

Project No.: ZHT-240402021E-2 Page 1 of 63

FCC TEST REPORT FCC ID:2A9CD-A520

Report Number:	ZHT-240402021E-2
Date of Test:	Apr. 02, 2024 to Apr. 12, 2024
Date of issue	Apr. 12, 2024
Test Result:	PASS
Testing Laboratory:	Guangdong Zhonghan Testing Technology Co., Ltd.
Address::	Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Applicant's name:	Shenzhen Senyang Zhiyuan Technology Co.,Ltd
	. 505,Floor 5,West Block,Building 405,Sanda Industrial Zone,Futian District,Shenzhen,518000 China
Manufacturer's name:	Shenzhen Senyang Zhiyuan Technology Co.,Ltd
Address:	505,Floor 5,West Block,Building 405,Sanda Industrial Zone,Futian District,Shenzhen,518000 China
Test specification:	
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 RSS-247 Issue 3 August 2023 RSS-Gen Issue 5 Feb 2021
Test procedure:	ANSI C63.10:2013
Non-standard test method:	N/A
test (EUT) is in compliance with the re in the report. This report shall not be reproduced ex	n tested by ZHT, and the test results show that the equipment under equirements. And it is applicable only to the tested sample identified accept in full, without the written approval of ZHT, this document may al only, and shall be noted in the revision of the document.
Product name::	wireless headset
Trademark:	N/A
Model/Type reference:	A520, JR07, JR06, JR04, JR03, JR02, GT03, GT01, X25, X97, X96, X93, X28, YYK880, YYK530, Q63, Q28, X29, AS-06, GQ-08, GQ-10, J31, OWS-1, TWS, R200, Q36, I25,
Model difference:	SP33, X6, X6PRO,X32, X36, X38, X91 A520 is tested model, other models are derivative models.The models are identical in circuit, only different on the model names
	and color. So the test data of A520 can represent theremaining models.

Project No.: ZHT-240402021E-2 Page 3 of 63

Table of Contents

1. VERSION	
2. SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	
3.1 GENERAL DESCRIPTION OF EUT	
3.2 DESCRIPTION OF TEST MODES	
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	
4. EMC EMISSION TEST	
4. ENC EMISSION TEST	_
4.1.1 POWER LINE CONDUCTED EMISSION Limits	
4.1.2 TEST PROCEDURE	
4.1.3 DEVIATION FROM TEST STANDARD	13
4.1.4 TEST SETUP	
4.1.5 EUT OPERATING CONDITIONS 4.1.6 TEST RESULTS	
4.2 RADIATED EMISSION MEASUREMENT	
4.2.1 RADIATED EMISSION LIMITS	
4.2.2 TEST PROCEDURE	
4.2.3 DEVIATION FROM TEST STANDARD	-
4.2.4 TEST SETUP 4.2.5 EUT OPERATING CONDITIONS	16
5.RADIATED BAND EMISSION MEASUREMENT	
5.RADIATED BAND EMISSION MEASUREMENT	
5.2 TEST PROCEDURE	
5.3 DEVIATION FROM TEST STANDARD	22
5.4 TEST SETUP	
5.5 EUT OPERATING CONDITIONS 5.6 TEST RESULT	
6.POWER SPECTRAL DENSITY TEST 6.1 APPLIED PROCEDURES / LIMIT	
6.1 APPLIED PROCEDURES / LIMIT 6.2 TEST PROCEDURE	

Project No.: ZHT-240402021E-2 Page 4 of 63

Table of Contents		Page
6.4 TEST SETUP 6.5 EUT OPERATION CONDITIONS 6.6 TEST RESULTS: 7.1 APPLIED PROCEDURES / LIMIT 7.2 TEST PROCEDURE 7.3 DEVIATION FROM STANDARD 7.4 TEST SETUP		25 26 26 27 27 27 27 27 27
8.PEAK OUTPUT POWER TEST 8.1 APPLIED PROCEDURES / LIMIT 8.3 DEVIATION FROM STANDARD 8.4 TEST SETUP 8.5 EUT OPERATION CONDITIONS		
9.1 APPLICABLE STANDARD 9.2 TEST PROCEDURE 9.3 DEVIATION FROM STANDARD 9.4 TEST SETUP		29 29 29 29 29
10.ANTENNA REQUIREMENT 11. APPENDIX BLE 12. TEST SETUP PHOTOS		
	6.3 DEVIATION FROM STANDARD 6.4 TEST SETUP 6.5 EUT OPERATION CONDITIONS 6.6 TEST RESULTS: 7.1 APPLIED PROCEDURES / LIMIT 7.2 TEST PROCEDURE 7.3 DEVIATION FROM STANDARD 7.4 TEST SETUP 7.5 EUT OPERATION CONDITIONS 8.PEAK OUTPUT POWER TEST 8.1 APPLIED PROCEDURES / LIMIT 8.3 DEVIATION FROM STANDARD 8.4 TEST SETUP 8.5 EUT OPERATION CONDITIONS 8.6 TEST RESULTS 9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION. 9.1 APPLICABLE STANDARD 9.2 TEST PROCEDURE 9.3 DEVIATION FROM STANDARD 9.4 TEST SETUP 9.5 EUT OPERATION CONDITIONS 10.ANTENNA REQUIREMENT 11. APPENDIX BLE 12. TEST SETUP PHOTOS	Table of Contents 6.3 DEVIATION FROM STANDARD 6.4 TEST SETUP 6.4 TEST SETUP 6.6 TEST RESULTS: 7.1 APPLIED PROCEDURES / LIMIT 7.2 TEST PROCEDURES / LIMIT 7.3 DEVIATION FROM STANDARD 7.4 TEST SETUP 7.5 EUT OPERATION CONDITIONS 8.PEAK OUTPUT POWER TEST 8.1 APPLIED PROCEDURES / LIMIT 8.1 APPLIED PROCEDURES / LIMIT 8.1 APPLIED PROCEDURES / LIMIT 8.3 DEVIATION FROM STANDARD 8.4 TEST SETUP 8.5 EUT OPERATION CONDITIONS 8.6 TEST RESULTS 9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION 9.1 APPLICABLE STANDARD 9.2 TEST PROCEDURE 9.3 DEVIATION FROM STANDARD 9.1 APPLICABLE STANDARD 9.2 TEST PROCEDURE 9.3 DEVIATION FROM STANDARD 9.5 EUT OPERATION CONDITIONS 9.5 EUT OPERATION CONDITIONS 10.ANTENNA REQUIREMENT 11. APPENDIX BL

1. VERSION

Report No.	Version	Description	Approved
ZHT-240402021E-2	Rev.01	Initial issue of report	Apr. 12, 2024
15	11	15	

				Ð
				Ð
				Ð
				Æ

Project No.: ZHT-240402021E-2 Page 6 of 63

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

	FCC Part15 (15.247) , Subpart C RSS-247 Issue 3		
Standard Section	Test Item	Judgment	Remark
FCC part 15.203/15.247 (b)(4) RSS-Gen 6.8	Antenna requirement	PASS	4.00
FCC part 15.207 RSS-Gen 8.8	AC Power Line Conducted Emission	N/A	
FCC part 15.247 (b)(3) RSS 247 5.4 (d)	Conducted Peak Output Power	PASS	
FCC part 15.247 (a)(2) RSS 247 5.2(a) RSS GEN	Channel Bandwidth& 99% OCB	PASS	
FCC part 15.247 (e) RSS 247 5.2(b)	Power Spectral Density	PASS	
FCC part 15.247(d) RSS-Gen 8.10 RSS-247 5.5	Band Edge	PASS	00
FCC part 15.205/15.209 RSS-Gen 8.9 RSS-Gen 8.10	Spurious Emission	PASS	

(1)" N/A" denotes test is not applicable in this Test Report

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn 🌕 🏐 htt

2.1 TEST FACILITY

Guangdong Zhonghan Testing Technology Co., Ltd. Add. : Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District Shenzhen, Guangdong, China

FCC Registration Number:255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U,where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2,providing a level of confidence of approximately 95 % °

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF conducted power	±0.16dB
3	Conducted spurious emissions	±0.21dB
4	All radiated emissions (9k-30MHz)	±4.68dB
5	All radiated emissions (<1G)	±4.68dB
6	All radiated emissions (>1G)	±4.89dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±4.96%

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

	Product Name:	wireless headset
7	Test Model No.:	A520
6	Hardware Version:	V1.0
	Software Version:	V1.0
	Sample(s) Status:	Engineer sample
	Operation Frequency:	2402MHz~2480MHz
	Channel Numbers:	40
	Channel Separation:	2MHz
á	Modulation Type:	GFSK
	Antenna Type:	Chip Antenna
	Antenna gain:	3dBi
	Power supply:	Input: DC 5 V by USB or DC 3.7V by Charging case battery or DC 4.1V by wireless headset battery

🖀 0755-27782934 🛛 admin@zht-lab.cn

Onoratio	- Eroguopou	aaah af ah	annal	77		7147	
Operatio	n Frequency	each of ch	annei	1		64	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode
nominal rated supply	v battery during the test, the test voltage was tuned from 85% to 115% of the voltage, and found that the worst case was under the nominal rated supply rt just shows that condition's data.

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Radiated Emission

EUT

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
	1		15	15).
			(P)	0	
- 3	5		53	15	15
6	2	Q.		CP I	(P)

Item	Shielded Type	Ferrite Core	Length	Note
	6	2		

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength ^a column.
- (3) The test software is the RTLBluetooth Test tool which can set the EUT into the individual test modes.TX Power: default

Item

1

2

3

4

5

6

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS Radiation Test equipment

adiation Test equipn	nent				
Equipment	Manufacturer	Model	Instrument number	Last Cal.	Next Cal.
Receiver	R&S	ESCI	ZH-E005	May 12, 2023	May 11, 2024
Loop antenna	EMCI	LAP600	ZH-E036	May 12, 2023	May 11, 2024
Amplifier	Schwarzbeck	BBV 9743 B	ZH-E019	May 12, 2023	May 11, 2024
Amplifier	Schwarzbeck	BBV 9718 B	ZH-E021	May 12, 2023	May 11, 2024
Bilog Antenna	Schwarzbeck	VULB9162	ZH-E017	May 17, 2023	May 16, 2024
Horn Antenna	Schwarzbeck	BBHA9120D	ZH-E020	May 17, 2023	May 16, 2024
Horn Antenna	A.H.SYSTEM S	SAS574	ZH-E062	May 12, 2023	May 11, 2024
Amplifier	AEROFLEX	100KHz-40GHz	ZH-E063	May 12, 2023	May 11, 2024
pectrum Analyzer	R&S	FSV40	ZH-E064	May 12, 2023	May 11, 2024
CDNE	Schwarzbeck	CDNE M2 + CDNE M3	ZH-E029	May 12, 2023	May 11, 2024

	7	Horn Antenna	A.H.SYSTEM S	SAS574	ZH-E062	May 12, 2023	May 11, 2024
	8	Amplifier	AEROFLEX	100KHz-40GHz	ZH-E063	May 12, 2023	May 11, 2024
	9	Spectrum Analyzer	R&S	FSV40	ZH-E064	May 12, 2023	May 11, 2024
	10	CDNE	Schwarzbeck	CDNE M2 + CDNE M3	ZH-E029	May 12, 2023	May 11, 2024
	11	966 Anechoic Chamber	EMToni	9m6m6m	ZH-E001	Nov. 25, 2021	Nov. 24, 2024
đ	12	Spectrum Analyzer	KEYSIGHT	N9020A	ZH-E032	May 12, 2023	May 11, 2024
	13	WIDBAND RADIO COMMUNICATIO N TESTER	R&S	CMW500	ZH-E033	May 12, 2023	May 11, 2024
	14	Single Generator	Agilent	N5182A	ZH-E034	May 12, 2023	May 11, 2024
	15	Power Sensor	MWRFtest	MW100-RFCB	ZH-E066	May 12, 2023	May 11, 2024
	16	Audio analyzer	R&S	UPL	ZH-E067	May 12, 2023	May 11, 2024
	17	Single Generator	R&S	SMB100A	ZH-E068	May 12, 2023	May 11, 2024
	18	Power Amplifier Shielding Room	EMToni	2m3m3m	ZH-E003	Nov. 25, 2021	Nov. 24, 2024

B

Ð

.

