# **RF Exposure Exemption Report**

## Kinéis Model: KIM1 Part number KIM152211xxxxx

## In accordance with FCC CFR 47 Pt 1.1307

Prepared for: 11 Rue Hermès Parc Technologique du Canal 31520 - RAMONVILLE SAINT-AGNE FRANCE

# COMMERCIAL-IN-CONFIDENCE

## FCC ID: 2A96E-KIM1-HW1-5

## Document 75957047-02 Issue: 01



#### FCC Accreditation

90987 Octagon House, Fareham Test Laboratory

#### **EXECUTIVE SUMMARY**

The wireless devices described within this report are compliant with the exemption criteria related to human exposure to electromagnetic fields laid out in FCC CFR Title 47 Part 1.1307.



#### DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2023 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuvsud.com/en TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom



Add value. Inspire trust.

TÜV SÜD



# Contents

| 1.1 | Report Modification Record                               |   |
|-----|----------------------------------------------------------|---|
| 1.2 | Introduction                                             | 2 |
| 1.3 | Brief Summary of Results                                 |   |
| 1.4 | Application Form                                         | 4 |
| 1.5 | Product Information                                      | 6 |
| 2   | Assessment Details                                       | 8 |
| 2.1 | Single RF Source options for determination of exemption. |   |
| 2.2 | Individual Antenna Port Exposure Results                 | 9 |



## **Report Summary**

## 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue | Description of Change | Date of Issue |
|-------|-----------------------|---------------|
| 1     | First Issue           | 23-March-2023 |

#### Table 1

#### 1.2 Introduction

| Applicant                | Kinéis                                                                    |
|--------------------------|---------------------------------------------------------------------------|
| Manufacturer             | Kinéis                                                                    |
| Model Number(s)          | KIM1                                                                      |
| Hardware Version(s)      | 1.5                                                                       |
| Software Version(s)      | 3.0                                                                       |
| Specification/Issue/Date | FCC 47 CFR Part 1.1307: 2021                                              |
| Order Number<br>Date     | PO-22-00438<br>10 <sup>th</sup> Nov 2022                                  |
| Related Document(s)      | <ul><li>KDB 447498 D04 v01</li><li>FCC 47 CFR Part 2.1091: 2021</li></ul> |



#### 1.3 Brief Summary of Results

The wireless devices described within this report are compliant with the exemption criteria related to human exposure to electromagnetic fields laid out in FCC CFR Title 47 Part 1.1307.

The calculations shown in this report were made in accordance with the procedures specified in the applied test specification(s).



#### 1.4 Application Form

#### **Equipment Description**

| Technical Description:<br>(Please provide a brief description of the<br>intended use of the equipment) | This is a telecommunication module, dedicated to Kinéis protocol. Uplink only (ground to satellites). |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Manufacturer:                                                                                          | Kinéis                                                                                                |
| Model:                                                                                                 | KIM1                                                                                                  |
| Part Number:                                                                                           | KIM152211xxxxx                                                                                        |

| If more than one frequency band is supported, please |  |
|------------------------------------------------------|--|
| confirm which combinations of bands are capable of   |  |
| Simultaneous Transmit.                               |  |

#### Frequency Band 1: Please detail (one entry for each band), e.g GSM 900 / WCDMA FDD I etc .

| Antenna Model:    | Whip dipole |     |  |
|-------------------|-------------|-----|--|
| Antenna length:   | 70          | cm  |  |
| Bottom frequency: | 399.91      | MHz |  |
| Middle frequency: | 401         | MHz |  |
| Top frequency:    | 402.99      | MHz |  |

| Maximum power (input to the antenna including a tolerance): | 30  | dBm |
|-------------------------------------------------------------|-----|-----|
| Antenna gain (or maximum gain allowed):                     | 2.2 | dBi |
| Or                                                          |     |     |

| Field Strength Measurement: | dBµA/M |
|-----------------------------|--------|
| Measurement Distance:       | cm     |

| Separation distance from antenna to the user/bystander | > 20 | cm |
|--------------------------------------------------------|------|----|
| Transmitter Duty Cycle:                                | 0.7  | %  |

### Frequency Band 2: Please detail (one entry for each band), e,g GSM 900 / WCDMA FDD I etc

| Antenna Model:    | PCB coil |     |  |
|-------------------|----------|-----|--|
| Antenna length:   | 5        | cm  |  |
| Bottom frequency: | 399.91   | MHz |  |
| Middle frequency: | 401      | MHz |  |
| Top frequency:    | 402.99   | MHz |  |

| Maximum power (input to the antenna including a tolerance): |  | 30 |        | dBm |
|-------------------------------------------------------------|--|----|--------|-----|
| Antenna gain (or maximum gain allowed):                     |  | 0  |        | dBi |
| Or                                                          |  |    |        |     |
| Field Strength Measurement:                                 |  |    | dBµA/M |     |
| Measurement Distance:                                       |  |    | cm     |     |



| Separation distance from antenna to the user/bystander | > 20 | cm |
|--------------------------------------------------------|------|----|
| Transmitter Duty Cycle:                                | 0.7  | %  |

