

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No......CTA24012600401

FCC ID.....: : 2A9F7-2401

Compiled by

(position+printed name+signature)... File administrators Zoey Cao

Supervised by

(position+printed name+signature)..: Project Engineer Amy Wen

Approved by

(position+printed name+signature)... RF Manager Eric Wang

Date of issue.....: Feb. 20, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Envision Technology Innovation Co., Ltd.

301, Building 4, 1970 Science and Technology Park Minzhi Street,

Longhua District Shenzhen, China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Massager

Trade MarkN/A

Manufacturer Shenzhen Envision Technology Innovation Co., Ltd.

Model/Type reference......J-CHERLY

J-VBarbie 3s, J-VividWings, J-NORMA, J-Angela, J-Vase, J-VibSiren,

CTATES

J-Verax, J-PetiteRose, J-Pathfinder, J-ResiRing II, J-Royaleye,

J-Fabledragon, J-Mecha, J-VortexTongue L, J-CHERLY 2c,

J-Virtuoso 2

Modulation: GFSK

Frequency...... From 2402MHz to 2480MHz

Result.....: PASS

Report No.: CTA24012600401 Page 2 of 38

TEST REPORT

Equipment under Test Massager

Model /Type J-CHERLY

Listed Models J-VBarbie 3s, J-VividWings, J-NORMA, J-Angela, J-Vase, J-VibSiren,

J-Verax, J-PetiteRose, J-Pathfinder, J-ResiRing II, J-Royaleye, J-Fabledragon, J-Mecha, J-VortexTongue L, J-CHERLY 2c,

J-Virtuoso 2

Applicant Shenzhen Envision Technology Innovation Co., Ltd.

Address 301, Building 4, 1970 Science and Technology Park Minzhi Street,

Longhua District Shenzhen, China

Manufacturer Shenzhen Envision Technology Innovation Co., Ltd.

Address 301, Building 4, 1970 Science and Technology Park Minzhi Street,

Longhua District Shenzhen, China

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTATES laboratory.

Contents

		TATESTING	Contents		
		TAIL			
	1.1	TEST STANDARDS		1	1
	The state of the s	TEGT GTANDARDG		-iNG	<u>-</u>
	•	OHIMA DV		ESTIN	_
	<u>2</u>	SUMMARY		5	<u>)</u>
	2.1	General Remarks		5	
	2.2	Product Description		5	G
	2.3	Equipment Under Test		5	
	2.4	Short description of the Equipment u	nder Test (EUT)	5	
	2.5	EUT operation mode		6	
	2.6	Block Diagram of Test Setup		6	
	2.7	Related Submittal(s) / Grant (s)		6	
1	2.8	Modifications		6	
		CIT			
	<u>3</u>	TEST ENVIRONMENT		7	7
	<u>5</u>	1 E O I E IN VIR ON WILL IN I	CVI		U
				CTATESTING 7	
	3.1	Address of the test laboratory		7	
	3.2	Test Facility		7	
	3.3	Environmental conditions		7	
	3.4	Summary of measurement results		8	
	3.5	Statement of the measurement uncer	tainty	8	
	3.6	Equipments Used during the Test		9	
	<u>4</u> C	TEST CONDITIONS AND RE	SULTS		ı
		<u></u>	25		_
	A THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN	TA'		11 14 20 21	
	4.1	AC Power Conducted Emission		11 STINGS	
	4.2	Radiated Emissions and Band Edge		14	
	4.3	Maximum Peak Output Power	G\P	20	
	4.4	Power Spectral Density		21	
	4.5	6dB Bandwidth		24	
	4.6	Out-of-band Emissions		27	
	4.7	Antenna Requirement		32	
	5111				
CTATE	<u>5</u>	TEST SETUP PHOTOS OF T	HE EUT		3
,0,,	<u> </u>	STILL			
	c	DUOTOS OF THE EUT		2.4	4
	<u>6</u>	PHOTOS OF THE EUT			Ŀ
			CTATESTITE CTATESTITE	CTA TESTIN	
				CTAIL	
				COM	
P					

Report No.: CTA24012600401 Page 4 of 38

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 V03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

GM CTATE

SUMMARY

2.1 General Remarks

2.1 General Remarks			
Date of receipt of test sample	:	Jan. 26, 2024	TING
Testing commenced on		Jan. 26, 2024	CTATES!"
Testing concluded on	:	Feb. 20, 2024	(ET)

2.2 Product Description

	_	C/h	
	Testing concluded on	: Feb. 20, 2024	
	2.2 Product Descrip	tion	,
	Product Description:	Massager	
CTATE	Model/Type reference:	J-CHERLY J-CHERLY	
,	Power supply:	DC 3.7V From battery and DC 5.0V From external circuit	
	Adapter information (Auxiliary test supplied by test Lab):	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A	
	Hardware version:	V1.1	
	Software version:	V1.1	
	Testing sample ID:	CTA240126004-1# (Engineer sample), CTA240126004-2# (Normal sample)	
	Bluetooth BLE		
	Supported type:	Bluetooth low Energy	
	Modulation:	GFSK	
	Operation frequency:	2402MHz to 2480MHz	
	Channel number:	40	
	Channel separation:	2 MHz	
	Antenna type:	PCB antenna	
	Antenna gain:	1.69 dBi	

2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Under	Test				
Power supply system u	tilised			STING	
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blan	nk below	CIP

DC 3.7V From battery and DC 5.0V From external circuit

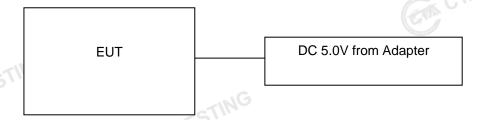
2.4 Short description of the Equipment under Test (EUT)

This is a Massager.