Project No.: ZHT-240402021E-2 Page 11 of 63

Conduction Test equipment

Equipment	Manufacturer	Model	Instrument number	Last Cal.	Next Cal.
Receiver	R&S	ESCI	ZH-E005	May 12, 2023	May 11, 2024
LISN	R&S	ENV216	ZH-E006	May 12, 2023	May 11, 2024
ISN CAT 6	Schwarzbeck	NTFM 8158	ZH-E012	May 12, 2023	May 11, 2024
ISN CAT 5	Schwarzbeck	CAT5 8158	ZH-E013	May 12, 2023	May 11, 2024
Capacitive Voltage Probe	Schwarzbeck	CVP 9222 C	ZH-E014	May 12, 2023	May 11, 2024
Current Transformer Clamp	Schwarzbeck	SW 9605	ZH-E015	May 12, 2023	May 11, 2024
CE Shielding Room	EMToni	9m4m3m	ZH-E002	Nov. 25, 2021	Nov. 24, 2024

Conducted Test equipment

	Equipment	Manufacturer	Model	Instrument number	Last Cal.	Next Cal.
10	Spectrum Analyzer	KEYSIGHT	N9020A	ZH-E032	May 12, 2023	May 11, 2024
D	Single Generator	Agilent	N5182A	ZH-E034	May 12, 2023	May 11, 2024

B

2 0755-27782934

Project No.: ZHT-240402021E-2 Page 13 of 63

4. EMC EMISSION TEST

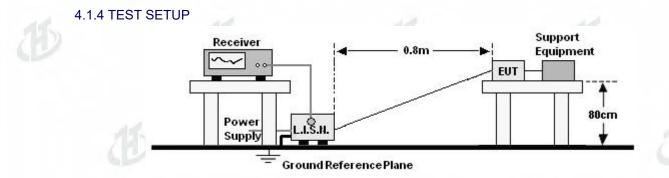
4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207; RSS-Gen 8.8
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

2 14 20		1 1 28
	Limit (dBuV)
FREQUENCY (MHz)	QP	AVG
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:


(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD No deviation

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 TEST RESULTS

Not applicable in this Test Report, because the wireless headset don't work while charging

4.2 RADIATED EMISSION MEASUREMENT

I STATE IN CONTRACTOR OF A STATE		P. Carlo		P. 1		
Test Requirement:	FCC Part15 C Section 15.209 and 15.205;					
	RSS-Gen 8.9, RSS	-Gen 8.10				
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	9kHz to 25GHz		150		15	
Test site:	Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak	
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	
N1 4			

Notes:

(1) The limit for radiated test was performed according to RSS-Gen 8.9.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

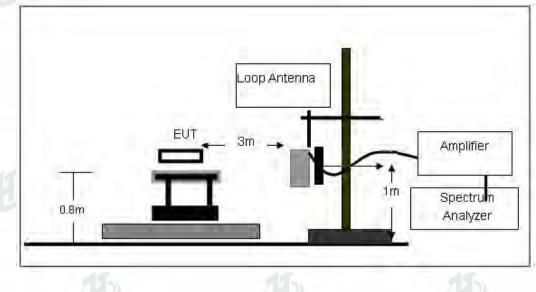
Project No.: ZHT-240402021E-2 Page 16 of 63

4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- g. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

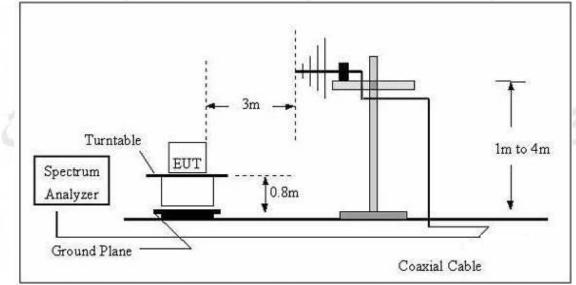
The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Note:

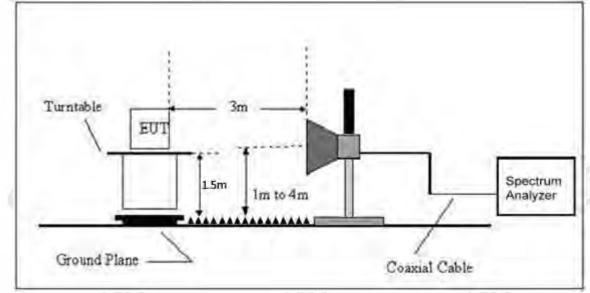

Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD No deviation

4.2.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz



Project No.: ZHT-240402021E-2 Page 17 of 63

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

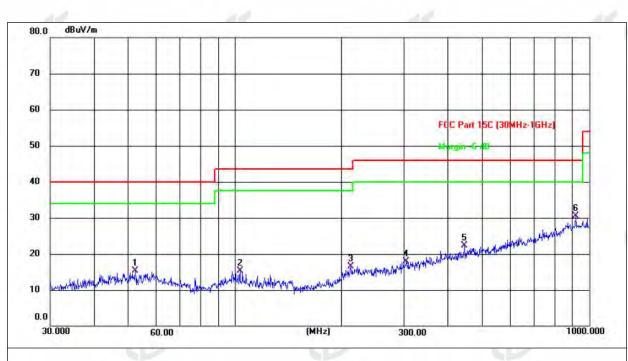
(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

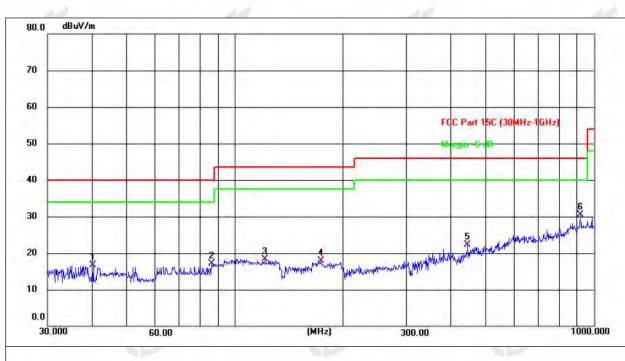
4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.


🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn

🔛 🌐 http://www.zht-lab.cn

Between 30MHz - 1GHz


Temperature :	25.1 ℃	Relative Humidity :	50%
Pressure :	101kPa	Polarization :	Horizontal
Test Voltage :	DC 4.1V		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	52.2077	24.32	-8.97	15.35	40.00	-24.65	QP			Р	
2	103.0800	26.57	-11.24	15.33	43.50	-28.17	QP			Р	
3	212.2692	26.97	-10.43	16.54	43.50	-26.96	QP			P	
4	304.6099	25.94	-7.94	18.00	46.00	-28.00	QP			Р	
5	444.8514	27.23	-5.01	22.22	46.00	-23.78	QP			Р	
6 *	916.0683	28.13	2.33	30.46	46.00	-15.54	QP			P	

Temperature :	25.1 ℃	Relative Humidity :	50%
Pressure :	101kPa	Polarization :	Vertical
Test Voltage :	DC 4.1V		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	40.2754	26.46	-9.67	16.79	40.00	-23.21	QP			Р	
2	85.8983	30.41	-13.39	17.02	40.00	-22.98	QP			Р	
3	121.1230	31.24	-13.02	18.22	43.50	-25.28	QP			Р	
4	173.2050	30.69	-12.71	17.98	43.50	-25.52	QP			Ρ	
5	444.8514	27.23	-5.01	22.22	46.00	-23.78	QP			P	
6 *	916.0683	28.13	2.33	30.46	46.00	-15.54	QP			Р	

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report. 3. The test data shows only the worst case GFSK 1M Low Channel:2402MHz.

10	GHz~25GHz	15			150		1	6	
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detecto
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			•	Low Cha	nnel:2402M	İHz			
V	4806.00	56.85	30.55	5.77	24.66	56.73	74	-17.27	PK
V	4806.00	44.95	30.55	5.77	24.66	44.83	54	-9.17	AV
V	7206.00	55.57	30.33	6.32	24.55	56.11	74	-17.89	PK
V	7206.00	42.54	30.33	6.32	24.55	43.08	54	-10.92	AV
V	9608.00	58.57	30.55	5.77	24.66	58.45	74	-15.55	PK
V	9608.00	43.47	30.55	5.77	24.66	43.35	54	-10.65	AV
V	12010.00	58.35	30.33	6.32	24.55	58.89	74	-15.11	PK
V	12010.00	43.97	30.33	6.32	24.55	44.51	54	-9.49	AV
Н	4806.00	59.15	30.55	5.77	24.66	59.03	74	-14.97	Pk
Н	4806.00	41.94	30.55	5.77	24.66	41.82	54	-12.18	AV
Н	7206.00	56.74	30.33	6.32	24.55	57.28	74	-16.72	Pk
Н	7206.00	44.45	30.33	6.32	24.55	44.99	54	-9.01	AV
Н	9608.00	57.92	30.55	5.77	24.66	57.80	74	-16.2	Pk
Н	9608.00	41.57	30.55	5.77	24.66	41.45	54	-12.55	AV
Н	12010.00	57.15	30.33	6.32	24.55	57.69	74	-16.31	Pk
Н	12010.00	41.86	30.33	6.32	24.55	42.4	54	-11.6	AV
			N	liddle Ch	annel:2440l	MHz			
V	4882.00	56.08	30.55	5.77	24.66	55.96	74	-18.04	Pk
V	4882.00	41.47	30.55	5.77	24.66	41.35	54	-12.65	AV
V	7320.00	56.67	30.33	6.32	24.55	57.21	74	-16.79	Pk
V	7320.00	41.35	30.33	6.32	24.55	41.89	54	-12.11	AV
V	9760.00	56.57	30.55	5.77	24.66	56.45	74	-17.55	Pk
V	9760.00	45.52	30.55	5.77	24.66	45.4	54	-8.6	AV
V	12200.00	57.45	30.33	6.32	24.55	57.99	74	-16.01	Pk
V	12200.00	44.27	30.33	6.32	24.55	44.81	54	-9.19	AV
H	4882.00	56.53	30.55	5.77	24.66	56.41	74	-17.59	Pk
H	4882.00	42.27	30.55	5.77	24.66	42.15	54	-11.85	AV
H	7320.00	57.25	30.33	6.32	24.55	57.79	74	-16.21	Pk
H	7320.00	41.31	30.33	6.32	24.55	41.85	54	-12.15	AV
H	9760.00	58.58	30.55	5.77	24.66	58.46	74	-15.54	Pk
H	976000	41.37	30.55	5.77	24.66	41.25	54	-12.75	AV
H	12200.00	59.57	30.33	6.32	24.55	60.11	74	-13.89	Pk
H	12200.00	43.13	30.33	6.32	24.55	43.67	54	-10.33	AV
	12200.00	10.10			innel:2480M		01	10.00	,,,,
V	4940.00	56.35	30.55	5.77	24.66	56.23	74	-17.77	Pk
V	4940.00	41.57	30.55	5.77	24.66	41.45	54	-12.55	AV
v	7440.00	57.64	30.33	6.32	24.55	58.18	74	-15.82	Pk
V	7440.00	42.88	30.33	6.32	24.55	43.42	54	-10.58	AV
V	9920.00	56.46	30.55	5.77	24.66	56.34	74	-17.66	Pk
V	9920.00	41.62	30.55	5.77	24.66	41.50	54	-12.5	AV
V	12400.00	59.15	30.33	6.32	24.55	59.69	74	-14.31	Pk
V	12400.00	41.43	30.33	6.32	24.55	41.97	54	-12.03	AV
H	4940.00	59.65	30.55	5.77	24.66	59.53	74	-14.47	Pk
H	4940.00	41.35	30.55	5.77	24.66	41.23	54	-12.77	AV
H	7440.00	58.97	30.33	6.32	24.55	59.51	74	-14.49	Pk
H	7440.00	41.45	30.33	6.32	24.55	41.99	54	-12.01	AV
H	9920.00	56.28	30.55	5.77	24.66	56.16	74	-17.84	Pk

