

FCC Test Report

Test Report On Behalf of ShenZhen RiShengHua Technology Co., Ltd For smart tag Model No.: RSH-iTag 09

FCC ID: 2A9K2-RSH-ITAG09

Prepared For: ShenZhen RiShengHua Technology Co., Ltd Floor 2, building E1, qiangrong East Industrial Zone, No. 723, Zhoushi Road, Jiuwei community, Hangcheng street, Bao'an District, Shenzhen, China

Prepared By:Shenzhen DL Testing Technology Co., Ltd.101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial
Zone, Baolong Street, Longgang District, Shenzhen, Guangdong, China

Date of Test: May 15, 2024 ~ May 22, 2024

Date of Report: May 22, 2024

Report Number: DL-240604003ER

Test Result Certification

Applicant's Name	ShenZhen RiShengHua Technology Co., Ltd
Address:	Floor 2, building E1, qiangrong East Industrial Zone, No. 723, Zhoushi Road, Jiuwei community, Hangcheng street, Bao'an District, Shenzhen, China
Manufacturer's Name:	ShenZhen RiShengHua Technology Co., Ltd
Address:	Floor 2, building E1, qiangrong East Industrial Zone, No. 723, Zhoushi Road, Jiuwei community, Hangcheng street, Bao'an District, Shenzhen, China
Product Description	
Trade Mark:	RSH
Product Name:	smart tag
Model and/or Type Reference:	RSH-iTag 09
Standards	47 CFR FCC Part 15 Subpart C 15.247 KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen DL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen DL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of Performance of Tests	May 15, 2024 ~ May 22, 2024
Date of Issue	May 22, 2024
Test Result	Pass

Testing Engineer

Randy Xie

Randy Xie

Technical Manager Authorized Signatory

Shenzhen DL Testing Technology Co., Ltd.

	Contents	Page
1 1	Test Summary	5
1.1	Test Description	5
1.2	Measurement Uncertainty	
1.3	Information of the Test Laboratory	
2 0	General Information	7
2.1	General Description of EUT	7
2.2	Description of Test Conditions	
2.3	Description of Test Setup	10
2.4	Description of Support Units	11
3 E	Equipments List for All Test Items	
4 1	Test Result	
4.1	Antenna Requirement	
4.2	Conduction Emissions Measurement	
4.3	Radiated Emissions Measurement	
4.4	Maximum Output Power Measurement	
4.5	Power Spectral Density	
4.6	6dB Bandwidth	
4.7	Occupied Bandwidth	
4.8	Band Edge	
4.9	Conducted Spurious Emissions	
5 1	Test Setup Photos	
6 F	Photos of the EUT	

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	May 22, 2024	

1 Test Summary

1.1 Test Description

Test Item	Test Requirement	Result
Antenna Requirement	§15.203/§15.247(b)(4)	PASS
Conducted Emission	FCC Part 15.207	N/A
Radiated Emissions	FCC Part 15.205/15.209	PASS
Maximum Peak Output Power	FCC Part 15.247(b)	PASS
Power Spectral Density	FCC Part 15.247(e)	PASS
6dB Bandwidth & 99% Bandwidth	FCC Part 15.247(a)(2)	PASS
Spurious RF Conducted Emission	FCC Part 15.247(d)	PASS
Band Edge	FCC Part 15.247(d)	PASS

1.2 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.71dB
2	All emissions, radiated(<1G)	±3.90dB
3	All emissions, radiated(>1G)	±4.28dB

1.3 Information of the Test Laboratory

Shenzhen DL Testing Technology Co., Ltd.

Add.: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Street, Longgang District, Shenzhen, Guangdong, China

Testing Laboratory Authorization: FCC Test Firm Registration Number: 854456 Designation Number: CN1307 IC Registered No.: 27485 CAB ID.: CN0118

2 General Information

2.1 General Description of EUT

EUT Name:	smart tag
Model No:	RSH-iTag 09
Series Model:	N/A
Model Difference:	N/A
Trade Mark:	RSH
Operation Frequency:	2402 MHz to 2480 MHz
Channel Separation:	2MHz
Number of Channel:	40
Modulation Technology:	GFSK
Hardware Version:	V1.0
Software Version:	V1.0
Antenna Type:	Ceramic Antenna
Antenna Gain:	3dBi
Power Supply:	DC3V from battery
Note:	
1. For a more detailed feat	ures description, please refer to the manufacturer's specifications or

1. For a more detailed features description, please refer to the manufacturer's specifications of the User's Manual.

- 2. Antenna gain Refer to the antenna specifications.
- 3. The cable loss data is obtained from the supplier.
- 4. The test results in the report only apply to the tested sample.

Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-240604003ER

Description of Channel						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
0	2402	14	2430	28	2458	
1	2404	15	2432	29	2460	
2	2406	16	2434	30	2462	
3	2408	17	2436	31	2464	
4	2410	18	2438	32	2466	
5	2412	19	2440	33	2468	
6	2414	20	2442	34	2470	
7	2416	21	2444	35	2472	
8	2418	22	2446	36	2474	
9	2420	23	2448	37	2476	
10	2422	24	2450	38	2478	
11	2424	25	2452	39	2480	
12	2426	26	2454			
13	2428	27	2456			

The EUT has been operated in modulations: GFSK independently.

No.	Test Mode Description
1	Low channel TX
2	Middle channel TX
3	High channel TX
Note:	

1. All the test modes can be supply by button battery, only the result of the worst case was recorded in the report if no any records.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

2.2 Description of Test Conditions

(1) E.U.T. test conditions:

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

- (2) Frequency range of radiated measurements:The test range will be up to the tenth harmonic of the highest fundamental frequency.
- (3) Pre-test the EUT in all transmitting mode at the lowest (2402 MHz), middle (2440 MHz) and highest (2480 MHz) channel with different data packet and conducted to determine the worst-case mode, only the worst-case results are recorded in this report.
- (4) Mode Test Duty Cycle

Mode	Duty Cycle	Duty Cycle Factor (dB)
BT-LE(1Mbps)	0.872	-0.595

Center Freq 2.40200000	PNO: Fast ↔ Trig: Video	ms #Avg Type: RMS	05:45:40 PM May 17, 2024 TRACE 1 2 3 4 5 6 TYPE WHILE A 5 P P P P P DET P P P P P P P	Frequency
Ref Offset 8.74 dB 10 dB/div Ref 30.00 dBm	IFGain:Low #Atten: 40 dB	Δ	Mkr3 2.500 ms 0.00 dB	Auto Tune
20 0 10 0 0.00	∲ ¹		2Δ1 3Δ1 1790 LVL	Center Freq 2.402000000 GHz
00	In the Alle		ng patra	Start Freq 2.402000000 GHz
40.0 50.0 60.0				Stop Freq 2.402000000 GHz
Center 2.402000000 GHz Les BW 8 MHz		Sweep 5	Span 0 Hz .000 ms (8000 pts) FUNCTION VALUE	CF Step 8.000000 MHz <u>Auto</u> Man
1 N 1 t 2 Δ1 1 t (Δ) 3 Δ1 1 t (Δ) 4 5 - - 6 - - - 7 - - - 8 - - -	2.000 ms 5.74 dBm 2.180 ms (Δ) − 0.07 dB 2.500 ms (Δ) − 0.00 dB			Freq Offset 0 Hz
9				

2.3 Description of Test Setup

Operation of EUT during Radiation testing:

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

2.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Trade Mark	Model/Type No.	Specification	Note
1	smart tag	RSH	RSH-iTag 09	N/A	EUT