For more details, refer to the user's manual of the EUT. CTATEST

ING

Page 6 of 38 Report No.: CTA24012600401


2.5 **EUT** operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

- poramon requestoy.	
Channel	Frequency (MHz)
00	2402
01	2404
02	2406
TING	:
19	2440
ESTIN	i
37	2476
38	2478
39	2480
	Channel 00 01 02 : 19 : 37 38

2.6 Block Diagram of Test Setup

Related Submittal(s) / Grant (s) 2.7

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, CTATE Subpart C Rules.

Modifications 2.8

No modifications were implemented to meet testing criteria. CTATESTING

Report No.: CTA24012600401 Page 7 of 38

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Environmental conditions 3.3

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

radiatod Emilodic	/I I ·			114
Temperature:			25 ° C	110
G WILL			TES	
Humidity:		S Control	45 %	
Atmospheric pi	ressure:	No. of London	950-1050mba	r

AC Main Conducted testing:

to main bondabled looting.	
Temperature:	25 ° C
.NG	
Humidity:	46 %
	- 1 C1
Atmospheric pressure:	950-1050mbar

Conducted testing:

runeephene precedie:	000 TOOOTTIDAT	
conducted testing:	5	CTING
Temperature:	25 ° C	TES
22.00		(P)
Humidity:	44 %	
	A CONTRACTOR OF THE PARTY OF TH	
Atmospheric pressure:	950-1050mbar	

Report No.: CTA24012600401 Page 8 of 38

3.4 Summary of measurement results

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
	§15.247(e)	Power spectral density	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	complies
	§15.247(b)(1)	Maximum output power	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	complies
CTATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	complies
1	§15.205	Band edge compliance radiated	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	complies
	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	complies
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs 2 Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs 2 Mpbs	ING -/-	BLE 1Mpbs	-/-	complies
	2. We tested a	rement uncertainty is all test mode and reco	orded worst ca	n the test result. se in report	CTP	TESTING	
	3.5 Statemer	nt of the measure	ement unce	rtainty			

- 1. The measurement uncertainty is not included in the test result.
- 2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co. Ltd.

nerealler lile i	best measurement capability for	Shellzhen CTA Testing I	echnology Co., L	iu
	Test	Range	Measurement	Not

Test	Range	Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	GIN	0.57 dB	(1)
Spectrum bandwidth	TES /	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

Report No.: CTA24012600401 Page 9 of 38

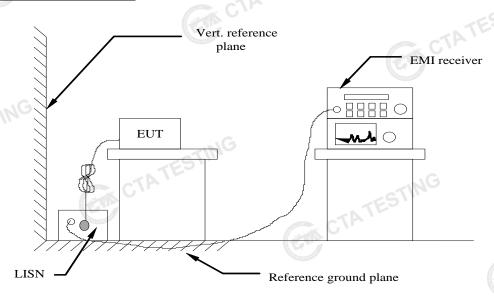
(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
	LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
	EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
15	EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
	Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
	Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
	Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
	Universal Radio Communication	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
E	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
	Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
	Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01
	CTATE	GW C	TATESTING	CTA	TESTING	

Report No.: CTA24012600401 Page 10 of 38

Test Equipment	Equipment Manufacturer		Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A


CTATESTING

Report No.: CTA24012600401 Page 11 of 38

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

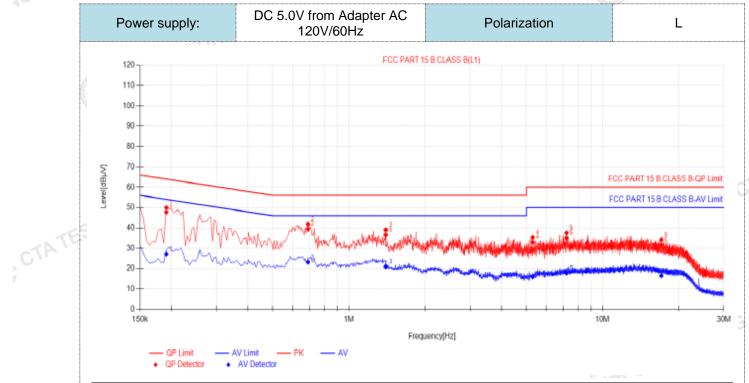
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

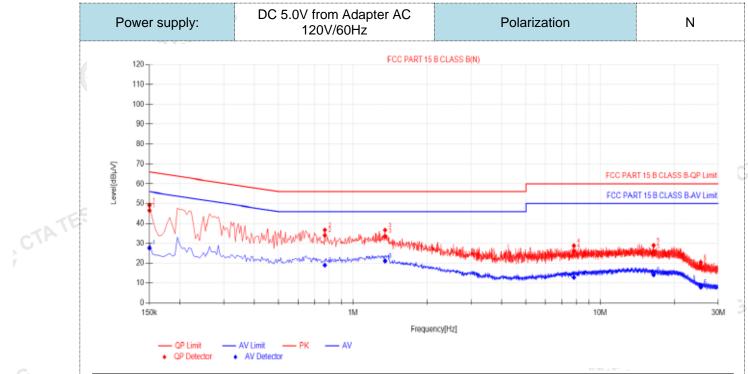

Fraguency range (MHz)	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequency.						

TEST RESULTS

Remark:

- 1. Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs was reported as below:
- 1. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:.

Page 12 of 38 Report No.: CTA24012600401


Final Data List												
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict
	1	0.1905	10.05	37.66	47.71	64.01	16.30	17.10	27.15	54.01	26.86	PASS
	2	0.69	9.92	29.66	39.58	56.00	16.42	13.25	23.17	46.00	22.83	PASS
	3	1.3965	9.90	26.63	36.53	56.00	19.47	11.08	20.98	46.00	25.02	PASS
L	4	5.298	10.04	23.04	33.08	60.00	26.92	5.87	15.91	50.00	34.09	PASS
L	5	7.2195	10.29	24.78	35.07	60.00	24.93	7.48	17.77	50.00	32.23	PASS
L	6	17.043	10.35	21.31	31.66	60.00	28.34	6.06	16.41	50.00	33.59	PASS
2) 3)	. Fact . QPN	.QP Value or (dB)=ins ⁄largin(dB) ·largin(dB)	sertion lo	ss of LISI nit (dBµV)	N (dB) + (Cable los lue (dBµ	s (dB) V)					GW.

