FCC and ISED Test Report

Kineis SAS Model: KIM2-HW1-FW1

In accordance with FCC 47 CFR Part 25, FCC 47 CFR Part 2, ISED **RSS-170 and ISED RSS-GEN** (UHF)

Prepared for: Kineis SAS 11 Rue Hermes Parc Technologique Du Canal Ramonville Saint-Agne 31520, FRANCE

FCC ID: 2A96E-KIM2-HW1FW1 IC ID: 30247-KIM2HW1FW1

Add value. **Inspire trust.**

COMMERCIAL-IN-CONFIDENCE

Document 75958442-01 Issue 01

SIGNATURE			
Mussel,	1		
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Matthew Russell	Chief Engineer	Authorised Signatory	20 December 2023

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 25, FCC 47 CFR Part 2 and ISED RSS-170 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE	SIGNATURE
T (1)	Pier-Angelo Lorusso		20 December 2023	formark
Testing	Thomas Biddlecombe		20 December 2023	JAM (
FCC Accreditation ISED Accreditation 90987 Octagon House, Fareham Test Laboratory 12669A Octagon House, Fareham Test Laboratory				ory

90987 Octagon House, Fareham Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 25, 2022 FCC 47 CFR Part 2, 2021 ISED RSS-170, Issue 4 (09-2022) and ISED RSS-GEN:) Issue 5 (04-2018) + A2 (02-2021) for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2023 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD

is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164

TUV SUD Ltd is a TÜV SÜD Group Company

Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuvsud.com/en

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2	Introduction	
1.3	Brief Summary of Results	
1.4	Application Form	4
1.5	Product Information	
1.6	Deviations from the Standard	
1.7	EUT Modification Record	7
1.8	Test Location	8
2	Test Details	9
2.1	Equivalent Isotropic Radiated Power	9
2.2	Radiated Spurious Emissions	
2.3	Modulation Characteristics	
2.4	Occupied Bandwidth	
2.5	Spurious Emissions at Antenna Terminals	
2.6	Frequency Tolerance	
3	Photographs	
3.1	Test Setup Photographs	
4	Measurement Uncertainty	

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	20-December-2023

Table 1

1.2 Introduction

Applicant	Kineis SAS
Manufacturer	Kineis SAS
Model Number(s) Serial Number(s)	KIM2-HW1-FW1 KIM2102306203378 KIM2102306203379 KIM2102306203315
Hardware Version(s)	HW1.x
Software Version(s)	FW1.x
Number of Samples Tested	3
Test Specification/Issue/Date	FCC 47 CFR Part 25, (2022) FCC 47 CFR Part 2, (2021) ISED RSS-170 Issue 4 (09-2022) ISED RSS-GEN: Issue 5 (04-2018) + A2 (02-2021)
Order Number	PO-23-01028
Date	28-April-2023
Date of Receipt of EUT	13-October-2023 and 05-July-2023
Start of Test	17-October-2023
Finish of Test	05-December-2023
Name of Engineer(s)	Pier-Angelo Lorusso, George Williams and Thomas Biddlecombe
Related Document(s)	ANSI C63.26 (2015)

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 25, FCC 47 CFR Part 2 and ISED RSS-170 and ISED RSS-GEN is shown below.

Oration	Specification C	Clause			Test Description	Decult	O annu an ta /D a an O ta m dan d
Section	Part 2	Part 25	RSS-GEN	RSS-170	Test Description	Result	Comments/Base Standard
Configuratio	on and Mode: 40	OMHz - Whip dip	ole		·		·
2.1	2.1046	25.204	6.12	5.5	Equivalent Isotropic Radiated Power	Pass	ANSI C63.26 (2015)
2.2	2.1053	25.202(f)	6.13	5.8	Radiated Spurious Emissions	Pass	ANSI C63.26 (2015)
Configuratio	on and Mode: 40) MHz - PCB coi	l		·		·
2.1	2.1046	25.204	6.12	5.5	Equivalent Isotropic Radiated Power	Pass	ANSI C63.26 (2015)
2.2	2.1053	25.202(f)	6.13	5.8	Radiated Spurious Emissions	Pass	ANSI C63.26 (2015)
Configuratio	on and Mode: 40	0 MHz Transmitt	er				
2.3	-	-	-	-	Modulation Characteristics	Declaration	
2.4	2.1049	-	6.7	-	Occupied Bandwidth	Pass	ANSI C63.26 (2015)
2.5	2.1051	25.202 (f)	6.13	5.8	Spurious Emissions at Antenna Terminals	Pass	ANSI C63.26 (2015)
2.6	2.1055	25.202(d)	6.11	5.3	Frequency Tolerance	Pass	ANSI C63.26 (2015)

Table 2

1.4 Application Form

Equipment Description

		ommunication module, dedicatec (ground <-> satellites).	ł to Kinéis protocol. Uplink and	
Manufacturer:		Kinéis		
Model:		KIM2-HW1-FV	V1	
Part Number:		KIM2102306xxxxxx		
Hardware Version:		HW1.x		
Software Version: FW1.x		FW1.x		
FCC ID of the product under te	est – <u>see guidan</u>	nce here	2A96E-KIM2-HW1FW1	
IC ID of the product under test – see guidance here		30247-KIM2HW1FW1		
Device Category	Mobile 🖂		Portable	Fixed 🗆
Equipment is fitted with an Audio Low Pass Filter		Yes 🗆	No 🖂	

Table 3

Intentional Radiators

Technology	KINEIS		
Frequency Range (MHz to MHz)	399.9-400.05MHz 401-403MHz		
Conducted Declared Output Power (dBm)	27 dBm		
Antenna Gain (dBi)	2 ; 0 dBi		
Supported Bandwidth(s) (MHz) (e.g. 1 MHz, 20 MHz, 40 MHz)	4kHz		
Modulation Scheme(s) (e.g. GFSK, QPSK etc)	BPSK		
ITU Emission Designator <u>(see</u> <u>guidance here)</u> (not mandatory for Part 15 devices)	1K60G7D 800H G7D		
Bottom Frequency (MHz)	399.91 MHz		
Middle Frequency (MHz)			
Top Frequency (MHz)	402.99 MHz		

Un-intentional Radiators

Table 4

Highest frequency generated or used in the device or on which the device operates or tunes	402.99MHz	
Lowest frequency generated or used in the device or on which the device operates or tunes	16.369MHz	
Class A Digital Device (Use in commercial, industrial or business environment)		
Class B Digital Device (Use in residential environment only) \Box		

Table 5

AC Power Source

AC supply frequency:	NA	Hz
Voltage	NA	V
Max current:	NA	A

Table 6

Single Phase 🗆	Three Phase 🗆

DC Power Source

Nominal voltage:	3.6	V
Extreme upper voltage:	5	V
Extreme lower voltage:	3.3	V
Max current:	0.8	A

Battery Power Source

Voltage:	NA	V
End-point voltage:	NA	V (Point at which the battery will terminate)
Alkaline Leclanche Lithium Nickel Cadmium Lead Acid* *(Vehicle regulated)		
Other	Please detail:	

Table 8

Table 7

Charging

Can the EUT transmit whilst being charged	Yes 🗵 No 🗆
---	------------

Table 9

Temperature

Minimum temperature:	-40	°C
Maximum temperature:	+85	°C

Cable Loss

Adapter Cable Loss (Conducted sample)	NA	dB
--	----	----

Table 11

Table 10

Antenna Characteristics

Antenna connector \Box		State impedance		Ohm
Temporary antenna conn	ector 🖂	State impedance	50	Ohm
Integral antenna \Box	Type:	Gain		dBi

External antenna 🖂 Type:	Whip dipole PCB Coil	Gain	2 0	dBi
--------------------------	-------------------------	------	--------	-----

For external antenna only:

Standard Antenna Jack \boxtimes If yes, describe how user is prohibited from changing antenna (if not professional installed):

Equipment is only ever professionally installed \boxtimes

Non-standard Antenna Jack \square

All part 15 applications will need to show how the antenna gain was derived either from a manufacturer data sheet or a measurement. Where the gain of the antenna is inherently accounted for as a result of the measurement, such as field strength measurements on a part 15.249 or 15.231 device, so the gain does not necessarily need to be verified. However, enough information regarding the construction of the antenna shall be provided. Such information maybe photographs, length of wire antenna etc.