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

3 Equipments List for All Test Items

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	Agilent	E4408B	MY50140780	Nov. 04, 2023	Nov. 03, 2024
2	Test Receiver (9kHz-7GHz)	R&S	ESRP7	101393	Nov. 04, 2023	Nov. 03, 2024
3	Bilog Antenna (30MHz-1GHz)	R&S	VULB9162	00306	Nov. 04, 2023	Nov. 03, 2024
4	Horn Antenna (1GHz-18GHz)	Schwarzbeck	BBHA9120D	02139	Nov. 04, 2023	Nov. 03, 2024
5	Horn Antenna (18GHz-40GHz)	A.H. Systems	SAS-574	588	Nov. 04, 2023	Nov. 03, 2024
6	Amplifier (9KHz-6GHz)	Schwarzbeck	BBV9743B	00153	Nov. 04, 2023	Nov. 03, 2024
7	Amplifier (1GHz-18GHz)	EMEC	EM01G8GA	00270	Nov. 04, 2023	Nov. 03, 2024
8	Amplifier (18GHz-40GHz)	Quanjuda	DLE-161	97	Nov. 04, 2023	Nov. 03, 2024
9	Loop Antenna (9KHz-30MHz)	Schwarzbeck	FMZB1519B	00014	Nov. 04, 2023	Nov. 03, 2024
10	RF cables1 (9kHz-1GHz)	ChengYu	966	004	Nov. 04, 2023	Nov. 03, 2024
11	RF cables2 (1GHz-40GHz)	ChengYu	966	003	Nov. 04, 2023	Nov. 03, 2024
12	Antenna connector	Florida RF Labs	N/A	RF 01#	Nov. 04, 2023	Nov. 03, 2024
13	Power probe	KEYSIGHT	U2021XA	MY55210018	Nov. 04, 2023	Nov. 03, 2024
14	Signal Analyzer 9kHz-26.5GHz	Agilent	N9020A	MY55370280	Nov. 04, 2023	Nov. 03, 2024
15	Test Receiver 20kHz-40GHz	R&S	ESU 40	100376	Nov. 04, 2023	Nov. 03, 2024
16	D.C. Power Supply	LongWei	PS-305D	010964729	Nov. 04, 2023	Nov. 03, 2024

Conduction Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	843 Shielded Room	ChengYu	843 Room	843	Sep. 20, 2022	Sep. 19, 2025
2	EMI Receiver	R&S	ESR	101421	Nov. 04, 2023	Nov. 03, 2024
3	LISN	R&S	ENV216	102417	Nov. 04, 2023	Nov. 03, 2024
4	843 Cable 1#	ChengYu	CE Cable	001	Nov. 04, 2023	Nov. 03, 2024
5	10dB Attenuator	Schwarzbeck	VTSD9561F	00154	Nov. 04, 2023	Nov. 03, 2024

Other

Item	Name	Manufacturer	Model	Software version
1	EMC Conduction Test System	FALA	EZ_EMC	EMC-CON 3A1.1
2	EMC radiation test system	FALA	EZ_EMC	FA-03A2
3	RF test system	MAIWEI	MTS8310	2.0.0.0
4	RF communication test system	MAIWEI	MTS8200	2.0.0.0

4 Test Result

4.1 Antenna Requirement

4.1.1 Standard Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Ceramic Antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 3dBi.

4.1.2 EUT Antenna

4.2 Conduction Emissions Measurement

4.2.1 Applied Procedures / Limit

According to FCC CFR Title 47 Part 15 Subpart C Section 15.207, AC Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus as below:

	Limit (dBuV)			
Frequency range (MHz)	Limit (dBu Quasi-peak 66 to 56* 56 60	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

* Decreases with the logarithm of the frequency.

4.2.2 Test Procedure

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

4.2.3 Test Setup

LISN: Line Impedence Stabilization Network Test table height=0.8m

4.2.4 Test Results

Not applicable.

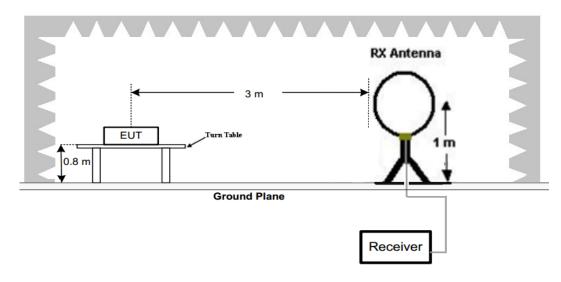
Note: EUT Power Supply by Battery Powered, so this test item not applicable.

4.3 Radiated Emissions Measurement

4.3.1 Applied Procedures / Limit

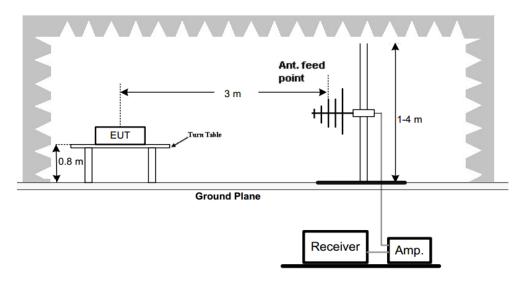
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Except when the requirements applicable to a given device state otherwise, emissions from license-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

