

FCC RADIO TEST REPORT FCC ID: 2A9B7-MBWFP100

Product : MetabloxWiFi Router Trade Mark : Metablox Model Name : MBWF-P100 Family Model : N/A Report No. : S22101803803002 Issue Date : Nov 10, 2022

Prepared for

METABLOX TECHNOLOGIES INC.

5831 LINSCOTT RD., RICHMOND BC V7C 2X2, Canada

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name ME	TABLOX TECHNOLOGIES INC.
Address 583	31 LINSCOTT RD., RICHMOND BC V7C 2X2, Canada
Manufacturer's Name ME	TABLOX TECHNOLOGIES INC.
Address 583	31 LINSCOTT RD., RICHMOND BC V7C 2X2, Canada
Product description	
Product name Me	tabloxWiFi Router
Model and/or type reference : MB	WF-P100
Family Model N/A	λ
Standards FC	C Part15.407
Pro	SI C63.10-2013 and KDB 789033 D02 General UNII Test ocedures New Rules v02r01
KD	B 662911 D01 Multiple Transmitter Output v02r01
equipment under test (EUT) is in co	een tested by NTEK, and the test results show that the mpliance with the FCC requirements/ the Industry Canada only to the tested sample identified in the report.
This report shall not be reproduced	except in full, without the written approval of NTEK, this
document may be altered or revised	by NTEK, personnel only, and shall be noted in the revision of
the document.	
Test Sample Number	. S221018038003
Date of Test	
Date (s) of performance of tests	. Oct 18, 2022 ~ Nov 10, 2022
Date of Issue	. Nov 10, 2022
Test Result	Pass
Testing Engineer	Lang. Hu
	(Mary Hu)
A sub-seize d Oisse st	Alere
Authorized Signat	Gerra
	(Alex Li)

Report No.: S22101803803002

5

6

6

7

7

10

11

12

13

15

15

20

35

38

40

42

46

48

49

56

56

56

Table of Contents Page **1. SUMMARY OF TEST RESULTS 1.1 FACILITIES AND ACCREDITATIONS 1.2 MEASUREMENT UNCERTAINTY** 2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF EUT 2.2 DESCRIPTION OF TEST MODES 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEMTESTED 2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) 2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS **3. TEST REQUIREMENTS 3.1 CONDUCTED EMISSION MEASUREMENT 3.2 RADIATED EMISSION MEASUREMENT** 3.3 POWER SPECTRAL DENSITY TEST 3.4 26DB & 99% EMISSION BANDWIDTH 3.5 MINIMUM 6 DB BANDWIDTH 3.6 MAXIMUM CONDUCTED OUTPUT POWER **3.7 OUT OF BAND EMISSIONS** 3.8 SPURIOUS RF CONDUCTED EMISSIONS **3.9 FREQUENCY STABILITY MEASUREMENT 4. ANTENNA REQUIREMENT 4.1 STANDARD REQUIREMENT 4.2 EUT ANTENNA**

Revision History						
Report No. Version Description Issued I						
S22101803803002	Rev.01	Initial issue of report	Nov 10, 2022			

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.407) , Subpart E								
Standard Section	Lest Item Ludament Rei							
15.207	AC Power Line Conducted Emissions	PASS						
15.209(a), 15.407 (b)(1) 15.407 (b)(4) 15.407 (b)(6)	Spurious Radiated Emissions	PASS						
15.407 (a)(1) 15.407 (a)(3)	26 dB and 99% Emission Bandwidth	PASS						
15.407(e)	Minimum 6 dB bandwidth	PASS						
15.407 (a)(1) 15.407 (a)(3)	Maximum Conducted Output Power	PASS						
15.407(b)(1) 15.407(b)(4)	Band Edge	PASS						
15.407 (a)(1) 15.407 (a)(3)	Power Spectral Density	PASS						
15.407(b)	Spurious Emissions at Antenna Terminals	PASS						
15.203	Antenna Requirement	PASS						
15.407(c)	Automatically discontinue transmission	PASS						

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 FACILITIES AND ACCREDITATIONS

FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

Sile Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street,
	Bao'an District, Shenzhen 518126 P.R. China.

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	MetabloxWiFi Route	r				
Trade Mark	Metablox	Metablox				
Model Name	MBWF-P100					
Family Model	N/A					
Model Difference	N/A					
FCC ID	2A9B7-MBWFP100					
	IEEE 802.11 WLAN Mode Supported	802.11n/ac (40MHz channel bandwidth) 802.11ac (80MHz channel bandwidth) 802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40):MCS0-MCS15;				
		802.11ac(VHT20):MCS0-MCS8; 802.11ac(VHT40/VHT80):MCS0-MCS9; OFDM with BPSK/QPSK/16QAM/64QAM/256QAM				
	Modulation	for 802.11a/n/ac;				
	Operating Frequency Range	 □ 5180-5240MHz for 802.11a/n(HT20)/ac(VHT20); 5190-5230MHz for 802.11n(HT40)/ac(VHT40); 5210MHz for 802.11ac(VHT80) □ 5745-5825 MHz for 802.11a/n(HT20)/ac(VHT20); 5755-5795 MHz for 802.11n(HT40)/ac(VHT40); 5775MHz for 802.11ac(VHT80) 				
	Function:					
Product Description	Number of Channels Antenna Type	⊠4 channels for 802.11a/n20/ac20 in the 5180-5240MHz band ; 2 channels for 802.11 n40/ac40 in the 5190-5230MHz band ; 1 channels for 802.11 ac80 in the 5210MHz band ; ⊠5 channels for 802.11a/n20/ac20 in the 5745-5825MHz band ; 2 channels for 802.11 n40/ac40 in the 5755-5795MHz band ; 1 channels for 802.11 ac80 in the 5775MHz band ; External Antenna				
	Antenna Gain	5 dBi				
	Smart system SISO for 802.11a/n/ac/ax MIMO for 802.11n/ac/ax Based on the application, features, or specification exhibited in User's Manual, More details of EUT technical specification, please refer to the User's Manual.					
	Model: XSG-120200					
Adapter	Input: AC 100-240V,50/60Hz, 0.8A Output: 12.0V2.0A					
Battery	N/A					
Power supply	DC 12V from adapte	r				
Connecting I/O Port(s)	Please refer to the U	lser's Manual				

HW Version	N/A
SW Version	N/A

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- ^{2.} Frequency and Channel list for 802.11a/n/ac(20MHz) band I (5180-5240MHz):

	802.11a/n/ac(20MHz) Carrier Frequency Channel						
Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)
36	5180	44	5220	-	-	-	-
40	5200	48	5240	-	-	-	-

Frequency and Channel list for 802.11n/ac(40MHz) band I (5190-5230MHz):

	802.11n/ac(40MHz) Carrier Frequency Channel						
Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)
38	5190	-	-	-	-	-	-
46	5230	-	-	-	-	-	-

Frequency and Channel list for 802.11ac(80MHz) band I (5210MHz):

802.11ac(80MHz) Carrier Frequency Channel							
Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)
42	5210	-	-	-	-	-	-

Frequency and Channel list for 802.11a/n/ac(20 MHz) band IV (5745-5825MHz):