CTATESTIN

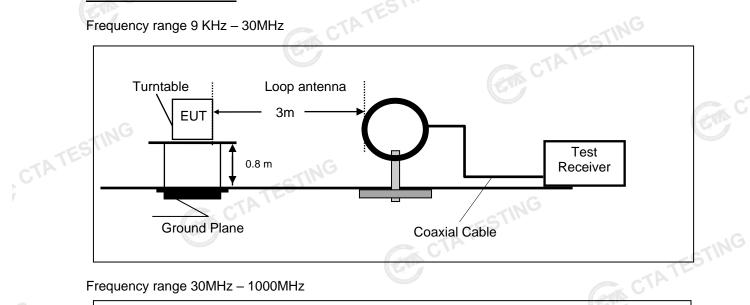
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTA TESTING

CTATE

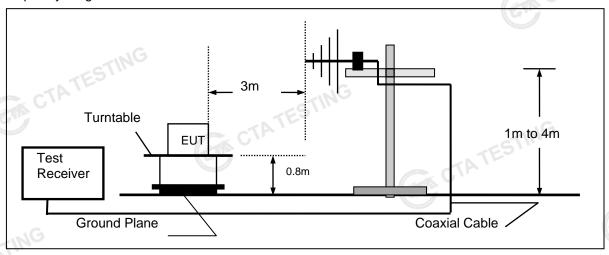
Page 13 of 38 Report No.: CTA24012600401

ı	ina	l Data Lis	st										
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
	1	0.15	9.98	36.62	46.60	66.00	19.40	17.70	27.68	56.00	28.32	PASS	
	2	0.771	10.12	23.99	34.11	56.00	21.89	8.92	19.04	46.00	26.96	PASS	
	3	1.3515	10.16	23.59	33.75	56.00	22.25	10.97	21.13	46.00	24.87	PASS	
L	4	7.809	10.42	15.79	26.21	60.00	33.79	2.45	12.87	50.00	37.13	PASS	
L	5	16.431	10.46	15.47	25.93	60.00	34.07	3.73	14.19	50.00	35.81	PASS	
L	6	25.4445	10.71	7.13	17.84	60.00	42.16	-2.69	8.02	50.00	41.98	PASS	
	Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dBµV) - QP Value (dBµV)									-TP			
,	2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dBµV) - QP Value (dBµV)									4 *			
		,		` ' '	•		,						
4).	AVIV	/largin(dB) =	= AV Lim	iit (dBµV)	- AV Val	.ue (dBµV	/)						

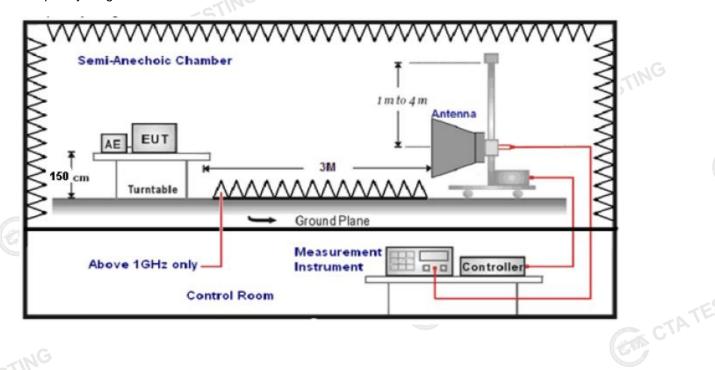
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- CTATE 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V) CTATESTING


CTA TESTING

Page 14 of 38 Report No.: CTA24012600401


4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: CTA24012600401 Page 15 of 38

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector	
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP	
	Peak Value: RBW=1MHz/VBW=3MHz,		
104- 1004-	Sweep time=Auto	Peak	
1GHz-40GHz	Average Value: RBW=1MHz/VBW=10Hz,		
TIME	Sweep time=Auto		

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)					
RA = Reading Amplitude	AG = Amplifier Gain					
AF = Antenna Factor						
ansd=AF +CL-AG						
ATION LIMIT	ESTING					

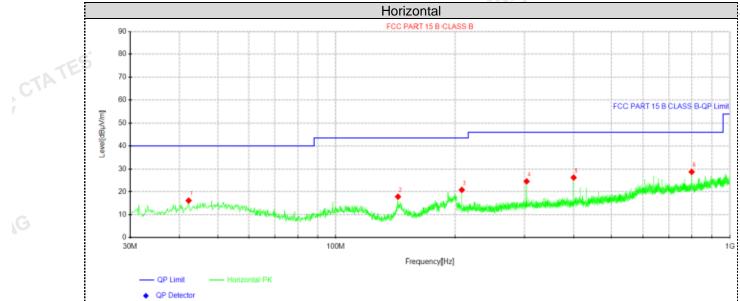
CTATESTING Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

F	requency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)	
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)	
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)	
	1.705-30	3	20log(30)+ 40log(30/3)	30	
	30-88	3	40.0	100	
	88-216	3	43.5	150	
	216-960	3	46.0	200	
	Above 960	3	54.0	500	
TEST	NG.			Con	
CTATES					