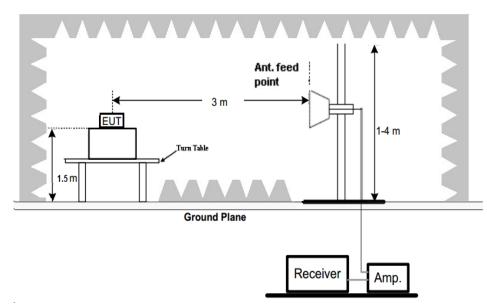

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)					
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)					
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)					
1.705-30	3	20log(30)+ 40log(30/3)	30					
30-88	3	40.0	100					
88-216	3	43.5	150					
216-960	3	46.0	200					
Above 960	3	54.0	500					

Radiated emission limits

4.3.2 Test Setup


Test Configuration:

1) 9 kHz to 30 MHz emissions:



2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 25 GHz emissions:

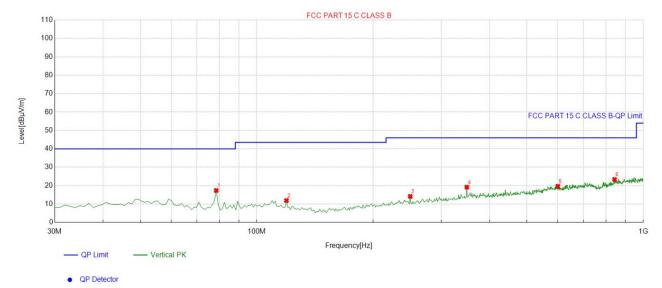
Test Procedure

- 1. The EUT was placed on turn table which is 0.8m above ground plane for below 1GHz test, and on a low permittivity and low loss tangent turn table which is 1.5m above ground plane for above 1GHz test.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0 degrees to 360 degrees to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

4.3.3 Test Result

Below 1GHz Test Results:

All modes have been tested, only the worst mode of GFSK Low channel TX is reflected.



Suspe	cted List								
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	49.419419	-13.14	25.24	12.10	40.00	27.90	100	239	Horizontal
2	108.64864	-14.02	24.44	10.42	43.50	33.08	100	164	Horizontal
3	165.93593	-17.41	25.31	7.90	43.50	35.60	100	128	Horizontal
4	349.44944	-10.04	26.85	16.81	46.00	29.19	100	167	Horizontal
5	634.91491	-5.06	26.82	21.76	46.00	24.24	100	134	Horizontal
6	945.62562	-0.53	24.90	24.37	46.00	21.63	100	56	Horizontal

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

Shenzhen DL Testing Technology Co., Ltd.

Antenna polarity: V

Suspe	Suspected List										
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle			
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	78.548549	-17.92	35.29	17.37	40.00	22.63	100	124	Vertical		
2	119.32932	-15.94	27.84	11.90	43.50	31.60	100	299	Vertical		
3	249.43943	-13.41	27.57	14.16	46.00	31.84	100	335	Vertical		
4	349.44944	-10.04	29.22	19.18	46.00	26.82	100	130	Vertical		
5	600.93093	-5.28	24.93	19.65	46.00	26.35	100	340	Vertical		
6	842.70270	-1.79	25.14	23.35	46.00	22.65	100	219	Vertical		

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)

Note: 1. Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

For 1GHz to 25GHz

CH Low (2402MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type			
4804.00	56.29	-3.65	52.64	74.00	-21.36	peak			
4804.00	46.11	-3.65	42.46	54.00	-11.54	AVG			
7206.00	54.26	-0.95	53.31	74.00	-20.69	peak			
7206.00	43.34	-0.95	42.39	54.00	-11.61	AVG			
	Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor;								
Margin = Leve	I-Limit.								

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4804.00	56.23	-3.65	52.58	74.00	-21.42	peak		
4804.00	46.09	-3.65	42.44	54.00	-11.56	AVG		
7206.00	54.27	-0.95	53.32	74.00	-20.68	peak		
7206.00	44.31	-0.95	43.36	54.00	-10.64	AVG		
Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.								

CH Middle (2440MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4880.00	55.42	-3.54	51.88	74.00	-22.12	peak		
4880.00	46.58	-3.54	43.04	54.00	-10.96	AVG		
7320.00	52.09	-0.81	51.28	74.00	-22.72	peak		
7320.00	42.84	-0.81	42.03	54.00	-11.97	AVG		
	Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.							