Поционоу				· ,			,	
	802.11a/n/ac(20 MHz) Carrier Frequency Channel							
	Frequen		Freque	n	Frequen		Frequen	
Channel	су	Channel	,	Channel	су	Chanr	,	
	(MHz)		(MHz)		(MHz)		(MHz)	
149	5745	153	5765	157	5785	161	5805	
165	5825	-	-	-	-	-	-	
Frequency	Frequency and Channel list for 802.11n/ac(40MHz) band IV (5755-5795MHz):							
802.11n/ac(40MHz) Carrier Frequency Channel								
Channel	Freque (MHz	- (hannel	Frequency (MHz)	Chanr	nel	Frequency (MHz)	
151	5755	5	159	5795	95 -		-	
Frequency	and Chann	el list for 8	302.11ac(8	30MHz) band	IV (5775Mi	Hz):		
	8	802.11ac(8	30MHz) Ca	arrier Frequei	ncy Channe	el		
Channel	Freque (MHz	- (hannel	Frequency (MHz)	Chanr	nel	Frequency (MHz)	
155	5775	5			-		-	

The 5G module MT7612e of EUT has two antennas, and different modes support different transmit mode what describe as Following form:

Mode	Tx/Rx
802.11a	1TX, 1RX
802.11n/ac	1TX/2TX, 1RX/2RX

For 5GHz mode, Antenna 1,2 are transmitting, each with the same directional gain. For MIMO mode, Directional gain= G_{ANT} + 10 log(N_{ANT}) dBi =8.01dBi in 5GHz the 802.11n(20/40) ac(20/40/80) 5GHz has MIMO mode.

Note: GANT means antenna gain for ANT in dBi. NANT means the number of Antennas.

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Normal Link Mode
Mode 2	802.11a / n 20 /ac 20 CH36/ CH40/ CH 48 802.11a / n 20 / ac 20 CH149/ CH157/ CH 165
Mode 3	802.11n40 / ac40 CH38/ CH 46 802.11n 40 / ac 40 CH 151 / CH 159
Mode 4	802.11ac80 CH 42 802.11ac 80 CH 155

	For Radiated Emission				
Final Test Mode	Description				
Mode 1	Normal Link Mode				
Mode 2	802.11a / n 20 /ac 20 CH36/ CH40/ CH 48 802.11a / n 20 / ac 20 CH149/ CH157/ CH 165				
Mode 3	802.11n40 / ac40 CH38/ CH 46 802.11n 40 / ac 40 CH 151 / CH 159				
Mode 4	802.11ac80 CH 42 802.11ac 80 CH 155				

For Conducted Emission				
Final Test Mode	Description			
Mode 1	Normal Link Mode			
Mode 2	802.11a / n 20 /ac 20 CH36/ CH40/ CH 48 802.11a / n 20 / ac 20 CH149/ CH157/ CH 165			
Mode 3	802.11n40 / ac40 CH38/ CH 46 802.11n 40 / ac 40 CH 151 / CH 159			
Mode 4	802.11ac80 CH 42 802.11ac 80 CH 155			

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEMTESTED For AC Conducted Emission Mode AC PLUG C-1 AE-1 EUT Adapter For Radiated Test Cases EUT For Conducted Test Cases C-2 Measurement EU^{-} Instrument Note:1.The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	XSG-1202000HUS	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	DC Cable	NO	NO	1.5m
C-3	RF Cable	YES	NO	0.1m

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength _l column.

NTEK JLW Certificate #4298.01

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Valiationa Conducted		lest equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.01	2023.03.31	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.01	2023.03.31	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.01	2023.03.31	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.03.31	2023.03.30	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.15	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.06.17	2023.06.15	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.06.17	2023.06.15	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2022.06.17	2023.06.15	1 year
16	Filter	TRILTHIC	2400MHz	29	N/A	N/A	N/A
17	temporary antenna connector (Note)	NTS	R001	N/A	2022.04.01	2023.03.31	1 year

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment

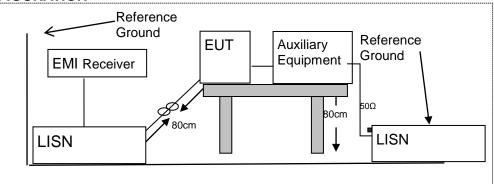
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period		
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year		
2	LISN	R&S	ENV216	101313	2022.06.17	2023.06.15	1 year		
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year		
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year		
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year		
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year		
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year		

Note: Each piece of equipment is scheduled for calibration once a year except the Test Cable& Aux Equipment which is scheduled for calibration every 3 years.

3. TEST REQUIREMENTS 3.1CONDUCTED EMISSION MEASUREMENT 3.1.1 APPLICABLE STANDARD

According to FCC Part 15.207(a)

3.1.2 CONFORMANCE LIMIT


Frequency(MHz)	Conducted Emission Limit			
Frequency(MHZ)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

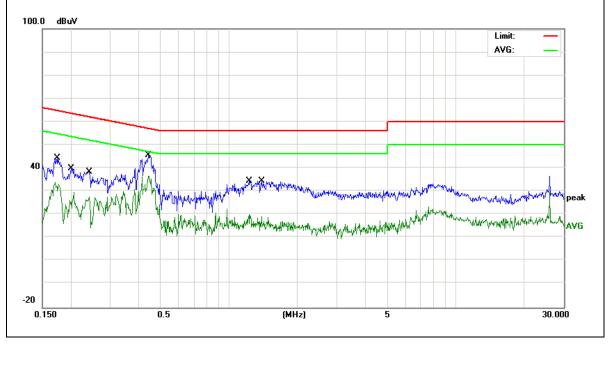
3.1.3 TEST CONFIGURATION

3.1.4 TEST PROCEDURE

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.5 TEST RESULTS

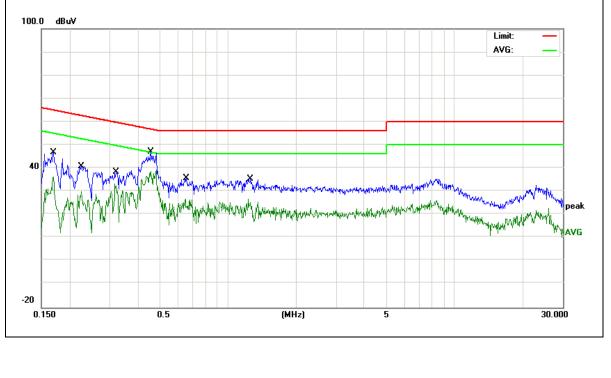

5.1.5 TEST RESULTS						
EUT:	MetabloxWiFi Router	Model Name :	MBWF-P100			
Temperature :	1 22 (1	Relative Humidity :	57%			
Pressure :	1010hPa	Phase :	L			
Test Voltage :	DC 12V from Adapter AC 120V/60Hz	Test Mode :	Mode 1(5.2G)			

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demeri
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1737	34.69	9.61	44.30	64.78	-20.48	QP
0.1737	23.20	9.61	32.81	54.78	-21.97	AVG
0.2006	30.39	9.61	40.00	63.58	-23.58	QP
0.2006	20.09	9.61	29.70	53.58	-23.88	AVG
0.2419	28.73	9.63	38.36	62.03	-23.67	QP
0.2419	17.83	9.63	27.46	52.03	-24.57	AVG
0.4420	35.91	9.66	45.57	57.02	-11.45	QP
0.4420	26.97	9.66	36.63	47.02	-10.39	AVG
1.2257	24.72	9.68	34.40	56.00	-21.60	QP
1.2257	10.44	9.68	20.12	46.00	-25.88	AVG
1.3936	24.73	9.67	34.40	56.00	-21.60	QP
1.3936	9.41	9.67	19.08	46.00	-26.92	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