Page 16 of 38 Report No.: CTA24012600401

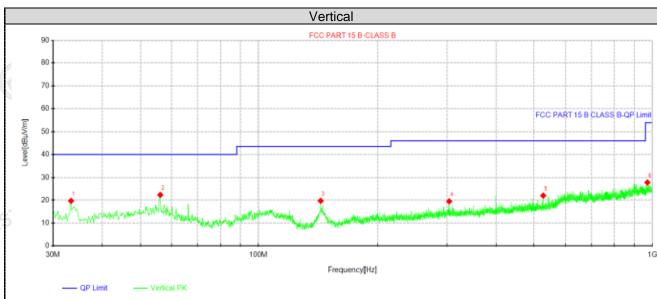
TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

	QP	Detector		_
Suspecte	a d	Data	lict	


(Suspe	Suspected Data List									
V	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity	
		[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]		
	1	42.2463	28.13	16.11	-12.02	40.00	23.89	100	154	Horizontal	
	2	143.975	33.90	17.81	-16.09	43.50	25.69	100	6	Horizontal	
	3	207.995	34.07	20.82	-13.25	43.50	22.68	100	357	Horizontal	
	4	304.025	35.94	24.58	-11.36	46.00	21.42	100	305	Horizontal	
	5	400.055	36.74	26.25	-10.49	46.00	19.75	100	74	Horizontal	
TES	6	800.058	33.22	28.74	-4.48	46.00	17.26	100	189	Horizontal	
CTATE		,	BμV/m)= Re		,	or (dB/m)		1.6	. (15)		

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

CTATESTING

Report No.: CTA24012600401 Page 17 of 38

QP Detector

CTATESTING

Susp	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	33.2738	33.87	19.68	-14.19	40.00	20.32	100	215	Vertical		
2	56.19	34.57	22.33	-12.24	40.00	17.67	100	359	Vertical		
3	143.975	35.78	19.69	-16.09	43.50	23.81	100	146	Vertical		
4	304.025	30.83	19.47	-11.36	46.00	26.53	100	203	Vertical		
5	527.973	30.92	22.00	-8.92	46.00	24.00	100	360	Vertical		
6	970.9	29.29	27.81	-1.48	54.00	26.19	100	3	Vertical		

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

CTATESTING

TATE

Report No.: CTA24012600401

For 1GHz to 25GHz

GFSK (above 1GHz)

Freque	ency(MHz):		2402		Polarity:		HORIZONTAL		
Frequency (MHz)	_	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	63.16	PK	74 C	10.84	67.43	32.33	5.12	41.72	-4.27
4804.00	45.60	AV	54	8.40	49.87	32.33	5.12	41.72	-4.27
7206.00	52.84	PK	74	21.16	53.36	36.6	6.49	43.61	-0.52
7206.00	42.49	AV	54	11.51	43.01	36.6	6.49	43.61	-0.52

Freque	ncy(MHz)	:	2402 Polarity:		VERTICAL				
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	60.92	PK	574	13.08	65.19	32.33	5.12	41.72	-4.27
4804.00	43.55	AV	54	10.45	47.82	32.33	5.12	41.72	-4.27
7206.00	50.15	PK	74	23.85	50.67	36.6	6.49	43.61	-0.52
7206.00	40.56	AV	54	13.44	41.08	36.6	6.49	43.61	-0.52

				21 SEP 1011				47.4	
Freque	ncy(MHz):	24	2440		arity:	HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	62.01	PK	74	11.99	65.89	32.6	5.34	41.82	-3.88
4880.00	45.52	AV	54	8.48	49.40	32.6	5.34	41.82	-3.88
7320.00	53.47	PK	74	20.53	53.58	36.8	6.81	43.72	-0.11
7320.00	43.01	AV	54	10.99	43.12	36.8	6.81	43.72	-0.11

CAL.				TES.					
Freque	Frequency(MHz):			2440		arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	60.10	PK	74	13.90	63.98	32.6	5.34	41.82	-3.88
4880.00	42.99	AV	54	11.01	46.87	32.6	5.34	41.82	-3.88
7320.00	51.80	PK	74	22.20	51.91	36.8	6.81	43.72	-0.11
7320.00	40.95	AV	54	13.05	41.06	36.8	6.81	43.72	-0.11

Freque	uency(MHz):		2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	61.74	PK	74	12.26	64.82	32.73	5.66	41.47	-3.08
4960.00	45.56	AV	54	8.44	48.64	32.73	5.66	41.47	-3.08
7440.00	53.79	PK	74	20.21	53.34	37.04	7.25	43.84	0.45
7440.00	43.46	PK	54	10.54	43.01	37.04	7.25	43.84	0.45

Freq	uency(MHz)	:	24	80	Pola	arity:	VERTICAL			
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	59.16	PK	74	14.84	62.24	32.73	5.66	41.47	-3.08	
4960.00	43.56	AV	54	10.44	46.64	32.73	5.66	41.47	-3.08	
7440.00	52.30	PK	74	21.70	51.85	37.04	7.25	43.84	0.45	
7440.00	41.53	PK	54	12.47	41.08	37.04	7.25	43.84	0.45	