## Frequency Band 3: Please detail (one entry for each band), e,g GSM 900 / WCDMA FDD I etc .

| Antenna Model:    | РСВ    |     |  |  |
|-------------------|--------|-----|--|--|
| Antenna length:   | 5      | cm  |  |  |
| Bottom frequency: | 399.91 | MHz |  |  |
| Middle frequency: | 401    | MHz |  |  |
| Top frequency:    | 402.99 | MHz |  |  |

| Maximum power (input to the antenna including a tolerance): | 30 | dBm |  |  |  |  |
|-------------------------------------------------------------|----|-----|--|--|--|--|
| Antenna gain (or maximum gain allowed):                     | -3 | dBi |  |  |  |  |
| Or                                                          |    |     |  |  |  |  |
|                                                             |    |     |  |  |  |  |

| Field Strength Measurement: | dBµA/M |
|-----------------------------|--------|
| Measurement Distance:       | cm     |

| Separation distance from antenna to the user/bystander | > 20 | cm |
|--------------------------------------------------------|------|----|
| Transmitter Duty Cycle:                                | 0.7  | %  |

I hereby declare that the information supplied is correct and complete.

Name: Vincent Gamonal Position held: Test & validation engineer Date: 22 November 2022



#### 1.5 **Product Information**

#### 1.5.1 Technical Description

This is a telecommunication module, dedicated to Kinéis protocol. Uplink only (ground to satellites).

#### 1.5.2 Transmitter Description

The following radio access technologies and frequency bands are supported by the equipment under test.

| Radio Access      | Frequency Band | Minimum Frequency | Output Power | Duty Cycle (%) |  |
|-------------------|----------------|-------------------|--------------|----------------|--|
| Technology        | (MHz)          | (MHz)             | (dBm)        |                |  |
| Argos-2 satellite | 400 MHz        | 399.91 MHz        | 30           | 0.7            |  |

### Table 2 – Transmitter Description- FCC

Note: Transmitter power includes upper bounds of uncertainty therefore maximum values are used.



#### 1.5.3 Antenna Description

The following antennas are supported by the equipment under test.

| Radio Access<br>Technology | Antenna Model | Gain (dBi) | Antenna length (cm) | Minimum Separation<br>Distance (cm) |  |
|----------------------------|---------------|------------|---------------------|-------------------------------------|--|
| Argos-2 satellite          | Whip dipole   | 2.2        | 70                  | 20                                  |  |
| Argos-2 satellite PCB coil |               | 0 5        |                     | 20                                  |  |
| Argos-2 satellite          | PCB           | -3         | 5                   | 20                                  |  |

#### Table 3 – Antenna description

In the case of more than one type of antenna being supported by the equipment, the calculation is based on the maximum of the antenna gains which in this case is the whip dipole. If other antennas can be used that have greater gains, the minimum separation distances will need to be recalculated.

Note: Antenna gain includes upper bounds of uncertainty therefore maximum values are used.