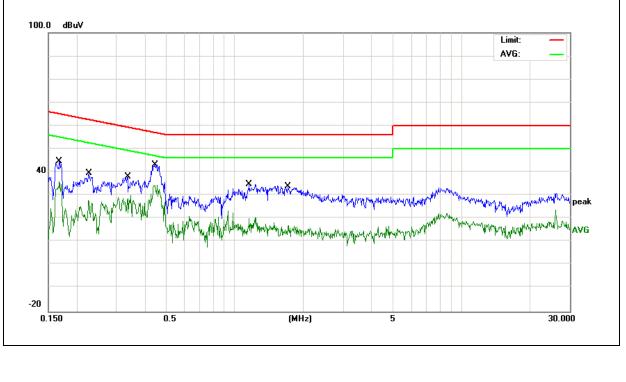


EUT :	MetabloxWiFi Router	Model Name :	MBWF-P100
Temperature :	199 °C	Relative Humidity :	57%
Pressure :	1010hPa	Phase :	Ν
Test Voltage :	DC 12V from Adapter AC 120V/60Hz	Test Mode :	Mode 1(5.2G)

		-				
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1700	37.15	9.65	46.80	64.96	-18.16	QP
0.1700	26.71	9.65	36.36	54.96	-18.60	AVG
0.2242	31.27	9.63	40.90	62.66	-21.76	AVG
0.2242	20.46	9.63	30.09	52.66	-22.57	QP
0.3199	28.85	9.65	38.50	59.71	-21.21	QP
0.3199	23.67	9.65	33.32	49.71	-16.39	AVG
0.4580	37.30	9.66	46.96	56.73	-9.77	AVG
0.4580	28.95	9.66	38.61	46.73	-8.12	QP
0.6542	26.03	9.67	35.70	56.00	-20.30	AVG
0.6542	17.01	9.67	26.68	46.00	-19.32	QP
1.2620	25.53	9.67	35.20	56.00	-20.80	QP
1.2620	17.02	9.67	26.69	46.00	-19.31	AVG

1. All readings are Quasi-Peak and Average values.

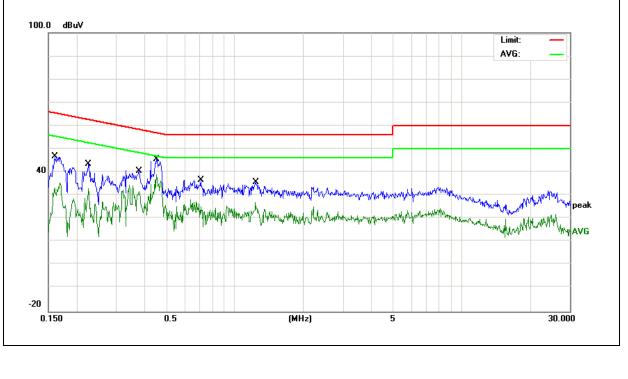
2. Factor = Insertion Loss + Cable Loss.



EUT :	MetabloxWiFi Router	Model Name :	MBWF-P100
Temperature :	22 ℃	Relative Humidity :	57%
Pressure :	1010hPa	Phase :	L
Test Voltage :	DC 12V from Adapter AC 120V/60Hz	Test Mode :	Mode 1(5.8G)

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demonto
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1675	35.19	9.61	44.80	65.08	-20.28	QP
0.1675	26.22	9.61	35.83	55.08	-19.25	AVG
0.2267	30.07	9.63	39.70	62.57	-22.87	QP
0.2267	18.24	9.63	27.87	52.57	-24.70	AVG
0.3356	28.56	9.64	38.20	59.31	-21.11	QP
0.3356	20.37	9.64	30.01	49.31	-19.30	AVG
0.4460	33.54	9.66	43.20	56.95	-13.75	QP
0.4460	24.87	9.66	34.53	46.95	-12.42	AVG
1.1576	25.22	9.68	34.90	56.00	-21.10	QP
1.1576	10.39	9.68	20.07	46.00	-25.93	AVG
1.7096	24.24	9.67	33.91	56.00	-22.09	QP
1.7096	7.34	9.67	17.01	46.00	-28.99	AVG

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.



EUT :	MetabloxWiFi Router	Model Name :	MBWF-P100
Temperature :	22 ℃	Relative Humidity :	57%
Pressure :	1010hPa	Phase :	N
Test Voltage :	DC 12V from Adapter AC 120V/60Hz	Test Mode :	Mode 1(5.8G)

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1597	37.05	9.65	46.70	65.47	-18.77	QP
0.1597	25.73	9.65	35.38	55.47	-20.09	AVG
0.2260	33.98	9.62	43.60	62.59	-18.99	QP
0.2260	23.27	9.62	32.89	52.59	-19.70	AVG
0.3780	30.70	9.66	40.36	58.32	-17.96	QP
0.3780	22.14	9.66	31.80	48.32	-16.52	AVG
0.4500	35.84	9.66	45.50	56.87	-11.37	QP
0.4500	29.34	9.66	39.00	46.87	-7.87	AVG
0.7056	27.03	9.67	36.70	56.00	-19.30	QP
0.7056	17.44	9.67	27.11	46.00	-18.89	AVG
1.2419	25.90	9.67	35.57	56.00	-20.43	QP
1.2419	17.20	9.67	26.87	46.00	-19.13	AVG

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 APPLICABLE STANDARD

According to FCC Part 15.407(b) and 15.209

3.2.2 CONFORMANCE LIMIT

According to FCC Part 15.407(b)(7): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV	′m) (at 3M)
Frequency(MHZ)	Frequency(MHz) PEAK AVE	
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

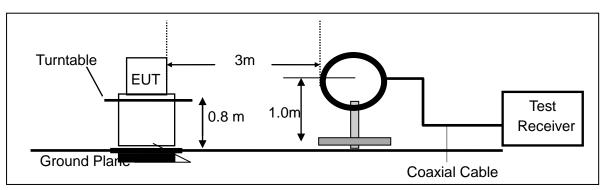
3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

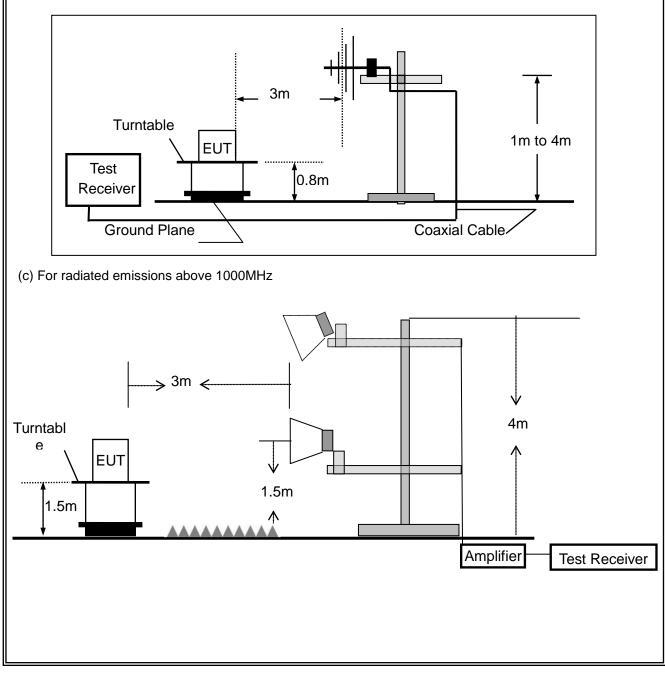
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.