Table 12

Ancillaries (if applicable)

Manufacturer: Analog Devices Part Number: ADALM-PLUTO				
		Table 13		
Model:	ADALM-PLUTO	Country of Origin:	CHINA	

Table 14

I hereby declare that the information supplied is correct and

complete. Name: GAMONAL Vincent Position held: TEST & VALIDATION ENGINEER Date: 2023-06-12

1.5 Product Information

1.5.1 Technical Description

This is a telecommunication module, dedicated to Kinéis protocol. Uplink and downlink able (ground <-> satellites).

1.5.2 Additional Technical information

The Model: KIM2 SN3-15 (1) unit houses the KIM2-HW1-FW1 which consists of 3 samples referred to as RF 28 Board (S/N: KIM2102306203378), RF 29 Board (S/N: KIM2102306203379) and RF 15 Board (S/N: KIM2102306203315).

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted		
Model: KIM2-HW1-I	Model: KIM2-HW1-FW1, Serial Number: KIM2102306203378				
0	As supplied by the customer	Not Applicable	Not Applicable		
Model: KIM2-HW1-F	Model: KIM2-HW1-FW1, Serial Number: KIM2102306203379				
0 As supplied by the customer Not Applicable Not Applicable					
Model: KIM2-HW1-FW1, Serial Number: KIM2102306203315					
0	As supplied by the customer	Not Applicable	Not Applicable		

Table 15

1.8 Test Location

TÜV SÜD conducted the following tests at our Octagon House Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation		
Configuration and Mode: 400 MHz Transmitter				
Occupied Bandwidth	Thomas Biddlecombe	UKAS		
Spurious Emissions at Antenna Terminals	Thomas Biddlecombe	UKAS		
Frequency Tolerance	Thomas Biddlecombe	UKAS		
Configuration and Mode: 400MHz - Whip dipole				
Equivalent Isotropic Radiated Power	Pier-Angelo Lorusso	UKAS		
Radiated Spurious Emissions	Pier-Angelo Lorusso	UKAS		
Configuration and Mode: 400 MHz - PCB coil				
Equivalent Isotropic Radiated Power	Pier-Angelo Lorusso	UKAS		
Radiated Spurious Emissions	Pier-Angelo Lorusso, George Williams	UKAS		

Table 16

Office Address:

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Equivalent Isotropic Radiated Power

2.1.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1046 FCC 47 CFR Part 25, Clause 25.204 ISED RSS-GEN, Clause 6.12 ISED RSS-170, Clause 5.5

2.1.2 Equipment Under Test and Modification State

1, Model: KIM2-HW1-FW1, S/N: KIM2102306203379 - Modification State 0

2.1.3 Date of Test

19-October-2023

2.1.4 Test Method

The EUT was placed on a remotely controlled turntable within a semi-anechoic chamber. Measurements of the fundamental was obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations.

The EUT was powered from a DC Power Supply with 3.6 V DC nominal.

Testing was performed in accordance with ANSI C63.26, Clause 5.2.4.3 and 5.2.7.

The Average Power and Power Spectral Density measurements in a 4 kHz bandwidth were performed in accordance with ANSI C63.26, clause 5.2.4.3 (Average-PSD).

The RBW was configured to 10 kHz and therefore no reference level offset / correction factor was required to show the result as 4 kHz bandwidth.

Total EIRP measurements were performed in accordance with ANSI C63.26, clause 5.2.4.3 (average power with Duty Cycle Correction Factor).

Field strength measurements were performed and then converted to Equivalent Power Measurements in accordance with ANSI C63.26, Clause 5.2.7 equation (d)

Example calculation:

EIRP (dBm) = E (dB μ V/m) + 20log(D) – 104.8; where D is the measurement distance (in the far field region) in m.

The measurement distance was 3m.

2.1.5 Environmental Conditions

Ambient Temperature	19.3 °C
Relative Humidity	38.6 %

2.1.6 Test Results

<u> 400MHz - Whip dipole</u>

EIRP (dBm/4kHz)			
399.91 MHz N/A MHz 402.99 MHz			
30.47	-	30.88	

Table 17 - EIRP/4 kHz Results Table

399.9	1 MHz	N/A	MHz	402.9	9 MHz
EIRP (dBm)	∆ from rated power (dB)	EIRP (dBm)	∆ from rated power (dB)	EIRP (dBm)	∆ from rated power (dB)
30.47	1.47	-	-	30.88	1.88

Table 18 - EIRP Results Table

400 MHz - PCB coil

EIRP (dBm/4kHz)				
399.91 MHz N/A MHz 402.99 MHz				
27.78 - 28.46				

Table 19 - EIRP/4 kHz Results Table

399.9	399.91 MHz		N/A MHz		9 MHz
EIRP (dBm)	∆ from rated power (dB)	EIRP (dBm)	∆ from rated power (dB)	EIRP (dBm)	∆ from rated power (dB)
27.78	0.78	-	-	28.46	1.46

Table 20 - EIRP Results Table

FCC 47 CFR Part 25, Limit Clause 25.204

+40 dBW in any 4 kHz band for $\theta \le 0^{\circ}$ +40 + 30 dBW in any 4 kHz band for $0^{\circ} < \theta \le 5^{\circ}$ For angles of elevation of the horizon greater than 5° there shall be no restriction as to the equivalent isotropically radiated power transmitted by an earth station towards the horizon.

ISED RSS-170, Limit Clause 5.3

The application for MES certification shall state the MES e.i.r.p. that is necessary for satisfactory communication. The maximum permissible e.i.r.p. will be the stated necessary e.i.r.p. plus a 2 dB margin. If a detachable antenna is used, the certification application shall state the recommended antenna type and manufacturer, the antenna gain and the maximum transmitter output power at the antenna terminal.

2.1.7 Test Location and Test Equipment Used

This test was carried out in RF Chamber 11.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Dual Power Supply Unit	Hewlett Packard	6253A	292	-	O/P Mon
True RMS Multimeter	Fluke	179	4007	12	18-Nov-2023
Test Receiver	Rohde & Schwarz	ESW44	5084	12	31-Aug-2024
Emissions Software	TUV SUD	EmX V3.1.12	5125	-	Software
Screened Room (11)	Rainford	Rainford	5136	36	24-Nov-2024
Mast	Maturo	TAM 4.0-P	5158	-	TU
Mast and Turntable Controller	Maturo	Maturo NCD	5159	-	TU
Turntable	Maturo	TT 15WF	5160	-	TU
Thermo-Hygro-Barometer	PCE Instruments	OCE-THB-40	5470	12	20-Apr-2024
Cable (SMA to SMA, 2 m)	Junkosha	MWX221- 02000AMSAMS/A	5518	12	14-Apr-2024
Cable (N-Type to N-Type, 8 m)	Junkosha	MWX221- 08000NMSNMS/B	5522	12	14-Apr-2024
Antenna (Tri-log, 30 MHz to 1 GHz)	Schwarzbeck	VULB 9168	5942	24	03-Feb-2024
Attenuator (4 dB)	Pasternack	PE7074-4	6202	24	16-Jul-2024

Table 21

TU - Traceability Unscheduled

O/P Mon - Output Monitored using calibrated equipment.

2.2 Radiated Spurious Emissions

2.2.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1053 FCC 47 CFR Part 25, Clause 25.202(f) ISED RSS-GEN, Clause 6.13 ISED RSS-170, Clause 5.8

2.2.2 Equipment Under Test and Modification State

1, Model: KIM2-HW1-FW1, S/N: KIM2102306203379 - Modification State 0

2.2.3 Date of Test

19-October-2023 to 05-Dec-2023

2.2.4 Test Method

Radiated Spurious Emissions were obtained up to the 10th harmonic by operating the EUT on a remotely controlled turntable within a semi-anechoic chamber. Measurements of emissions from the EUT were obtained with the measurement antenna in both horizontal and vertical polarisations.