#### 1.5.4 Equipment Configuration

Single 400 MHz transmitter



## 2 Assessment Details

## 2.1 Single RF Source options for determination of exemption.

| Option                        | Reference                 | RF Exposure Test Exemptio                                                                                                                                                                                                                                                                                                                                       | ns for Single Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                            |  |  |  |  |
|-------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| A                             | FCC                       | The available maximum time averaged power is no more than 1 mW, regardless of                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                            |  |  |  |  |
| (1-mW Test                    | 1.1307(b)(3)(i)(A)        | separation distance.                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                            |  |  |  |  |
| Exemption)                    |                           |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                            |  |  |  |  |
| B<br>(SAR-Based<br>Exemption) | FCC<br>1.1307(b)(3)(i)(B) | The available maximum timeaveraged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                            |  |  |  |  |
|                               |                           | $P_{th}$ (mW) =                                                                                                                                                                                                                                                                                                                                                 | $ERP_{20\ cm}(d/20\ cm)^x  d \le 20\ cm^{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m                                                                                                                                                                                                                          |  |  |  |  |
|                               |                           |                                                                                                                                                                                                                                                                                                                                                                 | <i>ERP</i> <sub>20 cm</sub> 20 cm <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $d \leq 40 \ { m cm}$                                                                                                                                                                                                      |  |  |  |  |
|                               |                           |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                            |  |  |  |  |
|                               |                           |                                                                                                                                                                                                                                                                                                                                                                 | ( 60 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                            |  |  |  |  |
|                               |                           | x = -                                                                                                                                                                                                                                                                                                                                                           | $\log_{10}\left(\frac{60}{ERP_{20} cm\sqrt{f}}\right)$ and f is in C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GHz;                                                                                                                                                                                                                       |  |  |  |  |
|                               |                           | and                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                            |  |  |  |  |
|                               |                           |                                                                                                                                                                                                                                                                                                                                                                 | $(2040f - 0.3 \text{ GHz})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\leq f < 1.5  \text{GHz}$                                                                                                                                                                                                 |  |  |  |  |
|                               |                           | ERP                                                                                                                                                                                                                                                                                                                                                             | $_{20 cm} (mW) = \begin{cases} 10000 \\ 20000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10$ | - ( - ( - ))                                                                                                                                                                                                               |  |  |  |  |
|                               |                           | $(3060  1.5 \text{ GHz} \le f \le 6 \text{ GHz}$                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                            |  |  |  |  |
|                               |                           | <i>d</i> = the separation distance (cm);                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                            |  |  |  |  |
| C<br>(MPE-Based<br>Exemption) | FCC<br>1.1307(b)(3)(i)(C) | Or using Table 1 and the min<br>body of a nearby person for<br>the ERP (watts) is no more to<br>For the exemption in Table 1<br>space operating wavelength<br>easily obtained, then the ava-<br>lieu of ERP if the physical din<br>the electrical length of $\lambda/4$ or<br>dipole (1.64 linear value).                                                       | himum separation distance (<br>the frequency (f in MHz) at w<br>han the calculated value pre-<br>to apply, R must be at leas<br>in meters. If the ERP of a si<br>allable maximum time-average<br>mensions of the radiating str<br>if the antenna gain is less th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R in meters) from the which the source operates, scribed for that frequency. t $\lambda/2\pi$ , where $\lambda$ is the freengle RF source is not ged power may be used in ucture(s) do not exceed than that of a half-wave |  |  |  |  |
|                               |                           | TABLE 1 TO § 1.1307(b<br>SOURCES SUBJECT<br>MENTAL EVALUATION                                                                                                                                                                                                                                                                                                   | 0)(3)(i)(C)—SINGLE RF<br>TO ROUTINE ENVIRON-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                            |  |  |  |  |
|                               |                           | RF Source<br>frequency<br>(MHz)                                                                                                                                                                                                                                                                                                                                 | Threshold ERP<br>(watts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                          |  |  |  |  |
|                               |                           | 0.3-1.34<br>1.34-30<br>30-300<br>300-1,500<br>1,500-100,000                                                                                                                                                                                                                                                                                                     | 1,920 R <sup>2</sup> .<br>3,450 R <sup>2/f2</sup> .<br>3.83 R <sup>2</sup> .<br>0.0128 R <sup>2</sup> f.<br>19.2R <sup>2</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                          |  |  |  |  |



#### 2.2 Individual Antenna Port Exposure Results

2.2.1 Single Source Calculation of Exposure at Specified Separation Distance FCC 1.1307(b)(3)(i)(B) 'Option B' (SAR Based Exemption)

| RAT               | Frequency<br>(MHz) | Conducted<br>Power Output<br>mW | Duty<br>Cycle<br>% | Time<br>Average<br>Conducted<br>Power<br>Output mW | Antenna<br>Gain<br>Ratio | Maximum<br>Power<br>(EIRP) mW | Maximum<br>Power<br>(ERP) mW | Minimum<br>Antenna to<br>User<br>Separation<br>Distance<br>(mm) | Pth (mW)<br>1.1307<br>(b)(3)(i)(B) | Greater of<br>Max time<br>averaged<br>conducted<br>power or<br>ERP? | 1.1307(b)(3)(i)(B)<br>Exemption (Yes/No)<br>(300 MHz to 6 GHz, 0.5<br>cm to 20 cm) |
|-------------------|--------------------|---------------------------------|--------------------|----------------------------------------------------|--------------------------|-------------------------------|------------------------------|-----------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Argos-2 satellite | 399.91             | 1000                            | 0.7                | 7                                                  | 1.66                     | 11.62                         | 7.085                        | 200                                                             | 815.8                              | 7.085                                                               | Yes                                                                                |

#### Table 4 – Transmitter Result

The calculations show that the individual transmitters comply with FCC 1.1307(b)(3)(i)(B) SAR-based exemption at a minimum distance of 0.2 m.