3.2.3 MEASURING INSTRUMENTS

The Measuring equipment is listed in the section 6.3 of this test report.



3.2.4 TEST CONFIGURATION

(b) For radiated emissions from 30MHz to 1000MHz

3.2.5 TEST PROCEDURE

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function Resolution bandwid		Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Ab aug 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

Report No.: S21110501805003

3.2.6 TEST RESULTS (9KHz – 30 MHz)

EUT:	MetabloxWiFi Router	Model Name. :	MBWF-P100
Temperature:	20 °C	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 12V
Test Mode :	ТХ	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				N/A
				N/A

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Report No.: S21110501805003

3.2.7 TEST RESULTS (30MHz - 1GHz)

EUT :		N 4 - 1 - 1			Madal Nar			
			bloxWiFi Ro	outer	Model Nar		MBWF-P100	
Temper		25° ℃			Relative H			
Pressure		1010			Test Voltag	ge :	DC 12V	
Test Mo	de :	TX(5	.2G)- 802.11	a (Low CH)				
Polar	Frequenc	су.	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)		(dBuV)	(dB)	(dBuV/m)	(dBuV/r	n) (dB)	
V	36.127	72	9.70	22.82	32.52	40.0	0 -7.48	QP
V	41.859		14.66	19.34	34.00	40.0		QP
V	129.92		15.52	19.02	34.54	43.5		- 1
V	168.41		19.78	17.35	37.13	43.5		
V	234.16		17.09	17.90	34.99	46.0		
V Remark	785.09	32	7.47	29.33	36.80	46.0	0 -9.20	QP
							Margin:	
32		hdyddwraegf	With well well well well	* MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	t S Maynad May and and	no had other	lunth market water	
-8 3	0.000 40	50	60 70 80	(MF	 z)	300 400	500 600 700	1000.000

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	234.1682	17.82	17.90	35.72	46.00	-10.28	QP
Н	338.4001	15.70	21.25	36.95	46.00	-9.05	QP
Н	364.2595	17.21	22.00	39.21	46.00	-6.79	QP
Н	441.7425	12.42	24.04	36.46	46.00	-9.54	QP
Н	492.4685	12.19	24.71	36.90	46.00	-9.10	QP
H Remark	547.0977	11.87	25.51	37.38	46.00	-8.62	QP
72.	on Level = Mete 0 dBuV/m					Limit: -	
	What have been a strate and the low	norman and a second sec	ereviterreter	Mu man and and and and and and and and and a			
-8							
3	0.000 40 50	60 70 80	(M	Hz)	300 400 500	600 700 1	000.000

EUT :	MetabloxWiFi Router	Model Name. :	MBWF-P100
Temperature :	25 ℃	Relative Humidity :	55%
Pressure :	1010 hPa	Test Voltage :	DC 12V
Test Mode :	TX(5.8G)- 802.11a (Low CH)		

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(((), v))	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	129.9225	15.52	19.02	34.54	43.50	-8.96	QP
V	169.0054	22.41	17.29	39.70	43.50	-3.80	QP
V	181.9199	17.88	16.57	34.45	43.50	-9.05	QP
V	234.1682	17.09	17.90	34.99	46.00	-11.01	QP
V	494.1983	10.82	24.88	35.70	46.00	-10.30	QP
V	547.0977	10.70	25.51	36.21	46.00	-9.79	QP

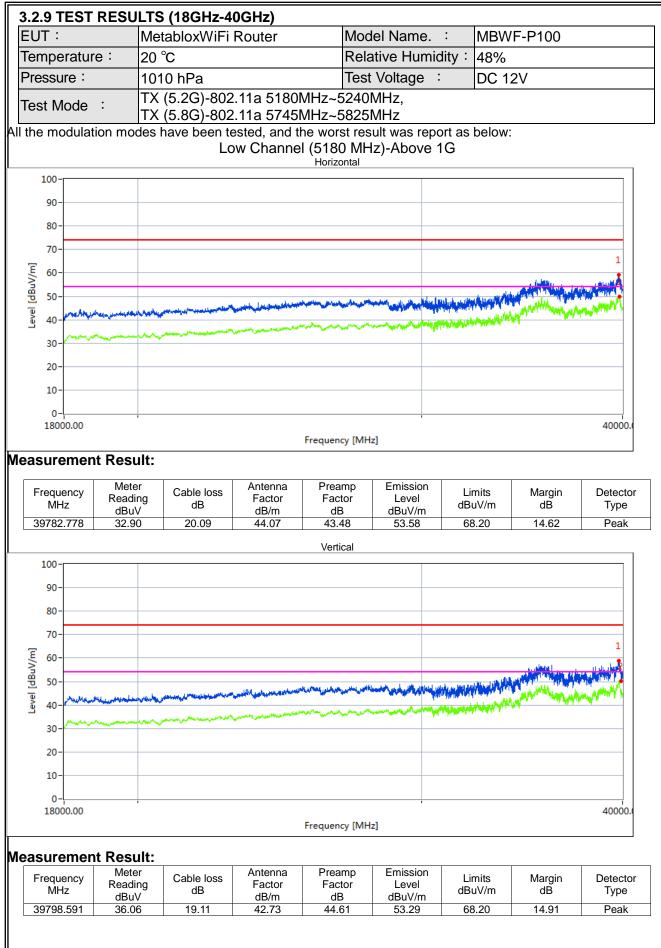
Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit

olar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	234.1682	17.47	17.90	35.37	46.00	-10.63	QP
Н	338.4001	15.35	21.25	36.60	46.00	-9.40	QP
Н	364.2595	16.86	22.00	38.86	46.00	-7.14	QP
Н	497.6764	13.54	24.86	38.40	46.00	-7.60	QP
Н	547.0977	11.52	25.51	37.03	46.00	-8.97	QP
Н	929.0081	7.44	30.76	38.20	46.00	-7.80	QP
emar missia	k: on Level = Mete	r Reading + I	Factor Mar	ain- Emissior	n I evel - I imit		
	$\frac{1}{2.0} dBuV/m$						
						Limit: · Margin: ·	
					3		
	32 May Marked Carlow And			1	2 * *	To a second	N N
	32			×		Anthenne Marthurson	
	19 th by march and have			116. 8.66	a descound that when	inter	
	WWW Howking	1	and the state of t	MALL AND A DUNAL AND	Manual Marine Contraction of the		
	""WALLA	the country of the states	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		a data a construction					
-8							
-0	30.000 40 50	60 70 80		MHz)	300 400 50	D 600 700 1	000.000
	10 00		· · ·	,			