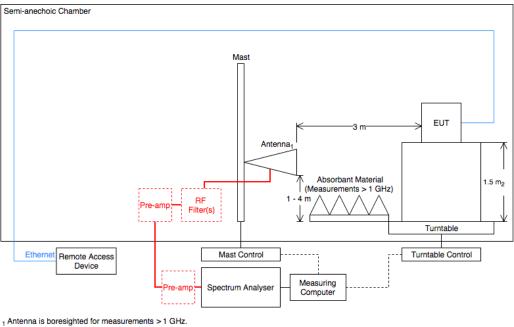
Testing was performed in accordance with ANSI C63.26, Clause 5.5.

Prescans and final measurements were performed using the direct field strength method. Field strength measurements were performed and then converted to Equivalent Power Measurements in accordance with ANSI C63.26, Clause 5.2.7 equation (d)

Example calculation: EIRP (dBm) = E (dB μ V/m) + 20log(D) - 104.8; where D is the measurement distance (in the far field region) in m. EIRP (dBm) = 82.2 (dB μ V/m) + 20log(3) - 104.8 -13.0 = EIRP (dBm)

*NOTE 1:

Due to the emissions being intermittent in nature, a peak measurement was taken and a Duty Cycle Correction Factor (DCCF) was applied. For each of these emissions, the total pulse width (in milliseconds) was taken, being the summation of the widths in the case that multiple pulses were detected during a single period of the transmit signal.


The pulse width was then divided by the total period of the transmit signal to give the duty cycle of the emission. The final DCCF was then calculated as 10*Log(1/emission duty cycle), and this value was then subtracted from the peak value to give an averaged result.

Example Calculation: Taken from the 399.91 MHz, Horizontal Polarization, Z-Plane result Measured Value: 13.86 dBm Pulse 1 width: 0.921 ms Pulse 2 width: 0.728 ms Total Pulse width: 1.649 ms Transmitter Period: 1004.079 ms 1.649/1004.079 = 0.001642 = Emission Duty Cycle Duty Cycle Correction Factor = 10 * Log(1/0.001642) = 27.85 dB Subtract DCCF from Peak Value: 13.86 - 27.85 = -13.99 dBm as the final emissions value.

Some emissions appear on the traces near the limit but do not have markers available, this was due to the emission pulse width being extremely narrow, (less than 30 μ s) and as such would have been adjusted by at least 45 dB by the DCCF, meaning that they would have been compliant with the limit by a large margin and as such were not required to be measured.

2.2.5 Test Setup Diagram

Antenna is boresignted for measurements > 1 GHz. 2 Height from the EUT to ground is 0.8 m for measurements < 1 GHz.</p>

Figure 1

2.2.6 Environmental Conditions

Ambient Temperature	22.8 - 26.0 °C
Relative Humidity	30.8 - 52.9 %

2.2.7 Test Results

400MHz - Whip dipole

Frequency (MHz)	Level (dBm)	Polarisation	Orientation
*			

Table 22 - 399.91 MHz, 30 MHz to 5GHz

*No emissions were found within 10 dB of the limit.

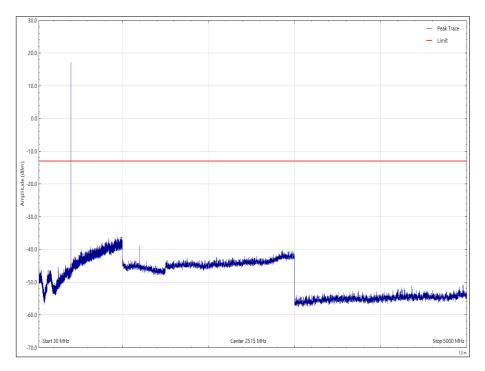


Figure 2 - 399.91 MHz - 30 MHz to 5 GHz, Horizontal, X Orientation

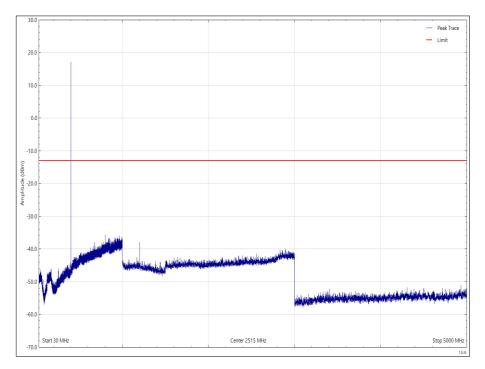


Figure 3 - 399.91 MHz - 30 MHz to 5 GHz, Vertical, X Orientation

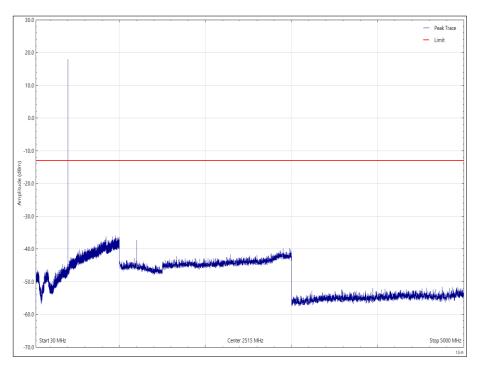


Figure 4 - 399.91 MHz - 30 MHz to 5 GHz, Horizontal, Y Orientation

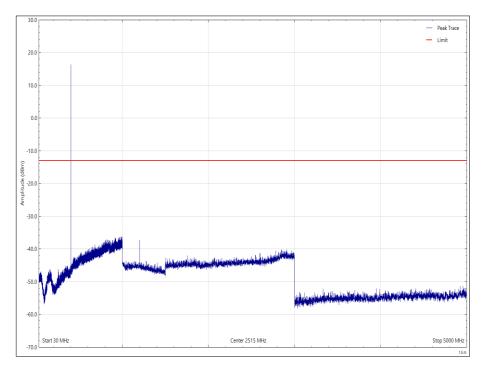


Figure 5 - 399.91 MHz - 30 MHz to 5 GHz, Vertical, Y Orientation

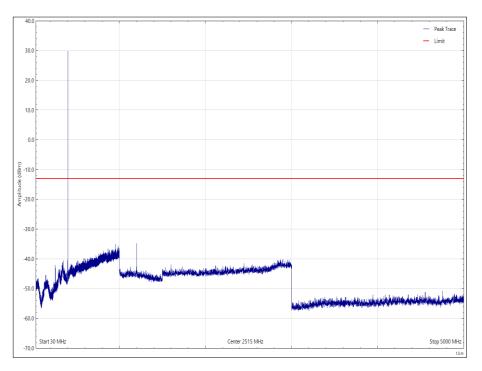


Figure 6 - 399.91 MHz - 30 MHz to 5 GHz, Horizontal, Z Orientation

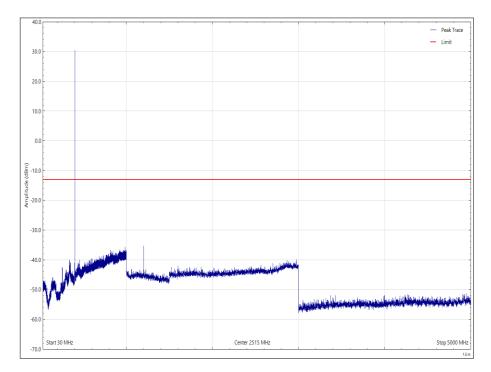


Figure 7 - 399.91 MHz - 30 MHz to 5 GHz, Vertical, Z Orientation

Frequency (MHz)	Level (dBm)	Polarisation	Orientation
*			

Table 23 - 402.99 MHz, 30 MHz to 5GHz

*No emissions were found within 10 dB of the limit.