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

Report No.: CTA24012600401

- Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

GFSK

Freque	ncy(MHz)	:	24	02	Pola	arity:	HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	62.24	PK	74	11.76	72.66	27.42	4.31	42.15	-10.42
2390.00	42.62	AV	54	11.38	53.04	27.42	4.31	42.15	-10.42
Freque	Frequency(MHz):		24	02	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.78	PK	574	13.22	71.20	27.42	4.31	42.15	-10.42
2390.00	40.15	AV	54	13.85	50.57	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	80	P ola	arity:	Н	ORIZONTA	\L
Eroguenov	Emis	sion	Linait	Managas	Raw	Antenna	Cable	Pre-	Correction
Frequency (MHz)	Le [,] (dBu	vel V/m)	Limit (dBuV/m)	Margin (dB)	Value (dBuV)	Factor (dB/m)	Factor (dB)	amplifier (dB)	Factor (dB/m)
(MHz)	(dBu	V/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
(MHz) 2483.50 2483.50	(dBu	V/m) PK AV	(dBuV/m) 74	(dB) 12.31 10.67	(dBuV) 71.80 53.44	(dB/m) 27.7	(dB) 4.47 4.47	(dB) 42.28	(dB/m) -10.11 -10.11
(MHz) 2483.50 2483.50	(dBu 61.69 43.33 ncy(MHz) Emis	V/m) PK AV :	(dBuV/m) 74 54	(dB) 12.31 10.67	(dBuV) 71.80 53.44	(dB/m) 27.7 27.7	(dB) 4.47 4.47	(dB) 42.28 42.28	(dB/m) -10.11 -10.11
(MHz) 2483.50 2483.50 Freque Frequency	(dBu 61.69 43.33 ncy(MHz) Emis	V/m) PK AV :	(dBuV/m) 74 54 24 Limit	(dB) 12.31 10.67 80 Margin	(dBuV) 71.80 53.44 Pola Raw Value	(dB/m) 27.7 27.7 arity: Antenna Factor	(dB) 4.47 4.47 Cable Factor	(dB) 42.28 42.28 VERTICAL Preamplifier	(dB/m) -10.11 -10.11 Correction Factor

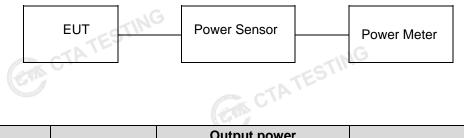
REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier Margin value = Limit value- Emission level.

 -- Mean the PK detector measured value is below average limit. 2.
- 3. 4.

Page 20 of 38 Report No.: CTA24012600401

Maximum Peak Output Power


Limit CTA

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

CTATESTING Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

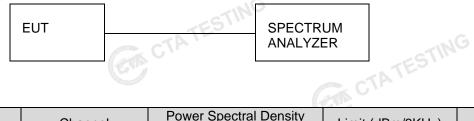
Test Configuration

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	1.01		
GFSK 1Mbps	19	1.56	30.00	Pass
TATES	39	1.68		
A C	00	1.07		
GFSK 2Mbps	19	1.60	30.00	Pass
	39	1.63	TATES	

Page 21 of 38 Report No.: CTA24012600401

Power Spectral Density

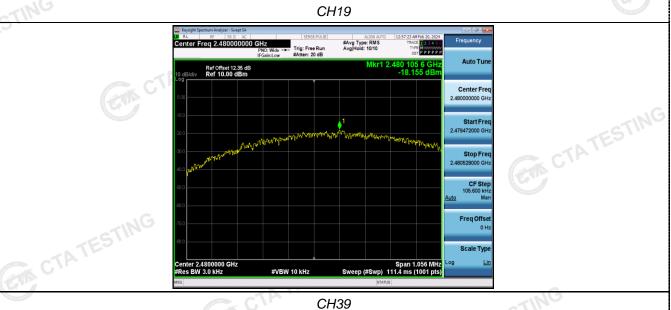

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

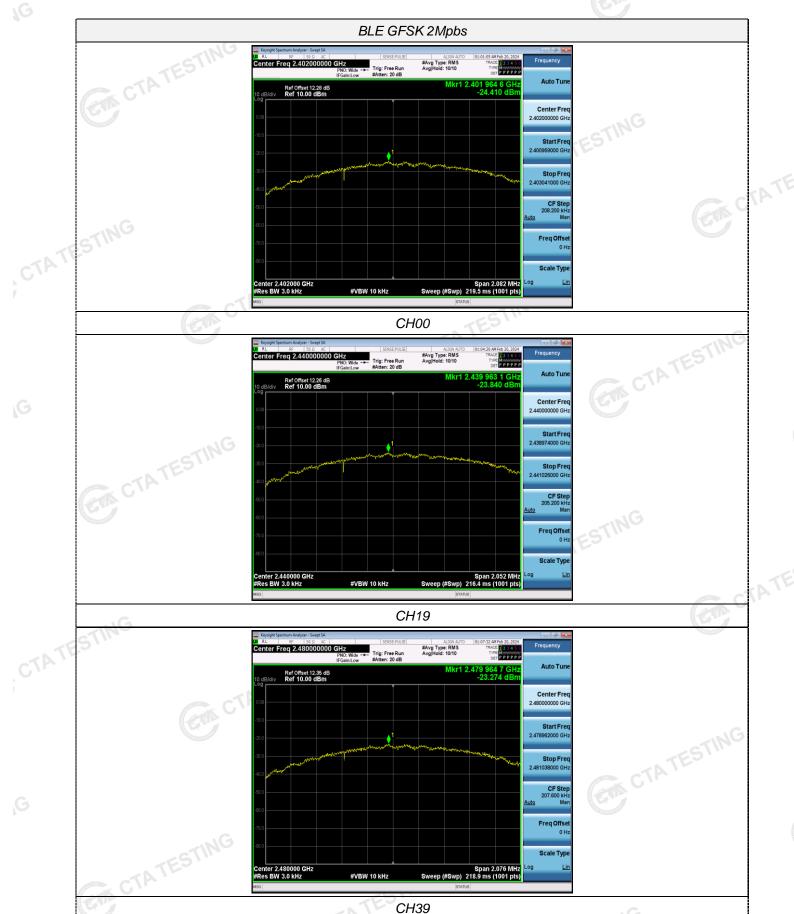
Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth. CTA TESTING
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration


Test Results

	Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	ING	00	-19.55		The state of the s
	GFSK 1Mbps	19	-18.92	8.00	Pass
CTATE		39	-18.16		
, C v		00	-24.41		
1	GFSK 2Mbps	19	-23.84	8.00	Pass
	Sec. Control of the C	39	-23.27	TING	
	Test plot as follows				CTATESTING
,G					CAL