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880.00	56.91	-3.54	53.37	74.00	-20.63	peak
4880.00	45.42	-3.54	41.88	54.00	-12.12	AVG
7320.00	53.03	-0.81	52.22	74.00	-21.78	peak
7320.00	43.25	-0.81	42.44	54.00	-11.56	AVG
Remark: Facto Margin = Leve		- Antenna facto	r + Attenuator – P	reamplifier; Level	= Reading + I	Factor;

CH High (2480MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960.00	56.33	-3.43	52.90	74.00	-21.10	peak
4960.00	44.16	-3.44	40.72	54.00	-13.28	AVG
7440.00	52.89	-0.77	52.12	74.00	-21.88	peak
7440.00	43.35	-0.77	42.58	54.00	-11.42	AVG
Remark: Facto Margin = Level		 Antenna facto 	or + Attenuator – P	reamplifier; Level	= Reading + I	Factor;

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960.00	55.06	-3.43	51.63	74.00	-22.37	peak
4960.00	44.17	-3.44	40.73	54.00	-13.27	AVG
7440.00	53.58	-0.77	52.81	74.00	-21.19	peak
7440.00	42.21	-0.77	41.44	54.00	-12.56	AVG
Remark: Facto Margin = Leve		- Antenna facto	or + Attenuator – P	reamplifier; Level	= Reading + I	Factor;

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.</p>
(7) All modes of operation were investigated and the worst-case emissions are reported.

Radiated Band Edge Test:

Operation Mode: TX CH Low (2402MHz)

Horizontal (Worst case):

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	56.13	-5.81	50.32	74	-23.68	peak
2310.00	/	-5.81	/	54	/	AVG
2390.00	55.29	-5.84	49.45	74	-24.55	peak
2390.00	/	-5.84	/	54	/	AVG
2400.00	55.16	-5.84	49.32	74	-24.68	peak
2400.00	/	-5.84	/	54	/	AVG
Remark: Facto Margin = Leve		- Antenna facto	or + Attenuator – P	reamplifier; Level	= Reading +	Factor;

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	54.14	-5.81	48.33	74	-25.67	peak
2310.00	/	-5.81	/	54	/	AVG
2390.00	54.25	-5.84	48.41	74	-25.59	peak
2390.00	/	-5.84	/	54	/	AVG
2400.00	55.59	-5.84	49.75	74	-24.25	peak
2400.00	/	-5.84	/	54	/	AVG
Remark: Facto Margin = Leve		- Antenna facto	r + Attenuator – P	reamplifier; Level	= Reading + I	Factor;

Operation Mode: TX CH High (2480MHz)

Horizontal (Worst case):

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	53.65	-5.81	47.84	74	-26.16	peak
2483.50	/	-5.81	/	54	/	AVG
2500.00	52.29	-6.06	46.23	74	-27.77	peak
2500.00	/	-6.06	/	54	/	AVG
Remark: Facto Margin = Leve		- Antenna facto	r + Attenuator – P	reamplifier; Level	= Reading + I	Factor;

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	53.36	-5.81	47.55	74	-26.45	peak
2483.50	/	-5.81	/	54	/	AVG
2500.00	52.11	-6.06	46.05	74	-27.95	peak
2500.00	/	-6.06	/	54	/	AVG
Remark: Facto Margin = Leve		- Antenna facto	r + Attenuator – P	reamplifier; Level	= Reading + I	Factor;
Remark: All the	e other emissior	ns not reported	were too low to re	ead and deemed to	comply with	FCC limit.

Remark:

1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.

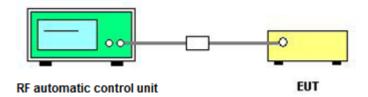
3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4.4 Maximum Output Power Measurement

4.4.1 Limit

The Maximum Peak Output Power Measurement is 30dBm.

4.4.2 Test Procedure


The maximum peak conducted output power may be measured using a broadband peak RF automatic control unit. The RF automatic control unit shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The maximum Average conducted output power may be measured using a wideband RF automatic control unit with a thermocouple detector or equivalent. The RF automatic control unit shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

4.4.3 Deviation from Standard

No deviation.