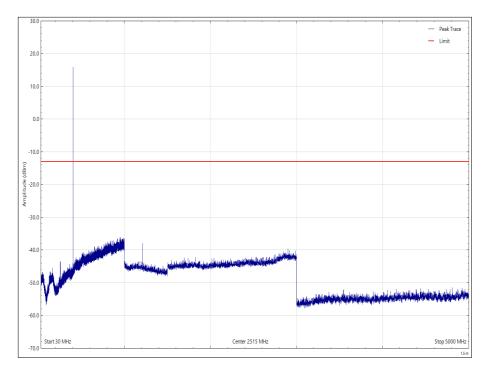


Figure 8 - 402.99 MHz - 30 MHz to 5 GHz, Horizontal, X Orientation

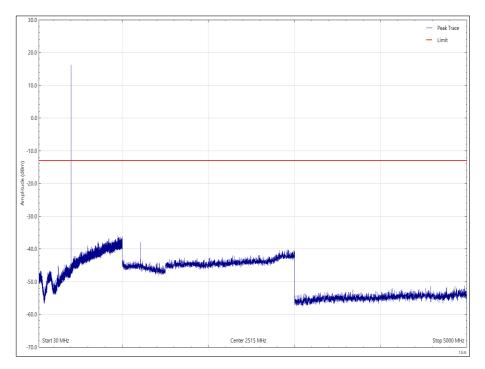


Figure 9 - 402.99 MHz - 30 MHz to 5 GHz, Vertical, X Orientation

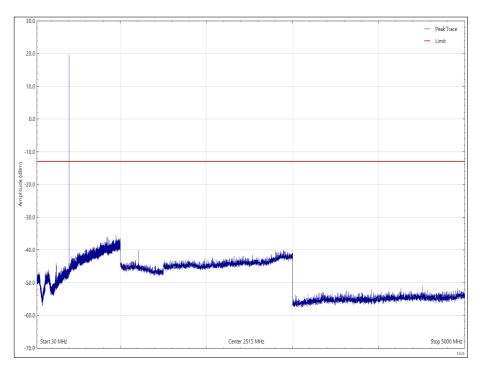


Figure 10 - 402.99 MHz - 30 MHz to 5 GHz, Horizontal, Y Orientation

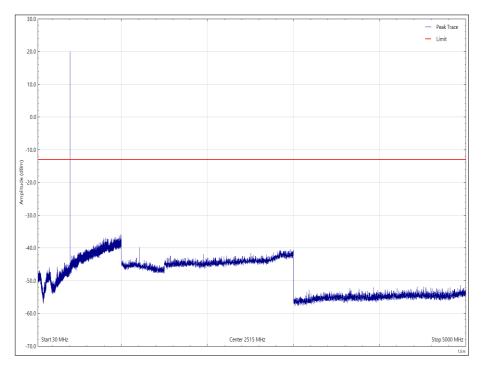


Figure 11 - 402.99 MHz - 30 MHz to 5 GHz, Vertical, Y Orientation

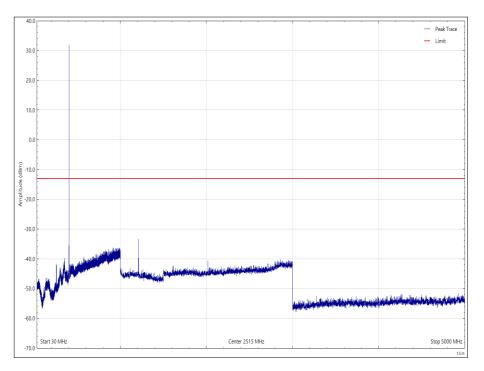


Figure 12 - 402.99 MHz - 30 MHz to 5 GHz, Horizontal, Z Orientation

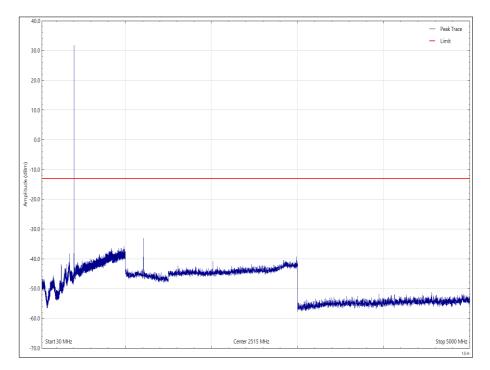


Figure 13 - 402.99 MHz - 30 MHz to 5 GHz, Vertical, Z Orientation

400 MHz - PCB coil

Frequency (MHz)	Level (dBm)	Polarisation	Orientation
224.679	-32.05*	Vertical	X
448.962	-37.29*	Vertical	X
225.291	-19.20*	Horizontal	X
449.109	-30.34*	Horizontal	X
225.159	-37.44*	Vertical	Y
449.429	-49.56*	Vertical	Y
225.410	-18.07*	Horizontal	Y
451.197	-43.47*	Horizontal	Y
225.409	-25.39*	Vertical	Z
448.951	-30.76*	Vertical	Z
224.524	-13.99*	Horizontal	Z
449.576	-33.22*	Horizontal	Z
349.389	-62.28*	Vertical	X
174.908	-64.29*	Horizontal	X

Table 24 - 399.91 MHz, 30 MHz to 5GHz

No other emissions were found within 10 dB of the limit.

*Refer to Note 1 in section 2.2.4.

