was tuned to below 30MHz, the antenna was turned from 0 degree f. The test-receiver system Bandwidth with Maximum g. If the emission level of the specified, then testing coureported. Otherwise the entested one by one using preported in a data sheet. h. Test the EUT in the low i. The radiation measurem	r 10 meter semi-anechoic chamber the position of the highest radia UT was placed on the top of a rometer fully-anechoic chamber. The position of the highest radiation. O meters away from the interference top of a variable-height antennearied from one meter to four metalue of the field strength. Both he are set to make the measurer hission, the EUT was arranged to heights from 1 meter to 4 meters a was tuned to heights 1 meter) as to 360 degrees to find the maximum was set to Peak Detect Function Hold Mode. The EUT in peak mode was 10dB and the peak valuations that did not have 10dB eak, quasi-peak or average metalents are performed in X, Y, Z axound the X axis positioning which	tion. Intating table 1.5 meters the table was rotated 360 Ince-receiving antenna, a tower. Iters above the ground to orizontal and vertical ment. In its worst case and then its (for the test frequency of and the rotatable table timum reading. In and Specified Is lower than the limit tes of the EUT would be margin would be rehod as specified and then the Highest channel. Ithe Highest channel. Is positioning for
	Remark:	es until all frequencies measured Hz, through pre-scan found the v	

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 19 of 47

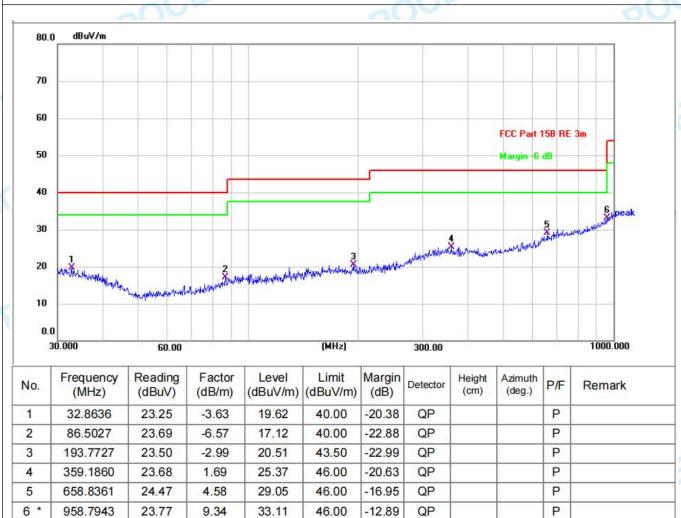
channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

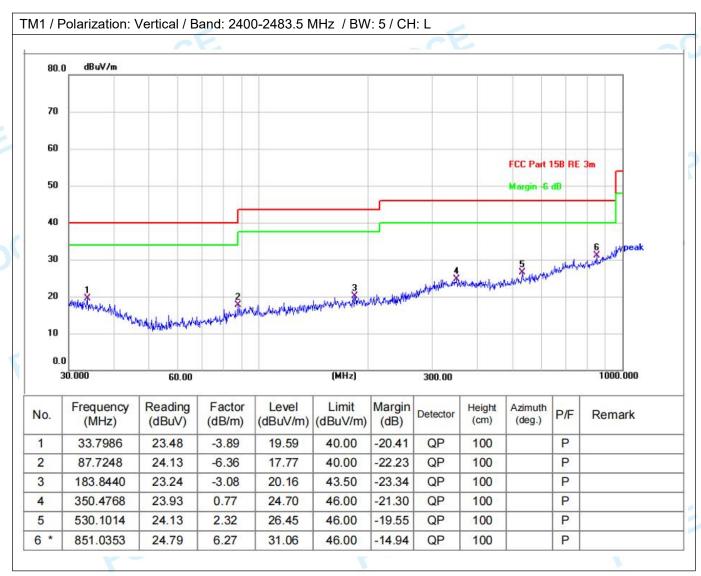
Report No.: POCE240313002RL001

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.6.1 E.U.T. Operation:


Operating Environment:								
Temperature:	23 °C		Humidity:	52.3 %	Atmospheric Pressure:	102 kPa		
Pretest mode:		TM1	DO		PO.			
Final test mode:		TM1						

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 20 of 47



4.6.2 Test Data:

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 5 / CH: L

Remark: Margin= Mesurement Level- Limit

Measurement Level=Test receiver reading + correction factor Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

4.7 Emissions in frequency bands (above 1GHz)

Test Requirement:		ssions which fall in the restricted mply with the radiated emission lic)).`					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	The emission limits show employing a CISPR qua- 110–490 kHz and above	ove, the tighter limit applies at the vn in the above table are based of si-peak detector except for the fr 1000 MHz. Radiated emission li tents employing an average dete	on measurements requency bands 9–90 kHz, imits in these three bands				
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02						
Procedure:	above the ground at a 3 360 degrees to determin b. For above 1GHz, the above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on t d. The antenna height is	EUT was placed on the top of a r or 10 meter semi-anechoic change the position of the highest radice. EUT was placed on the top of a meter fully-anechoic chamber. The position of the highest radiation 10 meters away from the interfection of a variable-height anten varied from one meter to four measure of the field strength. Both	nber. The table was rotated ation. rotating table 1.5 meters the table was rotated 360 n. rence-receiving antenna, na tower. eters above the ground to				
	determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete.						
CE.	Remark: 1) For emission below 1	GHz, through pre-scan found the	e worst case is the lowest				

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 23 of 47

channel. Only the worst case is recorded in the report.

- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.7.1 E.U.T. Operation:

Operating Envir	onment:					E
Temperature:	23 °C		Humidity:	52.3 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1				
Final test mode:		TM1				

4.7.2 Test Data:

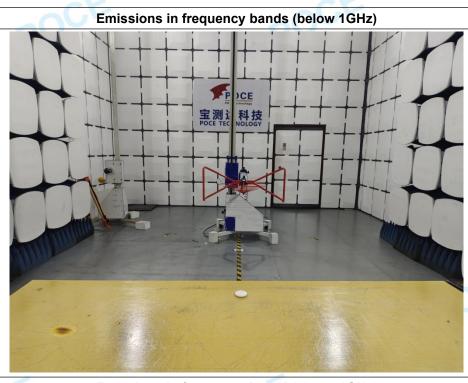
Zigbee--Low Channel:2405MHz

			ngocc Low Ch		_		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4810	53.07	-0.9	52.17	74	-21.83	peak	Н
4810	39.32	-0.9	38.42	54	-15.58	AVG	Н
7215	53.38	4.13	57.51	74	-16.49	peak	Н
7215	40.23	4.13	44.36	54	-9.64	AVG	Н
9620	55.48	8.09	63.57	74	-10.43	peak	Н
9620	42.04	8.09	50.13	54	-3.87	AVG	Н
4810	51.04	-0.9	50.14	74	-23.86	peak	V
4810	39.04	-0.9	38.14	54	-15.86	AVG	V
7215	55.54	4.13	59.67	74	-14.33	peak	V
7215	40.92	4.13	45.05	54	-8.95	AVG	V
9620	54.54	8.09	62.63	74	-11.37	peak	V
9620	41.69	8.09	49.78	54	-4.22	AVG	V