CIATE

CTATE

CTA TESTING

Report No.: CTA24012600401 Page 23 of 38

CTA TESTING

Page 24 of 38 Report No.: CTA24012600401

4.5 6dB Bandwidth

<u>Limit</u>

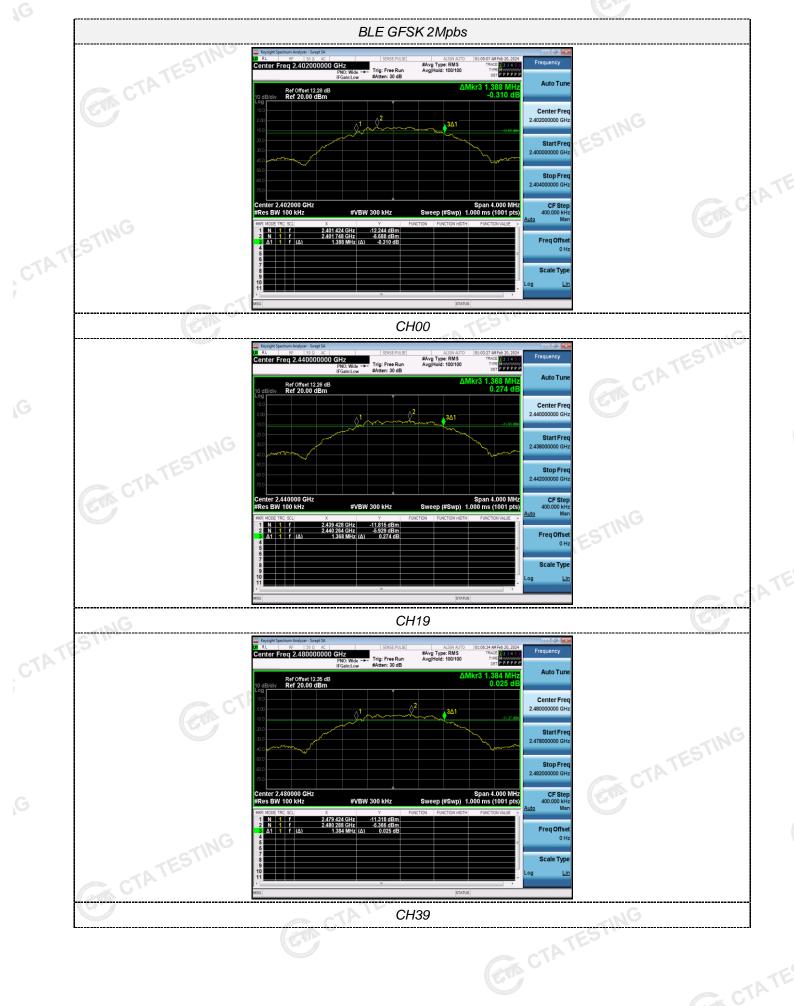
For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results


Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	00	0.696		
GFSK 1Mbps	G 19	0.700	≥500	Pass
ESTIN	39	0.704		
CIA	00	1.388		
GFSK 2Mbps	19	1.368	≥500	Pass
23 TO STATE OF THE	39	1.384	-IN	
est plot as follows:	(ETA)		CTATESIN	

TESTING

Report No.: CTA24012600401 Page 26 of 38

Report No.: CTA24012600401 Page 27 of 38

Out-of-band Emissions

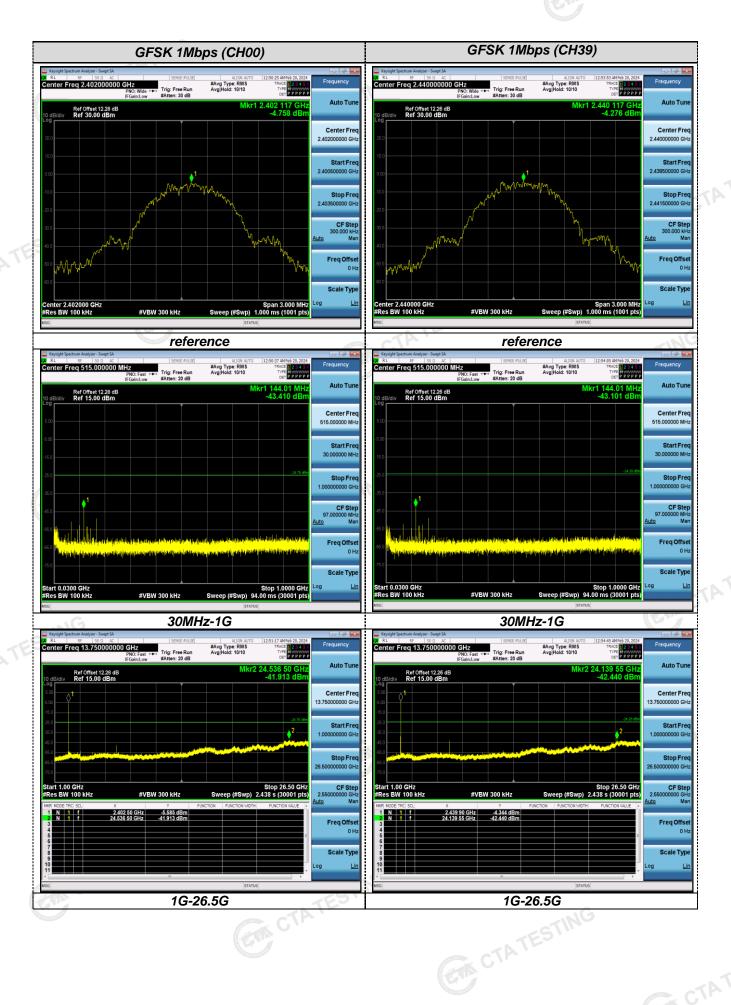
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