Н	9920.00	41.49	30.55	5.77	24.66	41.37	54	-12.63	AV
Н	12400.00	58.38	30.33	6.32	24.55	58.92	74	-15.08	Pk
Н	12400.00	42.37	30.33	6.32	24.55	42.91	54	-11.09	AV

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level - Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 4. The test data shows only the worst case GFSK 1M .
- 5. The PCB and chip of the two earphones are the same. This test is for the left earphone

5.RADIATED BAND EMISSION MEASUREMENT

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C	FCC Part15 C Section 15.247 (e);RSS-Gen 8.10, RSS-247 5.5							
Test Method:	ANSI C63.10:	ANSI C63.10: 2013							
Test Frequency Range:		All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.							
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	Above	Peak	1MHz	3MHz	Peak				
	1GHz	Average	1MHz	3MHz	Average				

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)		Limit (dBuV/m) (at 3M)				
(PEAK	AVERAGE				
Above 1000	74	54				

Notes:

- (1) The limit for radiated test was performed according to RSS-247 5.5
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

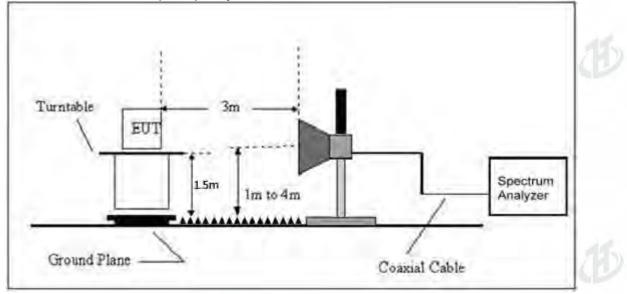
5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported


5.3 DEVIATION FROM TEST STANDARD No deviation

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn 🤇

5.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

		Frequenc	Meter	Pre-	Cable	Antenna	Emission	Limit	Margi	Detec	
	Polar	v v	Reading	amplifier	Loss	Factor	level	(dBuV	n	tor	Result
	(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	`/m)	(dB)	Туре	
	Low Channel: 2402MHz										
	Н	2390.00	59.18	30.22	4.85	23.98	57.79	74	-16.21	PK	PASS
	H	2390.00	45.56	30.22	4.85	23.98	44.17	54	-9.83	AV	PASS
GFSK	(H)	2400.00	61.03	30.22	4.85	23.98	59.64	74	-14.36	PK	PASS
	H	2400.00	47.17	30.22	4.85	23.98	45.78	54	-8.22	AV	PASS
	V	2390.00	57.56	30.22	4.85	23.98	56.17	74	-17.83	PK	PASS
	V	2390.00	47.95	30.22	4.85	23.98	46.56	54	-7.44	AV	PASS
	V	2400.00	59.88	30.22	4.85	23.98	58.49	74	-15.51	PK	PASS
	V	2400.00	47.54	30.22	4.85	23.98	46.15	54	-7.85	AV	PASS
GISK	High Channel: 2480MHz										2
	Н	2483.50	62.15	30.22	4.85	23.98	60.76	74	-13.24	AV	PASS
	Н	2483.50	47.34	30.22	4.85	23.98	45.95	54	-8.05	PK	PASS
	Н	2500.00	59.36	30.22	4.85	23.98	57.97	74	-16.03	AV	PASS
	Н	2500.00	48.47	30.22	4.85	23.98	47.08	54	-6.92	PK	PASS
	V	2483.50	61.47	30.22	4.85	23.98	60.08	74	-13.92	AV	PASS
	V	2483.50	46.92	30.22	4.85	23.98	45.53	54	-8.47	PK	PASS
	V	2500.00	61.65	30.22	4.85	23.98	60.26	74	-13.74	AV	PASS
	V	2500.00	47.74	30.22	4.85	23.98	46.35	54	-7.65	AV	PASS

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

2. The test data shows only the worst case GFSK-1M.

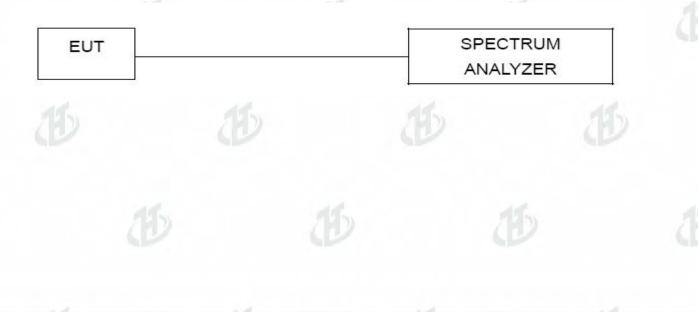
3. The PCB and chip of the two earphones are the same. This test is for the left earphone

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e);RSS 247 5.2(b)					
Test Method:	ANSI C63.10					

6.1 APPLIED PROCEDURES / LIMIT

	RSS 247									
Section	Test Item	Limit	Frequency Range (MHz)	Result						
5.2(b)	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS						


6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	25.8℃	Relative Humidity :	52%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

6.6 TEST RESULTS: Please refer to the Appendix BLE

Ð				
Ð				
Ð				
Æ				

7. Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2); RSS 247 5.2(a), RSS GEN
Test Method:	ANSI C63.10

7.1 APPLIED PROCEDURES / LIMIT

A 112 A					
	RSS 247 5.2(a), RSS GEN				
Test Item	Limit	Frequency Range (MHz)	Result		
Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT	SPECTRUM
5.548345302453	ANALYZER

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	25.8 ℃	Relative Humidity :	52%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

7.6 TEST RESULTS: Please refer to the Appendix BLE

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3); RSS 247 5.4 (d)
Test Method:	ANSI C63.10

8.1 APPLIED PROCEDURES / LIMIT

		RSS 247		
Section	Test Item	Limit	Frequency Range (MHz)	Result
5.4 (d)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Spectrum Analyzer

8.3 DEVIATION FROM STANDARD No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	25.8 ℃	Relative Humidity :	52%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

8.6 TEST RESULTS

Please refer to the Appendix BLE

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

7 100 12	
Test Requirement:	FCC Part15 C Section 15.247 (d); RSS-Gen 8.10, RSS-247 5.5
Test Method:	ANSI C63.10

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

A) Set the RBW = 100KHz.

- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	25.8 ℃	Relative Humidity :	52%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

9.6 TEST RESULTS Please refer to the Appendix BLE

10.ANTENNA REQUIREMENT

Standard requirement:

FCC Part15 C Section 15.203 /RSS-Gen 6.8

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

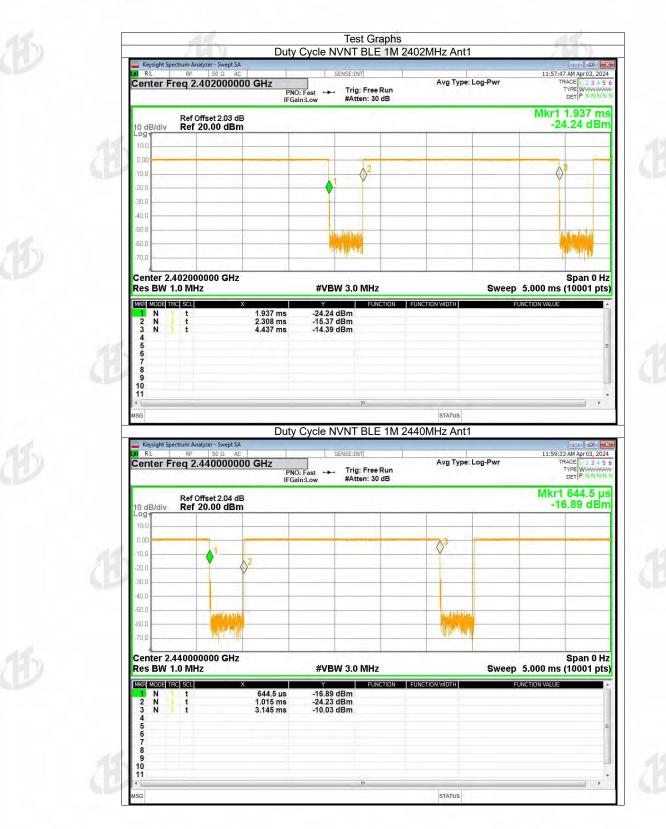
15.247(b) (4) requirement:

1 0755-27782934

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Chip antenna, the best case gain of the antennas is 3dBi, reference to the appendix II for details



11. APPENDIX BLE

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)
NVNT	BLE 1M	2402	Ant1	85.18	0.7
NVNT	BLE 1M	2440	Ant1	85.18	0.7
NVNT	BLE 1M	2480	Ant1	85.16	0.7
NVNT	BLE 2M	2402	Ant1	43.09	3.66
NVNT	BLE 2M	2440	Ant1	43.09	3.66
NVNT	BLE 2M	2480	Ant1	43.06	3.66