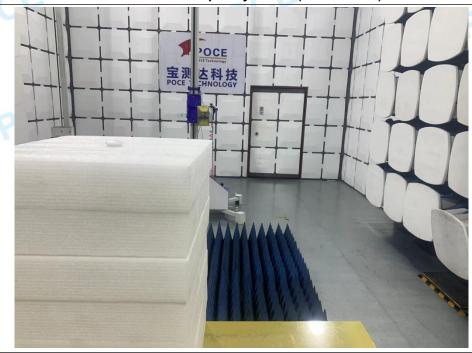
Zigbee--Middle Channel:2440MHz

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.	
(MHz)	$(dB\mu V)$	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Type	H/V	
4880	52.97	-0.64	52.33	74	-21.67	peak	Н	
4880	39.09	-0.64	38.45	54	-15.55	AVG	Н	
7320	55.16	4.31	59.47	74	-14.53	peak	Н	
7320	39.65	4.31	43.96	54	-10.04	AVG	Н	
9760	56.58	8.09	64.67	74	-9.33	peak	Н	
9760	40.44	8.09	48.53	54	-5.47	AVG	Н	
4880	53.40	-0.64	52.76	74	-21.24	peak	V	
4880	38.76	-0.64	38.12	54	-15.88	AVG	V	
7320	55.20	4.31	59.51	74	-14.49	peak	V	
7320	40.86	4.31	45.17	54	-8.83	AVG	V	
9760	54.85	8.09	62.94	74	-11.06	peak	V	
9760	40.39	8.09	48.48	54	-5.52	AVG	V	

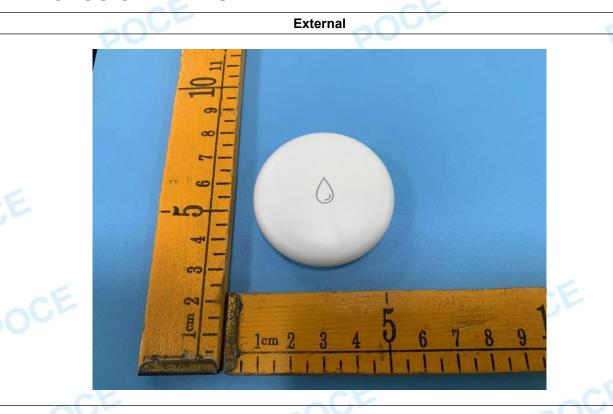
Zigbee--High Channel:2480MHz


Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4960	51.88	-0.37	51.51	74	-22.49	peak	Н
4960	38.94	-0.37	38.57	54	-15.43	AVG	Н
7440	54.45	4.49	58.94	74	-15.06	peak	Н
7440	39.92	4.49	44.41	54	-9.59	AVG	H
9920	53.28	8.08	61.36	74	-12.64	peak	Н
9920	42.17	8.08	50.25	54	-3.75	AVG	Н
4960	52.04	-0.37	51.67	74	-22.33	peak	V
4960	38.65	-0.37	38.28	54	-15.72	AVG	V
7440	52.86	4.49	57.35	74	-16.65	peak	V
7440	39.04	4.49	43.53	54	-10.47	AVG	V
9920	54.04	8.08	62.12	74	-11.88	peak	V
9920	40.70	8.08	48.78	54	-5.22	AVG	V

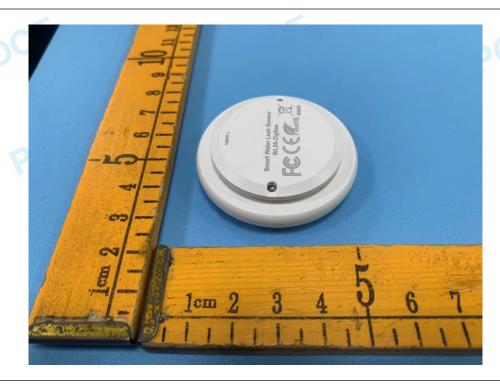
Remark: Margin= Mesurement Level- Limit

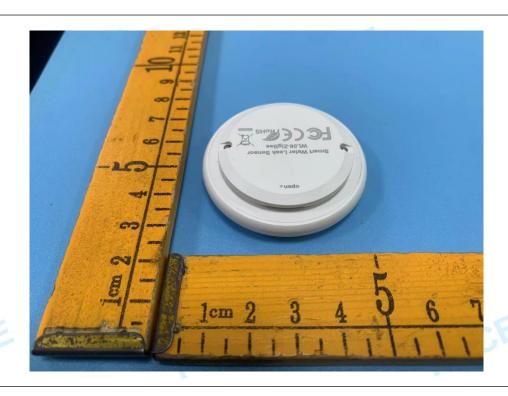

Measurement Level=Test receiver reading + correction factor Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