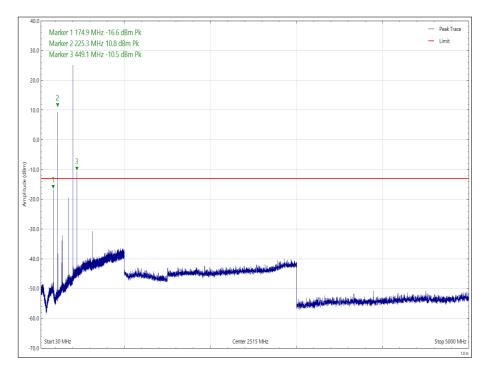


Figure 14 - 399.91 MHz - 30 MHz to 5 GHz, Horizontal, X Orientation

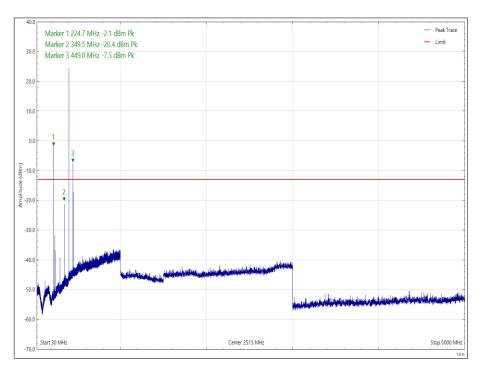


Figure 15 - 399.91 MHz - 30 MHz to 5 GHz, Vertical, X Orientation

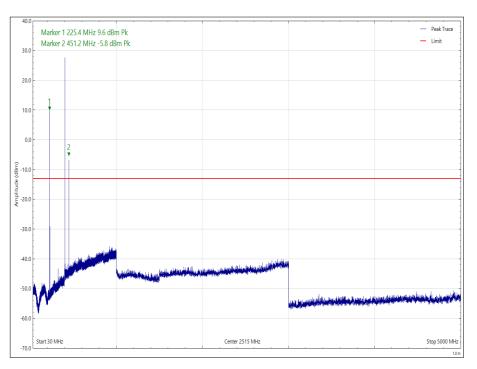


Figure 16 - 399.91 MHz - 30 MHz to 5 GHz, Horizontal, Y Orientation

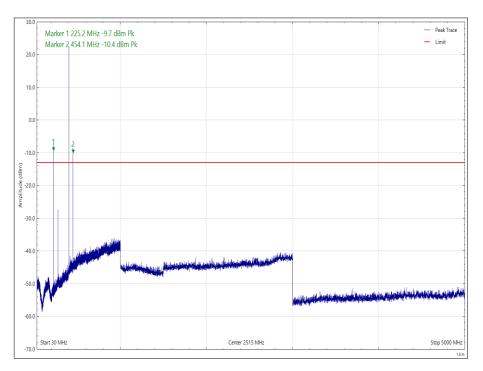


Figure 17 - 399.91 MHz - 30 MHz to 5 GHz, Vertical, Y Orientation

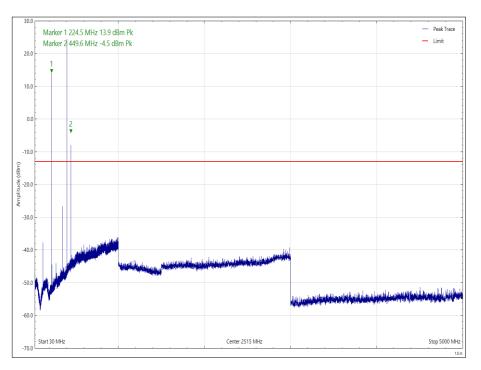


Figure 18 - 399.91 MHz - 30 MHz to 5 GHz, Horizontal, Z Orientation

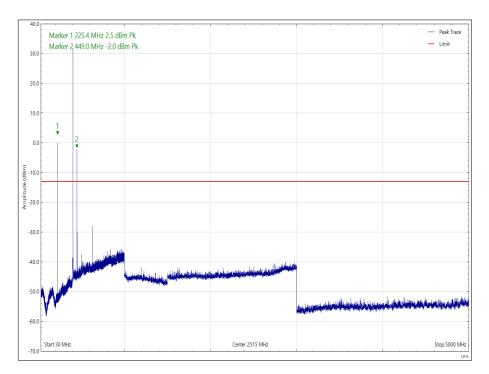
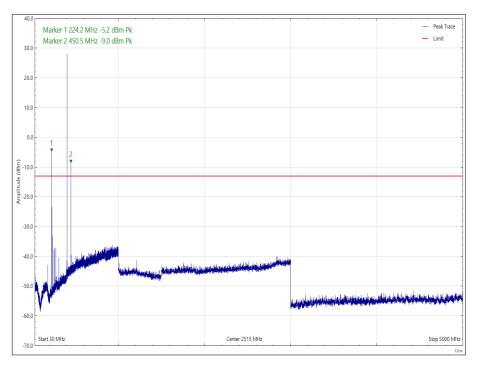


Figure 19 - 399.91 MHz - 30 MHz to 5 GHz, Vertical, Z Orientation



Frequency (MHz)	Level (dBm)	Polarisation	Orientation
224.234	-51.22*	Vertical	Х
449.514	-37.27*	Vertical	Х
224.222	-33.95*	Horizontal	Х
450.464	-37.50*	Horizontal	Х
448.797	-48.93*	Vertical	Υ
226.253	-35.85*	Horizontal	Υ
449.543	-35.47*	Horizontal	Y
224.696	-21.79*	Vertical	Z
450.162	-34.97*	Vertical	Z
225.126	-14.33*	Horizontal	Z
450.329	-37.27*	Horizontal	Z

Table 25 - 402.99 MHz, 30 MHz to 5GHz

No other emissions were found within 10 dB of the limit.

*Refer to Note 1 in section 2.2.4.

Figure 20 - 402.99 MHz - 30 MHz to 5 GHz, Horizontal, X Orientation

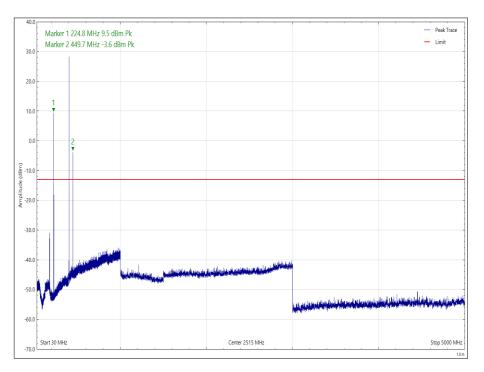


Figure 21 - 402.99 MHz - 30 MHz to 5 GHz, Vertical, X Orientation

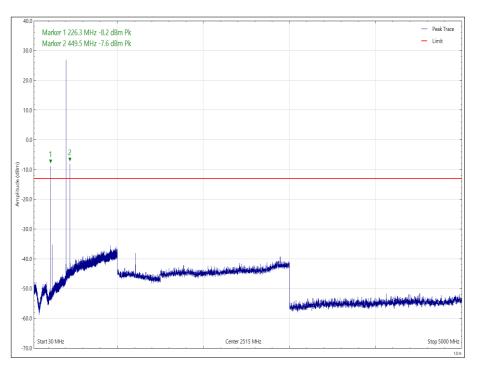


Figure 22 - 402.99 MHz - 30 MHz to 5 GHz, Horizontal, Y Orientation

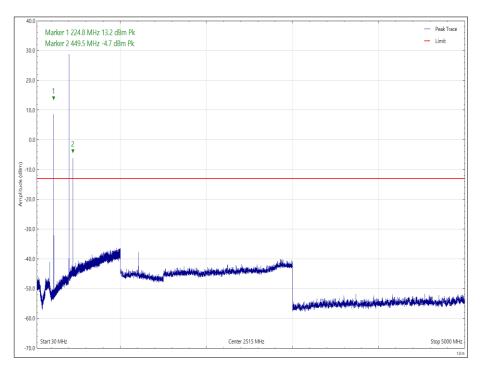


Figure 23 - 402.99 MHz - 30 MHz to 5 GHz, Vertical, Y Orientation

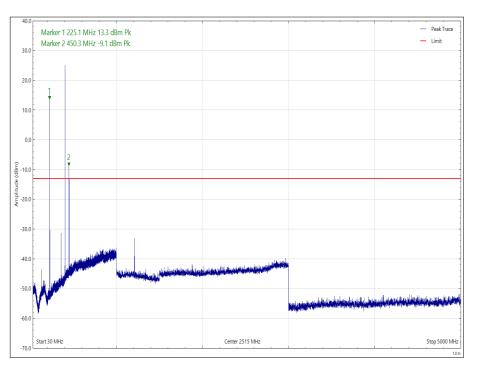


Figure 24 - 402.99 MHz - 30 MHz to 5 GHz, Horizontal, Z Orientation

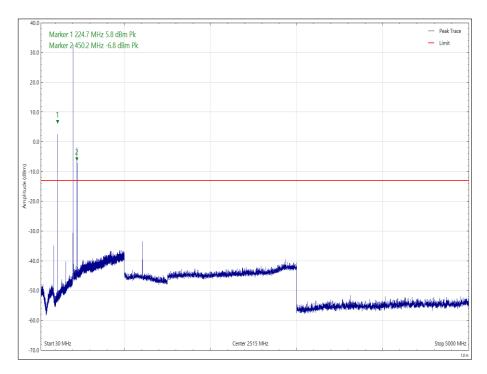


Figure 25 - 402.99 MHz - 30 MHz to 5 GHz, Vertical, Z Orientation

FCC 47 CFR Part 2, Limit Clause 25.202(f)

The average power of unwanted emissions shall be attenuated below the average output power, P(dBW), of the transmitter, as specified below:

25 dB in any 4 kHz band, the centre frequency of which is offset from the channel frequency by more than 50%, up to and including 100% of the authorised bandwidth; 35 dB in any 4 kHz band, the centre frequency of which is offset from the channel frequency by

more than 100%, up to and including 250% of the authorised bandwidth;

43 + 10 Log p (watts) in any 4 kHz band, the centre frequency of which is offset from the channel frequency by more than 250% of the authorised bandwidth.

ISED RSS-170, Limit Clause 5.8

The average power of unwanted emissions shall be attenuated below the average output power, P(dBW), of the transmitter, as specified below:

25 dB in any 4 kHz band, the centre frequency of which is offset from the channel frequency by more than 50%, up to and including 100% of the occupied bandwidth or necessary bandwidth, whichever is greater;

35 dB in any 4 kHz band, the centre frequency of which is offset from the channel frequency by more than 100%, up to and including 250% of the occupied bandwidth or necessary bandwidth, whichever is greater;

43 + 10 Log p (watts) in any 4 kHz band, the centre frequency of which is offset from the channel frequency by more than 250% of the occupied bandwidth or necessary bandwidth, whichever is greater.