Project No.: ZHT-240402021E-2 Page 32 of 63

Project No.: ZHT-240402021E-2 Page 33 of 63

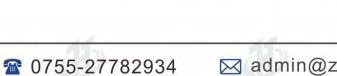
	RL RF 50 Ω Center Freq 2.48000	00000 GHz	SENSE:INT O: Fast ↔ Trig: F ain:Low #Atten	Free Run 1: 30 dB	Avg Type: Log-Pwr	12:01:11 TR 1	PM Apr 03, 2024 ACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N N
	Ref Offset 2.0 10 dB/div Ref 20.00 d	03 dB				Mkr1	33.50 µs .07 dBm
11	-10.0			2			
50	-20.0			V*			
	-30.0						
	-50.0			a hour arout			
	-60.0			Jawkely			
	Center 2.480000000 G Res BW 1.0 MHz	Hz	#VBW 3.0 M	147	Swe	ep 5.000 ms (Span 0 Hz
	MKR MODE TRC SCL	X 33.50 μs	Y	FUNCTION FUNCTI		FUNCTION VALUE	10001 pt3)
	1 N t 2 N t 3 N t	404.5 µs 2.534 ms	-11.07 dBm -12.68 dBm -19.18 dBm				
	4 5 6						E
/17h	7 8 9						
	10 11		m				
b.	ISG				STATUS		
		ept SA	/ Cycle NVNT B	BLE 2M 2402N			- 6 ×
		AC 0000 GHz	SENSE:INT	Free Run		01:32:48 TR 1	PM Apr 03, 2024
	u Keysight Spectrum Analyzer - Swe Wart R⊧ 50 Ω Center Freq 2.40200	ept SA AC 100000 GHz PN IFG	SENSE:INT		1Hz Ant1	TR 1 Mkr1 :	PM Apr 03, 2024 ACE 1 2 3 4 5 6 TYPE P NNNN 2.500 ms
	Keysight Spectrum Analyzer - Swe RL RF 50 Q Center Freq 2.40200 Ref Offset 2.0 0 dB/div Ref 20.00 d	AC AC PN IOOOOO GHZ PN IFG	SENSE:INT O: Fast → Trig: F	Free Run	1Hz Ant1	TR 1 Mkr1 :	PM Apr 03, 2024
	Keysight Spectrum Analyzer - Swe RL RF IS 0 Ω Center Freq 2.40200 Ref Offset 2.0 Ref Offset 2.0 Ref 20.00 d	AC AC PN IOOOOO GHZ PN IFG	SENSE:INT O: Fast → Trig: F	Free Run	1Hz Ant1	TR 1 Mkr1 :	PM Apr 03, 2024 ACE 1 2 3 4 5 6 TYPE P NNNN 2.500 ms
	Keysight Spectrum Analyzer - Swe R L RF 50 Ω Center Freq 2.40200 Ref Offset 2.0 10 dB/div Ref 200 d 10.0	AC AC PN IOOOOO GHZ PN IFG	SENSE:INT O: Fast → Trig: F	Free Run	1Hz Ant1	TR 1 Mkr1 :	PM Apr 03, 2024 ACE 1 2 3 4 5 6 TYPE P NNNN 2.500 ms
	Keysight Spectrum Analyzer - Swe RL RF 50 Ω Center Freq 2.40200 Ref Offset 2.0 10 dB/div Ref 20.00 d 10 0 0.00 Meet 20.00 d	AC AC PN IOOOOO GHZ PN IFG	SENSE:INT O: Fast → Trig: F	Free Run	1Hz Ant1	TR 1 Mkr1 :	PM Apr 03, 2024 ACE 1 2 3 4 5 6 TYPE P NNNN 2.500 ms
	Reysight Spectrum Analyzer - Swe RL RF S0 Q Center Freq 2.40200 Ref Offset 2.0 10 dB/div Ref 20.00 d 00	AC AC PN IOOOOO GHZ PN IFG	O: Fast →→ Trig: F ain:Low →→ #Atten	Free Run 1: 30 dB	1Hz Ant1	-53	PP 4pr03, 2024 ADD 12 34 5 6 Prype WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
18	Keysight Spectrum Analyzer - Swe R R RF 50 @ Center Freq 2.40200 Ref Offset 2.0 Colspan="2">Colspan="2" Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" </td <td>AC AC PN IOOOOO GHZ PN IFG</td> <td>O: Fast →→ Trig: F ain:Low →→ #Atten</td> <td>Free Run : 30 dB</td> <td>1Hz Ant1</td> <td>TR Mkr1 : -53</td> <td>PP 4pr03, 2024 Add 12 3 4 5 6 YPE WWWWWW DET P N N N N 2, 500 ms 5,67 dBm</td>	AC AC PN IOOOOO GHZ PN IFG	O: Fast →→ Trig: F ain:Low →→ #Atten	Free Run : 30 dB	1Hz Ant1	TR Mkr1 : -53	PP 4pr03, 2024 Add 12 3 4 5 6 YPE WWWWWW DET P N N N N 2, 500 ms 5,67 dBm
15	Reysight Spectrum Analyzer - Swe R RL RF S0 Q Center Freq 2.40200 Ref Offset 2.0 10 dB/div Ref 20.00 d 000	ipt SA AC PN IFG 33 dB 18m	O: Fast →→ Trig: F ain:Low →→ #Atten	Free Run : 30 dB	1Hz Ant1	TR Mkr1 : -53	PM 40103, 2024 ADD 12, 34 5 6 Pype WWWWWWWW DET P N N N N 2, 500 ms 3, 67 dBm
15	Keysight Spectrum Analyzer - Swe R RL RF S0 Q Center Freq 2.40200 Ref Offset 2.0 10 dB/div Ref 20.00 d 0.00 Ref 20.00 d 10.0 Ref 20.00 d 0.00 Ref 20.00 d 10.0 Ref 20.00 d 20.0 Ref 20.00 d 30.0 Ref 20.00 d 40.0 Ref 20.00 d 50.0 Ref 20.00 d 70.0 Ref 20.00 d Center 2.402000000 G Res BW 1.0 MHz	ipt SA AC PN IFG 33 dB 18m	SENSE:INT O: Fast \rightarrow Trig: F ain:Low #Atten	Free Run : 30 dB	1Hz Ant1 Avg Type: Log-Pwr	ep 5.000 ms (PP 4 pro3, 2024 ADD 12 3 4 5 6 Pype WWWWWW DET P N N N N 2,500 ms 5.67 dBm
15	Keysight Spectrum Analyzer - Swe RL RL RF 50 B Center Freq 2.40200 Ref Offset 2.0 10 dB/div Ref 20.00 d	ipt SA AC PN IFG 33 dB 18m	SENSE:INT O: Fast \rightarrow Trig: F ain:Low #Atten	Free Run : 30 dB	1Hz Ant1 Avg Type: Log-Pwr	TR Mkr1 : -53	PP 4 pro3, 2024 ADD 12 3 4 5 6 Pype WWWWWW DET P N N N N 2,500 ms 5.67 dBm
15	Keysight Spectrum Analyzer - Swe R RL RF S0 Q Center Freq 2.40200 Ref Offset 2.0 10 dB/div Ref 20.00 d 0.00	AC PN IFG	O: Fast →→ Trig: F ain:Low →→ #Atten	Free Run : 30 dB	1Hz Ant1 Avg Type: Log-Pwr	ep 5.000 ms (PP 4 pro3, 2024 ADD 12 3 4 5 6 Pype WWWWWW DET P N N N N 2,500 ms 5.67 dBm
15	Keysight Spectrum Analyzer - Swe R RL RF S0 Q Center Freq 2.40200 Ref Offset 2.0 10 dB/div Ref 20.00 d 0.00	AC PN IFG	O: Fast →→ Trig: F ain:Low →→ #Atten	Free Run : 30 dB	1Hz Ant1 Avg Type: Log-Pwr	ep 5.000 ms (PP 4 pro3, 2024 ADD 12 3 4 5 6 Pype WWWWWW DET P N N N N 2,500 ms 5.67 dBm
15	Keysight Spectrum Analyzer - Swe R RL RF S0 @ Center Freq 2.40200 Ref Offset 2.0 Ref Offset 2.0 10.0 Ref Offset 2.0 Ref Offset 2.0 Ref Offset 2.0 10.0 Ref Offset 2.0 Ref Offset 2.0 Ref Offset 2.0 Ref Offset 2.0 10.0 Ref Offset 2.0 10.0 Ref Offset 2.0	AC PN IFG	O: Fast →→ Trig: F ain:Low →→ #Atten	Free Run : 30 dB	1Hz Ant1 Avg Type: Log-Pwr	ep 5.000 ms (PP 4 pro3, 2024 ADD 12 3 4 5 6 Pype WWWWWW DET P N N N N 2,500 ms 5.67 dBm

Project No.: ZHT-240402021E-2 Page 34 of 63

Center Freq 2.4	PN	D: Fast	Avg Type: Lo	01:34:46 PM Apr03, 20 g-Pwr TRACE 1 2 3 4 TYPE WWWW DET P N N N
Ref Of	IFG fset 2.04 dB	ain:Low #Atten: 30 dB		Mkr1 2.500 m
10 dB/div Ref 2	0.00 dBm			-55.78 dB
0.00			1. Sector	
-10.0				
-20.0				
-40,0				
-50.0 Phillip and an and	() particul	or the advantage	An own plantitle around the testion	AL PRODUCED IN THE OWNER
-60.0 -70.0	pedda dy	in the state of the second second	A PATRICIA (PASS, RAMPER)	a she was a
Center 2.440000		#\/D\W 2.0 MU-		Span 0 H
Res BW 1.0 MHz	x	#VBW 3.0 MHz	DN FUNCTION WIDTH	Sweep 5.000 ms (10001 pt
1 N 1 t 2	2.500 ms	-55.78 dBm		
3 4 5				
6 7				
8 9 10				
11		10		
MSG			STATUS	
Keysight Spectrum Anal		Cycle NVNT BLE 2	M 2480MHz Ant1	- P
	50 Ω AC	SENSE:INT		01:36:36 PM Apr 03, 20
Center Fred 2 4			Avg Type: Lo	g-Pwr IRACE 1 2 3 4
Center Freq 2.4	PN	D: Fast ↔→ Trig: Free Ru ain:Low #Atten: 30 dB		g-Pwr TRACE 12.3.4 TYPE WWWW DET P NNN
Ref Of	PN IFG fset 2.03 dB		n	Mkr1 720.0 j
Ref Of 10 dB/div Ref 2	PN IFG		n	
Ref Of 10 dB/div Ref 2	PN IFG fset 2.03 dB	#Atten: 30 dB		Mkr1 720.0 j
10 dB/div Ref Of Log 10.0 .000 .000 .10.0	PN IFG fset 2.03 dB		n	Mkr1 720.0 j
10 dB/div Ref Of Log	PN IFG fset 2.03 dB	#Atten: 30 dB		Mkr1 720.0 j
10 dB/div Ref Of Log 10.0 .000 .000 .10.0	PN IFG fset 2.03 dB	#Atten: 30 dB		Mkr1 720.0 j
Ref Of Ref Of 10 dB/div Ref Of 10.0	PN IFG fset 2.03 dB	#Atten: 30 dB	n 3	Mkr1 720.0 j
Ref Of Log Ref Of 10.0	PN IFG 10.00 dBm	Atten: 30 dB	n 3 mi yeldi (v)	Mkr1 720.0 µ -18.99 dB
Ref Of 10 dB/div Ref Of 10 0	PN IFG Tset 2.03 dB 20.00 dBm	Atten: 30 dB	n 3 mi yeldi (v)	Mkr1 720.0 1 -18.99 dB
Ref Of Ref Of 10 dB/div Ref Of 100	PN IFG 7set 2.03 dB 0.00 dBm	#VBW 3.0 MHz		Mkr1 720.0 1 -18.99 dB
Ref Of Ref Of 10 dB/div Ref Of 10.0 Ref Of 20.0 Ref Of 20.0 Ref Of 30.0 Ref Of 40.0 Ref Of -50.0 Ref Of -60.0 Ref Of -70.0 Ref Of Center 2.480000 Res BW 1.0 MHz MRR MODE INCISEI Ref Sci	PN IFG 10.00 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	#Atten: 30 dB		Mkr1 720.0 1 -18.99 dB
Ref Of Ref Of 10 dB/div Ref Of 10.0 Ref Of 20.0 Ref Of 20.0 Ref Of 30.0 Ref Of 40.0 Ref Of -50.0 Ref Of -60.0 Ref Of -70.0 Ref Of Center 2.480000 Res BW 1.0 MHz MRR MODE INCISEI Ref Sci	PN IFG 7set 2.03 dB 0.000 dBm	#VBW 3.0 MHz		Mkr1 720.0 1 -18.99 dB
Ref Of Ref Of 10 dB/div Ref Of 10.0 0.00 Ref Of 20.0 0.00 Ref Of 30.0	PN IFG 75set 2.03 dB 0.000 dBm	#VBW 3.0 MHz #VBW 3.0 MHz #UNGIK		Mkr1 720.0 1 -18.99 dB
Ref Of Ref Of 10 dB/div Ref 2 10.0	PN IFG 75set 2.03 dB 0.000 dBm	#VBW 3.0 MHz #VBW 3.0 MHz #UNGIK		Mkr1 720.0 1 -18.99 dB
Ref Of 10 Bef Of 20 Ref 2 20	PN IFG 75set 2.03 dB 0.000 dBm	#VBW 3.0 MHz #VBW 3.0 MHz #UNGIK		Mkr1 720.0 1 -18.99 dB

Maximum Peak Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	0.94	0.94	30	Pass
NVNT	BLE 1M	2440	Ant1	1.17	1.17	30	Pass
NVNT	BLE 1M	2480	Ant1	1.22	1.22	30	Pass
NVNT	BLE 2M	2402	Ant1	1.04	1.04	30	Pass
NVNT	BLE 2M	2440	Ant1	1.28	1.28	30	Pass
NVNT	BLE 2M	2480	Ant1	1.32	1.32	30	Pass