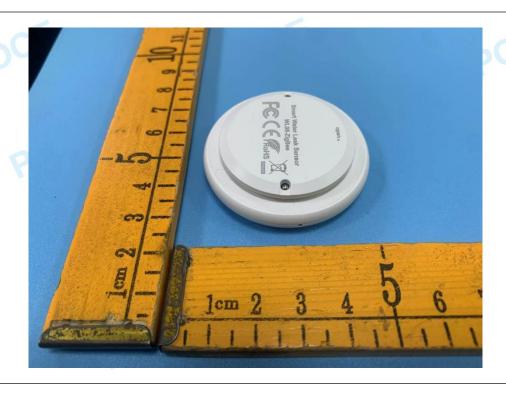
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 25 of 47

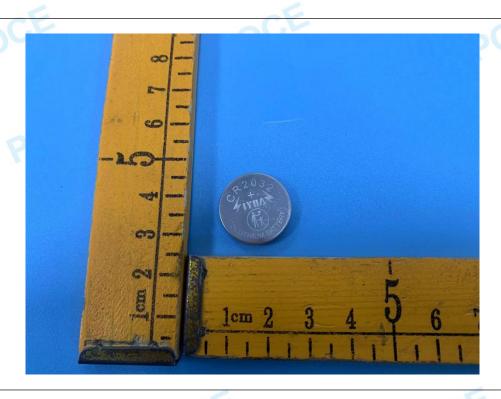

5 TEST SETUP PHOTOS

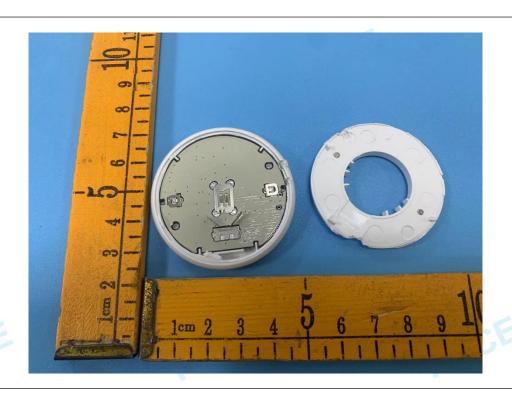
Emissions in frequency bands (above 1GHz)