4.4.4 Test Setup

4.4.5 Test Results

Channel	Channel Frequency (Mhz)	Maximum Peak Conducted Output Power (dBm)	Limit (dBm)	Result
Low	2402	-6.12		Pass
Middle	2440	-6.54	30.00	Pass
High	2480	-6.70		Pass

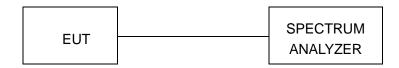
Note: The test results including the cable loss.

4.5 Power Spectral Density

4.5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

4.5.2 Test Procedure


Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

Set the RBW =10 kHz. Set the VBW =30 KHz. Set the span to 1.5 times the DTS channel bandwidth. Detector = peak. Sweep time = auto couple. Trace mode = max hold. Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat. The resulting peak PSD level must be 8 dBm.

4.5.3 Deviation from Standard

No deviation.

4.5.4 Test Setup

4.5.5 Test Results

Channel	Channel frequency (MHz)	Result (dBm/10kHz)	10log (3/10)	Test Result (dBm/3kHz)
Low	2402	-16.05	-5.23	-21.28
Middle	2440	-16.68	-5.23	-21.91
High	2480	-17.03	-5.23	-22.26
Limit : 8dBm/3	KHz			
Test Result (dl	3m/3kHz)= Resu	lt (dBm/10kHz)+	10log (3/10)	
Test Result		PA	SS	

CH 19

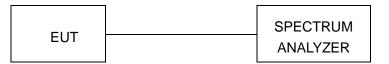
4.6 6dB Bandwidth

4.6.1 Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

4.6.2 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300 KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.


- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.6.3 Deviation from Standard

No deviation.

4.6.4 Test Setup

4.6.5 Test Result

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Limit (KHz)	Result
Low	2402	0.688		Pass
Middle	2440	0.704	≥500	Pass
High	2480	0.680		Pass

CH 00

CH 39

4.7 Occupied Bandwidth

4.7.1 Test Procedure

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

RBW=1% to 5% of the OBW

VBW=approximately 3 X RBW

Detector=Peak


Trace Mode: Max Hold

Use the 99% power bandwidth function of the instrument to measure the Occupied Bandwidth and recorded.

4.7.2 Deviation from Standard

No deviation.

4.7.3 Test Setup

4.7.4 Test Result

N/A

4.8 Band Edge

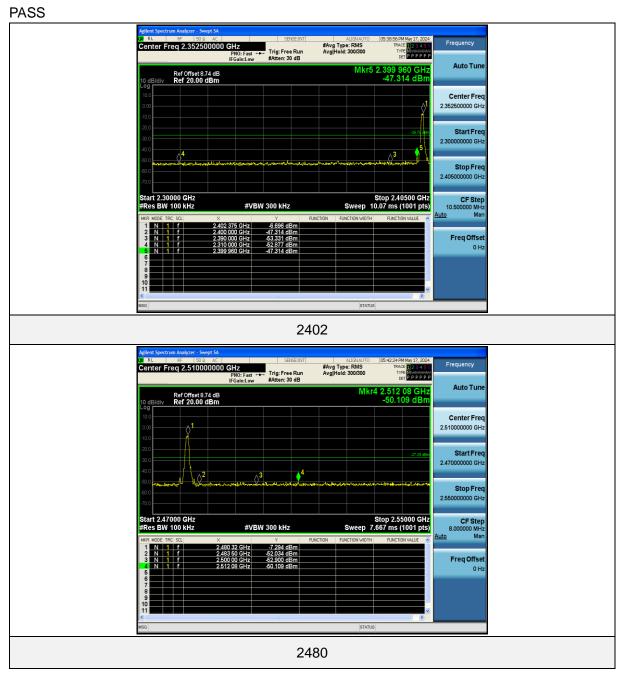
4.8.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under FCC rules in section 5.8.1, the attenuation required shall be 30 dB instead of 20 dB.

4.8.2 Test Procedure

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation, $RBW \ge 1\%$ of the span, $VBW \ge RBW$, Sweep = auto, Detector function = peak, Trace = max hold.

4.8.3 Deviation from Standard


No deviation.

4.8.4 Test Setup

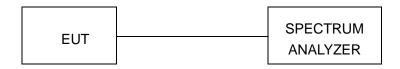
4.8.5 Test Results

highest emission level-20-10log(100/1) = the highest emission level-40.