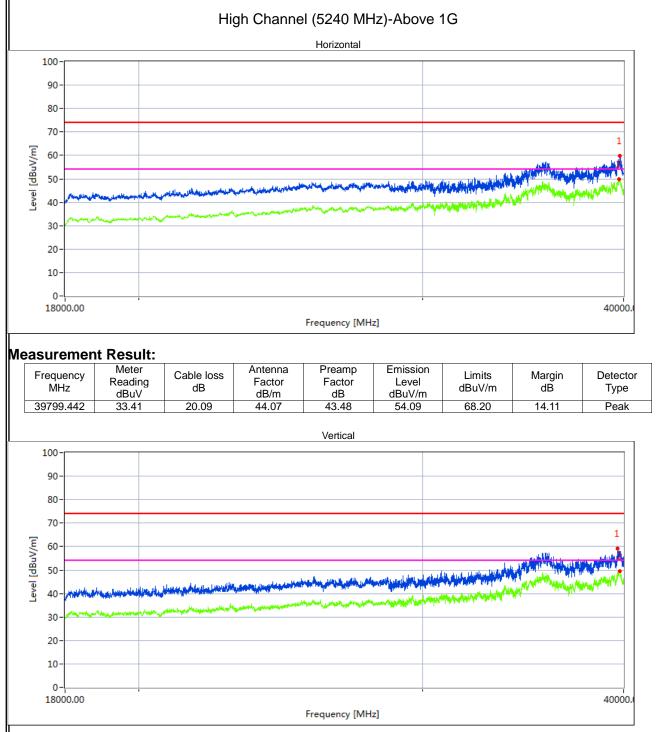
3.2.8 TEST RESULTS (1GHz-18GHz)

EUT :		MetabloxWi	Fi Router		Model Na	ame. :	MBWF-P1	00	
Temperati		20 °C				Humidity :			
Pressure :		1010 hPa			Test Volta	,	DC 12V		
Test Mode		TX(5.2G) - 8	202 11 2	5190 524		ugu	00 12 0		
	, ·	17(3.20) - 0	502.11a_	5100~5240					
		Meter	Cable	Antenna	Preamp	Emission			Detector
Polar	Frequen	cy Reading		Factor	Factor	Level	Limits	Margin	Туре
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
			Low Ch	annel (518	0 MHz)-Ab	ove 1G	•	•	
Vertical	3015	61.77	5.94	35.40	44.00	59.11	68.2	-9.09	Pk
Vertical	10360	58.73	8.46	39.75	44.50	62.44	68.2	-5.76	Pk
Vertical	15540	60.42	10.12	38.80	44.10	65.24	74	-8.76	Pk
Vertical	15540	40.97	10.12	38.80	42.70	47.19	54	-6.81	AV
Horizontal	2981	62.86	5.94	35.18	44.00	59.98	68.2	-8.22	Pk
Horizontal	10360	59.20	8.46	38.71	44.50	61.87	68.2	-6.33	Pk
Horizontal	15540	59.62	10.12	38.38	44.10	64.02	74	-9.98	Pk
Horizontal	15540	39.19	10.12	38.38	44.10	43.59	54	-10.41	AV
			middle C	hannel (52	00 MHz)-A	bove 1G			
Vertical	3561	62.38	6.48	36.35	44.05	61.16	68.2	-7.04	Pk
Vertical	10400	60.45	8.47	37.88	44.51	62.29	68.2	-5.91	Pk
Vertical	15600	59.55	10.12	38.8	44.1	64.37	74	-9.63	Pk
Vertical	15600) 41.77	10.12	38.8	42.7	47.99	54	-6.01	AV
Horizontal	3363	61.64	6.48	36.37	44.05	60.44	68.2	-7.76	Pk
Horizontal	10400	58.81	8.47	38.64	44.5	61.42	68.2	-6.78	Pk
Horizontal	15600	58.84	10.12	38.38	44.1	63.24	74	-10.76	Pk
Horizontal	15600	43.21	10.12	38.38	44.1	47.61	54	-6.39	AV
			High Ch	annel (524	0 MHz)-Ab	ove 1G	-	-	
Vertical	3926	62.30	7.1	37.24	43.5	63.14	74	-10.86	Pk
Vertical	3926	43.77	7.1	37.24	43.5	44.61	54	-9.39	AV
Vertical	10480		8.46	37.68	44.5	62.18	68.2	-6.02	Pk
Vertical	15720		10.12	38.8	44.1	61.91	74	-12.09	Pk
Vertical	15720		10.12	38.8	42.7	40.09	54	-13.91	AV
Horizontal	3885		7.1	37.24	43.5	66.17	74	-7.83	Pk
Horizontal	3885		7.1	37.24	43.5	41.32	54	-12.68	AV
Horizontal	10480		8.46	38.57	44.5	60.33	68.2	-7.87	Pk
Horizontal	15720		10.12	38.38	44.1	64.50	74	-9.50	Pk
Horizontal	15720	39.20	10.12	38.38	44.1	43.60	54	-10.40	AV

Note:"802.11a" mode is the worst mode. The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported. Emission level (dBuV/m) = 20 log Emission level (uV/m). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.



7


EUT :	N	letabloxWiFi	Router		Model Na	me. :	MBWF-P10	00		
Temperat	ure: 2	3° 0			Relative H	lumidity:	48%			
Pressure	: 1	010 hPa			Test Volta	ge :	DC 12V			
Test Mode	e: T	X (5.8G) 8	02.11a (2.11a_5745~5825MHz						
			<u></u>							
Polar	Frequency	, Meter	Cable	Antenna	Preamp	Emission	Limits	Margin	Detector	
		Reading	loss	Factor	Factor	Level			Туре	
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	n	
	0000.0				MHz)-Abc		74.00	44.40		
Vertical	2806.9	65.47	5.94	35.40	44.00	62.81	74.00	-11.19	Pk	
Vertical	2806.9	45.85	5.94	35.40	44.00	43.19	54.00	-10.81	AV	
Vertical	11490	64.26	8.46	39.75	44.50	67.97	74.00	-6.03	Pk	
Vertical	11490	45.02	8.46	39.75	44.50	48.73	54.00	-5.27	AV	
Vertical	17235	59.40	10.12	38.80	44.10	64.22	68.20	-3.98	Pk	
Horizontal	2911.524		5.94	35.18	44.00	63.10	68.20	-5.10	Pk	
Horizontal	11490	62.62	8.46	38.71	44.50	65.29	74.00	-8.71	Pk	
Horizontal	11490	41.68	8.46	38.71	44.50	44.35	54.00	-9.65	AV	
Horizontal	17235	59.37	10.12	38.38	44.10	63.77	68.20	-4.43	Pk	
		m	iddle Ch	annel (578	5 MHz)-Ab	ove 1G				
Vertical	3763.083	63.80	6.48	36.35	44.05	62.58	74.00	-11.42	Pk	
Vertical	3763.083	43.35	6.48	36.35	44.05	42.13	54.00	-11.87	AV	
Vertical	11570	64.53	8.47	37.88	44.51	66.37	74.00	-7.63	Pk	
Vertical	11570	46.00	8.47	37.88	44.51	47.84	54.00	-6.16	AV	
Vertical	17355	60.12	10.12	38.8	44.10	64.94	68.20	-3.26	Pk	
Horizontal	3561.585	61.88595	6.48	36.37	44.05	60.69	68.20	-7.51	Pk	
Horizontal	11570	61.90	8.47	38.64	44.50	64.51	74.00	-9.49	Pk	
Horizontal	11570	45.01	8.47	38.64	44.50	47.62	54.00	-6.38	AV	
Horizontal	17355	64.87	10.12	38.38	44.10	69.27	74.00	-4.73	Pk	
Horizontal	17355	44.21	10.12	38.38	44.10	48.61	54.00	-5.39	AV	
			ligh Cha		5 MHz)-Abo	ove 1G	1			
Vertical	3907.168		7.10	37.24	43.50	61.83	74.00	-12.17	Pk	
Vertical	3907.168	43.30	7.10	37.24	43.50	44.14	54.00	-9.86	AV	
Vertical	11650	61.76	8.46	37.68	44.50	63.40	74.00	-10.60	Pk	
Vertical	11650	44.41	8.46	37.68	44.50	46.05	54.00	-7.95	AV	
Vertical	17475	61.27	10.12	38.8	44.10	66.09	68.20	-2.11	Pk	
Horizontal	3912.779		7.10	37.24	43.50	63.66	74.00	-10.34	Pk	
Horizontal	3912.779		7.10	37.24	43.50	45.37	54.00	-8.63	AV	
Horizontal	11650	64.86	8.46	38.57	44.50	67.39	74.00	-6.61	Pk	
Horizontal	11650	43.47	8.46	38.57	44.50	46.00	54.00	-8.00	AV	
Horizontal	17475	60.82	10.12	38.38	44.10	65.22	68.20	-2.98	Pk	
		00.02		00.00		00.22	00.20			