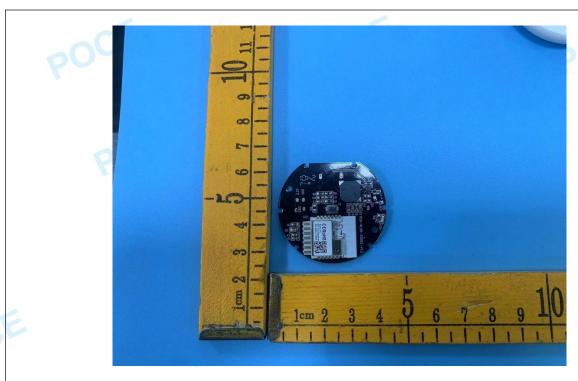

6 PHOTOS OF THE EUT

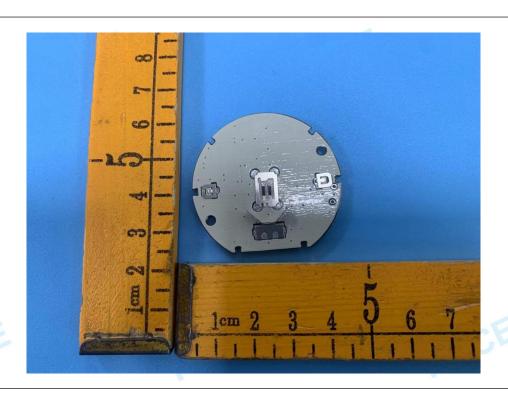


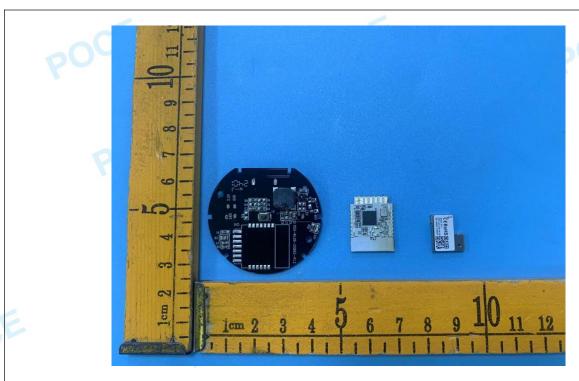


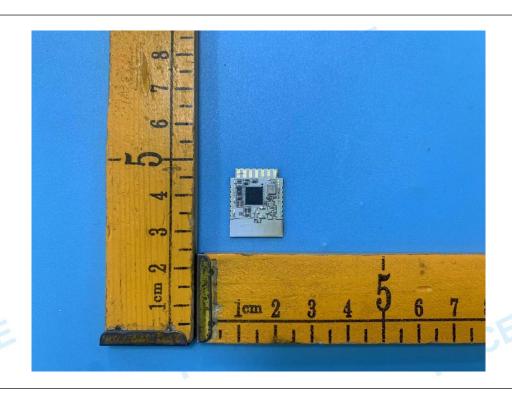


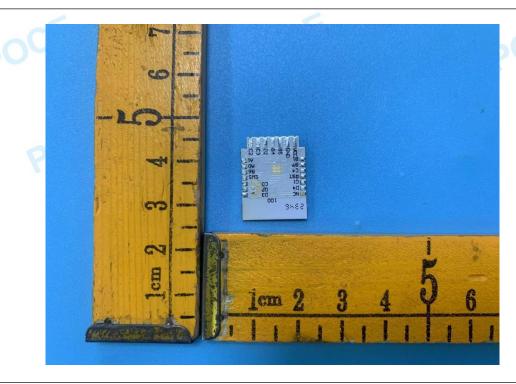


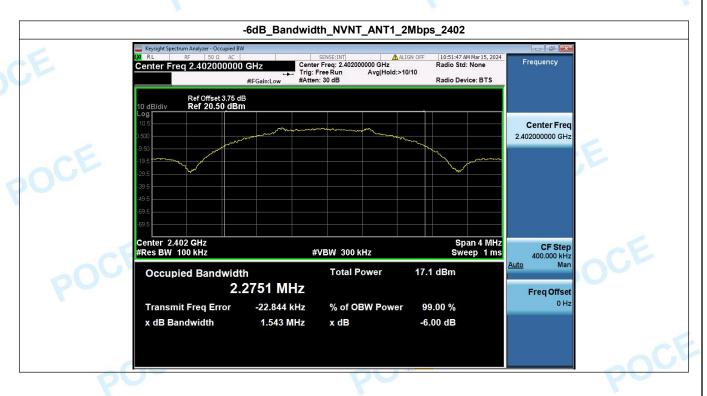


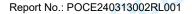




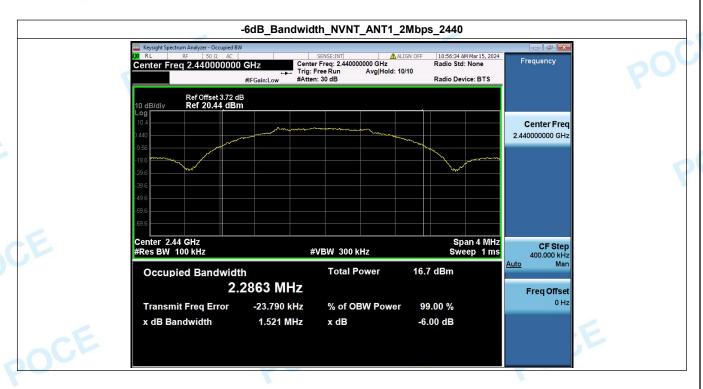