2.2.8 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5 and RF Chamber 11.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Power Supply Unit	Hewlett Packard	6267B	21	-	TU
Dual Power Supply Unit	Hewlett Packard	6253A	292	-	O/P Mon
3m Semi-Anechoic Chamber	Rainford	RF Chamber 5	1545	36	15-Apri-2024
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Filter (Hi Pass)	Mini-Circuits	NHP-600	2834	12	19-Jan-2024
True RMS Multimeter	Fluke	179	4007	12	18-Nov-2023
Hygropalm Temperature and Humidity Meter	Rotronic	HP21	4410	12	08-Aug-2024
Mast Controller	Maturo Gmbh	NCD	4810	-	TU
Tilt Antenna Mast	Maturo Gmbh	TAM 4.0-P	4811	-	TU
4dB Attenuator	Pasternack	PE7047-4	4935	12	20-Jul-2024
High Pass filter	Wainwright	WHKX12-1290- 1500-18000-80SS	4962	12	14-Jun-2024
Test Receiver	Rohde & Schwarz	ESW44	5084	12	31-Aug-2024
Emissions Software	TUV SUD	EmX V3.1.12	5125	-	Software
3m Semi-Anechoic Chamber	Rainford	RF Chamber 11	5136	36	24-Nov-2024
Mast	Maturo	TAM 4.0-P	5158	-	TU
Mast and Turntable Controller	Maturo	Maturo NCD	5159	-	TU
Turntable	Maturo	TT 15WF	5160	-	TU
Antenna (DRG, 1 GHz to 10.5 GHz)	Schwarzbeck	BBHA9120B	5215	12	09-Jul-2024
Pre-Amplifier (1 GHz to 26.5 GHz)	Agilent Technologies	8449B	5445	12	25-May-2024
Thermo-Hygro-Barometer	PCE Instruments	OCE-THB-40	5470	12	20-Apr-2024
Cable (K-Type to K-Type, 1 m)	Junkosha	MWX241- 01000KMSKMS/A	5512	12	21-May-2024
Cable (SMA to SMA, 2 m)	Junkosha	MWX221- 02000AMSAMS/A	5517	12	21-May-2024
Cable (SMA to SMA, 2 m)	Junkosha	MWX221- 02000AMSAMS/A	5518	12	14-Apr-2024
Cable (N-Type to N-Type, 8 m)	Junkosha	MWX221- 08000NMSNMS/B	5521	12	05-Jun-2024
Cable (N-Type to N-Type,	Junkosha	MWX221-	5522	12	14-Apr-2024

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
8 m)		08000NMSNMS/B			
EMI Test Receiver	Rohde & Schwarz	ESW44	5527	12	15-Jun-2024
Antenna (Tri-log, 30 MHz to 1 GHz)	Schwarzbeck	VULB 9168	5942	24	03-Feb-2024
Attenuator (4 dB)	Pasternack	PE7074-4	6202	24	16-Jul-2024
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9168	6635	24	13-Jun-2025

Table 26

TU - Traceability Unscheduled O/P Mon – Output Monitored using calibrated equipment

2.3 Modulation Characteristics

2.3.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1047 (d)

2.3.2 Equipment Under Test and Modification State

1, Model: KIM2-HW1-FW1, S/N: KIM2102306203379 - Modification State 0

2.3.3 Date of Test

17-October-2023

2.3.4 Test Method

Declaration provided by the applicant.

2.3.5 Test Results

400 MHz Transmitter

The following description was provided by the manufacturer:

Three modulations are of type BPSK between +/-1.1 radians. The bit rates are respectively, 400bps for LDA2, 300bps for LDK and 200bps for VLDA4.

FCC 47 CFR Part 2, Limit Clause 2.1047 (d)

A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

2.4 Occupied Bandwidth

2.4.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1049 ISED RSS-GEN, Clause 6.7

2.4.2 Equipment Under Test and Modification State

1, Model: KIM2-HW1-FW1, S/N: KIM2102306203378 - Modification State 0

2.4.3 Date of Test

17-October-2023

2.4.4 Test Method

This test was performed in accordance with ANSI C63.26, clause 5.4.4.

The modulation used for this measurement was LDA2 which was determined from pre-test to have the widest bandwidth.

2.4.5 Environmental Conditions

Ambient Temperature	21.8 °C
Relative Humidity	38.1 %

2.4.6 Test Results

400 MHz Transmitter

Occupied Bandwidth (kHz)		
399.91 MHz 402.99 MHz		
6.903	6.944	

Table 27

Figure 26 - 399.91 MHz

Spectrum Analy Occupied BW	/zer 1	• +								
KEYSIGHT ↔	Input: RF Coupling: AC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Ext (S)	Atten: 20 dB Preamp: Off	Trig: Free Run Gate: Off #IF Gain: Low	Center Free Avg Hold: 1 Radio Std:) MHz			
1 Graph	v			Ref LvI Offset 20						
Scale/Div 15.0 dB Ref Value 40.00 dBm										
25.0				mh	~					
10.0			\sim	\sim	$\mathcal{V}_{\mathcal{V}}$	$\sim \sim$	<u> </u>			
-5.00	\sim	$\sim\sim\sim\sim\sim$	$\gamma \gamma $			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim	$\sim \sim \sim$	$\sim\sim\sim\sim$	man n
-35.0										
-50.0										
-65.0										
-80.0										
Center 402.99000 MHz Video BW 1.2000 kHz #Res BW 120.00 Hz										Span 20 kHz Sweep FFT
2 Metrics	•									
	Occupied Ba					Measure T	race	Trace 1		
	Occupied Ba	6.944 kHz				Total Power		32.6 dBm		
	Transmit Fre	a Error	-35 Hz			% of OBW Power			99.00 %	
			7.259 kHz			x dB			-26.00 dB	
15		Oct 17, 2023 10:12:19 AM								

Figure 27- 402.99 MHz

FCC 47 CFR Part 2, Limit Clause 2.1049

None specified.

ISED RSS-GEN, Limit Clause

None specified.

2.4.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Power Supply Unit	Farnell	TSV-70	2043	12	O/P Mon
Hygrometer	Rotronic	I-1000	3220	12	15-Nov-2023
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	08-Feb-2024
Digital Multi-meter	Iso-tech	IDM93N	4435	12	04-Mar-2024
3.5 mm 1m Cable	Junkosha	MWX221- 01000DMS	5417	12	05-Jun-2024
Attenuator 5W 20dB DC- 18GHz	Aaren	AT40A-4041-D18- 20	5497	12	18-Apr-2024
MXA Signal Analyser	Keysight Technologies	N9020B	6418	24	27-Feb-2025

Table 28

O/P Mon – Output Monitored using calibrated equipment

2.5 Spurious Emissions at Antenna Terminals

2.5.1 Specification Reference

FCC 47 CFR Part 25, Clause 25.202(f) FCC 47 CFR Part 2, Clause 2.1051 ISED RSS-170, Clause 5.8 ISED RSS-GEN, Clause 6.13

2.5.2 Equipment Under Test and Modification State

1, Model: KIM2-HW1-FW1, S/N: KIM2102306203315 - Modification State 0

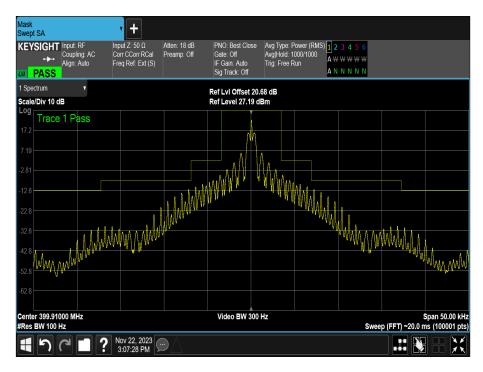
2.5.3 Date of Test

22-November-2023

2.5.4 Test Method

This test was performed in accordance with ANSI C63.26, clause 5.7.

Where an RBW > 4 kHz was used, this was considered worst case.