Note:"802.11a" mode is the worst mode. The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported. Emission level (dBuV/m) = 20 log Emission level (uV/m). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

NTEK JLW Certificate #4298.01

Measurement Result:

Frequency MHz	Meter Reading dBuV	Cable loss dB	Antenna Factor dB/m	Preamp Factor dB	Emission Level dBuV/m	Limits dBuV/m	Margin dB	Detector Type
39672.258	31.91	20.09	44.07	43.48	52.59	68.20	15.61	Peak

NTEK LON Certificate #4298.01

Low Channel (5745 MHz)-Above 1G Horizontal 100 90· 80-70-1 Level [dBuV/m] <mark>60</mark> **50**-**40** 30 20 10-0-18000.00 40000. Frequency [MHz] Measurement Result: Meter Antenna Preamp Emission Cable loss Frequency Limits Margin Detector Factor Reading Factor Level ΜНz dB dBuV/m dB Туре dBuV dB/m dB dBuV/m 20.09 Peak 35459.427 30.28 44.16 43.48 51.05 68.20 17.15 Vertical 100 90· 80-**70** 1 [dBuV/m] <mark>60</mark> 50-ШÅ, Leve 40

Measurement Result:

30-20-10-0-18000.00

Frequency MHz	Meter Reading dBuV	Cable loss dB	Antenna Factor dB/m	Preamp Factor dB	Emission Level dBuV/m	Limits dBuV/m	Margin dB	Detector Type
39731.75	38.13	20.06	44.07	43.21	59.05	68.2	9.15	Peak

Frequency [MHz]

40000.

High Channel (5825 MHz)-Above 1G Horizontal 100 90 80 **70** Level [dBuV/m] <u>60</u> **50** 40 30 20 10 0-18000.00 40000. Frequency [MHz] Measurement Result: Meter Antenna Preamp Emission Frequency Cable loss Limits Detector Margin Reading Factor Factor Level ŃНz dB dBuV/m dB Туре dBuV dB/m dB dBuV/m 39765.106 35.71 19.11 42.63 43.48 53.97 68.20 14.23 Peak Vertical 100 <mark>90</mark>-80 70· [dBuV/m] <u>60</u> 50-Leve 40 30 20 10-0-18000.00 40000. Frequency [MHz]

Measurement Result:

Frequency MHz	Meter Reading dBuV	Cable loss dB	Antenna Factor dB/m	Preamp Factor dB	Emission Level dBuV/m	Limits dBuV/m	Margin dB	Detector Type
39815.245	33.42	20.10	44.10	43.22	54.40	68.20	13.80	Peak

3.2.10 Spurious Emission in Restricted Band 4.5GHz~5.150 GHz& 5.350GHz~5460GHz

EUT :	MetabloxWiFi Router	Model Name. :	MBWF-P100
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 12V
Test Mode :	TX (5.2G)-802.11n20 5150MHz~		

All the modulation modes have been tested, The report just record the worst data mode.

1 📛						opontjaotn		0.0.0.0.0.0.0		
	Frequen cy	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detec tor	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
					5.2G WIFI-	302.11a Mode	Э			
	4500	72.90	5.2	35.6	44.2	69.50	74	-4.5	Pk	Horizontal
	4500	72.90	5.2	35.6	44.2	69.50	54	15.50	AV	Horizontal
	4500	72.90	5.2	35.6	44.2	69.50	74	-4.50	Pk	Horizontal
	4500	72.90	5.2	35.6	44.2	69.50	54	15.50	AV	Horizontal
	5150	61.52	5.36	35.66	44.22	58.32	74	-15.68	Pk	Vertical
	5150	41.76	5.36	35.66	44.22	38.56	54	-15.44	AV	Vertical
	5150	61.36	5.36	35.66	44.22	58.16	74	-15.84	Pk	Horizontal
	5150	41.03	5.36	35.66	44.22	37.83	54	-16.17	AV	Horizontal
	5350	47.52	5.68	35.68	44.22	44.66	74	-29.34	Pk	Vertical
	5350	35.82	5.68	35.68	44.22	32.96	54	-21.04	AV	Vertical
	5350	46.29	5.68	35.68	44.22	43.43	74	-30.57	Pk	Horizontal
	5350	36.81	5.68	35.68	44.22	33.95	54	-20.05	AV	Horizontal
	(4) -					D	I D	– ,		

Note: (1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2) "802.11a " mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

According to FCC §15.407(a)(3)

For the band 5.15-5.25 GHz,

NTEK 北河

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

Certificate #4298.01

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz

(3)For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 TEST PROCEDURE

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW \geq 1/T, where T is defined in section II.B.I.a).

b) Set VBW ≥ 3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

3.3.3 DEVIATION FROM STANDARD

No deviation.

3.3.4 TEST SETUP

3.3.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

3.3.6 TEST RESULTS

EUT :	MetabloxWiFi Router	Model Name. :	MBWF-P100			
Temperature :	25 °C	Relative Humidity :	56%			
Pressure :	1015 hPa	Test Voltage :	DC 12V			
Test Mode :	X Frequency Band I (5150-5250MHz), Band IV (5725-5850MHz)					

Refer to section 1.1 of this report:

Band1 For 802.11n/ac 5GHz has MIMO mode. Directional gain=8.01dbi 8.01dbi>6.0dbi so power spectral density limit = (17-(8.01-6))=14.99dBm Band 3 For 802.11n/ac 5GHz has MIMO mode. Directional gain=6.59dbi 8.01dbi>6.0dbi so power spectral density limit = (30-(8.01-6))=27.99dBm

3.4 26DB & 99% EMISSION BANDWIDTH

3.4.1 Applied procedures / limit

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power s integrated over the full reference bandwidth.