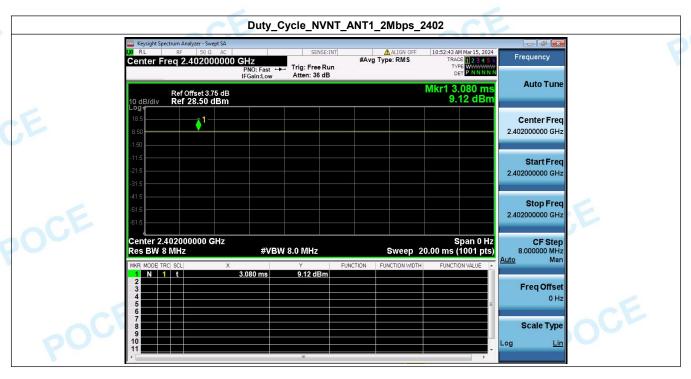


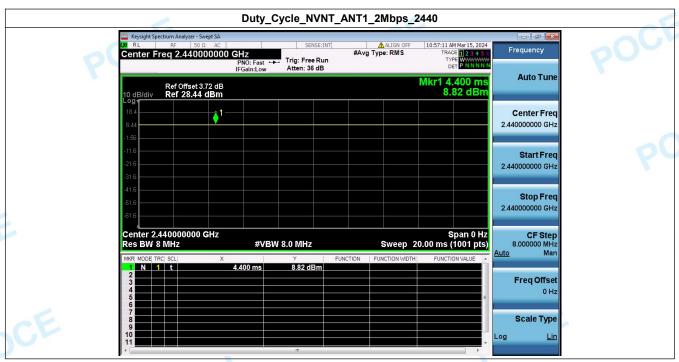

Appendix •••••

Smart Water Leak Detector--RSH-WL08--FCC FCC_BLE (Part15.247) Test Data


1. -6dB Bandwidth

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	2Mbps	2402.00	1542.94	500	Pass
NVNT	ANT1	2Mbps	2440.00	1521.47	500	Pass
NVNT	ANT1	2Mbps	2480.00	1346.03	500	Pass