4.9 Conducted Spurious Emissions

4.9.1 Applied Procedures / Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section (b)(3) of RSS 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. For below 30MHz, For 9KHz-150kHz,150K-10MHz, We use the RBW 1KHz,10KHz, So the limit need to calculated by "10lg(BW1/BW2)". For example For 9KHz-150kHz, RBW 1KHz, The Limit = the


4.9.2 Test Procedure

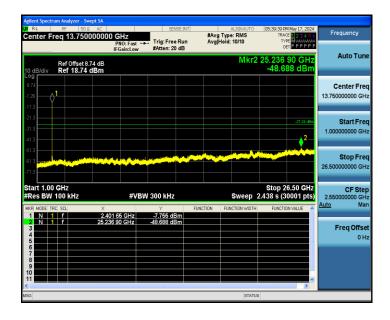
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation, RBW ≥ 1% of the span, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.

4.9.3 Deviation from Standard

No deviation.

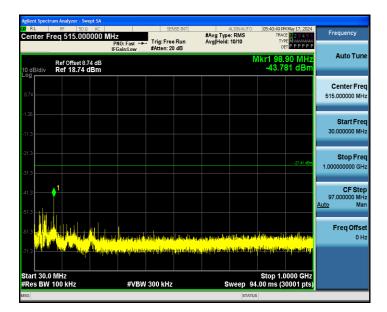
4.9.4 Test Setup

4.9.5 Test Results



RL		Ω AC		SEP	ISE:INT		LIGNAUTO	05:39:06 PM M		Farmers
enter F	req 515.00	00000 MI	Z PNO: Fast →	, Trig: Free	Run	#Avg Type Avg Hold:		TYPE	123456 Ministration	Frequency
			FGain:Low	#Atten: 20				DET	P P P P P P	
	Ref Offset 8	3.74 dB						Mkr1 71.9		Auto Tun
0 dB/div og	Ref 18.74	dBm						-51.901	IdBm	
- 3										Center Fre
.74										515.000000 MH
										010.0000001
26										
										Start Fre
1.3										30.000000 Mi
I.3										Stop Fr
									-27.24 dBm	1.000000000 GI
1.3										
1.3										CF Ste 97.000000 Mi
1										<u>Auto</u> Ma
1.3										
<u>н</u> и.										Freq Offs
1.3 <mark>- 1</mark> . 1		18 . 10 . 1	L	ويتألون والمراو	في المعاملة	وأفريا أيليا أيراسه	بالأف أدعيتما	an day in the state	and a star	01
. John			al shirts over		1.1.1.1.1			and brief a ballog to all		
1.3	- p - m	(). Harrison ()	a state of the sta	and the second	and the second second	A REAL PROPERTY.	nh. 1 4 14 -	erder klandrega		
tart 30.0								Stop 1.00	00 GHz	
Res BW	100 kHz		#VBW	/ 300 kHz		S	veep 9	4.00 ms (30)	001 pts)	

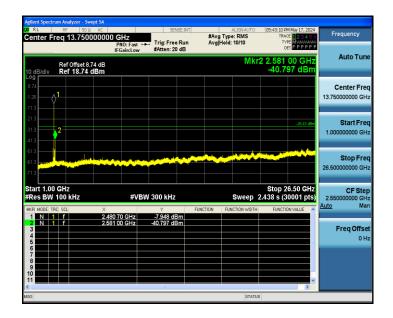
Shenzhen DL Testing Technology Co., Ltd.



Shenzhen DL Testing Technology Co., Ltd.