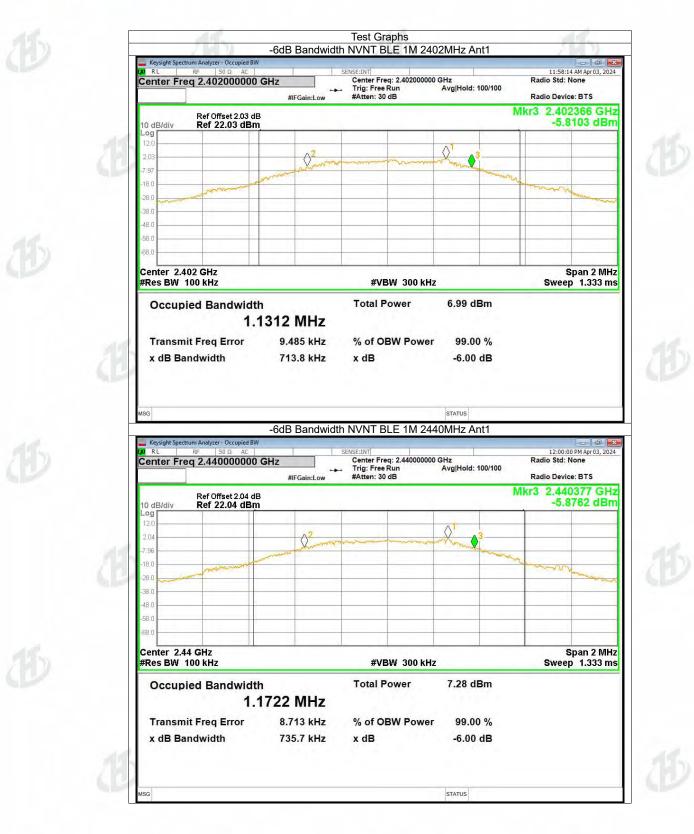




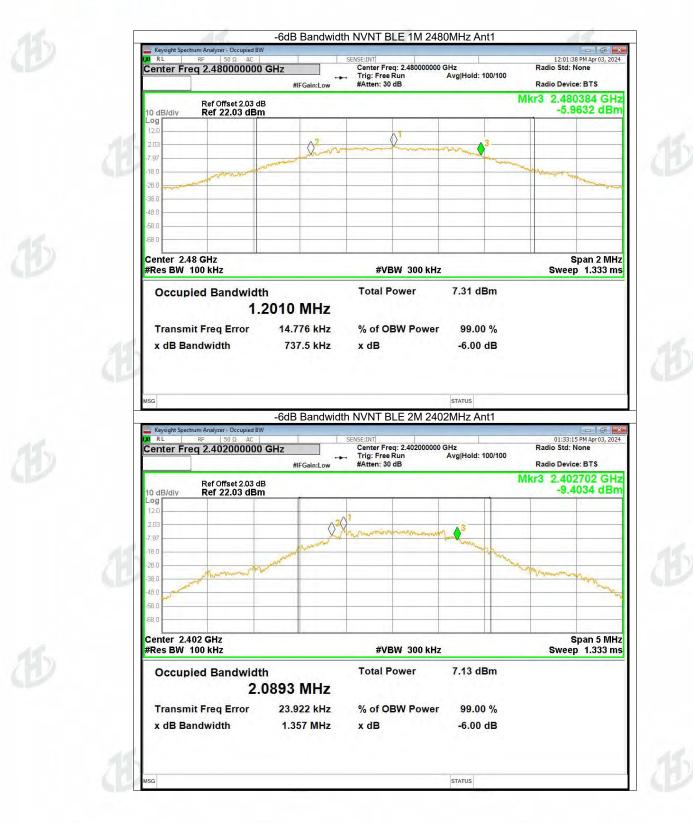
Project No.: ZHT-240402021E-2 Page 36 of 63

Project No.: ZHT-240402021E-2 Page 37 of 63

Project No.: ZHT-240402021E-2 Page 38 of 63



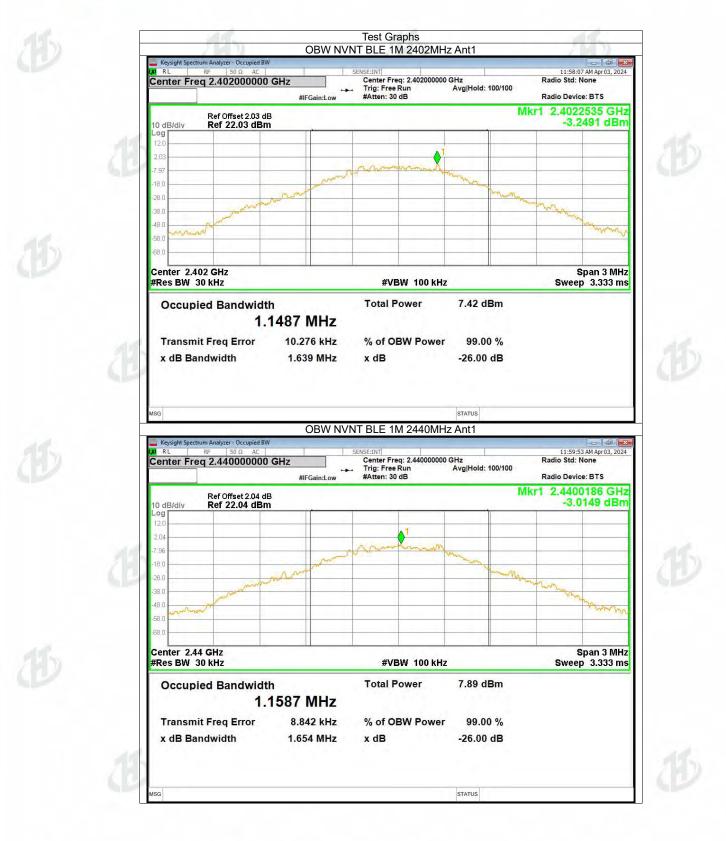
Condition NVNT NVNT NVNT NVNT NVNT NVNT	Bandwidth Mode BLE 1M BLE 1M BLE 2M BLE 2M BLE 2M	Frequency (MHz) 2402 2440 2480 2402 2402 2402 2440 2480	Antenna Ant1 Ant1 Ant1 Ant1 Ant1 Ant1	-6 dB Bandwidth (MH 0.714 0.736 0.737 1.357 1.192 1.202	Limit -6 dB Bandwidth (MHz) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Verdict Pass Pass Pass Pass Pass Pass



Project No.: ZHT-240402021E-2 Page 40 of 63

Project No.: ZHT-240402021E-2 Page 41 of 63

Project No.: ZHT-240402021E-2 Page 42 of 63



Occupied Channel E	Bandwidth
--------------------	-----------

Ð	Occupied Chann Condition NVNT NVNT NVNT NVNT NVNT NVNT NVNT	ModeBLE 1MBLE 1MBLE 1MBLE 2MBLE 2MBLE 2MBLE 2M	Frequence 24 24 24 24 24 24 24 24 24	02 40 80 02 40	Antenna Ant1 Ant1 Ant1 Ant1 Ant1 Ant1 Ant1	99	% OBW (MHz) 1.149 1.159 1.224 2.1 2.102 2.11	Æ

Project No.: ZHT-240402021E-2 Page 44 of 63

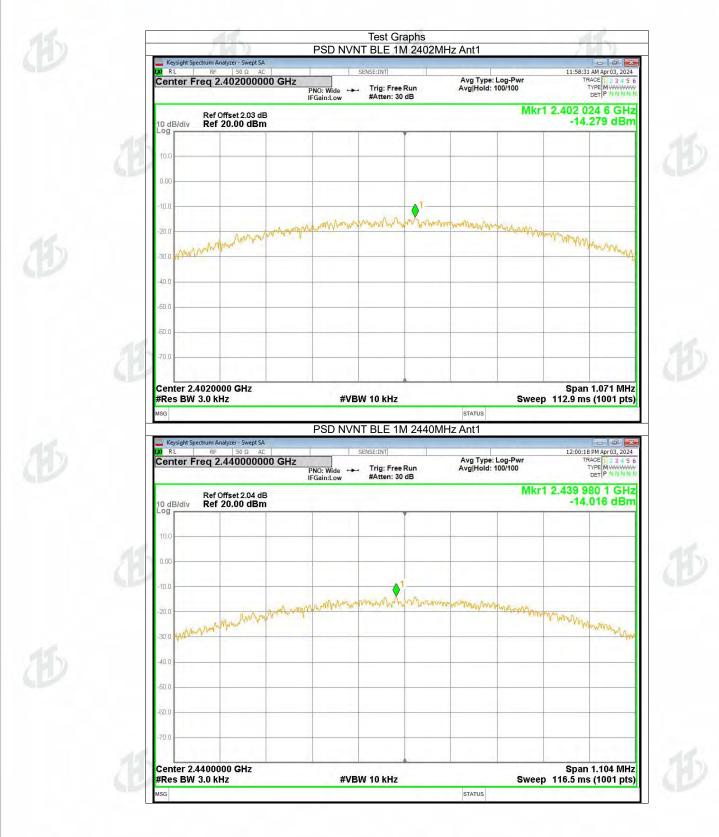


Project No.: ZHT-240402021E-2 Page 45 of 63

Project No.: ZHT-240402021E-2 Page 46 of 63

Maximum Power Spectral Density Level

ġ	Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm/3kHz)	Duty Factor (dB)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
	NVNT	BLE 1M	2402	Ant1	-14.28	0	-14.28	8	Pass
	NVNT	BLE 1M	2440	Ant1	-14.02	0	-14.02	8	Pass
	NVNT	BLE 1M	2480	Ant1	-14.1	0	-14.1	8	Pass
	NVNT	BLE 2M	2402	Ant1	-17.75	0	-17.75	8	Pass
	NVNT	BLE 2M	2440	Ant1	-17.42	0	-17.42	8	Pass
[NVNT	BLE 2M	2480	Ant1	-17.26	0	-17.26	8	Pass


B B B

B B B

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn

Project No.: ZHT-240402021E-2 Page 48 of 63

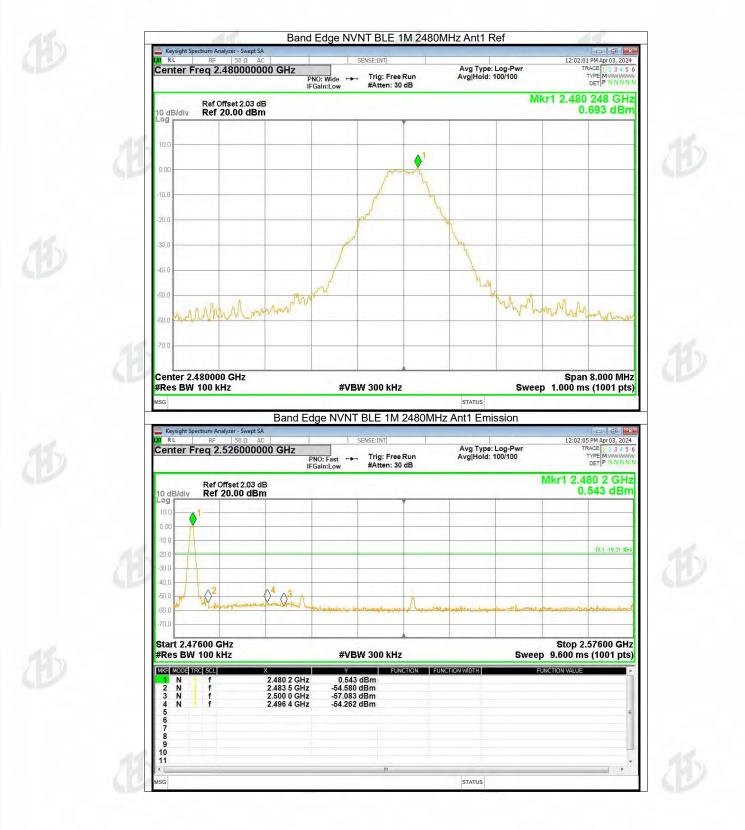
Project No.: ZHT-240402021E-2 Page 49 of 63