3.4.2 TEST PROCEDURE

a) Set RBW = approximately 1% of the emission bandwidth.

b) Set the VBW > RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

The following procedure shall be used for measuring (99 %) power bandwidth:

1. Set center frequency to the nominal EUT channel center frequency.

- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW

4. Set VBW \geq 3 \cdot RBW

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

6. Use the 99 % power bandwidth function of the instrument (if available).

7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

3.4.3 EUT OPERATION CONDITIONS

3.4.4 TEST RESULTS

EUT :	MetabloxWiFi Router	Model Name. :	MBWF-P100			
Temperature :	25 °C	Relative Humidity :	56%			
Pressure :	1012 hPa	Test Voltage :	DC 12V			
Test Mode :	X Frequency Band I (5150-5250MHz), Band IV (5725-5850MHz)					

β.5 MINIMUM 6 DB BANDWIDTH

3.5.1 Applied procedures / limit

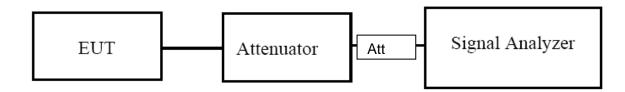
According to FCC §15.407(e)

(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.5.2 TEST PROCEDURE

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth: a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) \ge 3 × RBW.


- c) Detector = Peak.
- \dot{d} Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.5.3 DEVIATION FROM STANDARD

No deviation.

3.5.4 TEST SETUP

3.5.5 EUT OPERATION CONDITIONS

3.5.6 TEST RESULTS

EUT :	MetabloxWiFi Router	Model Name. :	MBWF-P100			
Temperature :	25 °C	Relative Humidity :	60%			
Pressure :	1012 hPa	1012 hPa Test Voltage : DC 12V				
Test Mode :	TX (5G) Mode Frequency Band IV (5725-5850MHz)					

β.6 MAXIMUM CONDUCTED OUTPUT POWER

3.6.1 PPLIED PROCEDURES / LIMIT

According to FCC §15.407

The maximum conduced output power should not exceed:

Frequency Band(MHz)	Limit
5150~5250	1W
5725~5850	1W

3.6.2 TEST PROCEDURE

. Maximum conducted output power may be measured using a spectrum analyzer/EMI receiver or an RF power meter.

1. Device Configuration

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

a) The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA)

Measurement of maximum conducted output power using a spectrum analyzer requires integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99-percent occupied bandwidth of the signal.1 However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with § 15.407(a).

a) The test method shall be selected as follows: (i) Method SA-1 or SA-1 Alternative (averaging with the EUT transmitting at full power throughout each sweep) shall be applied if either of the following conditions can be satisfied:

• The EUT transmits continuously (or with a duty cycle \geq 98 percent).

• Sweep triggering or gating can be implemented in a way that the device transmits at the maximum power control level throughout the duration of each of the instrument sweeps to be averaged. This condition can generally be achieved by triggering the instrument's sweep if the duration of the sweep (with the analyzer configured as in Method SA-1, below) is equal to or shorter than the duration T of each transmission from the EUT and if those transmissions exhibit full power throughout their durations.

(ii) Method SA-2 or SA-2 Alternative (averaging across on and off times of the EUT transmissions, followed by duty cycle correction) shall be applied if the conditions of (i) cannot be achieved and the transmissions exhibit a constant duty cycle during the measurement duration. Duty cycle will be considered to be constant if variations are less than ± 2 percent. (iii) Method SA-3 (RMS detection with max hold) or SA-3 Alternative (reduced VBW with max hold) shall be applied if the conditions of (i) and (ii) cannot be achieved.

b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep): (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW ≥ 3 MHz.

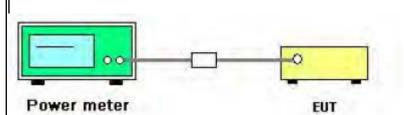
(iv) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".

(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.


(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum

3.6.3 DEVIATION FROM STANDARD

No deviation.

3.6.4 TEST SETUP

3.6.5 EUT OPERATION CONDITIONS

3.6.6 TEST RESULTS

EUT :	MetabloxWiFi Router	Model Name. :	MBWF-P100
Temperature :	25 °C	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 12V
Test Mode :	TX (5G) Mode Frequency Band	d I (5150-5250MHz),	Band IV (5725-5850MHz)

Refer to section 1.1 of this report:

Band1 For 802.11n/ac 5GHz has MIMO mode. Directional gain=8.01dbi 8.01dbi>6.0dbi so power spectral density limit = (30-(8.01-6))=27.99dBm Band 3 For 802.11n/ac 5GHz has MIMO mode. Directional gain=8.01dbi 8.01dbi>6.0dbi so conducted power limit=(30-(8.01-6))=27.99dBm

3.7 OUT OF BAND EMISSIONS

3.7.1 Applicable Standard

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

3.7.2 Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect

its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.

3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.

4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

5. Repeat above procedures until all measured frequencies were complete.

3.7.3 DEVIATION FROM STANDARD

No deviation.

3.7.4 TEST SETUP

SPECTRUM ANALYZER

3.7.5 EUT OPERATION CONDITIONS

3.7.6 TEST RESULTS

EUT :	MetabloxWiFi Router	Model Name. :	MBWF-P100
Temperature :	25 °C	Relative Humidity :	56%
Pressure :	1012 hPa	Test Voltage :	DC 12V

3.8 SPURIOUS RF CONDUCTED EMISSIONS

3.8.1Conformance Limit

According to FCC §15.407(b)(1) (2) (3) (4)

3.8.2Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

3.8.3Test Setup

Please refer to Section 6.1 of this test report.

3.8.4Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 40GHz.

3.8.5Test Results

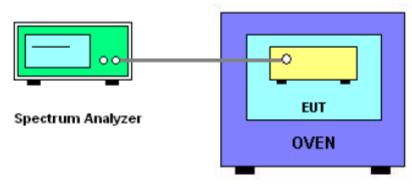
Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measuremen data.

β.9 FREQUENCY STABILITY MEASUREMENT

3.9.1 LIMIT

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.9.2 TEST PROCEDURES


1. The transmitter output (antenna port) was connected to the spectrum analyzer.

- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 106 ppm .

6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value

7. Extreme temperature is -20°C~70°C.

3.9.3 TEST SETUP LAYOUT

3.9.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously un-modulation transmitting mode.

3.9.5 TEST RESULTS

1	3.9.0 TEST NESOEIS										
	EUT :	MetabloxWiFi Router	Model Name. :	MBWF-P100							
	Temperature :	25 °C	Relative Humidity :	56%							
	Pressure :	1012 hPa	Test Voltage :	DC 12V							
	Test Mode :	TX Frequency Band I (5150-5250MHz)									

Voltage vs. Frequency Stability

				Reference Frequency: 5180MHz							
	TES	T CONDITIONS	3	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)				
Tnom		V nom (V)	12	5180.0023	5180	0.0023	0.4440				
T nom (°C)	20	V max (V)	13.5	5180.0059	5180	0.0059	1.1390				
(0)						V min (V)	11.5	5180.0079	5180	0.0079	1.5251
		Limits		Within 5150-5250MHz							
		Result		Complies							

				Reference Frequency: 5180MHz			
Т	EST CC	NDITIONS	5	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5180.0068	5180	0.0068	1.3127
		T (°C)	-10	5180.0072	5180	0.0072	1.3900
	12	T (°C)	0	5180.0013	5180	0.0013	0.2510
		T (°C)	10	5180.0013	5180	0.0013	0.2510
λ		T (°C)	20	5180.0024	5180	0.0024	0.4633
V nom (V)		T (°C)	30	5180.0033	5180	0.0033	0.6371
		T (°C)	40	5180.0081	5180	0.0081	1.5637
		T (°C)	50	5180.0013	5180	0.0013	0.2510
		T (°C)	60	5180.0048	5180	0.0048	0.9266
		T (°C)	70	5180.0036	5180	0.0036	0.6950
	Limits				Within 5150-5250MHz		
Result				Complies			