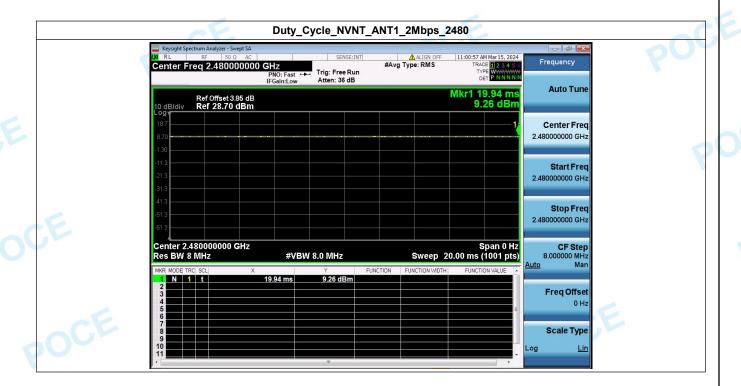




2. Duty Cycle

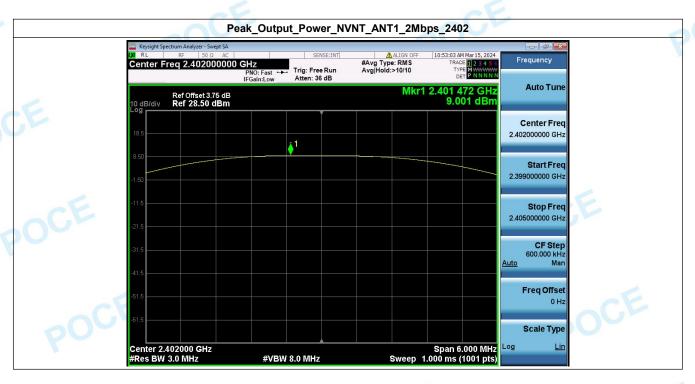
V1.0

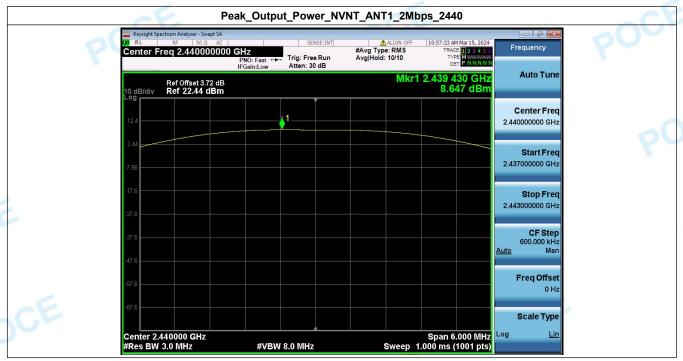
Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	2Mbps	2402.00	100	0.00
NVNT	ANT1	2Mbps	2440	100	0.00
NVNT	ANT1	2Mbps	2480	100	0.00



101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 37 of 47

V1.0


101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 38 of 47

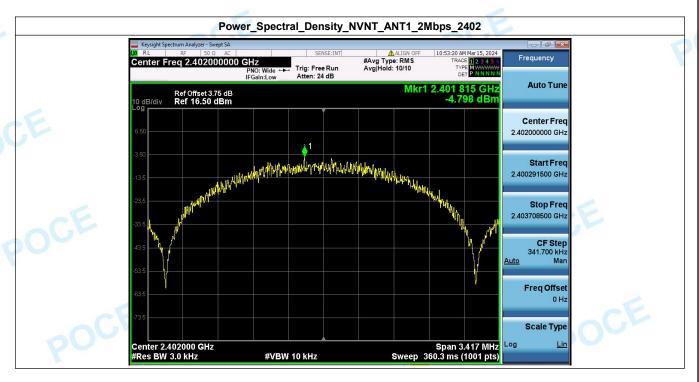


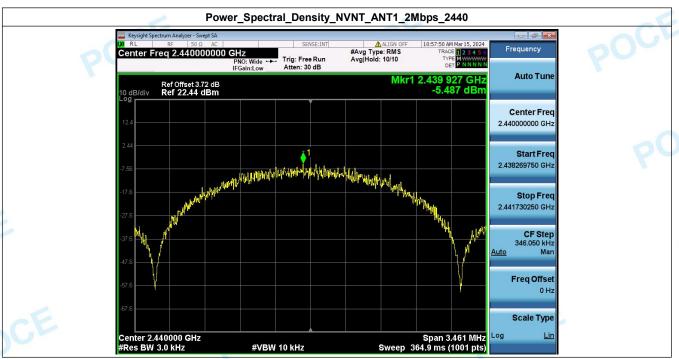
3. Peak Output Power

V1.0

Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	2Mbps	2402.00	9.00	7.95	1000	Pass
NVNT	ANT1	2Mbps	2440	8.65	7.32	1000	Pass
NVNT	ANT1	2Mbps	2480	9.18	8.29	1000	Pass