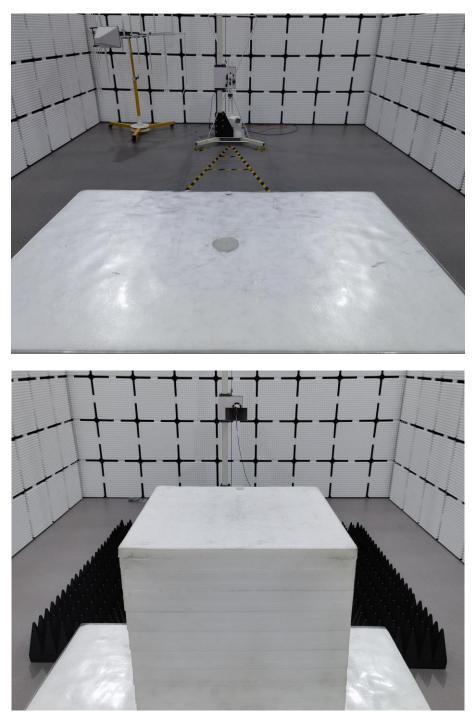
Report No.: DL-240604003ER

RL		2 AC		SENSE: INT		ALIGNAUTO	05:41:22 PM Ma		
enter Fr	req 13.750	000000 GHz PNO: F IFGain:	Fast 🛶 Tri	g: Free Run tten: 20 dB		Type: RMS Hold: 10/10	TYPE	23456 ////////////////////////////////////	Frequency
dB/div	Ref Offset 8 Ref 18.74	.74 dB dBm				Mkr2	25.732 45 -48.621		Auto Tur
.74									Center Fr
26) ¹								13.750000000 G
								-27.41 dBm	Start Fr
.3									1.000000000 G
								2	1.00000000 G
.3					al velteret.			2	
.3 .3 .3					,			2 ••••	Stop Fr
.3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	GHz 100 kHz		#VBW 300) kHz		Sweep 2	Stop 26.5		Stop Fr 26.50000000 G CF St
art 1.00 Res BW	100 kHz	X	1	Y	FUNCTION	Sweep 2		01 pts)	Stop Fr 26.50000000 G CF St 2.55000000 G
art 1.00 Res BW	100 kHz	× 2.440 75 Gi	Hz -7.8	Y 825 dBm	FUNCTION	· ·	2.438 s (300	01 pts)	Stop Fr 26.50000000 G CF St 2.55000000 G
I.3 I.3 I.3 I.3 I.3 I.3 I.3 I.3 I.3 I.3	100 kHz	X	Hz -7.8	Y	FUNCTION	· ·	2.438 s (300	01 pts)	Stop Fr 26.50000000 G CF St 2.55000000 G Auto M
I.3 I.3 I.3 I.3 I.3 I.3 I.3 I.3 I.3 I.3	100 kHz	× 2.440 75 Gi	Hz -7.8	Y 825 dBm	FUNCTION	· ·	2.438 s (300	01 pts)	Stop Fr 26.50000000 G CF St 2.55000000 G <u>Auto</u> M Freq Offs
I.3 I.3 I.3 I.3 I.3 I.3 I.3 I.3 I.3 I.3	100 kHz	× 2.440 75 Gi	Hz -7.8	Y 825 dBm	FUNCTION	· ·	2.438 s (300	01 pts)	Stop Fr 26.50000000 G CF St 2.55000000 G <u>Auto</u> M Freq Offs
I.3 I.3 I.3 I.3 I.3 I.3 I.3 I.3 I.3 I.3	100 kHz	× 2.440 75 Gi	Hz -7.8	Y 825 dBm	FUNCTION	· ·	2.438 s (300	01 pts)	Stop Fr 26.50000000 G CF St 2.55000000 G
I.3 I.3 I.3 I.3 I.3 I.3 I.3 I.3	100 kHz	× 2.440 75 Gi	Hz -7.8	Y 825 dBm	FUNCTION	· ·	2.438 s (300	01 pts)	Stop Fr 26.50000000 G CF St 2.55000000 G <u>Auto</u> M Freq Offs



CH 39

RL		IQ AC		SEP	ISE:INT		ALIGNAUTO		May 17, 2024	Frequency
enter F	ter Freq 515.000000 N		PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 20 dB		#Avg Type: RMS Avg Hold: 10/10		TYP	123456 M		
) dB/div	Ref Offset Ref 18.74					Mkr1 60.10 MHz -48.782 dBm			Auto Tur	
3.74										Center Fre 515.000000 Mi
1.3										Start Fre 30.000000 MH
n.3 n.3									-28.43 dBm	Stop Fr 1.000000000 G
										CF Ste 97.000000 M Auto M
n.3				ad <mark>Marinal</mark>	the holeste	<mark>ji Átjustiszus</mark>	dines (st. 1987)	and staylow	TATE AND	Freq Offs
1.3	in the second	teel ^{illi} lk Leesender	an de la feril	her population	den na serie de la serie d La serie de la s	<mark>ig gangan ga ku</mark> i	ر تعلقه و مريزي			
tart 30.0	MHz 100 kHz			300 kHz		_		Stop 1.0 00 ms (3.	000 GHz	


Shenzhen DL Testing Technology Co., Ltd.

5 Test Setup Photos

Radiated Emission

6 Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report------