				Reference Frequency: 5200MHz						
	TES	T CONDITIONS	3	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)			
Tnom		V nom (V)	12	5200.0035	5200	0.0035	0.6731			
T nom (°C)	20	V max (V)	13.5	5200.0069	5200	0.0069	1.3269			
(0)					V min (V)	11.5	5200.0036	5200	0.0036	0.6923
	Limits				Within 5150-5250MHz					
		Result		Complies						

				Reference Frequency: 5200MHz			
т	EST CC	NDITIONS	3	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5200.0058	5200	0.0058	1.1154
		T (°C)	-10	5200.0035	5200	0.0035	0.6731
	12	T (°C)	0	5200.0034	5200	0.0034	0.6538
		T (°C)	10	5200.0063	5200	0.0063	1.2115
V nom (V)		T (°C)	20	5200.0024	5200	0.0024	0.4615
v noni (v)		T (°C)	30	5200.0057	5200	0.0057	1.0962
		T (°C)	40	5200.0098	5200	0.0098	1.8846
		T (°C)	50	5200.0036	5200	0.0036	0.6923
		T (°C)	60	5200.0087	5200	0.0087	1.6731
		T (°C)	70	5200.0036	5200	0.0036	0.6923
	Limits				Within 5150-5250MHz		
	Re	esult		Complies			

			by Olability							
					Reference Frequency: 5240MHz					
	TEST CONDITIONS					fc	Max. Deviation (MHz)	Max. Deviation (ppm)		
т.,	-	20	20	V nom (V)	12	5240.0057	5240	0.0057	1.0878	
	nom °C)			V max (V)	13.5	5240.0069	5240	0.0069	1.3168	
(0)						V min (V)	11.5	5240.0083	5240
			Limits		Within 5150-5250MHz					
			Result		Complies					

				Reference Frequency: 5240MHz			
т	EST CC	NDITIONS	3	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5240.0097	5240	0.0097	1.8544
		T (°C)	-10	5240.0067	5240	0.0067	1.2786
		T (°C)	0	5240.0037	5240	0.0037	0.7061
	12	T (°C)	10	5240.0057	5240	0.0057	1.0905
V nom (V)		T (°C)	20	5240.0019	5240	0.0019	0.3661
v nom (v)		T (°C)	30	5240.0057	5240	0.0057	1.0878
		T (°C)	40	5240.0039	5240	0.0039	0.7443
		T (°C)	50	5240.0032	5240	0.0032	0.6107
		T (°C)	60	5240.0089	5240	0.0089	1.6985
		T (°C)	70	5240.0029	5240	0.0029	0.5534
	Limits			Within 5150-5250MHz			
	Re	esult			Con	nplies	

1				
	EUT :	MetabloxWiFi Router	Model Name. :	MBWF-P100
	Temperature :	25 °C	Relative Humidity :	56%
	Pressure :	1012 hPa	Test Voltage :	DC 12V
	Test Mode :	TX Frequency(5745-5825MHz)		

				Reference Frequency: 5745MHz			
TEST CONDITIONS				f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
Tasm	20	V nom (V)	12	5745.0135	5745	0.0135	2.3451
T nom (°C)		V max (V)	13.5	5745.0062	5745	0.0062	1.0809
(0)		V min (V)	11.5	5745.0088	5745	0.0088	1.5241
Limits				Within 5745-5850MHz			
	Result				Com	plies	

				Reference Frequency: 5745MHz			
т	EST CC	NDITIONS	3	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5745.0132	5745	0.0132	2.2977
		T (°C)	-10	5745.0089	5745	0.0089	1.5492
	12	T (°C)	0	5745.0053	5745	0.0053	0.9225
		T (°C)	10	5745.0014	5745	0.0014	0.2437
V nom (V)		T (°C)	20	5745.0015	5745	0.0015	0.2611
v noni (v)		T (°C)	30	5745.0035	5745	0.0035	0.6092
		T (°C)	40	5745.0039	5745	0.0039	0.6789
		T (°C)	50	5745.0059	5745	0.0059	1.0270
		T (°C)	60	5745.0053	5745	0.0053	0.9225
		T (°C)	70	5745.0079	5745	0.0079	1.3751
	Limits			Within 5745-5850MHz			
	Re	esult			Com	plies	

				Reference Frequency: 5785MHz				
	TES	T CONDITIONS	3	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
Tasa	20		V nom (V)	12	5785.0013	5785	0.00130	0.2247
T nom (°C)		V max (V)	13.5	5785.0046	5785	0.00460	0.7952	
(0)				V min (V)	11.5	5785.0059	5785	0.00590
	Limits				Within 5745-5850MHz			
		Result			Com	plies		

				Reference Frequency: 5785MHz			
т	EST CO	NDITIONS	3	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5785.0031	5785	0.0031	0.5359
		T (°C)	-10	5785.0023	5785	0.0023	0.3976
	12	T (°C)	0	5785.0073	5785	0.0073	1.2619
		T (°C)	10	5785.0067	5785	0.0067	1.1582
V nom (V)		T (°C)	20	5785.0048	5785	0.0048	0.8297
v nom (v)		T (°C)	30	5785.0096	5785	0.0096	1.6595
		T (°C)	40	5785.0075	5785	0.0075	1.2965
		T (°C)	50	5785.0051	5785	0.0051	0.8816
		T (°C)	60	5785.0084	5785	0.0084	1.4520
		T (°C)	70	5785.0085	5785	0.0085	1.4693
	Limits			Within 5745-5850MHz			
	R	esult			Com	plies	

	-			Reference Frequency: 5825MHz							
	TES	T CONDITIONS	5	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)				
T						V nom (V)	12	5825.0037	5825	0.0037	0.6352
T nom (°C)	20	V max (V)	13.5	5825.0038	5825	0.0038	0.6524				
(0)		V min (V)	11.5	5825.0019	5825	0.0019	0.3262				
Limits				Within 5745-5850MHz							
		Result		Complies							

				Reference Frequency: 5825MHz			
Т	EST CC	NDITIONS	3	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5825.0029	5825	0.0029	0.4979
		T (°C)	-10	5825.0042	5825	0.0042	0.7210
		T (°C)	0	5825.0038	5825	0.0038	0.6524
	12	T (°C)	10	5825.0036	5825	0.0036	0.6180
λ nom (λ)		T (°C)	20	5825.0032	5825	0.0032	0.5494
V nom (V)		T (°C)	30	5825.0054	5825	0.0054	0.9270
		T (°C)	40	5825.0047	5825	0.0047	0.8069
		T (°C)	50	5825.0036	5825	0.0036	0.6180
		T (°C)	60	5825.0087	5825	0.0087	1.4936
		T (°C)	70	5825.0089	5825	0.0089	1.5279
	Limits			Within 5745-5850MHz			
	Re	esult			Com	plies	

4. ANTENNA REQUIREMENT

4.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

4.2 EUT ANTENNA

The EUT antenna is permanent attached External antenna (antenna gain: 5 dBi). It comply with the standard requirement.

END OF REPORT