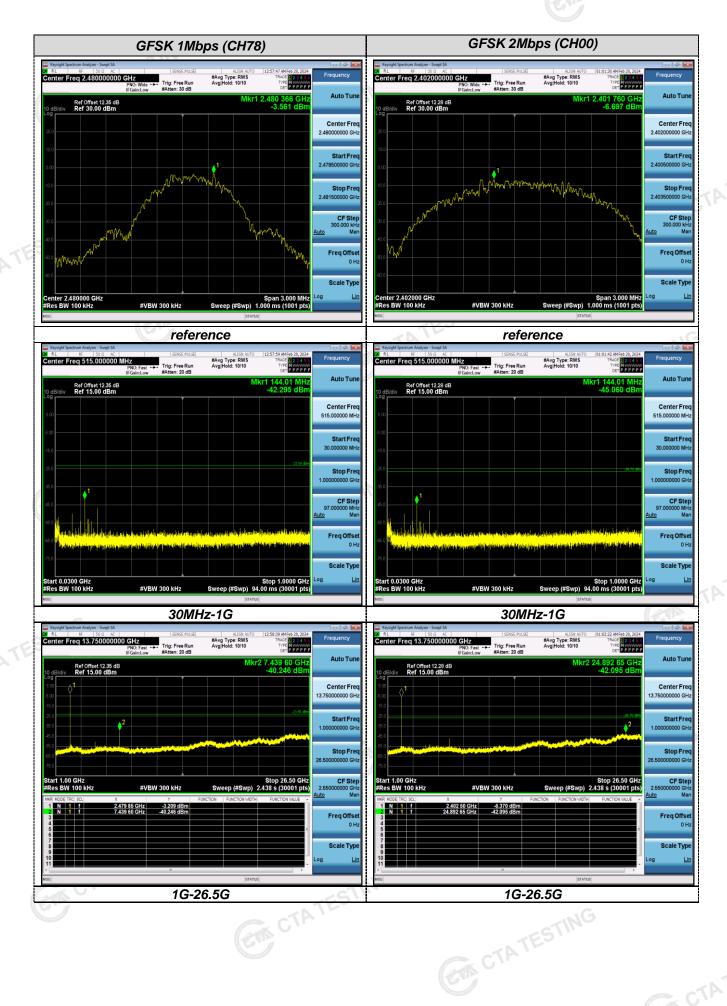
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

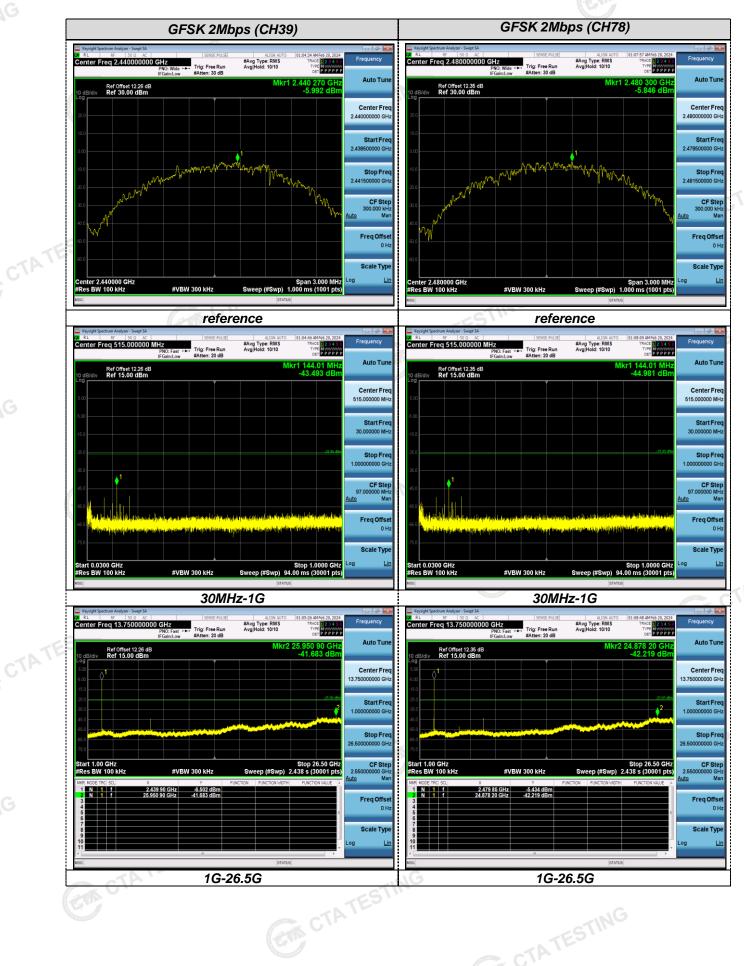


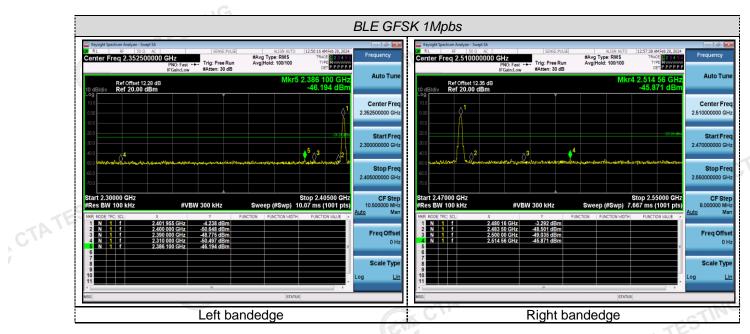
Test Results

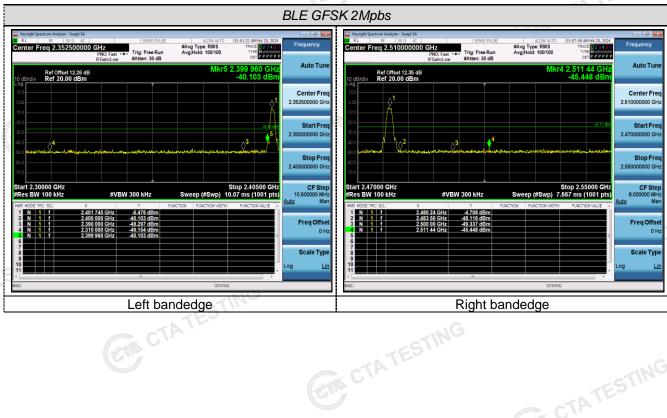

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Test plot as follows: CTATESTING