Keysight S K RL Center I	RF 50 Ω AC Freq 2.480000000 GHz	SENSE (INT PNO: Wide +++ Trig: Fre	e Run	Avg Type: Log Avg Hold: 100/	-Pwr 100	12:01:56 PM Apr 03, 202 TRACE 1 2 3 4 5 TYPE M WWW DET P N N N
-		IFGain:Low #Atten:	30 dB	an street way		2.480 025 4 GH
10 dB/div Log	Ref Offset 2.03 dB Ref 20.00 dBm					-14.103 dBr
10.0						
10,0						
0.00						
-10.0		1	• ¹		_	
-20.0	white white white and the second	ano more formation	Mar Aunan	an wanter water and	mathaning	monterman
-30 D DE-	which was not a					and a hard and when he had a set of the set
					-	-
-40.0						
-50.0						
-60.0						
-70.0						
10.0	tere instantion	1				1.1
			<u>. A.</u>			
	.4800000 GHz	10 (B) (4) () () (a. a.	Span 1.106 MH
Center 2 #Res BW		#VBW 10 kHz		STATUS	Sweep	Span 1.106 MH 116.6 ms (1001 pt
#Res BW	/ 3.0 kHz	#VBW 10 kHz PSD NVNT BLE 2			Sweep	Span 1.106 MH 116.6 ms (1001 pt:
#Res BW MSG Keysight S	/ 3.0 kHz pectrum Analyzer - Swept SA RF 50 Ω AC			Hz Ant1		116.6 ms (1001 pts 01:33:44 PM Apr 03, 202
#Res BW MSG Keysight S	/ 3.0 kHz pectrum Analyzer - Swept SA	PSD NVNT BLE 2	2M 2402M		-Pwr	116.6 ms (1001 pts
#Res BW MSG Keysight S M RL Center I	7 3.0 kHz pectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.402000000 GHz Ref Offset 2.03 dB		2M 2402M	Hz Ant1 Avg Type: Log	I-Pwr 100	116.6 ms (1001 pt: 01:33:44 PM Apr03, 202 TRACE TRACE TRACE DET P NNNN DET P NNNN 2.402 000 0 GH
#Res BV MSG Control MSG MSG MSG MSG MSG MSG MSG MSG MSG MSG	/ 3.0 kHz pectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.402000000 GHz		2M 2402M	Hz Ant1 Avg Type: Log	I-Pwr 100	116.6 ms (1001 pt: 01:33:44 PM Apr03, 202 TRACE TRACE TRACE DET P NNNN
#Res BW	7 3.0 kHz pectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.402000000 GHz Ref Offset 2.03 dB		2M 2402M	Hz Ant1 Avg Type: Log	I-Pwr 100	116.6 ms (1001 pt: 01:33:44 PM Apr03, 202 TRACE 1 23 4 5 TRACE 1 3 5
#Res BW Msg (M) RL Center I 10 dB/div Log	7 3.0 kHz pectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.402000000 GHz Ref Offset 2.03 dB		2M 2402M	Hz Ant1 Avg Type: Log	I-Pwr 100	116.6 ms (1001 pt: 01:33:44 PM Apr03, 202 TRACE TRACE TRACE DET P NNNN DET P NNNN 2.402 000 0 GH
#Res BW MISG Keysight S (M) RL Center I 10 dB/div Log 10.0 0.00	7 3.0 kHz pectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.402000000 GHz Ref Offset 2.03 dB		2M 2402M	Hz Ant1 Avg Type: Log	I-Pwr 100	116.6 ms (1001 pt: 01:33:44 PM Apr03, 202 TRACE TRACE TRACE DET P NNNN DET P NNNN 2.402 000 0 GH
#Res BW	f 3.0 kHz pectrum Analyzer - Swept SA RF 50 Q. AC Freq 2.402000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PSD NVNT BLE 2	2M 2402M se Run 30 dB	Hz Ant1 Avg Type: Log Avg Hold: 100/	-Pwr 100 Mkr1	116.6 ms (1001 pt: 01:33:44 PM Apr03, 202 TRACE DET P MWWW DET P MWW 2.402 000 0 GH -17.752 dBr
#Res BW Msg (# RL Center I 10 dB/div Log 10.0 -10.0 -20.0	1 3.0 kHz pectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.402000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PSD NVNT BLE 2	2M 2402M se Run 30 dB	Hz Ant1 Avg Type: Log Avg Hold: 100/	-Pwr 100 Mkr1	116.6 ms (1001 pt: 01:33:44 PM Apr03, 202 TRACE DET P MWWW DET P MWW 2.402 000 0 GH -17.752 dBr
#Res BW MSG W RL Center I 10 dB/div Log 10.0 -10.0 -20.0	1 3.0 kHz pectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.402000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm		2M 2402M se Run 30 dB	Hz Ant1 Avg Type: Log Avg Hold: 100/	-Pwr 100 Mkr1	116.6 ms (1001 pt: 01:33:44 PM Apr03, 202 TRACE DET P MWWW DET P MWW 2.402 000 0 GH -17.752 dBr
#Res BW MSG Keysight S (# RL Center I 10 dB/div Log 10.0 -10.0 -20.0 -30.0 -30.0	f 3.0 kHz pectrum Analyzer - Swept SA RF 50 Q. AC Freq 2.402000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PSD NVNT BLE 2	2M 2402M se Run 30 dB	Hz Ant1 Avg Type: Log Avg Hold: 100/	-Pwr 100 Mkr1	116.6 ms (1001 pt: 01:33:44 PM Apr03, 202 TRACE TRACE TRACE DET P NNNN DET P NNNN 2.402 000 0 GH
#Res BW MSG Keysight S (#) RL Center I 10 dB/div Log 10.0 -10.0 -20.0 -30.0 -40.0	1 3.0 kHz pectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.402000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PSD NVNT BLE 2	2M 2402M se Run 30 dB	Hz Ant1 Avg Type: Log Avg Hold: 100/	-Pwr 100 Mkr1	116.6 ms (1001 pt: 01:33:44 PM Apr03, 202 TRACE TRACE 0ETP MWW DETP MWW 2.402 000 0 GH -17.752 dBr
#Res BW MSG W(RL Center I 10 dB/div Log 10.0 -10.0 -20.0 -30.0	1 3.0 kHz pectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.402000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PSD NVNT BLE 2	2M 2402M se Run 30 dB	Hz Ant1 Avg Type: Log Avg Hold: 100/	-Pwr 100 Mkr1	116.6 ms (1001 pt: 01:33:44 PM Apr03, 202 TRACE DET P MWWW DET P MWW 2.402 000 0 GH -17.752 dBr
#Res BW MSG (# RL Center I 10 dB/div Log 10.0 -10.0 -20.0 -30.0 -40.0	1 3.0 kHz pectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.402000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PSD NVNT BLE 2	2M 2402M se Run 30 dB	Hz Ant1 Avg Type: Log Avg Hold: 100/	-Pwr 100 Mkr1	116.6 ms (1001 pt: 01:33:44 PM Apr03, 202 TRACE DET P MWWW DET P MWW 2.402 000 0 GH -17.752 dBr
#Res BW MSG (M) RL Center F 10 dB/div Log 10.0 -10.0 -20.0 -30.0 -40.0 -50.0	1 3.0 kHz pectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.402000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PSD NVNT BLE 2	2M 2402M se Run 30 dB	Hz Ant1 Avg Type: Log Avg Hold: 100/	-Pwr 100 Mkr1	116.6 ms (1001 pt: 01:33:44 PM Apr03, 202 TRACE DET P MWWW DET P MWW 2.402 000 0 GH -17.752 dBr
#Res BW MISG (M) RL Center 1 10 dB/div Log 10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0	1 3.0 kHz pectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.402000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PSD NVNT BLE 2	2M 2402M se Run 30 dB	Hz Ant1 Avg Type: Log Avg Hold: 100/	-Pwr 100 Mkr1	116.6 ms (1001 pt: 01:33:44 PM Apr03, 202 TRACE DET P MWWW DET P MWW 2.402 000 0 GH -17.752 dBr

Project No.: ZHT-240402021E-2 Page 50 of 63

LXI RL	ectrum Analyzer - Swept SA			MHz Ant1		
	RF 50 Ω AC req 2.440000000 GHz		SENSE:INT	Avg Type: Log- Avg Hold: 100/1	Pwr	01:35:37 PM Apr 03, 20 TRACE 1 2 3 4 TYPE M WWW DET P N N N
		PNO: Wide	#Atten: 30 dB	Avginoia: 100/1		
10 dB/div Log	Ref Offset 2.04 dB Ref 20.00 dBm	-	-		Mkr1 :	2.440 000 0 GF -17.418 dB
1.1						
10.0						
0.00						
-10.0						
			♦ ¹			
-20.0	- Manuar Ma	when the way when the	and a sunder have a province	and to alour M. M. and	mytheligenth	-how have more a
-30.0 -30.0	- Martinet .					and any marine
-40.0						
-40.0						
-50.0						
-60.0						
-70.0						
-70.0						
Center 2.4	4400000 GHz	1.2				Span 1.788 MI
#Res BW	3.0 kHz	#VBI	W 10 kHz	STATUS	Sweep	188.5 ms (1001 pt
MSG						
			T BI E 2M 2480	N. S. S.		
	ectrum Analyzer - Swept SA		T BLE 2M 24801	N. S. S.		- 6
LXI RL	ectrum Analyzer - Swept SA RF 50 Ω AC req 2.480000000 GHz		SENSE(INT	MHz Ant1 Avg Type: Log-	Pwr	01:37:28 PM Apr 03, 20
LXI RL	RF 50 Ω AC			MHz Ant1	00	01:37:28 PM Apr03, 20 TRACE 1 3 3 TYPE M WWW DET P N N N
Center F	RF 50 Ω AC req 2.480000000 GHz Ref Offset 2.03 dB	PNO: Wide	SENSE:INT	MHz Ant1 Avg Type: Log-	00	01:37:28 PM Apr 03, 20
LXI RL	RF 50 Ω AC req 2.480000000 GHz	PNO: Wide	SENSE:INT	MHz Ant1 Avg Type: Log-	00	01:37:28 PM Apr 03, 20 TRACE 1 2 3 TYPE MWWW DET P N NN 2.480 000 0 GH
000 RL Center F	RF 50 Ω AC req 2.480000000 GHz Ref Offset 2.03 dB	PNO: Wide	SENSE:INT	MHz Ant1 Avg Type: Log-	00	01:37:28 PM Apr 03, 20 TRACE 1 2 3 TYPE MWWW DET P N NN 2.480 000 0 GH
10 dB/div Log	RF 50 Ω AC req 2.480000000 GHz Ref Offset 2.03 dB	PNO: Wide	SENSE:INT	MHz Ant1 Avg Type: Log-	00	01:37:28 PM Apr 03, 20 TRACE 1 2 3 TYPE MWWW DET P N NN 2.480 000 0 GH
10 dB/div	RF 50 Ω AC req 2.480000000 GHz Ref Offset 2.03 dB	PNO: Wide	SENSE:INT	MHz Ant1 Avg Type: Log-	00	01:37:28 PM Apr 03, 20 TRACE 1 2 3 TYPE MWWW DET P N NN 2.480 000 0 GH
10 dB/div Log 10.0 -10.0	RF 50 Ω AC req 2.480000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PNO: Wide	SENSE(INT) Trig: Free Run #Atten: 30 dB	MHz Ant1 Avg Type: Log-	00	01:37:28 PM Apr 03, 20 TRACE 1 2 3 TYPE MWWW DET P N NN 2.480 000 0 GH
10 dB/div Log 10.0 -10.0	RF 50 Ω AC req 2.480000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PNO: Wide	SENSE(INT) Trig: Free Run #Atten: 30 dB	MHz Ant1 Avg Type: Log- Avg Hold: 100/1	Mkr1 :	01:37:28 PM Apr03, 20 TRACE 23 TYPE M WWW DET P NNN 2.480 000 0 GF -17.264 dB
10 dB/div Log 10.0 -10.0	RF 50 Ω AC req 2.480000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PNO: Wide	SENSE(INT) Trig: Free Run #Atten: 30 dB	MHz Ant1 Avg Type: Log- Avg Hold: 100/1	00	01:37:28 PM Apr03, 20 TRAGE 23 + TYPE M WWW DET P NNN 2.480 000 0 GH -17.264 dB
10 dB/div Log 10.0 -10.0	RF 50 Ω AC req 2.480000000 GHz Ref Offset 2.03 dB	PNO: Wide	SENSE(INT) Trig: Free Run #Atten: 30 dB	MHz Ant1 Avg Type: Log- Avg Hold: 100/1	Mkr1 :	01:37:28 PM Apr03, 20 TRACE 12 3 + TYPE MWWW DET P NHN 2.480 000 0 GH -17.264 dB
10 dB/div Log 10.0 -10.0	RF 50 Ω AC req 2.480000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PNO: Wide	SENSE(INT) Trig: Free Run #Atten: 30 dB	MHz Ant1 Avg Type: Log- Avg Hold: 100/1	Mkr1 :	01:37:28 PM Apr03, 20 TRACE 23 TYPE M WWW DET P NNN 2.480 000 0 GF -17.264 dB
10 dB/div Log 10.0 -10.0 -20.0 -30.0 wy ^{RA} /ICs	RF 50 Ω AC req 2.480000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PNO: Wide	SENSE(INT) Trig: Free Run #Atten: 30 dB	MHz Ant1 Avg Type: Log- Avg Hold: 100/1	Mkr1 :	01:37:28 PM Apr03, 20 TRAGE 23 + TYPE M WWW DET P NNN 2.480 000 0 GH -17.264 dB
10 dB/div 10 dB/div 10.0 10.0 -10.0 -20.0 -30.0 -40.0 -50.0	RF 50 Ω AC req 2.480000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PNO: Wide	SENSE(INT) Trig: Free Run #Atten: 30 dB	MHz Ant1 Avg Type: Log- Avg Hold: 100/1	Mkr1 :	01:37:28 PM Apr03, 20 TRAGE 23 + TYPE M WWW DET P NNN 2.480 000 0 GH -17.264 dB
10 dB/div Log 10.0 -10.0 -10.0 -20.0 -30.0 -40.0	RF 50 Ω AC req 2.480000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PNO: Wide	SENSE(INT) Trig: Free Run #Atten: 30 dB	MHz Ant1 Avg Type: Log- Avg Hold: 100/1	Mkr1 :	01:37:28 PM Apr03, 20 TRAGE 23 + TYPE M WWW DET P NNN 2.480 000 0 GH -17.264 dB
10 dB/div Log 10.0 10.0 -10.0 -20.0 -20.0 -30.0 -40.0 -50.0	RF 50 Ω AC req 2.480000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PNO: Wide	SENSE(INT) Trig: Free Run #Atten: 30 dB	MHz Ant1 Avg Type: Log- Avg Hold: 100/1	Mkr1 :	01:37:28 PM Apr03, 20 TRAGE 23 + TYPE M WWW DET P NNN 2.480 000 0 GH -17.264 dB
10 dB/div 10 dB/div 10.0 10.0 -10.0 -20.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0	RF 50 Ω AC req 2.480000000 GHz Ref Offset 2.03 dB Ref 20.00 dBm	PNO: Wide	SENSE(INT) Trig: Free Run #Atten: 30 dB	MHz Ant1 Avg Type: Log- Avg Hold: 100/1	Mkr1 :	01:37:28 PM Apr03, 20 TRAGE 23 + TYPE M WWW DET P NNN 2.480 000 0 GH -17.264 dB