2.5.5 Environmental Conditions

Ambient Temperature	21.0 °C
Relative Humidity	44.1 %

2.5.6 Test Results

400 MHz Transmitter

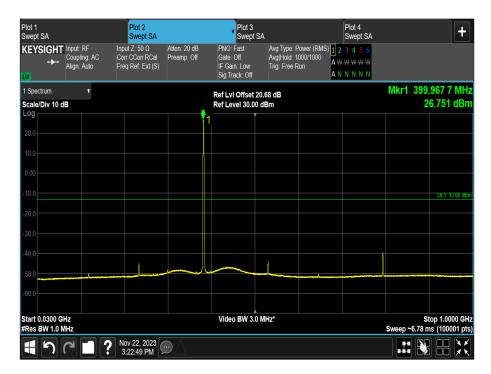


Figure 28 - 399.91 MHz - Emission Mask

Plot 1 Swept SA		Plot 2 Swept SA		Plot 3 Swept			Plot 4 Swept SA		+
KEYSIGHT	Input: RF Coupling: AC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Ext (S)	Atten: 20 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Po Avg Hold: 10 Trig: Free Ru	un A∺	3 4 5 6 ₩₩₩₩ N N N N		
1 Spectrum Scale/Div 10 d	T B			Ref LvI Offset Ref Level 30.0					
20.0									
10.0									
-10.0									DE1 -13.00 dBm
-20.0									
-50.0								-	
-60.0									
Start 10.00 MH #Res BW 1.0 N				Video BW 3.0) MHz*				Stop 30.00 MHz ns (100001 pts)
1 5	? 🗖 ۲	Nov 22, 2023 3:21:59 PM							

Figure 29 - 399.91 MHz - 10 MHz to 30 MHz

Figure 30 - 399.91 MHz - 30 MHz to 1 GHz

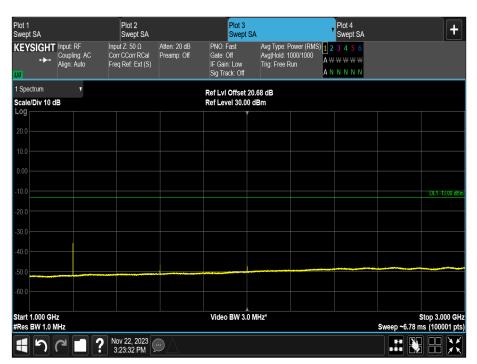


Figure 31 - 399.91 MHz - 1 GHz to 3 GHz

Plot 1 Swept SA	Plot 2 Swept SA		Plot 3 Swept S	SA	Plot 4 Swept SA		• +
KEYSIGHT Input: RF Coupling: AC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Ext (S)	Atten: 20 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Power (Avg Hold: 1000/10 Trig: Free Run	RMS) 1 2 3 4 5 6 A W W W W W A N N N N N		
1 Spectrum v Scale/Div 10 dB			Ref LvI Offset 2 Ref Level 30.00				
20.0			Ĭ				
10.0							DL1 -13.00 di
20.0							
40.0							
50.0							
Start 3.000 GHz #Res BW 1.0 MHz			Video BW 3.0	MHz*		Sweep ~14.1	Stop 8.000 G ms (100001 p
1 7 A 1	? Nov 22, 2023 3:25:56 PM	\Box					

Figure 32 - 399.91 MHz - 3 GHz to 8 GHz

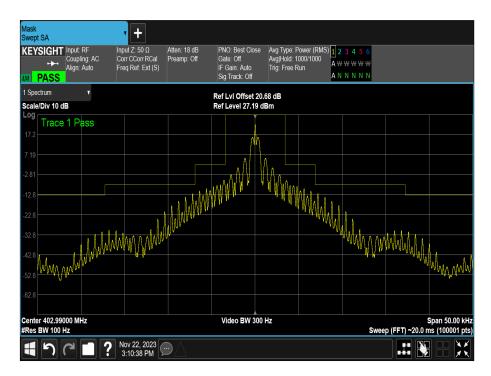


Figure 33 - 402.99 MHz - Emission Mask

Plot 1 Swept SA	Plot 2 Swept SA		Plot 3 Swept S	SA		Plot 4 Swept SA	+
KEYSIGHT Input: RF Coupling: AC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Ext (S)	Atten: 20 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Pow Avg Hold: 1000 Trig: Free Run	/1000 A₩	3 4 5 6 W W W W N N N N	
1 Spectrum v Scale/Div 10 dB			Ref LvI Offset 2 Ref Level 30.00				
20.0							
-10.0							DL1 -13.00 dE
40.0							
-50.0							
.60.0							
Start 10.00 MHz #Res BW 1.0 MHz			Video BW 3.0) MHz*			Stop 30.00 M ms (100001 p
4 7 C 1	? Nov 22, 2023 3:33:40 PM						

Figure 34 - 402.99 MHz - 10 MHz to 30 MHz



Figure 35 - 402.99 MHz - 30 MHz to 1 GHz

Plot 1 Swept SA		Plot 2 Swept SA		Plot 3 Swept S	SA		Plot 4 Swept SA		+
	Input: RF Coupling: AC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Ext (S)	Atten: 20 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: F Avg Hold: 1 Trig: Free F	tun A∺	3456 / w w w w I N N N N		
1 Spectrum Scale/Div 10 dE	v B			Ref Lvi Offset 2 Ref Level 30.00					
20.0				Ĭ					
									DL1 -13.00 d
-50.0									
Start 1.000 GHz #Res BW 1.0 MI				Video BW 3.0	MHz*			Sweep ~6.78 r	Stop 3.000 Gi ns (100001 pi
1 50	<u>م</u> ا	Nov 22, 2023 3:32:10 PM							

Figure 36 - 402.99 MHz - 1 GHz to 3 GHz

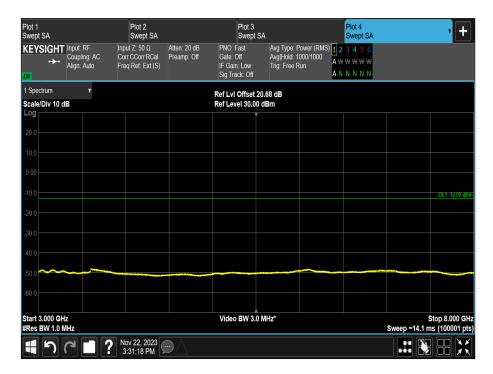


Figure 37 - 402.99 MHz - 3 GHz to 8 GHz

FCC 47 CFR Part 2, Limit Clause 25.202(f)

The average power of unwanted emissions shall be attenuated below the average output power, P(dBW), of the transmitter, as specified below:

- 25 dB in any 4 kHz band, the centre frequency of which is offset from the channel frequency by more than 50 %, up to and including 100 % of the authorised bandwidth;
- 35 dB in any 4 kHz band, the centre frequency of which is offset from the channel frequency by more than 100 %, up to and including 250 % of the authorised bandwidth;
- 43 + 10 Log p (watts) in any 4 kHz band, the centre frequency of which is offset from the channel frequency by more than 250 % of the authorised bandwidth.

ISED RSS-170, Limit Clause 5.8

The average power of unwanted emissions shall be attenuated below the average output power, P(dBW), of the transmitter, as specified below:

- 25 dB in any 4 kHz band, the centre frequency of which is offset from the channel frequency by more than 50 %, up to and including 100 % of the occupied bandwidth or necessary bandwidth, whichever is greater
- 35 dB in any 4 kHz band, the centre frequency of which is offset from the channel frequency by more than 100 %, up to and including 250 % of the occupied bandwidth or necessary bandwidth, whichever is greater
- 43 + 10 Log p (watts) in any 4 kHz band, the centre frequency of which is offset from the channel frequency by more than 250 % of the occupied bandwidth or necessary bandwidth, whichever is greater.

2.5.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	08-Feb-2024
Digital Multi-meter	Iso-tech	IDM93N	4435	12	04-Mar-2024
Hygrometer with pressure meter	Testo	622	5047	12	28-Sep-2024
Attenuator 5W 20dB DC- 18GHz	Aaren	AT40A-4041-D18- 20	5500	12	21-May-2024
Modular Power System Mainframe	Keysight Technologies	N6701C	5835	-	TU
DC Power Module 60V 20A 300W	Keysight Technologies	N6754A	5836	-	O/P Mon
1m K-Type Cable	Junkosha	MWX221/B	5908	12	21-May-2024
MXA Signal Analyser	Keysight Technologies	N9020B	6418	24	27-Feb-2025

Table 29

O/P Mon - Output Monitored using calibrated equipment

2.6 Frequency Tolerance

2.6.1 Specification Reference

FCC 47 CFR Part 25, Clause 25.202(d) FCC 47 CFR Part, Clause 2, 2.1055 Industry Canada RSS-170, Clause 5.3 ISED RSS-GEN, Clause 6.11

2.6.2 Equipment Under Test and Modification State

1, Model: KIM2-HW1-FW1, S/N: KIM2102306203379 - Modification State 0

2.6.3 Date of Test

17-October-2023

2.6.4 Test Method

This test was performed in accordance with ANSI C63.26, clause 5.6.

The measurement was made with the carrier unmodulated using a spectrum analyser set to a low span, low RBW with a peak detector and max hold trace to determine the centre frequency of the carrier in Hz to 2 decimal places.