Report No.: CTA24012600401 Page 28 of 38




Report No.: CTA24012600401 Page 30 of 38



Report No.: CTA24012600401 Page 31 of 38

Band-edge Measurements for RF Conducted Emissions:

Report No.: CTA24012600401 Page 32 of 38

4.7 Antenna Requirement

Standard Applicable

For intentional device, according to RSS-Gen 6.8:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

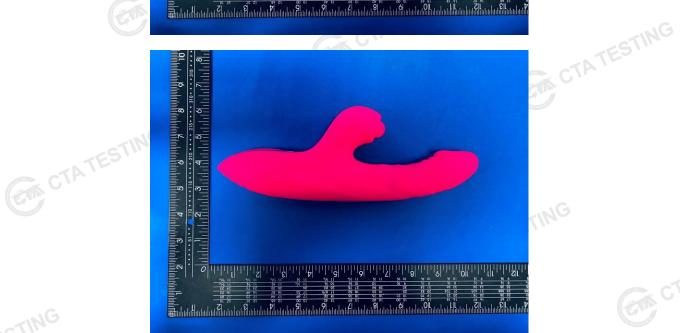
Test Result:

The maximum gain of antenna was 1.69 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

Report No.: CTA24012600401 Page 33 of 38

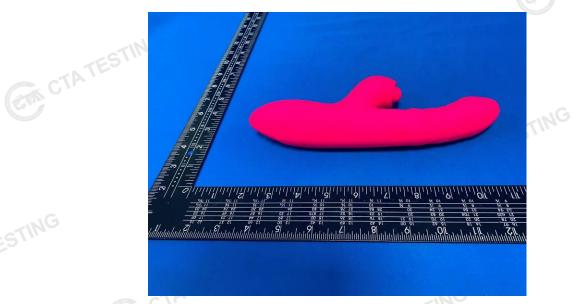
5 Test Setup Photos of the EUT

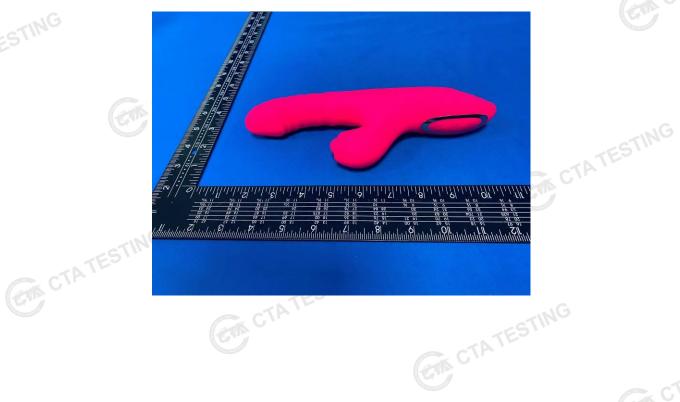


ATESTING

Report No.: CTA24012600401 Page 34 of 38

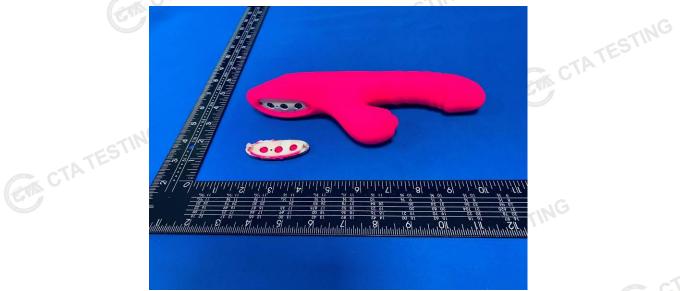
6 Photos of the EUT




ESTING

CTA CTA

Report No.: CTA24012600401 Page 35 of 38



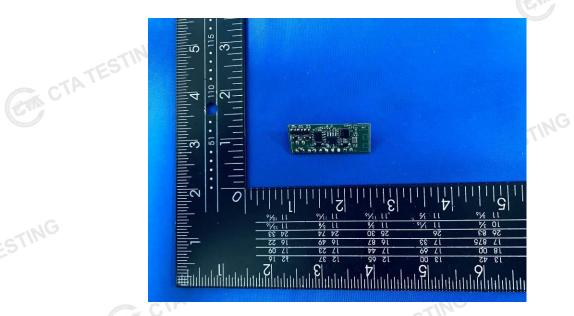
ESTING

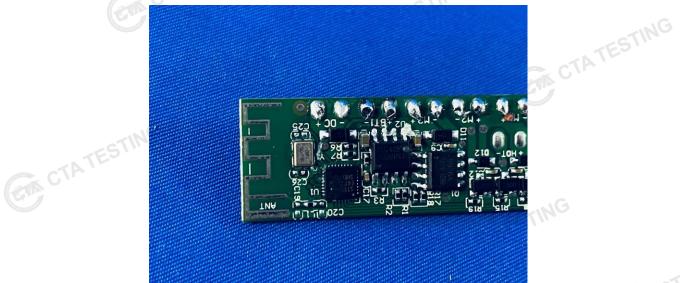
Report No.: CTA24012600401 Page 36 of 38



ESTING

Report No.: CTA24012600401 Page 37 of 38





ESTING

Page 38 of 38 Report No.: CTA24012600401