Bar NVN NVN NVN NVN	Г BLE 1М Г BLE 1М Г BLE 2М	ncy (MHz) 2402 2480 2402 2480 2480	Antenna Ant1 Ant1 Ant1 Ant1 Ant1	Max Value (dBc) -49.21 -54.95 -32.34 -51.69	Limit (dBc -20 -20 -20 -20 -20) Verdict Pass Pass Pass Pass Pass	Ø



Project No.: ZHT-240402021E-2 Page 52 of 63

Project No.: ZHT-240402021E-2 Page 53 of 63

Project No.: ZHT-240402021E-2 Page 54 of 63

Project No.: ZHT-240402021E-2 Page 55 of 63

AC 000 GHz	SENSE:INT	Avg Type: Log-Pwr AvglHold: 100/100	01:37:33 PM Apr03, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N
IFGain:Low	#Atten: 30 dB	1.11-2 Louis Addition	kr1 2.480 488 GHz
dB m			-0.083 dBm
	A1	f -	
	Arminal		
	all a start and a start	When	
		1	
N		holes	
		1 may	
1			X.
F			monton
			- Art
	k		Span 8.000 MHz
#V	BW 300 kHz		p 1.000 ms (1001 pts)
Band Edge NVN	T BLE 2M 2480MH		
SA AC	SENSE:INT		01:37:37 PM Apr 03, 2024
PNO: Fast	 Trig: Free Run #Atten: 30 dB 	Avg Type: Log-Pwr Avg Hold: 100/100	TYPE MWWWWW DET P NNNNN
dB			
			Mkr1 2.480 2 GHz
Sm	1		Mkr1 2.480 2 GHz -1.302 dBm
3 m			Mkr1 2.480 2 GHz -1.302 dBm
			Mkr1 2.480 2 GHz -1.302 dBm
m			-1.302 dBm
			-1.302 dBm
im 	u mar in a start way of the same	an and to see the an instantion of	-1.302 dBm
	u votre video rokuji Arie vote	and and start of the part of t	-1.302 dBm
under Manner Angeler an ar	BW 300 kHz	Swee	-1.302 dBm
#V 2.480 2 GHz -1.30	FUNCTION FU		-1.302 dBm
#V 2.480 2 GHz 2.483 5 GHz 2.560 JC 56.95	FUNCTION FU 12 dBm 18 dBm 11 dBm		-1.302 dBm
#V 2.480 2 GHz 2.483 5 GHz 2.560 JC 56.95	FUNCTION FU 2 dBm 78 dBm		-1.302 dBm
#V 2.480 2 GHz 2.483 5 GHz 2.560 JC 56.95	FUNCTION FU 12 dBm 18 dBm 11 dBm		-1.302 dBm
#V 2.480 2 GHz 2.483 5 GHz 2.560 JC 56.95	FUNCTION FU 12 dBm 18 dBm 11 dBm		-1.302 dBm Dct-2008 dBr 9, 3, 5, 5, 4, 6, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
	000 GHz PNO: Wide HFGain:Low dB m dB m dB m dB m dB m dB m dB m dB m dB m dB m dB m dB m dB m dB m dB m dB m dB m dB m dB dB m dB dB dB dB dB dB dB dB dB dB	000 GHz PNO: Wide → Trig: Free Run #Atten: 30 dB dB m	000 GHz PNO: Wide → Trig: Free Run Avg Type: Log-Pwr dB M m M dB m dB m dB m dC m dB m dC m m m dC dC dC m dC <pd>dC d</pd>

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-47.08	-20	Pass
NVNT	BLE 1M	2440	Ant1	-48.73	-20	Pass
NVNT	BLE 1M	2480	Ant1	-43.22	-20	Pass
NVNT	BLE 2M	2402	Ant1	-49.05	-20	Pass
NVNT	BLE 2M	2440	Ant1	-45.92	-20	Pass
NVNT	BLE 2M	2480	Ant1	-48.34	-20	Pass

|--|--|--|--|--|

B B B

2 0755-27782934

Project No.: ZHT-240402021E-2 Page 57 of 63

🖂 admin@zht-lab.cn

Project No.: ZHT-240402021E-2 Page 58 of 63

Cente	RF 50 Ω T Freq 2.440000	0000 GHz	PNO: Wide	SENSE:INT Trig: Free Run #Atten: 20 dB	n Av	g Type: Log-Pwr Hold: 100/100	12:00:24 TR T	PM Apr 03, 202 ACE 1 2 3 4 5 YPE M WWWA DET P NNNA
1	Ref Offset 2.04	1 dB	IFGain:Low	#Atten. 20 GD		M	(r1 2.440 2)	65 5 GH
10 dB/d Log	liv Ref 12.04 dl	Bm	1				0.	774 dBi
2.04 —						<u></u>		
-7.96 —		mont	hunner	mone	mansan	an allowing		
	money	- vil					Man wear	
-18.0.	-Autor super							many
-28.0 —								
-38.0								
-48.0								
-58.0								
-50.0								
-68.0								
-78.0 —								
Canto	r 2.4400000 GHz							4 500 840
	BW 100 kHz		#VB	W 300 kHz		Swe	ep 1.000 ms	1.500 MH (1001 pt
MSG								
		Ty Cou				TUS		
🔤 Keysig	ht Spectrum Analyzer - Swep	ot SA		T BLE 1M 24				
Keysig	ht Spectrum Analyzer - Swep RF 50 Ω r Freq 13.26500	AC 00000 GHz		SENSE:INT	440MHz Ant	1 Emission	12:00:54 TR T	PM Apr 03 202
Keysig	RF 50 Ω Fr Freq 13.26500	at SA AC D00000 GHz			440MHz Ant	1 Emission	TR T	PM Apr03, 202 ACE 1 2 3 4 5 YPE MWWWA DET P NNNN
10 dB/d	Ref Offset 2.04	AC 00000 GHz	PNO: Fast	SENSE:INT	440MHz Ant	1 Emission	TR T Mkr1 2.43	PM Apr 03, 202 ACE 1 2 3 4 5 YPE M WWW DET P N N N N 39 7 GH
Log 2.04	Ref Offset 2.04	AC 00000 GHz	PNO: Fast	SENSE:INT	440MHz Ant	1 Emission	TR T Mkr1 2.43	PM Apr 03, 202 ACE 1 2 3 4 5 YPE M WWW DET P N N N N 39 7 GH
L Keysig (X) RL Cente	Ref Offset 2.04	AC 00000 GHz	PNO: Fast	SENSE:INT	440MHz Ant	1 Emission	TR T Mkr1 2.43	PM Apro3, 202 ACE 1 2 3 4 5 YPE MWWW DET P NNN 39 7 GH 217 dBr
10 dB/c 2.04 -7.96	Ref Offset 2.04	AC 00000 GHz	PNO: Fast	SENSE:INT	440MHz Ant	1 Emission	TR T Mkr1 2.43	PM Apr 03, 202 ACE 1 2 3 4 5 YPE M WWWM DET P N N N 89 7 GH 217 dBn
10 dB/c 2.04 -7.96 -18.0 -38.0	Ref Offset 2.04	AC 00000 GHz	PNO: Fast IFGain:Low	SENSE:INT	440MHz Ant	1 Emission	TR T Mkr1 2.43	PM Apr 03, 202 ACE 1 2 3 4 5 YPE M WWWW DET P N N N 89 7 GH: 217 dBn
10 dB/c 2.04 -7.96 -18.0 -28.0	Ref Offset 2.04	AC AC D00000 GHz 4 dB Bm	PNC: Fast IFGain:Low	SENSE:INT	440MHz Ant	1 Emission	TR T Mkr1 2.43	ри до 202 Акада 202 Укреј м чиччин ост Р NINN 39 7 GH 217 dBn
10 dB/c Center 2.04 -7.96 -18.0 -38.0 -48.0 -58.0 -68.0	Ref Offset 2.04	AC AC D00000 GHz 4 dB Bm	PNO: Fast IFGain:Low	SENSE:INT	440MHz Ant	1 Emission	TR T Mkr1 2.43	PM Apr 03, 202 ACE 1 2 3 4 5 YPE M WWWM DET P N N N 89 7 GH 217 dBn
10 dB/ Cente 2.04 -7.96 -18.0 -38.0 -48.0 -68.0 -78.0	Ref Offset 2.04 div Ref 12.04 di	AC AC D00000 GHz 4 dB Bm	PNO: Fast IFGain:Low	SENSE:INT	440MHz Ant	1 Emission	TR 7 Mkr1 2.45 0,1	PM 49703, 202 402 112 123 124 124 124 124 124 124 124 124 124 124
10 dB/c Center 2.04 -7.96 -18.0 -38.0 -38.0 -68.0 -78.0 -58.0 -58.0 -58.0 -58.0	Ref Offset 2.04	AC AC D00000 GHz 4 dB Bm	PNO: Fast IFGain:Low →	SENSE:INT	440MHz Ant	1 Emission	TR 7 Mkr1 2.45 0,1	PM APRO3, 202 Add 12 23 4 5 YPE IM MMMM DBT IP NNMM 39 7 GH 217 dBr 101-1923 dP
10 dB/ Center 2.04 -7.96 -18.0 -28.0 -38.0 -48.0 -57.0 -57.0	Ref Offset 2.04 Ref Offset 2.04 dl Ref 12.04 dl 30 MHz BW 100 kHz DE TRC [SCL]	AC DOUDOO GHZ	PNO: Fast IFGain:Low	SENSEINT Trig: Free Run #Atten: 20 dB	440MHz Ant	1 Emission g Type: Log-Pwr Hold: 10/10	TR TR T Mkr1 2.45 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	PM APRO3, 202 Add 12 23 4 5 YPE IM MMMM DBT IP NNMM 39 7 GH 217 dBr 101-1923 dP
10 dB/ Center 2.04 7.96 -18.0 -28.0 -38.0 -48.0 -58.0 -58.0 -58.0 -78.0 -58.0 -58.0 -58.0 -58.0 -58.0 -58.0 -78.0 -58.0 -778.0 -77	Ref Offset 2.04 div Ref 12.04 di Ref 000 kHz div Ref 12.04 di Ref 12.04 di	AC AC DOUDOO GHz	PNO: Fast IFGain:Low	SENSEIINT . Trig: Free Rur #Atten: 20 dB W 300 kHz W 300 kHz FUNCTION	440MHz Ant	1 Emission g Type: Log-Pwr Hold: 10/10	TR Mkr1 2.45 0.1 0.1 5 5 5 5 5 5 5 5 5 5 5 5 5	PM APRO3, 202 Add 12 23 4 5 YPE IM MMMM DBT IP NNMM 39 7 GH 217 dBr 101-1923 dP
10 dB/c Center 10 dB/c Log 2.04 -7.96 -18.0 -8.0 -88.0 -	Ref Offset 2.04 div Ref 12.04 di 100 MHz BW 100 KHz CF RC SCL f f f	AC A	PNO: Fast IFGain:Low	SENSEINT Trig: Free Run #Atten: 20 dB	440MHz Ant	1 Emission g Type: Log-Pwr Hold: 10/10	TR Mkr1 2.45 0.1 0.1 5 5 5 5 5 5 5 5 5 5 5 5 5	PM Apr03, 202 Add [1 2 3 4 5 YPE]M 3494 DET [P NINN 39 7 GH 217 dBr 11-1923 dP
10 dB/k Log 2.04 -7.96 -18.0 -28.0 -38.0 -48.0 -68.0 -68.0 -68.0 -68.0 -78.0 -78.0 -78.0 -78.0 -18.0 -69.0 -68.0 -68.0 -68.0 -68.0 -68.0 -68.0 -68.0 -68.0 -68.0 -68.0 -68.0 -68.0 -68.0 -68.0 -69.0 -60.0 -	Ref Offset 2.04 div Ref 12.04 di 100 MHz BW 100 KHz CF RC SCL f f f	AC AC DOUDOO GHz	PNO: Fast IFGain:Low	SENSEINT Trig: Free Run #Atten: 20 dB	440MHz Ant	1 Emission g Type: Log-Pwr Hold: 10/10	TR Mkr1 2.45 0.1 0.1 5 5 5 5 5 5 5 5 5 5 5 5 5	PM Apr03, 202 Add [1 2 3 4 5 YPE]M 3494 DET [P NINN 39 7 GH 217 dBr 11-1923 dP
Image: Second	Ref Offset 2.04 div Ref 12.04 di 100 MHz BW 100 KHz CF RC SCL f f f	AC AC DOUDOO GHz	PNO: Fast IFGain:Low	SENSEINT Trig: Free Run #Atten: 20 dB	440MHz Ant	1 Emission g Type: Log-Pwr Hold: 10/10	TR Mkr1 2.45 0.1 0.1 5 5 5 5 5 5 5 5 5 5 5 5 5	PM APRO3, 202 Add 12 23 4 5 YPE IM MMMM DBT IP NNMM 39 7 GH 217 dBr 101-1923 dP