2.6.5 Environmental Conditions

Ambient Temperature	21.8 °C
Relative Humidity	38.1 %

2.6.6 Test Results

400 MHz Transmitter

Temperature	Voltage	399.9	1 MHz	402.99	9 MHz	
(°C)		Frequency Error (%)	Frequency Error (ppm)	Frequency Error (%)	Frequency Error (ppm)	
-30	3.6 V DC	0.000039134	0.391	0.000037247	0.372	
-20	3.6 V DC	0.000034995	0.350	0.000042185	0.422	
-10	3.6 V DC	0.000040109	0.401	0.000037544	0.375	
0	3.6 V DC	0.000030169	0.302	0.000032718	0.327	
10	3.6 V DC	0.000025593	0.256	0.000024666	0.247	
20	3.3 V DC	0.000015003	0.150	0.000013648	0.136	
20	3.6 V DC	0.000003751	0.038	0.000017370	0.174	
20	5 V DC	0.000015003	0.150	0.000017370	0.174	
30	3.6 V DC	0.000015328	0.153	0.000022172	0.222	
40	3.6 V DC	0.000012503	0.125	0.000013648	0.136	
50	3.6 V DC	0.000023755	0.238	0.000016129	0.161	

Table 30

FCC 47 CFR Part 2, Limit Clause 25.202(d)

The carrier frequency of each earth station transmitter authorized in these services shall be maintained within 0.001 percent of the reference frequency.

ISED RSS-170, Limit Clause 5.3

For MES equipment, the carrier frequency shall not drift from the reference frequency by more than ± 10 ppm.

2.6.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Climatic Chamber	Votsch	VT4002	161	-	O/P Mon
Digital Temperature Indicator	Fluke	51	1385	12	06-Jun-2024
Power Supply Unit	Farnell	TSV-70	2043	12	O/P Mon
Hygrometer	Rotronic	I-1000	3220	12	15-Nov-2023
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	08-Feb-2024
Digital Multi-meter	lso-tech	IDM93N	4435	12	04-Mar-2024
3.5 mm 1m Cable	Junkosha	MWX221- 01000DMS	5417	12	05-Jun-2024
Attenuator 5W 20dB DC- 18GHz	Aaren	AT40A-4041-D18- 20	5497	12	18-Apr-2024
MXA Signal Analyser	Keysight Technologies	N9020B	6418	24	27-Feb-2025

Table 31

O/P Mon - Output Monitored using calibrated equipment

3 Photographs

3.1 Test Setup Photographs

Figure 38 – Coil X Plane, 30MHz to 1GHz

Figure 39 – Coil Y Plane, 30MHz to 1GHz

Figure 40 – Coil Z Plane, 30MHz to 1GHz

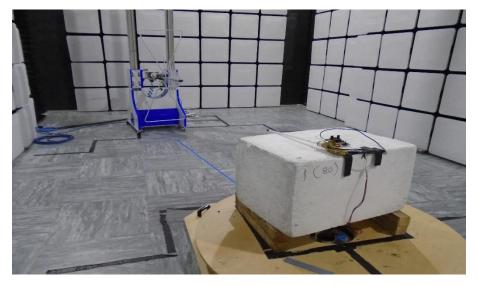


Figure 41 – Whip X Plane, 30MHz to 1GHz

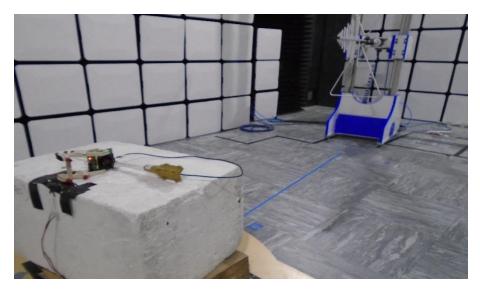


Figure 42 – Whip Y Plane, 30MHz to 1GHz

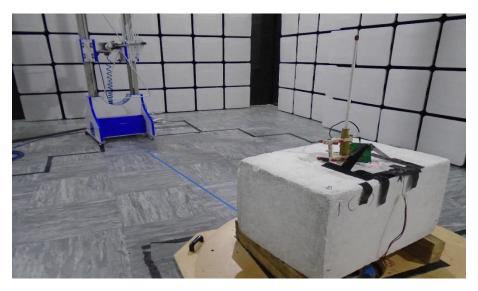


Figure 43 – Whip Z Plane, 30MHz to 1GHz

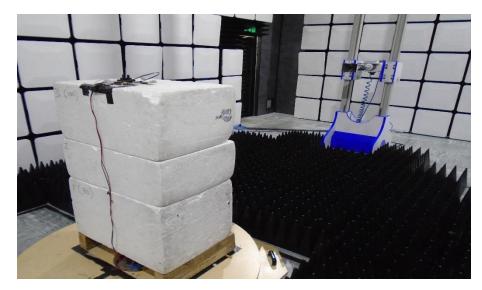


Figure 44 - Coil X Plane, 1GHz to 5GHz

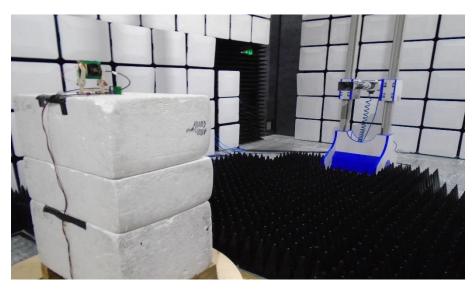


Figure 45 - Coil Y Plane, 1GHz to 5GHz

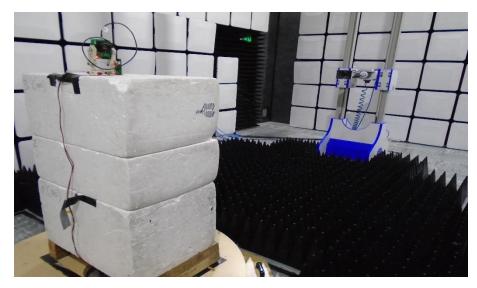


Figure 46 – Coil Z Plane, 1GHz to 5GHz

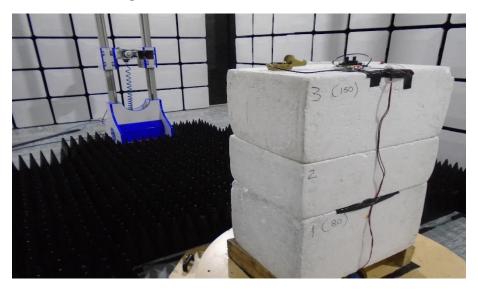


Figure 47 – Whip X Plane, 1GHz to 5GHz

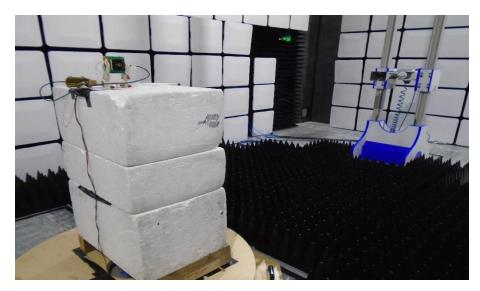


Figure 48 – Whip Y Plane, 1GHz to 5GHz

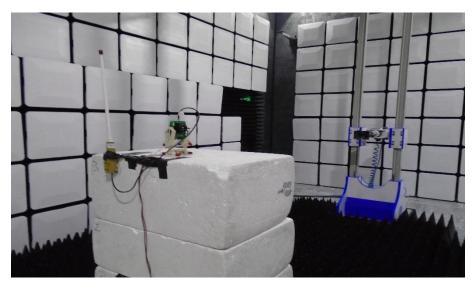


Figure 49 – Whip Z Plane, 1GHz to 5GHz

4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Occupied Bandwidth	± 100.22 Hz
Spurious Emissions at Antenna Terminals	± 3.08 dB
Frequency Tolerance	± 3.54 Hz
Equivalent Isotropic Radiated Power	Conducted: \pm 3.2 dB Radiated: \pm 6.3 dB (1 GHz to 18 GHz)
Radiated Spurious Emissions	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 18 GHz: ± 6.3 dB

Table 32

Measurement Uncertainty Decision Rule - Accuracy Method

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.