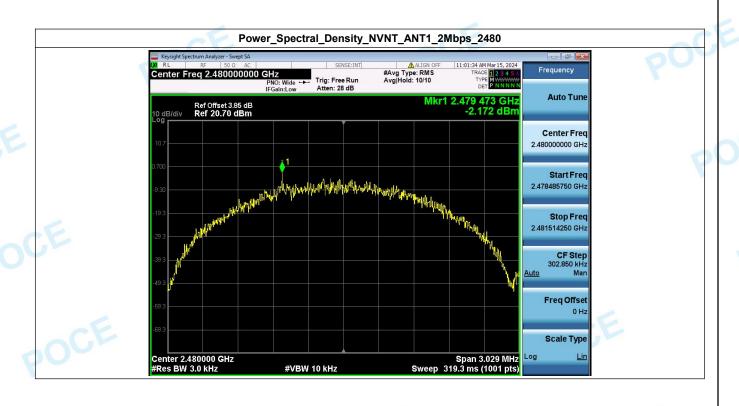
Peak_Output_Power_NVNT_ANT1_2Mbps_2480



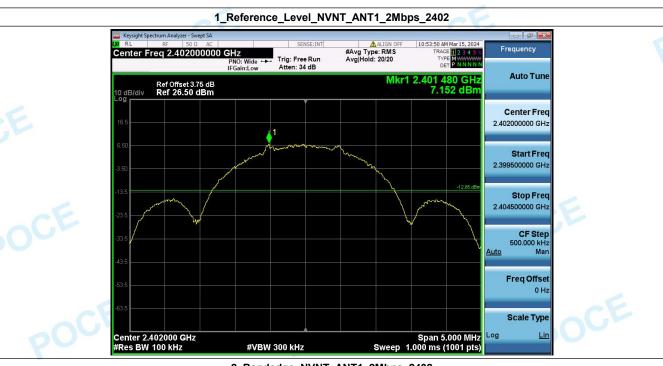


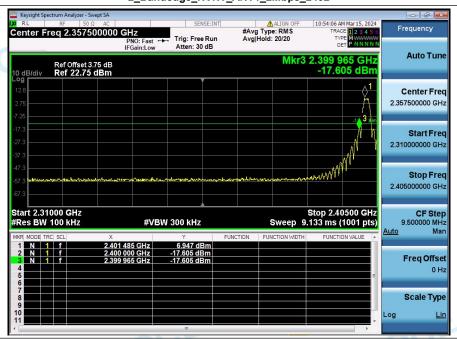
4. Power Spectral Density

V1.0


Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm)	Limit(dBm/3kHz)	Result
NVNT	ANT1	2Mbps	2402.00	-4.80	8	Pass
NVNT	ANT1	2Mbps	2440	-5.49	8	Pass
NVNT	ANT1	2Mbps	2480	-2.17	8	Pass

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 41 of 47

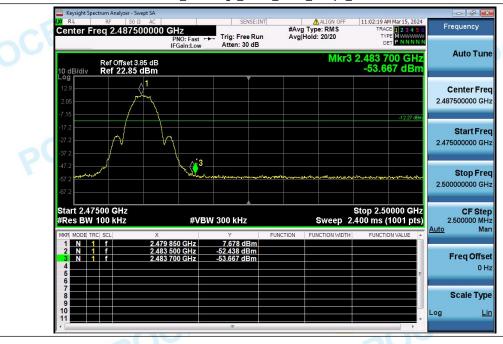



5. Bandedge

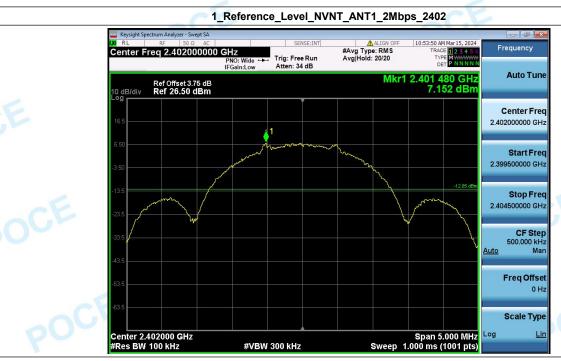
V1.0

Condition	Antenna	Rate	TX_Frequency (MHz)	Max. Mark Frequency (MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	2Mbps	2402.00	2399.965	-17.605	-12.848	Pass
NVNT	ANT1	2Mbps	2480	2483.700	-53.667	-12.274	Pass

2_Bandedge_NVNT_ANT1_2Mbps_2402



101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 43 of 47




6. Spurious Emission

Condition	Antenna	Rate	TX_Frequency(MHz)	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	2Mbps	2402.00	-40.472	-12.848	Pass
NVNT	ANT1	2Mbps	2440	-39.409	-13.207	Pass
NVNT	ANT1	2Mbps	2480	-40.976	-12.274	Pass

2_Spurious_Emission_NVNT_ANT1_2Mbps_2402

V1.0