Project No.: ZHT-240402021E-2 Page 59 of 63

Center Freq 2	alyzer - Swept SA 50 Ω AC 480000000 GHz P	SENSE:INT NO: Wide +→ Trig: Free Gain:Low #Atten: 2	Run Av	rg Type: Log-Pwr g Hold: 100/100	12:02:10 PM Apr03, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N
10 dB/div Ref	offset 2.03 dB 12.03 dBm		- 1017	Mkr	1 2.480 273 0 GHz 0.392 dBm
Log			T	A1	
2.63		m. Murinamore		man	
-7.97	manaparter			. Wayne	Name
-18.0	ANDAN CONTRACT				- man man
-28.0					
-38.0					
-48.0					
-58.0					
-68.0					
-78.0					
Center 2.48000		a da han na ka ha	<u> </u>		Span 1.500 MHz
#Res BW 100 k	Hz	#VBW 300 kH		Sweep	o 1.000 ms (1001 pts)
		ious NVNT BLE 1N	1 2480MHz An	t1 Emission	
Keysight Spectrum Ar	50 Ω AC	SENSE:INT		g Type: Log-Pwr	12:02:41 PM Apr 03, 2024
LXI RL RF	50 Ω AC 3.265000000 GHz F	SENSE:INT PNO: Fast Trig: Free Gain:Low #Atten: 2	Run Av	rg Type: Log-Pwr g Hold: 10/10	12:02:41 PM Apr03, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N
Center Freq 1	50 Ω AC 3.265000000 GHz F IF Offset 2.03 dB	PNO: Fast Trig: Free	Run Av	g Hold: 10/10	12:02:41 PM Apr 03, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW
Center Freq 1	50 Ω AC 3.265000000 GHz F IF	PNO: Fast Trig: Free	Run Av	g Hold: 10/10	12:02:41 PM Apr03, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNN Mkr1 2.480 2 GHz
Center Freq 1 Conter Freq 1 10 dB/div Ref Log 2.03 -7.97	50 Ω AC 3.265000000 GHz F IF Offset 2.03 dB	PNO: Fast Trig: Free	Run Av	g Hold: 10/10	12:02:41 PM Apr03, 2024 TRACE [1:3:4:5:6 TYPE [M.WWWW DET P NNNN Mkr1 2.480 2 GHz -0,775 dBm
10 dB/div Ref 2.03 7.97 -18.0 -28.0 2.2 2.03 -28.0	50 Ω AC 3.265000000 GHz F IF Offset 2.03 dB	PNO: Fast Trig: Free	Run Av	g Hold: 10/10	12:02:41 PM Apr03, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNN Mkr1 2.480 2 GHz
10 dB/div Ref 2.03 -7.97 -18.0	50 Ω AC 3.265000000 GHz F IF Offset 2.03 dB	ONO: Fast →→ Trig: Free Gain:Low #Atten: 2	Run Av	g Hold: 10/10	12:02:41 PM Apr03, 2024 TRACE [1:3:4:5:6 TYPE [M.WWWW DET P NNNN Mkr1 2.480 2 GHz -0,775 dBm
XX RL RF Center Freq 1 Ref 0 10 dB/div Ref 0 2.03	3.265000000 GHz F IF Dffset 2.03 dB 12.03 dBm 1	PNO: Fast Trig: Free	Run Av	g Hold: 10/10	12:02:41 PM Apr03, 2024 TRACE [1:3:4:5:6 TYPE [M.WWWW DET P NNNN Mkr1 2.480 2 GHz -0,775 dBm
xx RL RF Center Freq 1 Ref 0 10 dB/div Ref 0 2.03	3.265000000 GHz F IF Dffset 2.03 dB 12.03 dBm 1	ONO: Fast →→ Trig: Free Gain:Low #Atten: 2	Run Av	g Hold: 10/10	12:02:41 PM Apr03, 2024 TRACE [1:3:4:5:6 TYPE [M.WWWW DET P NNNN Mkr1 2.480 2 GHz -0,775 dBm
XX RL RF Center Freq 1 Ref 0 10 dB/div Ref 0 2.03 -7.97 -7.97 -16.0 -28.0 -22 -38.0 -22 -88.0 -28.0 -58.0 -38.0 -78.0 -38.0 -78.0 -38.0 -78.0 -38.0 -78.0 -38.0	3.265000000 GHz Fr Diffset 2.03 dB 12.03 dBm 1	PNO: Fast → Trig: Free Gain:Low #Atten: 2	Run Av		12:02:41 PM APR3, 2024 TRACE 12:34 5 6 TYPE M WWWW DETP MINN N Mkr1 2,480 2 GHz -0.775 dBm 0:1.1386 dbn 0:1.1386 dbn
xx RL RF Center Freq 1 Ref 0 10 dB/div Ref 0 2.03	3.265000000 GHz Fr Dffset 2.03 dB 12.03 dBm 1	PNO: Fast + Trig: Free Gain:Low #Atten: 2	Run Av	g Hold: 10/10	12:02:41 PM Apr03, 2024 TRACE 11 23 4 5 6 TYPE M WWWW DETP MINN N Mkr1 2.480 2 GHz -0.775 dBm mil.3881.dbn
XX RL RF Center Freq 1 Ref 0 10 dB/div Ref 0 2.03	3.265000000 GHz Fire Diffset 2.03 dB 12.03 dBm 1 A A A A A A A A A A A A A	PNO: Fast → Trig: Free Gain:Low #Atten: 2	PRUN AV	g Hold: 10/10	12:02:41 PMAP03.2024 TRACE 12:34:55 TYPE M WWWW DETP WWWW DETP WWWW DETP WWWW DETP WWWWW DETP WWWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWWWWW DETP WWWWW DETP WWWWWW DETP WWWWW DETP WWWWWW DETP WWWWWWW DETP WWWWWW DETP WWWWW DETP WWWWWW DETP WWWWWWWW DETP WWWWWW DETP WWWWWWWW DETP WWWWWWWW DETP WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
XX RL RF Center Freq 1 Ref 0 10 dB/div Ref 0 2.03	3.265000000 GHz 3.265000000 GHz Fire Diffset 2.03 dB 12.03 dBm 1 4 4 4 4 4 4 4 4 4 4 4 4 4	PNO: Fast →→ Trig: Free Gain:Low #Atten: 2 #VBW 300 kH: *VBW 300 kH: 0.775 dBm 42.831 dBm 45.947 dBm	PRUN AV	g Hold: 10/10	12:02:41 PMAP03.2024 TRACE 12:34:55 TYPE M WWWW DETP WWWW DETP WWWW DETP WWWW DETP WWWWW DETP WWWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWWWWW DETP WWWWW DETP WWWWWW DETP WWWWW DETP WWWWWW DETP WWWWWWW DETP WWWWWW DETP WWWWW DETP WWWWWW DETP WWWWWWWW DETP WWWWWW DETP WWWWWWWW DETP WWWWWWWW DETP WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
XX RL RF Center Freq 1 Ref 0 10 dB/div Ref 0 2.03	S0.2 AC 3.265000000 GHz F F Diffset 2.03 dB 12.03 dBm 1 4 4 4 4 4 4 4 4 5 6 4 4 5 6 4 5 6 4 5 6 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	PNO: Fast →→ Trig: Free Gain:Low #Atten: 2 #VBW 300 kH: *VBW 300 kH: 0.775 dBm 42.831 dBm 45.947 dBm	PRUN AV	g Hold: 10/10	12:02:41 PMAP03.2024 TRACE 12:34:55 TYPE M WWWW DETP WWWW DETP WWWW DETP WWWW DETP WWWWW DETP WWWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWWWWW DETP WWWWW DETP WWWWWW DETP WWWWW DETP WWWWWW DETP WWWWWWW DETP WWWWWW DETP WWWWW DETP WWWWWW DETP WWWWWWWW DETP WWWWWW DETP WWWWWWWW DETP WWWWWWWW DETP WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
M RL RF Center Freq 1 Ref 0 10 dB/div Ref 0 2.03	S0.2 AC 3.265000000 GHz F F Diffset 2.03 dB 12.03 dBm 1 4 4 4 4 4 4 4 4 5 6 4 4 5 6 4 5 6 4 5 6 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	PNO: Fast →→ Trig: Free Gain:Low #Atten: 2 #VBW 300 kH: *VBW 300 kH: 0.775 dBm 42.831 dBm 45.947 dBm	PRUN AV	g Hold: 10/10	12:02:41 PMAP03.2024 TRACE 12:34:55 TYPE M WWWW DETP WWWW DETP WWWW DETP WWWW DETP WWWWW DETP WWWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWW DETP WWWWWWWW DETP WWWWW DETP WWWWWW DETP WWWWW DETP WWWWWW DETP WWWWWWW DETP WWWWWW DETP WWWWW DETP WWWWWW DETP WWWWWWWW DETP WWWWWW DETP WWWWWWWW DETP WWWWWWWW DETP WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

Project No.: ZHT-240402021E-2 Page 60 of 63

Project No.: ZHT-240402021E-2 Page 61 of 63

1 0755-27782934

Project No.: ZHT-240402021E-2 Page 62 of 63

